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Abstract. We study various formulations of the completeness of first-
order logic phrased in constructive type theory and mechanised in the
Coq proof assistant. Specifically, we examine the completeness of variants
of classical and intuitionistic natural deduction and sequent calculi with
respect to model-theoretic, algebraic, and game semantics. As complete-
ness with respect to standard model-theoretic semantics is not readily
constructive, we analyse the assumptions necessary for particular syntax
fragments and discuss non-standard semantics admitting assumption-
free completeness. We contribute a reusable Coq library for first-order
logic containing all results covered in this paper.

1 Introduction

Completeness theorems are central to the field of mathematical logic. Once com-
pleteness of a sound deduction system with respect to a semantic account of
the syntax is established, the typically infinitary notion of semantic validity
is reduced to the finitary, and hence algorithmically more tractable, notion of
syntactic deduction. In the case of first-order logic, being the formalism under-
lying traditional mathematics based on a set-theoretic foundation, completeness
enables the use of semantic techniques to study the deductive consequence of
axiomatic systems.

The seminal completeness theorem for first-order logic proven by Gödel [18]
and later refined by Henkin [21,20] yields a syntactic deduction of every formula
valid in the canonical Tarski semantics based on interpreting the non-logical
function and relation symbols in models providing the corresponding structure.
However, this result may not be understood as an effective procedure in the sense
that a formal deduction for a formula satisfied by all models can be computed by
an algorithm, since even for finite signatures the proof relies on non-constructive
assumptions. Specifically, when admitting all logical connectives, completeness is
equivalent to a weak form of König’s lemma [33]. Even restricted to the classically
sufficient→,∀,⊥-fragment, the classically vacuous but constructively contested1
assumption of Markov’s principle, asserting that every non-diverging computa-
tion terminates, is necessary [29]. We defer a more detailed overview of known
dependencies to the discussion of related work in Section 7.1.
1 Accepted in Russian constructivism while in conflict with Brouwer’s intuitionism.
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The aim of this paper is to coherently analyse the computational content
of completeness theorems concerning various semantics and deduction systems.
Naturally, such matters of constructive reverse mathematics [26] need to be ad-
dressed in an intuitionistic meta-logic such as constructive type theory. In fact,
the results in this paper are formalised in the Coq proof assistant [51] that imple-
ments the predicative calculus of cumulative inductive constructions (pCuIC) [52],
yielding executable programs for all constructively given completeness proofs.
For ease of language, we reserve the term “constructive” for statements provable
in this specific system, hence excluding Markov’s principle [7,42]. In fact, coming
with an internal notion of computation, constructive type theory allows us to
state Markov’s principle both internally (MP) as well as for any concrete model
of computation (MPL), whereby the former implies the latter and both can be
related to completeness statements. The two main questions in focus are which
specific assumptions are necessary for particular formulations of completeness
and how the statements can be modified such that they hold constructively.

Applying this strategy to Tarski semantics, a first observation is that the
model existence theorem, central to Henkin’s completeness proof, holds con-
structively [23]. Model existence directly implies that valid formulas cannot be
unprovable. Thus, a single application of MP, rendering enumerable predicates
such as deduction stable under double negation, yields completeness. Similarly,
MPL yields the stability of deduction from finite contexts and hence the corre-
sponding form of completeness. Because MP is admissible in pCuIC [42], so are
MPL and the two completeness statements. Finally, we illustrate that complete-
ness for the minimal →,∀-fragment does not depend on additional assumptions
and, consequently, how the interpretation of ⊥ can be relaxed to exploding mod-
els [54,31] admitting a constructive completeness proof for the→,∀,⊥-fragment.

Turning to intuitionistic logic, we discuss analogous relationships for Kripke
semantics and a cut-free intuitionistic sequent calculus [24]. Again, complete-
ness for the →,∀,⊥-fragment is equivalent to Markov’s principle while being
constructive if restricted to the minimal →,∀-fragment or employing a relaxed
treatment of ⊥. The intuitionistically undefinable connectives ∨ and ∃ add fur-
ther complexity [25] and need to remain untreated in this paper. As a side note,
we explain how the constructivised completeness theorem for intuitionistic logic
can be used to implement a semantic cut-elimination procedure.

After considering such model-theoretic semantics, mainly based on embed-
ding the object-logic into the meta-logic, we exemplify two rather different ap-
proaches to assigning meaning to formulas, namely algebraic semantics and game
semantics. Differing fundamentally from model-theoretic semantics, both share
a constructive rendering of completeness for the full syntax of first-order logic,
agnostic to the intuitionistic or classical flavour of the deduction system.

In algebraic semantics, the embedding of formulas into the meta-logic is gen-
eralised to an evaluation in algebras providing the structure of the logical connec-
tives. In this setting, completeness follows from the observation that provability
induces such an algebra on formulas. We discuss intuitionistic and classical logic
evaluated in complete Heyting and complete Boolean algebras (cf. [47]).
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Dialogue game semantics as introduced by Lorenzen [35,36], on the other
hand, completely disposes of interpreting logical connectives as operations and
instead understand logic as a dialectic game of assertion and argument. An as-
sertion is considered valid if every sceptic can be convinced through substantive
reasoning, i.e. if there is a strategy such that every argument about the assertion
can be won. Hence, game semantics are inherently closer to deduction systems
than the previous semantic accounts and in fact a very general isomorphism of
winning strategies and formal deductions has been established [48]. We instan-
tiate this isomorphism to a first-order intuitionistic sequent calculus.

Contributions. We present a comprehensive analysis of the computational
content of completeness theorems for first-order logic considering various seman-
tics and deduction systems. Concerning model-theoretic semantics, we refine the
well-known relation of completeness for →,∀,⊥-formulas to Markov’s principle
to constructive completeness up to double negation, hence entailing the admissi-
bility of completeness in pCuIC. Our elaboration of game semantics introduces
a streamlined representation of dialogues as state transition systems suitable
for mechanisation and translates the generic completeness result for classical
logic from [48] to the case of intuitionistic first-order logic. Finally, we provide a
reusable Coq library2 for first-order logic including all results covered in this pa-
per. Notably, the development is based on a de Bruijn encoding of binders [8,50]
and is parametric in the signature of non-logical symbols and thus adjustable to
any particular first-order theory (see Appendix B for more formalisation details).

Outline. In Section 2, we begin with some preliminary definitions concerning
the syntax of first-order logic, deduction systems, and synthetic computability.
We then analyse completeness for model-theoretic semantics (Section 3) and its
connection to Markov’s principle (Section 4). Subsequently, we give construc-
tive completeness proofs for algebraic semantics (Section 5) and game semantics
(Section 6). We end with a discussion of related and future work in Section 7.

