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Abstract
Call-by-push-value (CBPV) is an idealised calculus for func-
tional and imperative programming, introduced as a subsum-
ing paradigm for both call-by-value (CBV) and call-by-name
(CBN). We formalise weak and strong operational semantics
for (effect-free) CBPV, define its equational theory, and verify
adequacy for the standard set/algebra denotational semantics.
Furthermore, we prove normalisation of the standard reduc-
tion, confluence of strong reduction, strong normalisation
using Kripke logical relations, and soundness of the equa-
tional theory using logical equivalence. We adapt and verify
the known translations from CBV and CBN into CBPV for
strong reduction. This yields, for instance, proofs of strong
normalisation and confluence for the full λ-calculus with
sums and products. Thanks to the automation provided by
Coq and the Autosubst 2 framework, there is little formalisa-
tion overhead compared to detailed paper proofs.

CCSConcepts •Theory of computation→Operational
semantics; Denotational semantics; Type theory.
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1 Introduction
Call-by-push-value (CBPV) is an idealised calculus for func-
tional programming, suitable as a base calculus for the inclu-
sion of effects and able to express both call-by-value (CBV)
and call-by-name (CBN) reduction strategies [Levy 1999,
2012]. CBPV syntactically distinguishes between values and
computations, following the mantra “A value is, a compu-
tation does”. Due to its fixed evaluation order, there exist
translations from CBV and CBN calculi into CBPVwhich pre-
serve denotational and (big-step) operational semantics for
simply-typed terms [Levy 2006]. Using the translations, res-
ults like weak normalisation for the simply-typed λ-calculus
or adequacy of a denotational semantics can be obtained
directly from the corresponding results for CBPV.
From a compiler perspective, CBV and CBN can be seen

as source languages which are translated to the intermediate
language CBPV. This is the approach recently proposed by
the pioneering work of Rizkallah, Garbuzov, and Zdancewic
[2018]. They are the first to formalise CBPV in Coq and
formalise soundness of the equational theory (considering
only β-laws) w.r.t. observational equivalence.
In this paper we aim to extend the previous results of

both Levy [2006] and Rizkallah et al. [2018]. We consider
translations from the call-by-name λ-calculus and the fine-
grained call-by-value λ-calculus, untyped and with binary
sums and products, into CBPV. The main contribution of this
paper is two-fold:
First, we give a setup and examination of a strong op-

erational semantics for CBPV, allowing reduction in every
possible context. In the compiler setting of Rizkallah et al.
[2018], strong reduction corresponds to partial evaluation
and serves as the basis for many program optimisations, see
e.g. [Leißa et al. 2015]. We show how CBPV corresponds to
CBV/CBN via a slight modification of the known translations
and transport several results, such as strong normalisation,
to CBV/CBN. Moreover, we can directly conclude confluence
of the full λ-calculus. We then show that the equational the-
ory (with β , η, and sequencing laws) of simply-typed CBPV
is sound with respect to observational equivalence. This also
suffices to obtain soundness of the equational theories for
CBN/CBV (with β laws). Second, our work is accompanied
by a complete, technically involved Coq development with
about 8000 lines. This yields a verified treatment of both
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weak and strong operational semantics, the equational the-
ory, and denotational semantics for CBPV, CBV, and CBN.

Organisation of the paper. We start the paper with a pre-
sentation of the untyped and simply-typed systems. Levys’
known translations from CBV/CBN to CBPV is slightly mod-
ified by an eager let operation that eliminates administrative
let redices. The translation is then proven correct for untyped
terms with respect to the standard small-step semantics. We
then formalise weak normalisation of simply-typed CBPV
using a logical relation and, using the translations, conclude
weak normalisation of simply typed CBV and CBN.

Strong reduction for CBPV is defined by allowing reduc-
tion in any context. We prove confluence of this reduction
using a standard method [Takahashi 1989].
The CBN system equipped with strong reduction is the

full λ-calculus. Here, the simulation proof is even easier than
before, yielding confluence of the full λ-calculus with sums
and products. For CBV equipped with strong reduction we
observe that the translation does not (and probably: cannot)
preserve normality for untyped terms. However, forward
simulation still yields the soundness of the equational theory
for CBV and suffices to prove strong normalisation.

In CBPV, strong normalisation is proven using a new proof
method, following the structure of weak normalisation: To
obtain strong normalisation, we extend the logical relation
to open terms and slightly adapt the logical relation for com-
putations. The simulations from simply-typed CBV and CBN
then yield proofs of strong normalisation for CBV and CBN.
Next, we recall and formalise observational equivalence

for all three systems. To obtain soundness for the equational
theory of CBPV including β-laws, η-laws and let-sequencing,
we define a logical equivalence that can be placed between
the equational theory and observational equivalence.
Observational equivalence for both CBV and CBN terms

can be concluded from the observational equivalence of their
translations.

Last, we recall and formalise the set/algebra semantics for
CBPV following Forster et al. [2017] and prove its adequacy
in Coq. Adequate algebra semantics can be deduced for both
CBV and CBN.

We conclude the paper by a discussion of the Coq formal-
isation, related work, and future work.

Coq formalisation. The Coq formalisation of all results in
this paper is available online1. All lemmas and theorems
in the PDF version of the paper are hyperlinked with the
Coq source code. For the paper presentation, we use named
syntax for variables and binders and will sometimes write
contexts as functions. In contrast, our formalisation uses
well-scoped de Bruijn syntax and the Autosubst 2 tool [Stark
et al. 2018]. The most notable point about the formalisation
is its generally low overhead compared to paper proofs.

1https://www.ps.uni-saarland.de/extras/cbpv-in-coq/

(value types) A, B := 1 | A1 × A2 | 0 | A1 + A2 | U C
(computation types) C , D := F A | A→ C | ⊤ | C1 &C2
(environments) Γ := x1 : A1, . . . , xn : An

(values) V ,W := x | () | (V1,V2) | inji V | {M }
(computations) M , N := split(V , x1 .x2 .M ) | case0(V ) | ⟨⟩

| case(V , x1 .M1, x2 .M2) | V !
| return V | let x ← M in N
| λx .M | M V
| ⟨M1,M2 ⟩ | prji M

Figure 1. CBPV syntax

Contributions. We provide a Coq formalisation of much
of the known operational meta-theory of CBPV, including
the definition of small-step reduction, weak normalisation
and adequacy of the set/algebra semantics. We give trans-
lations from untyped CBV/CBN to CBPV and verify them
with respect to the standard small-step semantics. The trans-
lation corresponds to the original one, except for an eager
let construct.
To the best of our knowledge, we are the first to give a

confluent strong operational semantics for CBPV. We deduce
strong normalisation of the full simply typed λ-calculus with
sums and products by proving the translation to be correct
for strong reduction.
A new and general proof method is introduced to prove

strong normalisation for CBPV.
We obtain the soundness result for the equational theory

from Rizkallah et al. [2018] for our typed version of CBPV
and can deduce soundness of the equational theory for CBV
and CBN.

Our development can be further seen as a large case study
for the Autosubst 2 library, featuring three different calculi
using mutual inductive definitions.

2 Translating CBV and CBN to CBPV
We consider CBPV, CBV, and CBN with binary products,
binary sums, and unit. The given type systems are all simply-
typed without type variables. In the scope of this work, we
do not consider effects. Note that if effects are considered,
products and sums of arbitrary finite arity can not be re-
covered from their binary counterparts. However, we are
confident that our proofs can be generalised to arbitrary
finite arities.

2.1 CBPV
Our results concern (simply-typed) CBPV as defined in figs. 1
and 2. Value types include the empty type, unit, binary sums,
and binary products. Computation types include unit, binary
products, and function types.