2 Syntax, Deduction, Computability

We work in a constructive type theory with a predicative hierarchy of type uni-
verses above a single impredicative universe P of propositions. Assumed type
formers are function spaces X → Y , products X × Y , sums X + Y , dependent
products ∀x : X.F x, and dependent sums Σ x : X.F x. The propositional ver-
sions of these connectives are denoted by the usual logical symbols (→, ∧, ∨, ∀,
and ∃) in addition to > : P and ⊥ : P denoting truth and falsity.

Basic inductive types are the Booleans B ::= tt | ff and the natural numbers
N ::= 0 | Sn for n : N. Given a typeX, we further define optionsO(X) ::= ∅ | pxq
and lists L(X) ::= [] | x :: A for x : X and A : L(X). On lists we employ
the standard notation for membership x ∈ A, inclusion A ⊆ B, concatenation
A++B, and map f @A. These notations are shared with vectors x : Xn of fixed
length n : N. Possibly infinite collections are expressed by sets p : X → P with
set-theoretic notations like x ∈ p, p ⊆ q, and p ∩ q.
2 On www.ps.uni-saarland.de/extras/fol-completeness and hyperlinked with this document.

www.ps.uni-saarland.de/extras/fol-completeness
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2.1 Syntax of First-Order Logic

We represent the terms and formulas of first-order logic as inductive types over a
fixed signature Σ = (FΣ ,PΣ) specialising function symbols f : FΣ and predicate
symbols P : PΣ together with their arities |f | : N and |P | : N. Variable binding
is implemented using de Bruijn indices [8] well-suited for formalisation [50].

Definition 1. We define the terms and formulas of first-order logic by

t : T ::= x | f t ϕ,ψ : F ::= ⊥̇ | P t | ϕ→̇ψ | ϕ∧̇ψ | ϕ∨̇ψ | ∀̇ϕ | ∃̇ϕ x : N, f : FΣ , P : PΣ

where the vectors t are of the expected lengths |f | and |P |, respectively. We set
¬̇ϕ := ϕ→̇⊥̇ and isolate the type F∗ of formulas in the →,∀,⊥-fragment.

A bound variable is encoded as the number of quantifiers shadowing its rel-
evant binder, e.g. P x y → ∀x. ∃y. P x y may be represented by P 7 4→̇∀̇ ∃̇P 1 0.
The variables 7 and 4 in this example are called free and variables that do not
occur freely are called fresh. A formula with no free variables is called closed.

Definition 2. Instantiating with a substitution σ : N→ T is defined by

x[σ] := σ x ⊥̇[σ] := ⊥̇ (ϕ� ψ)[σ] := ϕ[σ]� ψ[σ]

(f t )[σ] := f (t [σ]) (P t )[σ] := P (t [σ]) (�ϕ)[σ] := �ϕ[↑σ]

where t [σ] is short for (λt. t[σ]) @ t, ↑σ denotes the substitution λn. σ (Sn), and
� is used as placeholder for the logical connectives and quantifiers, respectively.

Useful shorthands are ϕ[t;σ] for instantiating 0 with t and Sx with σ x,
ϕ[t] for ϕ[t;λx. x], and ↑ϕ for the shift ϕ[λx. Sx]. All terminology and notation
concerning formulas carries over to contexts Γ : L(F) and theories T : F → P.
For ease of notation we freely identify contexts Γ with their theory λϕ. ϕ ∈ Γ .

2.2 Deduction Systems

We represent deduction systems as inductive predicates of type L(F) → F → P
or similar. The archetypal system is natural deduction (ND), exemplified by an
intuitionistic version Γ ` ϕ as defined in Definition 55 of Appendix A. Since
most rules are standard, we only discuss the quantifier rules in more detail as
they rely on the de Bruijn representation of formulas:

↑Γ ` ϕ
Γ ` ∀̇ϕ

AI
Γ ` ∀̇ϕ
Γ ` ϕ[t]

AE
Γ ` ϕ[t]
Γ ` ∃̇ϕ

EI
Γ ` ∃̇ϕ ↑Γ, ϕ `↑ψ

Γ ` ψ
EE

Note that ↑Γ, ϕ is notation for ϕ ::↑Γ . In a shifted context ↑Γ there is no
reference to the variable 0 which hence plays the role of an arbitrary but fixed
individual. So if ↑Γ ` ϕ then we can conclude Γ ` ∀̇ϕ as expressed by the rule
(AI) for ∀-introduction. Similarly, the shifts in the rule (EE) for ∃-elimination
simulate that Γ together with ϕ instantiated to the witness provided by Γ ` ∃̇ϕ
proves ψ and hence admits the conclusion that already Γ ` ψ. For many proofs
it will be helpful to employ fresh variables explicitly as justified by Lemma 4,
which we state after observing weakening and substitutivity :

http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.FullSyntax.html#form
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.FullSyntax.html#subst_form
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Lemma 3. If Γ ` ϕ, then ∆ ` ϕ for all ∆ ⊇ Γ and Γ [σ] ` ϕ[σ] for all σ.

Lemma 4. Given Γ , ϕ, and ψ one can compute a fresh variable x such that
1. ↑Γ ` ϕ iff Γ ` ϕ[x] and 2. ↑Γ, ϕ `↑ψ iff Γ, ϕ[x] ` ψ.

A classical variant Γ `c ϕ of the ND system can be obtained without refer-
ring to ⊥̇ by adding the axiom Γ `c ((ϕ→̇ψ)→̇ϕ)→̇ϕ expressing Peirce’s law
(Definition 56). Then the structural properties stated in the two lemmas above
are maintained while the typical classical proof rules become available.

Deduction systems such as intuitionistic ND introduced above naturally ex-
tend to theories by writing T ` ϕ if there is a finite context Γ ⊆ T with Γ ` ϕ.
Then T ` ϕ satisfies proof rules analogous to Γ ` ϕ.

2.3 Synthetic Computability

Since every function definable in constructive type theory is computable, the
standard notions of computability theory can be synthesised by type-level oper-
ations [1,14], eliminating references to a concrete model of computation such as
Turing machines, µ-recursive functions, or the untyped lambda calculus.

Definition 5. Let X be a type and p : X → P be a predicate.

– p is decidable if there is f : X → B with ∀x. p x↔ f x = tt.
– p is enumerable if there is f : N→ O(X) with ∀x. p x↔ ∃n. f n = pxq.

These two notions generalise to predicates of higher arity as expected.