The natural way to turn a value V : A into a computation
returning this value is using the return V construct, yielding
a term of type F A. The only way to examine the value of a
value-returning computation is by using the let x ← M in N

https://www.ps.uni-saarland.de/extras/cbpv-in-coq/
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Value typing Γ ⊢ V : A

(x : A) ∈ Γ

Γ ⊢ x : A Γ ⊢ () : 1

Γ ⊢ V1 : A1 Γ ⊢ V2 : A2

Γ ⊢ (V1,V2) : A1 × A2

Γ ⊢ V : Ai
Γ ⊢ inji V : A1 + A2

Γ ⊢ M : C

Γ ⊢ {M } : U C

Computation typing Γ ⊢ M : C

Γ ⊢ V : A1 × A2 Γ, x1 : A1, x2 : A2 ⊢ M : C

Γ ⊢ split(V , x1 .x2 .M ) : C

Γ ⊢ V : 0

Γ ⊢ case0(V ) : C

Γ ⊢ V : A1 + A2 Γ, x1 : A1 ⊢ M1 : C Γ, x2 : A2 ⊢ M2 : C

Γ ⊢ case(V , x1 .M1, x2 .M2) : C

Γ ⊢ V : U C

Γ ⊢ V ! : C

Γ ⊢ V : A

Γ ⊢ return V : F A

Γ ⊢ M : F A Γ, x : A ⊢ N : C

Γ ⊢ let x ← M in N : C

Γ, x : A ⊢ M : C

Γ ⊢ λx .M : A→ C

Γ ⊢ M : A→ C Γ ⊢ V : A

Γ ⊢ M V : C Γ ⊢ ⟨⟩ : ⊤

Γ ⊢ M1 : C1 Γ ⊢ M2 : C2

Γ ⊢ ⟨M1,M2 ⟩ : C1 &C2

Γ ⊢ M : C1 &C2

Γ ⊢ prji M : Ci

Figure 2. CBPV typing

construct. Computations M : C can be thunked and then
treated as values using {M} : U C . The only way to resume
a thunked computation is by forcing using V !.

Eager let. Extending Levy’s results to a small-step semantics
and untyped versions of the λ-calculus requires a small
change in the translation.We introduce an eager let construct
which immediately inserts a value if present and otherwise
just behaves like let:

let x ⇐ return V in N := N [V /x]

let x ⇐ M in N := let x ← M in N

Eager lets are frequent when translating into practical
intermediate languages. Similar eager elimination constructs
could be introduced for all other value types, but we will
only use eager elimination of type F A. For CBV, the eager
let is crucial for the (untyped) correctness of the translation
w.r.t. both strong and weak reduction.

Both typing and substitution are compatible with the eager
let. The (derived) typing rule for eager let reads

Γ ⊢ M : F A Γ, x : A ⊢ N : C
Γ ⊢ let x ⇐ M in N : C

Lemma 2.1. The eager let is compatible with renaming and
substitution. Explicitly, for every substitution σ ,

(let x ⇐ V inM)[σ ] = let x ⇐ V [σ ] inM[σ [x := x]].

(types) A, B := 1 | A1 × A2 | A1 + A2 | A1 → A2
(environments) Γ := x1 : A1, . . . , xn : An

(values) u , v := x | () | (v1, v2) | inji v | λx .s
(terms) s , t := valv

| case(s , x1 .t1, x2 .t2)
| split(s , x1 .x2 .s) | s t

Figure 3. CBV syntax

Value typing Γ ⊢v v : A

(x : A) ∈ Γ

Γ ⊢v x : A Γ ⊢v () : 1

Γ, x : A ⊢e s : B

Γ ⊢v λx .s : A→ B

Γ ⊢v v1 : A1 Γ ⊢v v2 : A2

Γ ⊢v (v1, v2) : A1 × A2

Γ ⊢v v : Ai
Γ ⊢v inji v : A1 + A2

Computation typing Γ ⊢e s : A

Γ ⊢v v : A

Γ ⊢e valv : A

Γ ⊢e s : A→ B Γ ⊢e t : A

Γ ⊢e s t : B

Γ ⊢e s : A1 × A2 Γ, x1 : A1, x2 : A2 ⊢e t : C

Γ ⊢e split(s , x1 .x2 .t ) : C

Γ ⊢e s : A1 + A2 Γ, x1 : A1 ⊢e t1 : B Γ, x2 : A2 ⊢e t2 : B

Γ ⊢e case(s , x1 .t1, x2 .t2) : B

Figure 4. CBV typing

CBV translation A and v and s

1 := 1 A→ B := U (A→ F B) A × B := A × B

A + B := A + B () := () x := x λx .s := {λx .s }

(u , v) := (u , v) injb v := injb v valv := return v

s t := let x ⇐ s in let y ⇐ t in (x !) y

split(s , x1 .x2 .t ) := let z ⇐ s in split(z, x1 .x2 .t )

case(s , x1 .t1, x2 .t2) := let z ⇐ s in case(z, x1 .t1, x2 .t2)

Figure 5. CBV translation to CBPV

2.2 CBV
Levy [2006] gives a translation from the simply-typed fine-
grained call-by-value λ-calculus (CBV, see figs. 3 and 4) to
simply-typed CBPV and proves its correctness w.r.t. big-step
operational semantics. We extend this result in that we prove
that the translation is correct w.r.t. small-step semantics, and
using eager lets to eliminate administrative redices. Levy
[2006] presents his result only for typed terms, but remarks
that they also hold for untyped terms, which we demonstrate
with our formalisation.

http://www.ps.uni-saarland.de/extras/cbpv-in-coq/doc/CBPV.Eagerlet.html#eagerlet_substcomp
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(types) A, B := 1 | A1 × A2 | A1 + A2 | A1 → A2
(environments) Γ := x1 : A1, . . . , xn : An

(terms) s , t := x | () | (s1, s2) | inji s
| case(s , x1 .t1, x2 .t2)
| prji s
| λx .s | s t

Figure 6. CBN syntax

CBN typing Γ ⊢n s : A

(x : A) ∈ Γ

Γ ⊢n x : A Γ ⊢n () : 1

Γ, x : A ⊢n s : B

Γ ⊢n λx .s : A→ B

Γ ⊢n s1 : A1 Γ ⊢n s2 : A2

Γ ⊢n (s1, s2) : A1 × A2

Γ ⊢n s : Ai
Γ ⊢n inji s : A1 + A2

Γ ⊢n s : A→ B Γ ⊢n t : A

Γ ⊢n s t : B

Γ ⊢n s : A1 × A2

Γ ⊢n prji s : Ai

Γ ⊢n s : A1 + A2 Γ, x1 : A1 ⊢n t1 : C Γ, x2 : A2 ⊢n t2 : C

Γ ⊢n case(s , x1 .t1, x2 .t2) : C

Figure 7. CBN typing

The types of CBV are translated into CBPV value types
(fig. 5). The separation into terms and values in CBV is pre-
served in the translation: CBV terms and CBV values are
translated to CBPV computations and CBPV values respect-
ively. We write the translation from CBV types and CBV
terms as A, respectively s and v . As the environments of
both CBV and CBPV contain values, a translated environ-
ment simply translates the contained values: Γx := Γx .
We can show basic properties of our translation.

Lemma 2.2. The translations are injective.

Proof. By mutual induction on the corresponding first term
or value. The proof relies on the fact that the eager let only
substitutes variables which occur exactly once. □

Lemma 2.3. If Γ ⊢e s : A, then Γ ⊢ s : A and analogously
for values.

Lemma 2.4. The translations are compatible with substitu-
tion. Explicitly, for every substitution σ we have s[σ ] = s[σ ]

and v[σ ] = v[σ ].

2.3 CBN
Analogous to CBV, we give a translation from the call-by-
name λ-calculus (CBN, see figs. 6 and 7) to simply-typed
CBPV. Levy [2006] proves the correctness of the translation
w.r.t. big-step operational semantics, while we extend the
result as in section 2.2.

We write the translation functions as s and A, their defini-
tions are depicted in fig. 8. Note that all terms are translated

CBN translation A and s

1 := F 1 A1 × A2 := A1 & A2 A1 + A2 := F (U A1 +U A2)

A1 → A2 := U A1 → A2

x := x ! () := return () (s1, s2) := ⟨s1, s2 ⟩

inji s := return inji {s }

case(s , x1 .t1, x2 .t2) := let y ⇐ s in case(y, x1 .t1, x2 .t2)

prji s := prji s λx .s := λx .s s t := s {t }

Figure 8. CBN translation to CBPV

to computations and all types to computation types.We trans-
late environments Γ into value environments Γx := U (Γx).
Following Levy we define the relation s 7→n M with the

same defining rules as the translation function. We give the
full definition in the appendix (fig. 3 in [Forster et al. 2018])
and only show the additional rule which allows force-thunk
pairs at arbitrary positions:

s 7→n M

s 7→n {M}!
We fix some properties of the translation:

Lemma 2.5. 7→n is injective.

Lemma 2.6. s 7→n s

Lemma 2.7. If s 7→n M and Γ ⊢ s : A, then Γ ⊢ M : A.

Proof. By induction on s 7→n M with A generalised. □

Lemma 2.8. Let ρ be a renaming. Then (1) (s)[ρ] = s[ρ] and
(2) if s 7→n M , then s[ρ] 7→n M[ρ].

Lemma 2.9. For all CBN substitutions σ and CBPV substitu-
tions τ : Let s 7→n M . If for all x , σx 7→n τx !, then s[σ ] 7→n
M[τ ].

Finally, we introduce the full simulation relation Z⇒n. It
has exactly the same rules as 7→n, with the rule for case
replaced by two new rules:

s Z⇒n M t1 Z⇒n N1 t2 Z⇒n N2

case(s, x1.t1, x2.t2) Z⇒n let y ← M in case(y, x1.N1, x2.N2)

s Z⇒n return V t1 Z⇒n N1 t2 Z⇒n N2

case(s, x1.t1, x2.t2) Z⇒n case(M, x1.N1, x2.N2)

Lemma 2.10. If s 7→n M , then s Z⇒n M .

Lemma 2.11. If s Z⇒n M , then s[ρ] Z⇒n M[ρ] for all renam-
ings ρ.

Lemma 2.12. For all CBN substitutions σ and CBPV sub-
stitutions τ : Let s Z⇒n M . If for all x , σx Z⇒n τx !, then
s[σ ] Z⇒n M[τ ].

http://www.ps.uni-saarland.de/extras/cbpv-in-coq/doc/CBPV.CBV.CBV_CBPV.html#injective_eval
http://www.ps.uni-saarland.de/extras/cbpv-in-coq/doc/CBPV.CBV.CBV_CBPV.html#typingVal_pres
http://www.ps.uni-saarland.de/extras/cbpv-in-coq/doc/CBPV.CBV.CBV_CBPV.html#trans_subst_val
http://www.ps.uni-saarland.de/extras/cbpv-in-coq/doc/CBPV.CBN.CBN_CBPV.html#trans_inj
http://www.ps.uni-saarland.de/extras/cbpv-in-coq/doc/CBPV.CBN.CBN_CBPV.html#trans_eval
http://www.ps.uni-saarland.de/extras/cbpv-in-coq/doc/CBPV.CBN.CBN_CBPV.html#trans_preserves
http://www.ps.uni-saarland.de/extras/cbpv-in-coq/doc/CBPV.CBN.CBN_CBPV.html#ren_comp_eval
http://www.ps.uni-saarland.de/extras/cbpv-in-coq/doc/CBPV.CBN.CBN_CBPV.html#trans_ren
http://www.ps.uni-saarland.de/extras/cbpv-in-coq/doc/CBPV.CBN.CBN_CBPV.html#trans_subst
http://www.ps.uni-saarland.de/extras/cbpv-in-coq/doc/CBPV.CBN.CBN_CBPV.html#trans_refines
http://www.ps.uni-saarland.de/extras/cbpv-in-coq/doc/CBPV.CBN.CBN_CBPV.html#refines_ren
http://www.ps.uni-saarland.de/extras/cbpv-in-coq/doc/CBPV.CBN.CBN_CBPV.html#refines_subst
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Primitive reduction M ≻ M ′

split((V1,V2), x1 .x2 .M ) ≻ M [V1/x1,V2/x2]
case(inji V , x1 .M1, x2 .M2) ≻ Mi [V /xi ]

{M }! ≻ M

let x ← return V in M ≻ M [V /x ]
(λx .M ) V ≻ M [V /x ]

prji ⟨M1,M2 ⟩ ≻ Mi

Weak CBPV reduction frames

C := let x ← [ ] in N | [ ] V | prji [ ]

Weak CBPV reduction M { M ′

M ≻ M ′

M { M ′

M { M ′

C[M ] { C[M ′]

Figure 9. Weak CBPV reduction

3 Weak Reduction
We write the standard small-step semantics of CBPV (see e.g.
[Forster et al. 2017]) as{. The corresponding semantics for
CBV and CBN are denoted by{v and{n.

We say that a term is normal if it does not have a successor
under{, and say thatM evaluates to N , writtenM ⇓ N , iff
M {∗ N ∧ normal N (and similarly for ⇓v / ⇓n). In the Coq
development we prove that this is equivalent to the usual
big-step definition of evaluation for typed terms, but do not
mention big-step evaluation here again. We use the same
notation for evaluation in CBV and CBN.

3.1 CBPV
We define { in fig. 9 and fix the following properties of
eager let for future use:

Lemma 3.1. (let x ← M in N ) {∗ (let x ⇐ M in N ).

Lemma 3.2. If M {∗ M ′, then let x ⇐ M in N {∗

let x ⇐ M ′ in N and similarly for{+.

3.2 CBV
See fig. 10 for a small-step semantics for CBV. We show that
the translation of CBV into CBPV is a simulation, i.e. that
s ⇓v v ↔ s ⇓ v .

The forward direction of the simulation is by two straight-
forward inductions:

Lemma 3.3. We have:
1. If s {v t , then s {+ t .
2. If s {∗v t , then s {∗ t .

Theorem 3.4. If normal s , then normal s .

Corollary 3.5. If s ⇓v t , then s ⇓ t .

For the backwards direction, termination follows directly
from forward simulation (Lemma 3.3).

Primitive CBV reduction s ≻v s′

split((v1, v2), x1 .x2 .M ) ≻v M [v1/x1, v2/x2]
case(inji v , x1 .s1, x2 .s2) ≻v si [v/xi ]

(λx .s) (valv) ≻v s[v/x ]

Weak CBV reduction frames

C := (valv) [ ] | [ ] s | case([ ], x1 .t1, x2 .t2) | split([ ], x1 .x2 .t )

Weak CBV reduction s {v s′

s ≻ s′

s {v s′

s {v s′

C[s] {v C[s′]

Figure 10. Weak CBV reduction

Primitive CBN reduction M ≻n M ′

case(inji s , x1 .t1, x2 .t2) ≻n ti [s/xi ]
(λx .s) t ≻n s[t/x ]

prji (s1, s2) ≻n si
Weak CBN reduction frames

C := [ ] s | prji [ ] | case([ ], x1 .t1, x2 .t2)

Weak CBN reduction M {n M ′

M ≻n M ′

M {n M ′

M {n M ′

C[M ] {n C[M ′]

Figure 11. Weak CBN reduction

Corollary 3.6. If normal s , then normal s .

For backwards simulation, we need to show that if s {∗ t ,
then s {∗ t .

Lemma 3.7. If s { M , then there is some s ′ such thatM {∗

s ′ and s {v s
′.

Proof. By induction on s . □

Lemma 3.8. If s {∗ M , then there is some t such thatM {∗

t and s {∗v t .

Proof. With functionality of weak CBPV reduction in the
induction case. □

The full backward simulation result requires injectivity of
the translation.

Corollary 3.9. If s ⇓ v , then s ⇓v v .

3.3 CBN
For CBN, we can only show that the simulation holds up
to the translation relation: We prove that s {n t implies
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s { N for some N with t 7→n N , but not necessarily N = t .
To see the difference to CBV, consider s = (λxy.x)u for a
closed term u. We have s {n λy.u. But at the same time, we
have s = (λxy.x !){u} {n λy.{u}! , λy.u.
The forward direction of the simulation still holds by a

straightforward induction on the translation relation:

Lemma 3.10 (Forward simulation).
1. If s 7→n M and t 7→n N , then s[t/x] 7→n M[{N }/x].
2. If s {n t and s 7→n M , thenM {+ N for some N with

t 7→n N .
3. If s {∗n t and s 7→n M , thenM {∗ N for some N with

t 7→n N .

We can use the simulation to recover Levy’s results about
evaluation:

Lemma 3.11. If s 7→n M and s is normal, thenM {∗ N for
a normal N with s 7→n N .

Theorem 3.12. If s 7→n M and s ⇓n t , thenM ⇓ N for some
N with t 7→n N .