– X is enumerable if there is f : N→ O(X) with ∀x.∃n. f = pxq.
– X is discrete if equality λxy.x = y on X is decidable.
– X is a data type if it is both enumerable and discrete.

We assume that the components FΣ and PΣ of our fixed signature Σ are
data types. Then applying the terminology to the syntax and deductions systems
introduced in the previous sections leads to the following observations.

Fact 6. T and F are data types and Γ ` ϕ and Γ `c ϕ are enumerable.

Proof. By the techniques discussed in [14], e.g. Fact 3.19. ut

The standard model-theoretic completeness proofs analysed in Section 3 re-
quire the assumption of Markov’s principle. A proposition P : P is called stable if
¬¬P → P and, analogously, a predicate p : X → P is called stable if p x is stable
for all x. A synthetic version of Markov’s principle states that satisfiability of
Boolean sequences is stable (cf. [38]):

MP := ∀f : N→ B.¬¬(∃n. f n = tt)→ ∃n. f n = tt

Note that MP is trivially implied by excluded middle EM := ∀P : P. P ∨ ¬P .
Moreover, MP regulates the behaviour of computationally tractable predicates:

http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.FullND.html#Weak
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.FullND.html#nameless_equiv_all'
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.FOL.html#enumT_form
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Fact 7. MP implies that enumerable predicates on data types are stable.

Proof. This is Fact 2.18 in [14]. ut

As a consequence of Fact 6 and Fact 7, MP implies that the deduction systems
Γ ` ϕ and Γ `c ϕ are stable. In fact, only these stabilities are required for the
standard model-theoretic completeness proofs discussed in the next section and
they are equivalent to MPL, a version of Markov’s principle stated for the call-
by-value λ-calculus L [43,17] and its halting problem E :

MPL := ∀s. ¬¬Es→ Es

We will prove the following in Section 4:

Lemma 8. MPL, stability of Γ ` ϕand stability of Γ `c ϕ are all equivalent.

3 Model-Theoretic Semantics

The first variant of semantics we consider is based on the idea of interpreting
terms as objects in a model and embedding the logical connectives into the meta-
logic. A formula is considered valid if it is satisfied by all models. The simplest
case is Tarski semantics, coinciding with classical deduction via Henkin’s com-
pleteness proof factoring through a (constructive) model-existence theorem [22].
Kripke semantics, coinciding with intuitionistic deduction, add more structure
by connecting several models through an accessibility relation and admit a sim-
pler completeness proof using a universal model. In this section, we only consider
formulas ϕ : F∗ in the →,∀,⊥-fragment.

3.1 Tarski Semantics

Definition 9. A (Tarski) model M over a domain D is a pair of functions

_M : ∀f : FΣ . D|f | → D _M : ∀P : PΣ . D|P | → P.

Assignments ρ : N → D are extended to term evaluations ρ̂ : T → D by
ρ̂ x := ρ x and ρ̂ (f t ) := fM (ρ̂@ t ) and to formulas via the relation M �ρ ϕ
defined by

M �ρ ⊥̇ := ⊥ M �ρ ϕ→̇ψ := M �ρ ϕ→M �ρ ψ
M �ρ P t := PM (ρ̂@ t ) M �ρ ∀̇ϕ := ∀a : D.M �a;ρ ϕ

where the assignment a; ρ maps 0 to a and Sx to ρ x. We write M � ϕ if
M �ρ ϕ for all ρ. M is called classical if it validates all instances of Peirce’s
law, i.e.M � ((ϕ→̇ψ)→̇ϕ)→̇ϕ for all ϕ,ψ : F∗. We writeM �ρ T ifMρ � ϕ for
all ϕ ∈ T and T � ϕ ifM �ρ ϕ for every classicalM and ρ withM �ρ T .

We first show that the classical deduction system Γ `c ϕ (restricted to the
considered →,∀,⊥-fragment) is sound for Tarski semantics.

http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.GenTarski.html#interp
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Fact 10. Γ `c ϕ implies Γ � ϕ.

Proof. By induction on Γ `c ϕ similar to the soundness proof in [14, Fact 3.14].
The classical Peirce axioms Γ `c ((ϕ→̇ψ)→̇ϕ)→̇ϕ are sound given that we only
consider classical models. ut

Formally, completeness denotes the converse property, i.e. that Γ � ϕ implies
Γ `c ϕ. We now outline a Henkin-style completeness proof for Γ `c ϕ based on
the presentation by Herbelin and Ilik [23]. The main idea is to factor through
a model existence theorem, stating that every consistent context is satisfied by
a syntactic model. The model existence theorem in turn is based on a theory
extension lemma generalising the role of ⊥̇ to an arbitrary substitute ϕ⊥:

Lemma 11. For every closed formula ϕ⊥ and closed T there is T ′ ⊇ T with:

1. T ′ maintains ϕ⊥-consistency, i.e. T `c ϕ⊥ whenever T ′ `c ϕ⊥.
2. T ′ is deductively closed, i.e. ϕ ∈ T ′ whenever T ′ `c ϕ.
3. T ′ respects implication, i.e. ϕ→̇ψ ∈ T ′ iff ϕ ∈ T ′ → ψ ∈ T ′.
4. T ′ respects universal quantification, i.e. ∀̇ϕ ∈ T ′ iff ∀t. ϕ[t] ∈ T ′.

Proof. We fix an enumeration ϕn of F∗ such that x is fresh for ϕn if x ≥ n. The
extension can be separated into three steps, all maintaining ϕ⊥-consistency:

a. E ⊇ T which is exploding, i.e. (ϕ⊥→̇ϕ) ∈ E for all closed ϕ.
b. H ⊇ E which is Henkin, i.e. (ϕn[n]→̇∀̇ϕn) ∈ H for all n.
c. Ω ⊇ H which is maximal, i.e. ϕ ∈ Ω whenever Ω,ϕ `c ϕ⊥ implies Ω `c ϕ⊥.

Note that being exploding allows to use ϕ⊥ analogously to ⊥̇ and that being
Henkin ensures that there is no mismatch between the provability of a universal
formula and all its instances. We first argue why Ω satisfies the claims (1)-(4)
of the extension lemma.

1. Ω is a ϕ⊥-consistent extension of T since all steps maintain ϕ⊥-consistency.
2. Let Ω `c ϕ and assume Ω,ϕ `c ϕ⊥, so Ω `c ϕ⊥. Thus ϕ ∈ Ω per maximality.
3. The first direction is immediate as Ω is deductively closed. We prove the

converse using maximality, so assume Ω,ϕ→̇ψ `c ϕ⊥. It suffices to show
that Ω `c ϕ since then ϕ ∈ Ω, ψ ∈ Ω, and ultimately Ω `c ϕ⊥ follow.
Ω `c ϕ can be derived by proof rules for ϕ⊥ analogous to the ones for ⊥̇.