For the backwards direction we would like to prove that
if s {∗ t , then s {∗n t . For the induction, a generalisation to
7→n does not suffice: Consider

s = (λx .case(x,y1.t1,y2.t2))(u1,u2).

Then s {∗ case(return (u1,u2),y1.t1,y2.t2), which is never
contained in the translation relation. We thus generalise to
the full simulation relation Z⇒n, which includes these inter-
mediate terms:

Lemma 3.13. The following hold:
1. If s Z⇒n M and M { N , then there is t with t Z⇒n N

and s {∗n t .
2. If s Z⇒n M and M {∗ N , then there is t with t Z⇒n N

and s {∗n t .

This is enough to deduce the backwards directionw.r.t. 7→n:

Corollary 3.14. If s 7→n M , t 7→n N and M {∗ N , then
s {∗n t .

Finally, we can recover the results for evaluation:

Lemma 3.15. If s Z⇒n M and s {n t , then there is t with
t Z⇒n N andM {+ N .

Theorem 3.16. If s Z⇒n M and M ⇓ N , then there is t with
t Z⇒n N and s ⇓n t .

4 Weak Normalisation
Recall that for all three calculi weak reduction{ is determ-
inistic. This allows us to define weak normalisation as strong
normalisation of {. This definition is particularly nice in
Coq, because an inductive definition of strong normalisation
enables compact and elegant proofs by providing convenient

Value Semantic Typing V ∈ V[A]

V[0] := ∅ V[1] := {()}

V[A1 × A2] := {(V1,V2) |V1 ∈ V[A1],V2 ∈ V[A2]}

V[A1 + A2] :=
{
inji V

��V ∈ V[Ai ]}
V[U C] := {{M } |M ∈ E[C]}

Computation Semantic Typing M ∈ C[C]

C[⊤] := { ⟨⟩ } C[F A] := {return V |V ∈ V[A]}

C[A→ C] := {λx .M | ∀V ∈ V[A]. M [V /x ] ∈ E[C]}

C[C1 &C2] := {(M1,M2) |M1 ∈ E[C1],M2 ∈ E[C2]}

Semantic Typing

E[C] := {M | ∃N . M ⇓ N ∧ N ∈ C[C]}

G[Γ] := {γ | ∀(x : A) ∈ Γ, γ x ∈ V[A]}

Γ ⊨ V : A := ∀γ ∈ G[Γ]. V [γ ] ∈ V[A]

Γ ⊨ M : C := ∀γ ∈ G[Γ]. M [γ ] ∈ E[C]

Figure 12. CBPV semantic typing

induction hypotheses. We say that R is strongly normalising
if SN R x holds for all x , where SN is defined as:

∀y. R x y → SN R y

SN R x

A computationM is weakly normalising, if SN ({)M , and
similarly for CBN and CBV.

We prove weak normalisation of simply typed CBPV using
logical relations [Girard 1971; Tait 1967]. We use the unary
semantic typing predicates V[A] and C[C] for values and
computation and introduce the unary expression relation
E[C] following Dreyer et al. [2018] (all defined in fig. 12). The
terms in E[C] are computationally indistinguishable from
closed terms of type C . However, they are not necessarily
well-typed. For example, prj1 ⟨⟨⟩, ⟨⟩ ()⟩ ∈ E[⊤]. Terms in
V[A] and C[C] behave like closed normal forms of type A
and C respectively.

Lemma 4.1. The following hold:
1. C[C] ⊆ E[C].
2. C[C] only contains normal forms w.r.t.{.
3. IfM {∗ N and N ∈ E[C], thenM ∈ E[C].

Theorem 4.2. If Γ ⊢ M : C , then Γ ⊨ M : C and
if Γ ⊢ V : A, then Γ ⊨ V : A.

Proof. By induction on the typing judgement using compati-
bility lemmas for every case. □

Corollary 4.3. If ⊢ M : C , thenM ∈ E[C] and
if ⊢ V : A, then V ∈ V[A].

This suffices to deduce:
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Strong CBPV reduction frames

(value/value contexts) Cv ,v := [ ] | ([ ],V2) | (V1, [ ]) | inji [ ]
(value/computation contexts) Cv ,c := {[ ]}
(computation/computation contexts)

Cc ,c := [ ] | split(V , x1 .x2 .[ ])
| case(V , x1 .[ ], x2 .M2)
| case(V , x1 .M1, x2 .[ ])
| let x ← [ ] in N
| let x ← M in [ ]
| λx .[ ] | [ ] V
| ⟨[ ],M2 ⟩ | ⟨M1, [ ]⟩ | prji [ ]

(computation/value contexts)
Cc ,v := split([ ], x1 .x2 .M )

| case0([ ])
| case([ ], x1 .M1, x2 .M2) | [ ]!
| return [ ] | M [ ]

Strong CBPV reduction M ⇝ M ′ and V ⇝ V ′

M ≻ M ′

M ⇝ M ′
M ⇝ M ′

Cc ,c [M ]⇝ Cc ,c [M ′]

V ⇝ V ′

Cc ,v [V ]⇝ Cc ,v [V ′]

M ⇝ M ′

Cv ,c [M ]⇝ Cv ,c [M ′]

V ⇝ V ′

Cv ,v [V ]⇝ Cv ,v [V ′]

Figure 13. Strong CBPV reduction

Theorem 4.4. Closed, well-typed CBPV computations are
weakly normalising.

Weak normalisation for simply-typed CBV and CBN fol-
low with the simulation theorems 3.3 and 3.10.

Theorem 4.5. Closed, well-typed CBV terms are weakly nor-
malising.

Theorem 4.6. Closed, well-typed CBN terms are weakly nor-
malising.

5 Strong Reduction
We define strong reduction for CBPV (⇝), CBV (⇝v), and
CBN (⇝n). We show confluence for CBPV using standard
methods [Takahashi 1989] and adapt this result for the full
λ-calculus via untyped simulation. For CBV the translation is
not a simulation w.r.t. strong reduction, and thus we cannot
deduce confluence for CBV from that of CBPV. However,
forward simulation will suffice for strong normalisation and
soundness of the equational theory.

5.1 CBPV
We extend weak reduction to strong reduction by allow-
ing primitive reduction in every context, see fig. 13. We
define strong reduction contexts C non-recursively, as single-
layered frames. For real contexts, i.e. multi-layered frames
we write Xc ,c ,Xc ,v ,Xv ,c ,Xv ,v .

Strong reduction frames

(value/value contexts) Cv ,v := [ ] | (v1, [ ]) | ([ ], v2)
| inji [ ]

(value/computation contexts) Cv ,c := λx .[ ]
(computation/computation contexts)

Cc ,c := [ ] | s [ ] | [ ] t
| case([ ], x1 .t1, x2 .t2)
| case(s , x1 .[ ], x2 .t2)
| case(s , x1 .t1, x2 .[ ])
| split([ ], x1 .x2 .t )
| split(s , x1 .x2 .[ ])

(computation/value contexts)
Cc ,v := val [ ]

Strong CBV reduction s ⇝v s′ and v ⇝v v ′

s ≻v s′

s ⇝v s′
s ⇝v s′

Cc ,c [s]⇝v Cc ,c [s′]

v ⇝v v ′

Cc ,v [v]⇝v Cc ,v [v ′]

s ⇝v s′

Cv ,c [s]⇝v Cv ,c [s′]

v ⇝v v ′

Cv ,v [v]⇝v Cv ,v [v ′]

Figure 14. Strong CBV reduction

We fix two crucial properties of the eager let w.r.t. strong
reduction.

Lemma 5.1. The following hold:

1. LetM ⇝∗ M ′ andN ⇝∗ N ′. Then letx ⇐ M inN ⇝∗

let x ⇐ M ′ in N ′.
2. LetN ⇝+ N ′ and for allV ,V ′ s.t.V ⇝ V ′,N [V /x]⇝+

N [V ′/x]. Then let x ⇐ M in N ⇝+ let x ⇐ M in N ′.

5.1.1 Confluence
We show confluence of CBPV using the technique of Tait-
Martin-Löf, refined by Takahashi [1989]. As the proof is
completely analogous to its counterpart in the full λ-calculus,
we give the definition of parallel reduction⇝⇝ and the parallel
reduction function ϱ in the appendix [Forster et al. 2018] and
only state the lemmas specific to CBPV for computations,
while the analogous statements hold for values:

Lemma 5.2. M⇝⇝M

Lemma 5.3. ⇝ is included in⇝⇝, which is included in⇝∗.

Lemma 5.4. ⇝⇝ is compatible with renamings and substitu-
tions, explicitly for all renamings ρ and substitutions σ1,σ2

1. IfM⇝⇝ N , thenM[ρ]⇝⇝ N [ρ].
2. If ∀x . σ1 x⇝⇝ σ2 x andM⇝⇝ N , thenM[σ1]⇝⇝ N [σ2].

Lemma 5.5. IfM⇝⇝ N , then N ⇝⇝ ϱ M .

Theorem 5.6 (Confluence). Strong reduction⇝ is confluent.
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Strong CBN reduction frames

C := s [ ] | [ ] s | case([ ], x1 .t1, x2 .t2)
| case(s , x1 .[ ], x2 .t2) | case(s , x1 .t1, x2 .[ ])
| λx .[ ] | (s , [ ]) | ([ ], s) | injb [ ] | prjb [ ]

Strong CBN reduction M ⇝n M ′

M ≻n M ′

M ⇝n M ′
M ⇝n M ′

C[M ]⇝n C[M ′]

Figure 15. Strong CBN reduction

5.2 CBV
We define strong CBV reduction by extending the reduction
frames to allow reductions in every context (fig. 14). Once
again we write Xv ,v ,Xc ,v ,Xv ,c ,Xc ,c for the multi-layered
versions of the strong reduction frames.

Again we aim for a simulation result. However, in con-
trast to the weak case, s ⇓ v ↔ s ⇓ v cannot be proven.
Both backward simulation and forward termination do not
(and probably cannot) hold. This is because a strong CBPV
semantics no longer provides the required fixed evaluation
order: The translation can do more steps than CBV.

As an example, consider the (non well-typed) term
(val (λx .valx)) ((val z) (val z)).

This term is obviously normal. However, its translation
let x ← (z! z) in {λz.return z}! x

can reduce first the force-thunk-pair and then do a beta re-
duction. While the force-thunk-pair could be eliminated in
the translation, we conjecture that no translation can pre-
vent this beta-reduction. With the same example, backward
simulation fails to hold. However, we conjecture that the full
simulation result does hold in the well-typed case, similar
to [Levy 2006].

Forward simulation and backwards termination still hold
and suffice to show strong normalisation.

Lemma 5.7.
1. If s ⇝v t , then s ⇝+ t .
2. If s ⇝∗v t , then s ⇝∗ t .

Corollary 5.8. If s is normal, then s is normal.

5.3 CBN
We define strong reduction⇝n for CBN in fig. 15. Note that
this yields exactly the full λ-calculus with sums and products.

Substitutions are translated to σ := λx .

{
y if σx = y{
σs

}
otherwise.

For strong reduction, deep force-thunk pairs can be reduced,
and thus the translation is well-behaved w.r.t. substitution:

Lemma 5.9. The following hold:
1. s[σ ]⇝∗ s[σ ].
2. If σx !⇝∗ τx ! for all x , then s[σ ]⇝∗ s[τ ].

The forward direction then is straightforward:

Lemma 5.10. The following hold:
1. s[{t}/x]⇝∗ s[t/x]
2. If s ⇝n t , then s ⇝+ t .

We use the full simulation relation for the other direction:

Lemma 5.11. Let s Z⇒n M .
1. M ⇝∗ s and s ⇝∗n t for some t .
2. IfM ⇝ N , then s ⇝∗n t for some t with t Z⇒n N .
3. IfM ⇝∗ N , then s ⇝∗n t for some t with t Z⇒n N .

Corollary 5.12. If s ⇝∗ N , thenN ⇝∗ t and s ⇝∗n t for some t .

We can deduce a confluence proof for the full λ-calculus:

Theorem 5.13. The full λ-calculus is confluent.

Proof. Let s ⇝∗n t1 and s ⇝∗n t2. Then s ⇝∗ t1 and s ⇝∗ t2.
Since CBPV is confluent, there isM s.t. t1 ⇝∗ M and t2 ⇝∗
M .

There are now u1 and u2 with t1 ⇝∗n u1, t1 ⇝∗n u2, u1 Z⇒n
M and u2 Z⇒n M . Since Z⇒n is injective u1 = u2. □

Similar to the weak case, we then recover the following
results w.r.t. evaluation:

Theorem 5.14. If s evaluates toM under⇝ thenM = t and
s evaluates to t under⇝n.

Lemma 5.15. If s is normal, then s is normal.

Theorem 5.16. If s evaluates to t under⇝n, then s evaluates
to t under⇝.

6 Strong Normalisation
We show strong CBPV normalisation analogous to the proof
of weak normalisation, using strong semantic typing (fig. 16).
In order to show strong normalisation, we extend the

semantic typing to open values (V ∈ V◦[A]) by including
variables and change the definition of the E[C] predicate. For
weak normalisation, a computationM is in E[C]whenever it
is weakly normalising and its normal form satisfies the C[C]
predicate. In order to obtain strong normalisation, we extend
the definition of E[C] to obtain guarantees for all reduction
paths, as well as under arbitrary context extensions, e.g.,
renamings. Intuitively, we define E[C] to be the smallest
(Kripke-) reducibility candidate containing C[C]. As a slight
simplification, it turns out that the closure under context
extension is only relevant in the case of function types and
so we include it into the definition of C[A→ C].

In addition, it is not sufficient for normal forms to satisfy
the C[C] predicate. Instead, we need to have this property
for all “active” computations. A computationM is active, if
M is of the form ⟨⟩, return V , λx .M , or ⟨M1,M2⟩.
The proof is similar to the proof of weak normalisation

and consists of three parts that are all shown by straightfor-
ward structural inductions. First, we show generic properties
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Value Semantic Typing V ∈ V[A],V ∈ V◦[A]

V[0] := ∅ V[1] := {()}

V[A1 × A2] :=
{
(V1,V2)

��V1 ∈ V◦[A1],V2 ∈ V◦[A2]
}

V[A1 + A2] :=
{
inji V

��V ∈ V◦[Ai ]}
V[U C] := {{M } |M ∈ E[C]}

x ∈ V◦[A]

V ∈ V[A]

V ∈ V◦[A]

Computation Semantic Typing M ∈ C[C]

C[⊤] := { ⟨⟩ } C[F A] :=
{
return V

��V ∈ V◦[A]}
C[A→ C] :=

{
λx .M

�� ∀ρ(V ∈ V◦[A]). M [ρ[x := V ]] ∈ E[C]
}

C[C1 &C2] := {(M1,M2) |M1 ∈ E[C1],M2 ∈ E[C2]}

Semantic Typing

active M → M ∈ C[C]
∀N . M ⇝ N → N ∈ E[C]

M ∈ E[C]

G[Γ] :=
{
γ
�� ∀(x : A) ∈ Γ, γ x ∈ V◦[A]

}
Γ ⊨ V : A := ∀γ ∈ G[Γ]. V [γ ] ∈ V◦[A]

Γ ⊨ M : C := ∀γ ∈ G[Γ]. M [γ ] ∈ E[C]

Figure 16. CBPV strong semantic typing

of our definitions, i.e., that E[C] andV◦[A] are indeed redu-
cibility candidates.

Lemma 6.1. The following hold for strong semantic typing,
and analogously for values:

1. IfM ∈ E[C] then SN (⇝)M .
2. IfM ∈ E[C] andM ⇝ N then N ∈ E[C].
3. IfM ∈ E[C] thenM[ρ] ∈ E[C].

Lemma 6.2. The following hold:
1. id ∈ G[Γ].
2. IfV ∈ V◦[A] andσ ∈ G[Γ] thenσ [x B V ] ∈ G[Γ, x : A].
3. If σ ∈ G[Γ] then σ [ρ] ∈ G[Γ].

In the second part we show that our definitions are com-
patible with the syntax of CBPV.

Lemma 6.3. Semantic typing is compatible with the term
structure of CBPV, for instance M1 ∈ E[F A] and M2[V /x] ∈
E[C] for all V ∈ V◦[A] imply let x ← M1 inM2 ∈ E[C].