4. The first direction is again immediate by Ω being deductively closed and the
converse exploits that Ω is Henkin as follows. Suppose ∀t. ϕ[t] ∈ Ω and let
ϕ be ϕn in the given enumeration. Then in particular ϕn[n] ∈ Ω and since
Ω is Henkin also ϕn[n]→̇∀̇ϕn ∈ Ω which is enough to derive ∀̇ϕ ∈ Ω.

We now discuss the three extension steps separately:

a. Since the requirement is unconditional, we just add all needed formulas:

E := T ∪ {ϕ⊥→̇ϕ | ϕ closed}

http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.GenTarski.html#Soundness'
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.GenConstructions.html#construct_construction
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We only have to argue that E maintains ϕ⊥-consistency over T . So suppose
E `c ϕ⊥, meaning that Γ `c ϕ⊥ for some Γ ⊆ E . We show that all added in-
stances of explosion for ϕ⊥ in Γ can be eliminated. Indeed, for Γ = ∆,ϕ⊥→̇ϕ
we have ∆ `c (ϕ⊥→̇ϕ)→̇ϕ⊥ and hence ∆ `c ϕ⊥ by the Peirce rule. Thus by
iteration there is Γ ′ ⊆ T with Γ ′ `c ϕ⊥, justifying T `c ϕ⊥.

b. As above, to make E Henkin we just add all necessary Henkin-axioms

H := E ∪ {ϕn[n]→̇∀̇ϕn | n : N}

and justify that the extension maintains ϕ⊥-consistency. So let Γ `c ϕ⊥ for
some Γ ⊆ H, we again show that all added instances can be eliminated.
Hence suppose Γ = ∆,ϕn[n]→̇∀̇ϕn. Once can show that in a context ∆′
extending ∆ by suitable instances of ϕ⊥-explosion one can derive ∆′ `c ϕ⊥.
In this derivation one exploits that n is fresh for ϕn and that the input theory
E is closed. Thus ultimately E `c ϕ⊥.

c. The last step maximisesH by adding all formulas maintaining ϕ⊥-consistency:

Ω0 := H Ωn+1 := Ωn∪{ϕn | Ωn, ϕn `c ϕ⊥ implies Ωn `c ϕ⊥} Ω :=
⋃
n:N

Ωn

Note that Ω maintains ϕ⊥-consistency over all Ωn and hence H by construc-
tion so it remains to justify that Ω is maximal. So suppose Ω,ϕn `c ϕ⊥
implies Ω `c ϕ⊥, we have to show that ϕn ∈ Ω. This is the case if the
condition in the definition of Ωn+1 is satisfied, so let Ωn, ϕn `c ϕ⊥. Then
by the assumed implication Ω `c ϕ⊥ and since Ω maintains ϕ⊥-consistency
over Ωn also Ωn `c ϕ⊥ as required. ut

Since the proof of this lemma relies on the input theory T to be closed, we
only consider completeness for closed formulas. This is in fact enough for usual
applications but we refer to the Coq development and [55] for a technically more
involved generalisation incorporating formulas with free variables.

The generalisation via the falsity substitute ϕ⊥ will become important later,
for now the instance ϕ⊥ := ⊥̇ suffices. Also note that in usual jargon the ex-
tension T ′ of a consistent theory T is called maximal consistent, as no further
formulas can be added to T ′ without breaking consistency.

Maximal consistent theories T give rise to equivalent syntactic models MT
over the domain T of terms by setting fT t := f t and P T t := (P t ∈ T ). We
then observe thatMT �σ ϕ iff ϕ[σ] ∈ T for all substitutions σ by a straighfor-
ward induction on ϕ using the properties stated in Lemma 11. Hence in particular
MT �id ϕ iff ϕ ∈ T for the identity substitution idx := x. From this observation
we directly conclude the model existence theorem:

Theorem 12. Every closed and consistent theory is satisfied in a classical model.

Proof. Let T be closed and consistent and let T ′ be its extension per Lemma 11
for ϕ⊥ := ⊥̇. To show MT ′ �id T , let ϕ ∈ T , hence ϕ ∈ T ′. Then since MT ′

is equivalent to T ′ we concludeMT ′ �id ϕ as desired. Finally,MT ′ is classical
due to (2) of Lemma 11. ut

http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.GenCompleteness.html#strong_completeness_standard
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.GenCompleteness.html#model_bot_correct
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The model existence theorem yields completeness up to double negation:

Fact 13. T � ϕ implies ¬¬(T `c ϕ) for closed T and ϕ.

Proof. Suppose that T � ϕ for closed T and ϕ and assume T 6`c ϕ which is
equivalent to T , ¬̇ϕ being consistent. But then there must be a model of T , ¬̇ϕ
in conflict to the assumption T � ϕ. ut

In fact, the remaining double negation elimination turns out to be necessary:

Fact 14. Completeness of Γ `c ϕ is equivalent to stability of Γ `c ϕ.

Proof. Assuming stability, Fact 13 directly yields the completeness of Γ `c ϕ.
Conversely, assume completeness and let ¬¬(Γ `c ϕ). Employing completeness,
to get Γ `c ϕ it suffices to show Γ, ¬̇ϕ � ⊥̇, so supposeM �ρ Γ, ¬̇ϕ for someM
and ρ. As we now aim at a contradiction, we can turn ¬¬(Γ `c ϕ) into Γ `c ϕ
and therefore obtain Γ �c ϕ by soundness, a conflict toM �ρ Γ, ¬̇ϕ. ut

Hence, we can characterise completeness of classical ND as follows.

Theorem 15. 1. Completeness of Γ `c ϕ is equivalent to MPL.
2. Completeness of T `c ϕ for enumerable T is equivalent to MP.
3. Completeness of T `c ϕ for arbitrary T is equivalent to EM.

Proof. 1. By Fact 14 completeness is equivalent to the stability of Γ `c ϕ which
is shown equivalent to MPL in Section 4.

2. T `c ϕ for enumerable T is enumerable, hence stable under MP and thus
complete per Fact 13. For the converse, assume a function f : N → B
and consider T := (λϕ. ϕ = ⊥̇ ∧ ∃n. f n = tt). Since T is enumerable,
completeness yields that T � ⊥̇ is equivalent to T `c ⊥̇ which in turn is
equivalent to ∃n. f n = tt. Then since T � ⊥̇ is stable so must be ∃n. f n = tt.