Using the compatibility lemmas it is then straightforward
to show that syntactic typing implies semantic typing, from
which strong CBPV normalisation follows.

Theorem 6.4. If Γ ⊢ M : C , then Γ ⊨ M : C and
if Γ ⊢ V : A, then Γ ⊨ V : A.

Corollary 6.5. If Γ ⊢ M : C , thenM ∈ E[C] and
if Γ ⊢ V : A, then V ∈ V[A].

Theorem 6.6. The following hold:
1. Simply typed CBPV is strongly normalising.
2. Simply typed CBV is strongly normalising.
3. Simply typed CBN is strongly normalising.

7 Observational Equivalence
In this section, we define observational equivalence [Mitchell
1996], written Γ ⊢ M ≃ N : C , for CBPV, CBV, and CBN.
Intuitively, two terms are observationally equivalent if they
are computationally indistinguishable.
We prove that⇝ and thus{ are contained in observa-

tional equivalence, which will be crucial for the later ad-
equacy proof. Furthermore, observational equivalence of the
translation of two terms s, t immediately implies observa-
tional equivalence of s and t .

7.1 CBPV
Recall that we writeXc ,c for contexts where the hole expects
a computation and which returns computations. We define
a context typing judgment Γ[Γ′] ⊢ Xc ,c : C[C ′] such that for
all computation Γ′ ⊢ M : C ′ we have Γ ⊢ Xc ,c [M] : C , but do
not spell it out in detail.

We call the following class of value types ground:

G := 0 | 1 | G1 ×G2 | G1 +G2

Ground types include B := 1 + 1 with the elements true :=
inj1 (), false := inj0 ().
Two terms Γ ⊢ M,N : C are observationally equival-

ent [Levy 2012], written Γ ⊢ M ≃ N : C , if for all closed
ground returner contexts Xc ,c (i.e. ∅[Γ] ⊢ Xc ,c : F G[C]) and
values V :

Xc ,c [M] {
∗ return V iff Xc ,c [N ] {

∗ return V

The definition for values is analogous.

Lemma 7.1. ≃ is an equivalence relation on typed terms.

Given the previous lemma, the only thing missing for clos-
ure of observational equivalence under⇝ is closure under
primitive steps. This property is surprisingly intricate and
not spelled out in detail in [Forster 2016; Forster et al. 2017].
Rizkallah et al. [2018] use eager normal form bisimulations
to obtain it.
Here, we use a different approach via logical equivalence

Γ ⊨ M ∼ N : C (fig. 17) [Pitts 2005]. On typed terms, logical
equivalence is an equivalence relation relating computation-
ally indistinguishable terms. We show that this relation can
be embedded between reductions and observational equi-
valence. While these results could be obtained using the
purely syntactic methods presented in [Crary 2009], the lo-
gical equivalence will allow us to establish that observational
equivalence also contains η-reductions and let-sequencing.
In its essence, the logical equivalence is similar to the

logical relations of syntactic typing. The key difference is
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Value Relation (V ,W ) ∈ V[A]

V[0] := ∅ V[1] := {((), ())} V[A1 × A2] :=

{((V1,V2), (W1,W2)) | (V1,W1) ∈ V[A1], (V2,W2) ∈ V[A2]}

V[A1 + A2] :=
{
(inji V , injiW )

�� (V ,W ) ∈ V[Ai ]
}

V[U C] := {({M }, {N }) | (M , N ) ∈ E[C]}

Computation Relation (M , N ) ∈ C[C]

C[⊤] := {(⟨⟩, ⟨⟩)}

C[F A] := {(return V , returnW ) | (V ,W ) ∈ V[A]} C[A→ C] :=

{(λx .M , λy .N ) | ∀(V ,W ) ∈ V[A]. (M [V /x ], N [W /y]) ∈ E[C]}

C[C1 &C2] :=

{(⟨M1,M2 ⟩, ⟨N1, N2 ⟩) | (M1, N1) ∈ E[C1], (M2, N2) ∈ E[C2]}

Logical Equivalence

E[C] :=
{
(M , N )

�� ∃M ′N ′. M ⇓ M ′ and N ⇓ N ′ and (M ′, N ′) ∈ C[C]}
G[Γ] := {(γ1, γ2) | ∀(x : A) ∈ Γ. (γ1x , γ2x ) ∈ V[A]}

Γ ⊨ V ∼W : A := ∀(γ1, γ2) ∈ G[Γ]. (V [γ1],W [γ2]) ∈ V[A]

Γ ⊨ M ∼ N : C := ∀(γ1, γ2) ∈ G[Γ]. (M [γ1], N [γ2]) ∈ E[C]

Figure 17. CBPV logical equivalence

that the predicates now relate types with pairs of terms
having computationally indistinguishable normal forms.
The following lemmas simplify reasoning about logical

equivalence. The relation E[C] is closed under both expan-
sion and reduction.

Lemma7.2. Logical equivalence and the relationsV[A],C[C],
E[C], and G[Γ] are symmetric and transitive.

Lemma 7.3. LetM {∗ M ′ and N {∗ N ′. Then (M ′,N ′) ∈
E[C] iff (M,N ) ∈ E[C].

We can extend substitutions with semantically equivalent
values.

Lemma 7.4. If (γ1,γ2) ∈ G[Γ] and (V1,V2) ∈ V[A] then
(γ1[x B V1],γ2[x B V2]) ∈ G[Γ, x : A].

When reasoning about equivalent terms in evaluation po-
sition, we may reason about normal forms in these positions.

Lemma 7.5. Let C1, C2 be weak reduction frames. If (M,N ) ∈
E[C] and ∀(M ′,N ′) ∈ C[C]. (C1[M ′], C2[N ′]) ∈ E[C ′] , then
(C1[M], C2[N ]) ∈ E[C

′].

Lemma 7.6.
1. C[C] ⊆ E[C].
2. For all ground types G, if (V ,W ) ∈ V[G], then V =W .

We proceed by proving that every well typed term is logic-
ally equivalent to itself and logical equivalence is a congru-
ence relation. Both properties heavily rely on congruence
lemmas for each syntactic construct and also hold for values.

Lemma 7.7 (Fundamental Property). If Γ ⊢ M : C , then
Γ ⊨ M ∼ M : C .

Lemma 7.8 (Congruence). Logical equivalence is a congru-
ence relation w.r.t. typed CBPV contexts.

Using the fundamental property and congruence, we can
finally deduce:

Lemma 7.9. Logical equivalence contains ≻,{, and⇝. For
example if Γ ⊢ M : C andM ≻ M ′ then Γ ⊨ M ∼ M ′ : C .

This suffices to show that logical equivalence is sound
w.r.t. observational equivalence:

Theorem 7.10. If Γ ⊢ M,N : C and Γ ⊨ M ∼ N : C , then
Γ ⊢ M ≃ N : C .

Proof. Let ∅[Γ] ⊢ Xc ,c : F G[C]. By Lemma 7.8 we have
∅ ⊨ Xc ,c [M] ∼ Xc ,c [N ] : F G for some ground typeG . Hence
Xc ,c [M] ⇓ return V and Xc ,c [N ] ⇓ return V ′ for some
(V ,V ′) ∈ V[G]. With Lemma 7.6 it follows that V = V ′. By
symmetry, it suffices to consider only one direction. Assume
Xc ,c [M] {

∗ returnW . The claim follows with functionality
of ⇓. □

Corollary 7.11. Observational equivalence contains ≻, {,
and⇝.

Proof. By Lemma 7.9 and Theorem 7.10. □

7.2 CBV
We now define observational equivalence for CBV and prove
that it can be established using the translation to CBPV.
We define Bv := 1 + 1 with the two values truev :=

inj1 (), falsev := inj0 () . Note that the translation coincides
with the CBPV counterparts. We follow Levy [2012] and
define for two terms Γ ⊢ s, t : A that s ≃v t if for all closed
boolean contexts ∅[Γ] ⊢ Xc ,c : Bv[A]:

Xc ,c [s] {
∗
v val truev iff Xc ,c [t] {

∗
v val truev

The definition for values is analogous.

Lemma 7.12. ≃v is an equivalence relation on typed terms.

Lemma 7.13. If s ≃ t , then s ≃v t .