3. EM particularly implies that T `c ϕ is stable and hence complete. Conversely
given a proposition P : P, completeness for T := (λϕ. ϕ = ⊥̇ ∧ P ) yields the
stability of P with an argument as in (2). ut

Having analysed the usual Henkin-style completeness proof, we now turn
to its constructivisation. The central observation is that completeness already
holds constructively for the minimal →,∀-fragment, by an elaboration of the
classical proof for the minimal fragment given in [46]. To this end, we further
restrict the deduction system and semantics to the minimal fragment and prove
completeness via a suitable form of model existence.

Lemma 16. In the→,∀-fragment, for closed T and ϕ there is a classical modelM
and an assignment ρ such that (1)M �ρ T and (2)M �ρ ϕ implies T `c ϕ.

Proof. Let T ′ be the extension of T for ϕ⊥ := ϕ. As before, we haveMT ′ �id T ′.
So now letMT ′ �id ϕ, then ϕ ∈ T ′ and T `c ϕ by (1) of Lemma 11. ut

Corollary 17. In the →,∀-fragment, Γ � ϕ implies Γ `c ϕ for closed Γ and ϕ.

http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.GenCompleteness.html#semi_completeness_standard
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.GenCompleteness.html#completeness_standard_stability
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.GenCompleteness.html#model_fragment_correct
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.GenCompleteness.html#semi_completeness_fragment
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As opposed to completeness for fomulas incorporating ⊥̇, completeness in
the minimal fragment does not rely on consistency requirements. Consequently,
if these requirements are eliminated by allowing models treating inconsistency
more liberal, completeness for formulas with ⊥̇ can be established construc-
tively (cf. [54,31]).

So we now turn back to the →,∀,⊥-fragment and define a satisfaction rela-
tionM �Aρ ϕ for arbitrary propositions A with the relaxed rule (M �Aρ ⊥̇) := A.
A model M is A-exploding if M �A ⊥̇ → ϕ for all ϕ and exploding if it is A-
exploding for some choice of A. Note that A := > and PM t := > in particular
yields an exploding model satisfying all formulas, hence accommodating incon-
sistent theories. This leads to the following formulation of model existence.

Lemma 18. For every closed theory T there is an exploding classical modelM
and an assignment ρ such that (1)M �Aρ T and (2)M �Aρ ⊥̇ implies T `c ⊥̇.

Proof. Let T be closed and let T ′ be its extension for ϕ⊥ := ⊥̇. We set A :=
⊥̇ ∈ T ′ and observe that the syntactic model MT ′ still coincides with T ′, i.e.
MT ′ �Aσ ϕ iff ϕ[σ] ∈ T ′. Hence we have (1) MT ′ �Aid T . Moreover, MT ′ is
A-exploding since proving MT ′ �Aσ ⊥̇ → ϕ in this case means to prove that
⊥̇→̇ϕ[σ] ∈ T ′, a straightforward consequence of T ′ being deductively closed.
Finally, (2) follows from (1) of Lemma 11 as seen before. ut

We write Γ �e ϕ if M �Aρ ϕ for all A : P and A-exploding M and ρ with
M �Aρ Γ and finally establish completeness with respect to exploding models:

Fact 19. Γ �e ϕ implies Γ `c ϕ for closed Γ and ϕ.

Proof. Let Γ �e ϕ, then Γ, ¬̇ϕ `c ⊥̇ follows by Lemma 18 for T := Γ, ¬̇ϕ. ut

3.2 Kripke Semantics

Turning to intuitionistic logic, we present Kripke semantics immediately gener-
alised to arbitrary interpretations of falsity.

Definition 20. A Kripke model K over a domain D is a preorder (W,�) with

_K : ∀f : FΣ . D|f | → D _K : ∀P : PΣ .W → D|P | → P ⊥K : W → P.

The interpretations of predicates and falsity are required to be monotone, i.e.
PKv a → PKw a and ⊥Kv → ⊥Kw whenever v � w. Assignments ρ and their term
evaluations ρ̂ are extended to formulas via the relation w 
ρ ϕ defined by

w 
ρ ⊥̇ := ⊥Kw w 
ρ ϕ→̇ψ := ∀v � w. v 
ρ ϕ→ v 
ρ ψ

w 
ρ P t := PKw (ρ̂@ t ) w 
ρ ∀̇ϕ := ∀a : D.w 
a;ρ ϕ

We write K 
 ϕ if w 
ρ ϕ for all ρ and w. K is standard if ⊥Kw implies ⊥ for
all w and exploding if K 
 ⊥̇→̇ϕ for all ϕ. We write T 
 ϕ if K 
ρ ϕ for all
standard K and ρ with K 
ρ T , and T 
e ϕ when relaxing to exploding models.

http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.GenCompleteness.html#model_bot_correct
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.GenCompleteness.html#completeness_expl
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.Kripke.html#kmodel
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Note that standard models are exploding, hence T 
e ϕ implies T 
 ϕ.
Moreover, the monotonicity required for the predicate and falsity interpreta-
tions lifts to all formulas, i.e. w 
ρ ϕ implies v 
ρ ϕ whenever w � v. This
property together with the usual facts about the interaction of assignments and
substitutions yields soundness:

Fact 21. Γ ` ϕ implies Γ 
e ϕ.

Proof. By induction on Γ ` ϕ and analogous to [14, Fact 3.34]. ut

Turning to completeness, instead of showing that Γ 
e ϕ implies Γ ` ϕ di-
rectly, we follow Herbelin and Lee [24] and reconstruct a formal derivation in the
normal sequent calculus LJT, hence implementing a cut-elimination procedure.
LJT is defined by judgements Γ⇒ϕ and Γ ;ψ⇒ϕ for a focused formula ψ:

Γ ;ϕ⇒ϕ
A

Γ ;ϕ⇒ψ ϕ ∈ Γ
Γ⇒ψ

C
Γ⇒ϕ Γ ;ψ⇒θ

Γ ;ϕ→̇ψ⇒θ
IL

Γ, ϕ⇒ψ

Γ⇒ϕ→̇ψ IR
Γ ;ϕ[t]⇒ψ

Γ ; ∀̇ϕ⇒ψ
AL

↑Γ⇒ϕ

Γ⇒∀̇ϕ
AR Γ⇒⊥̇

Γ⇒ϕ
E

Fact 22. Every sequent Γ⇒ϕ can be translated into a normal derivation Γ ` ϕ.

Proof. By simultaneous induction on both forms of judgements, where every
sequent Γ ;ψ⇒ϕ is translated to an implication from Γ ` ψ to Γ ` ϕ. ut

By the previous fact, completeness for LJT implies completeness for intu-
itionistic ND. The technique to establish completeness for Kripke semantics is
based on universal models coinciding with intuitionistic provability. We in fact
construct two syntactic Kripke models over the domain T.

– An exploding model U on contexts s.t. Γ 
Uσ ϕ iff Γ⇒ϕ[σ].
– A standard model C on consistent contexts s.t. Γ 
Cσ ϕ iff ¬¬(Γ⇒ϕ[σ]).

These constructions are adaptions of those in [55], which in turn are based
on the proof and comments in [24]. We begin with the exploding model U .

Definition 23. The model U over the domain T of terms is defined on the
contexts Γ preordered by inclusion ⊆. Further, we set:

f U d := f d P UΓ d := Γ⇒P d ⊥UΓ := Γ⇒⊥̇

The desired properties of U can be derived from the next lemma, which takes
the shape of a normalisation-by-evaluation procedure [3,10].

Lemma 24. In the universal Kripke model U the following hold.

1. Γ 
σ ϕ→ Γ⇒ϕ[σ]
2. (∀Γ ′ψ. Γ ⊆ Γ ′ → Γ ′ ;ϕ[σ]⇒ψ → Γ ′⇒ψ)→ Γ 
σ ϕ

http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.Kripke.html#ksoundness'
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.Gentzen.html#cutfree_seq_ND
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.KripkeCompleteness.html#K_ctx
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.KripkeCompleteness.html#K_ctx_correct
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Proof. We prove (1) and (2) at once by induction on ϕ generalising Γ and σ.
We only discuss the case of implications ϕ→̇ψ in full detail.

1. Assuming ∀Γ ′. Γ ⊆ Γ ′ → Γ ′ 
σ ϕ → Γ ′ 
σ ψ, one has to derive that
Γ⇒(ϕ→̇ψ)[σ]. Per (IR) and inductive hypothesis (2) for ψ it suffices to
show Γ, ϕ[σ] 
σ ψ. Applying the inductive hypothesis (2) for ϕ and the
assumption, it suffices to show that Γ ′ ;ϕ[σ]⇒θ[σ] implies Γ ′⇒θ[σ] for any
Γ, ϕ[σ] ⊆ Γ ′ and θ, which holds per (C).

2. Assuming ∀Γ ′ θ. Γ ⊆ Γ ′ → Γ ′ ; (ϕ→̇ψ)[σ]⇒θ → Γ ′⇒θ one has to deduce
Γ ′ 
σ ϕ entailing Γ ′ 
σ ψ for any Γ ⊆ Γ ′. Because of the inductive hy-
pothesis (2) for ψ it suffices to show ∆ ;ψ[σ]⇒ θ implying ∆⇒ θ for any
Γ ′ ⊆ ∆. By using the assumption, ∆⇒θ reduces to ∆ ; (ϕ→̇ψ)[σ]⇒θ. This
follows by (IL), as the assumption Γ ′ 
σ ϕ implies ∆⇒ϕ[σ] per inductive
hypothesis (2). ut

Corollary 25. U is exploding and satisfies Γ 
σ ϕ iff Γ⇒ϕ[σ].

Proof. Suppose that Γ ⇒ ⊥̇, then (2) of Lemma 24 yields that Γ 
σ ϕ for
arbitrary ϕ. Thus U is exploding. The claimed equivalence then follows by (1)
of Lemma 24 and soundness of LJT. ut

Being universal, U witnesses completeness for exploding Kripke models:

Fact 26. 1. Γ 
e ϕ implies Γ⇒ϕ.
2. In the →,∀-fragment, Γ 
 ϕ implies Γ⇒ϕ.

Proof. 1. Since Γ 
Uid Γ we have that Γ 
e ϕ implies Γ 
Uid ϕ and hence Γ⇒ϕ.
2. In the minimal fragment, ⊥̇ remains uninterpreted and hence imposes no

condition on the models. Hence U yields the completeness in this case.

Before we move on to completeness for standard models, we illustrate how
the previous fact already establishes the cut rule for LJT.

Lemma 27. If Γ⇒ϕ and Γ ;ϕ⇒ψ, then Γ⇒ψ.

Proof. By the translation given in Fact 22, we obtain a derivation Γ ` ψ from
the two assumptions. This can be turned into Γ⇒ψ using soundness (Fact 21)
and completeness (Fact 26).

We now construct the universal standard model C as a refinement of U . As
standard models require that ⊥Kv implies ⊥ for any v, the model U has to be
restricted to the consistent contexts, those which do not prove ⊥̇.

Definition 28. The model C over the domain T of terms is defined on the
consistent contexts Γ 6⇒⊥̇ preordered by inclusion ⊆. Further, we set:

f C d := f d P CΓ d := ¬¬(Γ⇒P d) ⊥ CΓ := ⊥

http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.KripkeCompleteness.html#K_ctx_constraint
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.KripkeCompleteness.html#K_exp_completeness
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.KripkeCompleteness.html#SE_cut
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.KripkeCompleteness.html#K_std
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Note that C is obviously standard and that we weakened the interpretation
of atoms to doubly negated provability. This admits the following normalisation-
by-evaluation procedure for doubly negated sequents:

Lemma 29. In the universal Kripke model C the following hold.

1. Γ 
σ ϕ→ ¬¬(Γ⇒ϕ[σ])
2. (∀Γ ′ψ. Γ ⊆ Γ ′ → Γ ′ ;ϕ[σ]⇒ψ → ¬¬(Γ ′⇒ψ))→ Γ 
σ ϕ

Proof. We prove (1) and (2) at once by induction on ϕ generalising Γ and σ.
Most cases are completely analogous to those in Lemma 24. Therefore we only
discuss the crucial case (1) for implications ϕ→̇ψ.

1. Assuming Γ 
σ ϕ→̇ψ we need to derive ¬¬(Γ⇒ϕ[σ]→̇ψ[σ]). So we assume
¬(Γ⇒ϕ[σ]→̇ψ[σ]) and derive a contradiction. Because of the negative goal,
we may assume that either Γ, ϕ[σ] is consistent or not. In the positive case,
we proceed as in Lemma 24 since the extended context is a node in C.
On the other hand, if Γ, ϕ[σ]⇒ ⊥̇, then Γ, ϕ[σ]⇒ ψ[σ] by (E) and hence
Γ⇒ϕ[σ]→̇ψ[σ] by (IR), contradicting the assumption. ut

Corollary 30. C satisfies Γ 
σ ϕ iff ¬¬(Γ⇒ϕ[σ]).