Proof. For this proof we require a translation function Xc ,c
on contexts s.t. Xc ,c [s] = Xc ,c [s] holds. However, in the de
Bruijn representation we are using in Coq this would mean
that we need to extend contexts by renamings and a version
of the eager let construct. To circumvent this, we define a
logically equivalent translation ŝ that avoids both problems.
We give an exemplary case:
ŝ t = (λx1x2.let y1 ← x1! in let y2 ← x2! in y1! y2) { ŝ } { t̂ }
This definition can be lifted to a function X̂c ,c s.t. �Xc ,c [s] =
X̂c ,c [ ŝ ].

For the proof it suffices to show one direction by symmetry
of ≃. Let s ≃ t and Xc ,c [s] {∗v val truev. By Lemma 3.3 we
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have Xc ,c [s] {∗ val truev. With the logical equivalence
we obtain X̂c ,c [ ŝ ] = �Xc ,c [s] {∗ �val truev. With Theorem
7.10 we obtain ŝ ≃ t̂ , thus by definition �Xc ,c [t] = X̂c ,c [ t̂ ] {∗�val truev since �val truev = val truev = return true is ground.
With the logical equivalencewe deduceXc ,c [t] {∗ val truev.
The claim follows with Theorem 3.9. □

7.3 CBN
For CBN, the situation is slightly different. The definition of
Bn := 1+1 has more than two normal forms w.r.t.{n, for in-
stance truen := inj1 (), falsen := inj0 () and inj0 ((λx .x) ()).
Only up to⇝n there are exactly two normal forms. This hints
that defining observational equivalence for all boolean con-
texts in the same way as for CBV would be wrong, because
⇝n would not be included anymore.
Levy [2012] circumvents this problem with a primitive

type Bn. We use the definition of Bn given above, but will
alter the contexts in the definition of ≃n to ensure the
existence of exactly two possible normal forms under{n.
We define for two terms Γ ⊢ s, t : A that s ≃n t if for all

closed boolean contexts ∅[Γ] ⊢ X : Bn[A]:
case(X[s], x .truen, x .falsen) {∗n truen

iff
case(X[t], x .truen, x .falsen) {∗n truen

We can then obtain the expected results:

Lemma 7.14. ≃n is an equivalence relation on typed terms.

Lemma 7.15. If s ≃ t , then s ≃n t

Proof. Analogous to the proof of Lemma 7.13. We again re-
quire a translation ŝ avoiding renamings and eager lets. We
defineK := letx ← [ ] in case(x, _.return true, _.return false)
s.t. K[case(X, x .truen, x .falsen)
∧

][̂s] {∗ return true if and
only if case(X[s], x .truen, x .falsen) {∗n truen. □

8 Equational Theory
Levy [2006] gives a sound equational theory for CBPV with
β , η and sequencing laws. Rizkallah et al. [2018] formalise
soundness of an equational theory for CBPVwith β-laws.We
prove soundness for both theories w.r.t logical equivalence,
concluding soundness w.r.t. observational equivalence.

For our version of CBPV the definition in [Rizkallah et al.
2018] coincides with the equivalence closure of strong re-
duction. We denote the equivalence closure of⇝,⇝n, and
⇝v with ≡ , ≡n, and ≡v respectively. We can easily prove
that ≡ is sound w.r.t. logical equivalence:

Lemma 8.1. The following hold:
1. If Γ ⊢ M,N : C andM ≡ N , then Γ ⊨ M ∼ N : C .
2. If s ≡v t , then s ≡ t
3. If s ≡n t , then s ≡ t

Using Lemma 7.10 we obtain soundness of ≡ w.r.t ≃ :

Corollary 8.2. IfM ≡ N , thenM ≃ N for well-typedM,N .

Additionally we can obtain soundness proofs of strong
equivalence for typed CBV and CBN terms using the simula-
tion results:

Corollary 8.3. For all well-typed terms s, t :

1. If s ≡v t , then s ≃v t .
2. If s ≡n t , then s ≃n t .

Levy [2006] proves soundness using adequacy of his de-
notational semantics. We can also prove his extended equa-
tional theory sound using logical equivalence for our setting:

Lemma 8.4. The following equations can be proven without
reference to weak normalisation:

1. Γ ⊨ {V !} ∼ V : U A
2. Γ ⊨ M ∼ let x ← M in return x : F A
3. Γ ⊨ M[V /x] ∼ case(V ,y.M[inj0 y/x], z.M[inj1 z/x]) :

C
4. Γ ⊨ M[V /x] ∼ split(V ,y.z.M[(y, z)/x]) : C
5. Γ ⊨ let x ← (let y ← M1 inM2) inM3 ∼

let x ← M1 in (let y ← M2 inM3) : C .

Lemma 8.5. The following equations can be proven with
reference to weak normalisation:

1. Γ ⊨ M ∼ λx .M x : A→ B
2. Γ ⊨ M ∼ ⟨prj0M, prj1M⟩ : A1 &A2
3. Γ ⊨ let x ← M in λy.N ∼ λy.let x ← M in N : A→ B

We can also prove more useful equations not mentioned
in [Levy 2006]:

Lemma 8.6. The following hold:
1. Γ ⊨ (let x ← M in N )V ∼ let x ← M in (NV ) : C
2. Γ ⊨ case(V ,y.λx .M,y.λx .N ) ∼ λx .case(V ,y.M,y.N ) :

A→ C

9 Denotational Semantics
Giving denotational semantics amounts to giving a function
J·K assigning mathematical meaning to computational ob-
jects. A denotational semantics J·K is adequate if JMK = JN K
implies M ≃ N . We define a set/algebra denotational se-
mantics for CBPV, prove adequacy following the present-
ation in [Forster 2016], and use the translation to obtain
adequate algebra semantics for CBV and CBN.
The denotation of value types are types in Coq, for in-

stance JA1 ×A2K := JA1K × JA2K. The semantics for compu-
tation types is given for arbitrary monads T . The denotation
of computation types are T -algebras, where a T -algebra C
is a pair (|C |, c : T |C | → |C |) with |C | being the carrier type
of the algebra and c has certain properties with respect to
the monadT . Algebras are closed under products, exponents
and admit a trivial algebra, used as denotations for computa-
tional products, functions and unit respectively. For every
type A one can construct a free T -algebra FTA and define
JF AK := FT JAK. Furthermore, JU CK := | JCK |.
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Contents Spec Proofs
Setup 350 250
Translating CBV and CBN to CBPV 1250 500
Weak Reduction 200 450
Weak Normalisation 100 150
Strong Reduction 800 950
Strong Normalisation 200 300
Observational Equivalence 250 350
Equational Theory 100 200
Denotational Semantics 700 600
Total 3,950 3,750

Figure 18. Overview of the code

The adequacy proof uses logical relations RA and RC . RA
relates elements of JAK with closed values of type A. RC
relates elements of | JCK | with closed computations of typeC .
We only outline the structure of the adequacy proof here and
omit some auxiliary statements, all statements concerning
value and the definition of J·K for terms. For full definitions
and proofs, we refer to [Forster 2016] and the Coq develop-
ment. Once more all statements hold for values whenever
applicable.

Lemma 9.1. If JMK = JN K then JX[M]K = JX[N ]K.

Lemma 9.2. If (a,M) ∈ RC andM ≃ N then (a,N ) ∈ RC .

We state the basic lemma only for closed computations,
but it has to be proven in a more general form:

Lemma 9.3 (basic lemma). If ⊢ M : C then (JMK ,M) ∈ RC .

Theorem 9.4. The denotational semantics for CBPV is ad-
equate. Explicitly, for every monad where return is injective,
Γ ⊢ M,N : C s.t. JMK = JN K we have Γ ⊢ M ≃ N : C .

We lift denotations from CBPV to CBN/CBV in the ob-
vious way and obtain an algebra semantics for CBN and a
set/algebra semantics CBV:

JsKv :=
q
s
y

JsKn :=
q
s
y

Adequacy of this denotational semantics immediately fol-
lows:

Corollary 9.5. For all closed, well typed expressions s, t , if
JsKv = JtKv, then s ≃v t

Corollary 9.6. For all closed, well typed expressions s, t , if
JsKn = JtKn, then s ≃n t

10 Formalisation and Autosubst 2
Our development consists out of roughly 8000 lines of code,
with about 55% specification and 45% proofs. Figure 18 in
the appendix depicts the code distribution.