Proof. The first direction is (1) of Lemma 29 and the converse follows with (2)
since ¬¬(Γ⇒ϕ[σ]) and Γ ′ ;ϕ[σ]⇒ψ for Γ ′ ⊇ Γ together imply ¬¬(Γ ′⇒ψ) via
the cut rule established in Lemma 27. ut

The advantage of the additional double negations is that, in contrast to the
proof in [24], we only need a single application of stability to derive completeness.
Thus we can prove the completeness of Γ ` ϕ admissible in Section 4.

Fact 31. 1. Γ 
 ϕ implies Γ⇒ϕ, provided that Γ⇒ϕ is stable.
2. Γ 
 ϕ implies Γ ` ϕ, provided that Γ ` ϕ is stable.

Proof. 1. Since Γ 
 ϕ implies ¬¬(Γ⇒ϕ), we can conclude Γ⇒ϕ per stability.
2. Since Γ⇒ϕ iff Γ ` ϕ per soundness and completeness (Facts 21 and 26). ut

Conversely, unrestricted completeness requires the stability of classical ND.

Fact 32. Completeness of Γ⇒ϕ implies stability of Γ `c ϕ.

Proof. Assume completeness of Γ ⇒ ϕ and suppose ¬¬(Γ `c ϕ). We prove
Γ `c ϕ, so it suffices to show Γ, ¬̇ϕ `c ⊥̇. Employing a standard double nega-
tion translation ϕN on formulas ϕ, it is equivalent to establish (Γ, ¬̇ϕ)N ⇒⊥̇.
Applying completeness, however, we may assume a standard model K with
K 
ρ (Γ, ¬̇ϕ)N and derive a contradiction. Hence we conclude Γ `c ϕ and
so ΓN 
 ϕN from ¬¬(Γ `c ϕ) and soundness, in conflict to K 
ρ (Γ, ¬̇ϕ)N . ut

Thus, the completeness of intuitionistic ND is similar to the classical case.

Theorem 33. 1. Completeness of Γ ` ϕ is equivalent to MPL.
2. Completeness of T ` ϕ for enumerable T implies MP.
3. Completeness of T ` ϕ for arbitrary T implies EM.

http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.KripkeCompleteness.html#K_std_correct
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.KripkeCompleteness.html#K_std_sprv
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.KripkeCompleteness.html#K_std_completeness
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.KripkeCompleteness.html#cend_dn
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4 On Markov’s Principle

We show that the stability of Γ `c ϕ and Γ ` ϕ is equivalent to an object-
level version of Markov’s principle referencing procedures in a concrete model of
computation. For formalisation purposes, we will use the call-by-value λ-calculus
L [43,17] as model of computation. Since on paper the same proofs can be carried
out for any model of computation we will not go into details of L. We only
need two notions: first, L-enumerability [15, Definition 6], which is defined like
synthetic enumerability, but where the enumerator is an L-computable function.
Secondly, the halting problem for L, defined as Es := “the term s terminates”.

We define the object-level Markov’s principle MPL as stability of E :

MPL := ∀s. ¬¬Es→ Es

MPL can also be phrased similarly to MP with a condition on the sequence:

Lemma 34. ([17, Theorem 45]) MPL is equivalent to

∀f : N→ B. L-computable f → ¬¬(∃n. f n = tt)→ ∃n. f n = tt.

Corollary 35. MP implies MPL.

We show Lemma 8, i.e. that MPL is equivalent to both the stability of `c and
` for finite contexts, thereby establishing that completeness of provability for
standard Tarski and Kripke semantics for finite theories is equivalent to MPL.

Lemma 36. ([14, Fact 2.16]) Let p and q be predicates. If p many-one reduces
to q (i.e. ∃f.∀x. px↔ q(fx), written p � q) and q is stable, then p is stable.

Thus, in order to prove the equivalence of the stability of E , Γ ` ϕ, and
Γ `c ϕ, it suffices to give many-one reductions between them. We start with the
two simpler reductions:

Lemma 37. `c� `, and thus stability of Γ ` ϕ implies the stability of Γ `c ϕ.

Proof. Using a standard double-negation translation proof. ut

Lemma 38. E � `c, and thus stability of Γ `c ϕ implies MPL.

Proof. E reduces to the halting problem of Turing machines [56], which reduces
to the Post correspondence problem [13], which in turn reduces to `c by adapt-
ing [14, Corollary 3.49]. ut

Since p � E for all L-enumerable predicates p [15, Theorem 7], it suffices to
give an L-computable enumeration of type N→ L(F) of provable formulas ` ϕ.
Note that we continue to assume signatures to be (synthetically) enumerable
and do not have to restrict to L-enumerability, which is enabled by the following
signature extension lemma:

http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.Markov.html#MP_MPL
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.Markov.html#cprv_iprv
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.Markov.html#halt_cprv
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Lemma 39. Let ι be an invertible embedding from Σ to Σ′. Then ` ϕ over Σ if
and only if ` ιϕ over Σ′, where ιϕ is the recursive application of ι to formulas.

Proof. Γ ` ϕ→ ιΓ ` ιϕ follows trivially by induction. For the inverse direction,
we show that Kripke models M over Σ can be extended to Kripke models ιM
over Σ s.t. ρ, u 
M ϕ ↔ ρ, u 
ιM ιϕ. Then ιΓ ` ιϕ → Γ ` ϕ follows from
soundness and completness w.r.t. exploding models. ut

Lemma 40. Γ ` ϕ is L-enumerable for any enumerable signature Σ.

Proof. Since Σ is enumerable, it can be injectively embedded via ι into the
maximal signatureΣmax := (N2,N2) where the arity functions are just the second
projections. Since N2 is L-enumerable, terms and formulas over Σmax are also
L-enumerable, and thus provability over Σmax is L-enumerable. By Lemma 39
we obtain that provability over Σ is L-enumerable. ut

Corollary 41. `� E, and thus MPL implies the stability of Γ ` ϕ.

We conclude the section with observations on independence and admissible of
several statements in Coq’s type theory pCuIC. By independence of a statement
P , we mean that neither P nor ¬P is provable in pCuIC without assumptions.
By admissibility of a statement ∀x. P (x)→ Q(x) we mean that whenever P (t)
is provable in pCuIC for a concrete term t without assumptions, Q(t) is as well.
Pédrot and Tabareau [42] show MP independent (Corollary 41) and admissible
(Theorem 33). This transports to MPL as well as stability of deduction systems
and completeness with respect to model-theoretic semantics.