The development does not use advanced automation, but
basic automation provided by Coq and some simple custom
tactics. Coq’s built-in automation proved useful for minor

changes in definitions, leading to only minor changes in
proofs. Especially in the verification of the translations, Coq
treats many trivial cases automatically, allowing the user to
focus on the interesting parts. Overall, we think that the Coq
formalisation is similar to proofs on paper: What is hard in
Coq is also not easy on paper, and vice versa. We think that
providing a formalisation to this extent in a proof assistant
without inductive types and tactics would be a considerably
bigger effort, if not entirely infeasible.

Autosubst 2 Although we use a named representation of
syntax in the paper, we use well-scoped de Bruijn indices in
the Coq development. If one is familiar with de Bruijn, the
translations are straightforward and can be easily retraced
using the Coq links. Well-scoped syntax proved very useful
at this stage: In subtle cases, it supports the user in choosing
the right definitions and re-thinking the needed liftings.

The definitions of the syntax for CBPV, CBV andCBNwere
generated by the Autosubst 2 framework [Stark et al. 2018].
Autosubst 2 takes a HOAS specification as input and outputs
definitions using well-scoped de Bruijn syntax and a small
library containing standard lemmas regarding renamings
and substitution. In our case this means that treating binders
becomes a non-issue: many challenges that previously came
with treating binders in formalisation are taken care of by
the respective Autosubst 2 tactics. Together with choosing
the correct statements (e.g. context renaming and context
morphism lemmas as also stated in this paper), we could
observe no overhead in the number of lemmas.
We discovered two possible extensions of the Autosubst

tool: First, we had to prove injectivity of renamings by hand.
This could be taken care of by an automated proof coming
as part of the generated library. Second, we had to define
the translations from CBN/CBV on the concrete de Bruijn
syntax and prove compatibility with substitution and renam-
ing by hand. If Autosubst would incorporate the techniques
from [Kaiser et al. 2018; Schäfer and Stark 2018], both the
translations and all type systems could be defined on the
HOAS level, with some properties deduced automatically.

Coq. One key technique for our formalisation is setoid re-
writing [Sozeau 2010], especially for the verification of the
translations. Setoid rewriting allows us to rewrite expres-
sions using arbitrary congruences. However, setoid rewriting
with the transitive closure (e.g.{+) lacks a satisfactory solu-
tion and we have to define custom (but general) Ltac tactics.
We formalise multi-level contexts for CBPV in Coq as

a mutual inductive family of two types with a parameter
indicating the type of the hole of the context. This made
the definition slightly more concise than a mutual inductive
definition with four types.

For Lemma 7.15 we could have used renamings in contexts,
implemented by an additional constructor to the context type.
To avoid this, we use the logically equivalent definitions of
translation not based on renamings.
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http://www.ps.uni-saarland.de/extras/cbpv-in-coq/doc/CBPV.DenotationalSemantics.html#closure_ctx_eqv
http://www.ps.uni-saarland.de/extras/cbpv-in-coq/doc/CBPV.DenotationalSemantics.html#basic_lemma
http://www.ps.uni-saarland.de/extras/cbpv-in-coq/doc/CBPV.DenotationalSemantics.html#adequacy
http://www.ps.uni-saarland.de/extras/cbpv-in-coq/doc/CBPV.CBV.DenotationalSemantics.html#Adequacy
http://www.ps.uni-saarland.de/extras/cbpv-in-coq/doc/CBPV.CBN.DenotationalSemantics.html#Adequacy
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Denotation functions for terms are defined on the deriv-
ation of their typing judgement. Thus, we have to lift the
typing judgement from Coq’s impredicative propositional
type Prop into a predicative universe Type. We would then
need mutual induction principles with strong type-theoretic
connectives (i.e. × instead of ∧), which Coq in its present
version (8.8) cannot synthesise. Stating the principle by hand
is cumbersome for a syntax with many syntactic constructs.
We circumvent this problem by giving proofs as fixed-points
instead of applying the induction principle. Fortunately, the
upcoming Coq 8.9 will be able to automatically generate
these principles.

Conclusion. In total, we think that developing the meta-
theory of CBPV and the translation to CBN/CBV as we did
without a proof assistant would have been more work. The
technically involvedwork requires a lot of intuition for CBPV
and there are many side conditions. Some of them are trivial
and can be resolved by Coq automatically, while some only
seem trivial on paper, but depend on crucial details that have
to be worked out.

11 Related Work
Certainly the most complete discussion of the operational
theory of CBPV is given by Levy [2012]. Levy proves the
simulation results we have, but for typed terms and w.r.t big-
step semantics. He does not consider strong reduction. Levy
[2006] also considers an equational theory including β , η
and commuting lets and proves soundness w.r.t a categorical
denotational semantics.
Doczkal and Schwinghammer [2007] consider simply-

typed CBPV with arbitrary sums and products. They extend
the usual reduction byη-rules and permuting conversions for
let, making reduction non-deterministic. They prove strong
normalisation for their reduction using ⊤⊤-lifting for logical
relations, but unlike our development, their reduction is not
confluent.

Rizkallah et al. [2018] formalise the soundness of an equa-
tional theory (with β-laws) w.r.t. observational equivalence
(which they call contextual equivalence) for CBPV in Coq.
They consider untyped CBPV with binary sums and with
a mutually-recursive letrec construct. Their formalisation
uses de Bruijn indices and a single datatype for both values
and computations. Since we do not consider letrec, we work
with a mutual inductive definition of values and computa-
tions, which we found pleasant. Their soundness proof uses
normal form bisimulation as an intermediate notion. They
do not formalise contexts as first-class objects and rely on
conditional compatible closures to mimic contexts. We found
our soundness proof via logical equivalence to be pleasantly
semantic. Treating contexts explicitly in Coq is about as
hard as treating them in all detail on paper: the definition is
unwieldy, but nothing complicated happens.

Forster et al. [2017] extend CBPV with algebraic effects,
monadic reflection and delimited control to express compu-
tational effects and give translations between the different
systems. Our adequacy proofs follows their setup, outlined
in more detail in [Forster 2016]. They also prove normalisa-
tion for ground returners, but not for terms of arbitrary type.
Their progress and preservation proofs and the correctness
of the translations are verified in Abella.
Crary [2009] proves confluence and soundness of the

equational theory for an untyped CBV λ-calculus using the
method from Takahashi [1989]. We think that his method
could be adapted to CBPV and would yield proofs of a similar
complexity, also covering untyped terms.

12 Future Work
The simple type system for CBPVwe consider enforces norm-
alisation and thus does not allow arbitrary recursion. CBPV
can be extended by a syntactic construct to allow for re-
cursion (see e.g. [Rizkallah et al. 2018]) and the type sys-
tem can be extended accordingly. We conjecture that logical
equivalence can be changed s.t. proving soundness of the
β-equations and the equations in Lemma 8.4 works with
basically unchanged proofs.

CBPV was conceived as an idealised calculus well-suited
for the inclusion of effects. We want to formalise a version
of CBPV with effects, both by inclusion of native effects and
algebraic effect handlers. On paper, proofs over extended
CBPV, as for instance done in [Forster et al. 2017], leave out
the cases that have been treated before the extension. When
working in a proof assistant, this is not an option. We want
to investigate how well such extensions can be treated in
Coq without code duplication.
As a third possibility, CBPV can be extended with poly-

morphism. We conjecture that our proof of strong normalisa-
tion using Kripke logical relation extends to this case. Since
the simulation results we prove hold for untyped terms, we
conjecture that they can also be used to obtain e.g. strong
normalisation for System F directly.

Parts of this paper have been formalising the first sections
of [Forster et al. 2017], which comes with a partial Abella
formalisation for the operational parts. We want to formalise
the remaining results in Coq, which would be an interesting
case study in comparing Coq to Abella, similar to [Kaiser
et al. 2017], but in a more operational spirit.
Lastly, it would be interesting to analyse how the full

equational theory from Levy [2006] including η-laws and
commuting lets applies to compiler verification, e.g. to verify
let-floating optimisation [Peyton Jones et al. 1996].
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