Theorem 42. The following are all independent and admissible in pCuIC:

1. MPL

2. Stability of both Γ `c ϕ and Γ ` ϕ.
3. Completeness of T `c ϕ for enumerable T w.r.t. standard Tarski semantics.
4. Completeness of Γ `c ϕ w.r.t. standard Tarski semantics.
5. Completeness of Γ `c ϕ w.r.t. standard Tarski semantics.

Proof. We exemplarily show (1) and (4), the other proofs are similar.
For (1), MPL is consistent since it is a consequence of EM. Lemma 40 in [42]

shows that no theory conservative over the calculus of inductive constructions
(CIC) can prove both the independence of premise rule IP and MP, by turning
these assumptions into a decider for the halting problem of the untyped term
language of CIC. One can adapt the proof to show that pCuIC cannot prove
both IP and MPL, by constructing a decider for the L-halting problem instead,
which yields a contradiction as well. The admissibility of MPL follows from the
admissibility of MP since a single application of MP suffices to derive MPL.

For (4), independence follows directly from (1) and Theorem 15. For admis-
sibility, assume that Γ � ϕ is provable in pCuIC. By Fact 13, ¬¬(Γ `c ϕ) is
provable in pCuIC. Thus by (2), Γ `c ϕ is provable in pCuIC. ut

http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.Extend.html#prv_embed
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.LEnum.html#enum_sprvie
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.Markov.html#iprv_halt
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.Markov.html#MPL_independent
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5 Algebraic Semantics

In contrast to the model-theoretic semantics discussed in Section 3, algebraic
semantics are not based on models interpreting the non-logical symbols but
on algebras suitable for interpreting the logical connectives of the syntax. A
formula is valid if it is satisfied by all algebras and completeness follows from the
observation that deduction systems have the corresponding algebraic structure.
Following [47], we discuss complete Heyting and Boolean algebras coinciding
with intuitionistic and classical ND, respectively. We consider all formulas ϕ : F.

Definition 43. A Heyting algebra consists of a preorder (H,≤) and operations

0 : H, u : H → H → H, t : H → H → H, ⇒: H → H → H

for bottom, meet, join, and implication satisfying the following properties:
1. 0 ≤ x
2. z u x ≤ y ↔ z ≤ x⇒ y

3. z ≤ x ∧ z ≤ y ↔ z ≤ x u y
4. x ≤ z ∧ y ≤ z ↔ x t y ≤ z

Moreover, H is complete if there is a constant
d

: (H → P)→ H for arbitrary
meets satisfying (∀y ∈ P. x ≤ y) ↔ x ≤

d
P . Then H also has arbitrary joins⊔

P :=
d
(λx. ∀y ∈ P. y ≤ x) satisfying (∀y ∈ P. y ≤ x)↔

⊔
P ≤ x.

Arbitrary meets and joins indexed by a function F : I → H on a type I
are defined by

d
i F i :=

d
(λx. ∃i. x = F i) and

⊔
i F i :=

⊔
(λx. ∃i. x = F i),

respectively. As we do not require ≤ to be antisymmetric in order to avoid
quotient constructions, we establish equational facts about Heyting algebras only
up to equivalence x ≡ y := x ≤ y ∧ y ≤ x rather than actual equality.

Note that every Heyting algebra embeds into its down set algebra consisting
of the sets x⇓ := λy. y ≤ x. The MacNeille completion [37] adding arbitrary
meets and joins is a refinement of this embedding.

Fact 44. Every Heyting algebra H embeds into a complete Heyting algebra Hc,
i.e. there is a function f : H → Hc with x ≤ y ↔ f x ≤c f y and:
1. f 0 ≡ 0c
2. f (x⇒ y) ≡ f x⇒c f y

3. f (x u y) ≡ f x uc f y
4. f (x t y) ≡ f x tc f y

Proof. Given a set X : H → P, we define the sets LX := λx. ∀y ∈ X.x ≤ y
of lower bounds and UX := λx. ∀y ∈ X. y ≤ x of upper bounds of X. We say
that a set X is down-complete if L (UX) ⊆ X. Note that in particular down sets
x⇓ are down-complete and that down-complete sets are downwards closed, i.e.
satisfy x ∈ X whenever x ≤ y for some y ∈ X.

Now consider the type Hc := ΣX.L (UX) ⊆ X of down-complete sets pre-
ordered by set inclusion X ⊆ Y . It is immediate by construction that the oper-
ation

d
c P :=

⋂
P defines arbitrary meets in Hc. Moreover, it is easily verified

that further setting

0c := 0⇓ XucY := X∩Y XtcY := L (U (X∪Y )) X ⇒c Y := λx.∀y ∈ X.xuy ∈ Y

http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.Heyting.html#HeytingAlgebra
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.Heyting.html#completion_calgebra
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turns Hc into a (hence complete) Heyting algebra. The only non-trivial case is
implication, where X ⇒c Y ≡

d
c(λZ.∃x ∈ X.Z ≡ (λy. y u x ∈ Y )) is a helpful

characterisation to show that X ⇒c Y is down-complete whenever Y is.
Finally, x⇓ clearly is a structure preserving embedding as specified. ut

We now define how formulas can be evaluated in a complete Heyting algebra.

Definition 45. Given a complete Heyting algebra H we extend interpretations
[[_]] : ∀P : PΣ .T|P | → H of atoms to formulas using size recursion by

[[⊥̇]] := 0 [[ϕ∧̇ψ]] := [[ϕ]] u [[ψ]] [[∀̇ϕ]] :=
d
t[[ϕ[t]]]

[[ϕ→̇ψ]] := [[ϕ]]⇒ [[ψ]] [[ϕ∨̇ψ]] := [[ϕ]] t [[ψ]] [[∃̇ϕ]] :=
⊔
t[[ϕ[t]]]

and to contexts by [[Γ ]] :=
d
λx. ∃ϕ ∈ Γ. x = [[ϕ]]. A formula ϕ is valid in H

whenever x ≤ [[ϕ]] for all x : H.

We first show that intuitionistic ND is sound for this semantics.

Fact 46. Γ ` ϕ implies ∀σ. [[Γ [σ]]] ≤ [[ϕ[σ]]] in every complete Heyting algebra.

Proof. By induction on Γ ` ϕ, all cases but (DE) and (EE) are trivial. ut

Corollary 47. Γ ` ϕ implies [[Γ ]] ≤ [[ϕ]] in every complete Heyting algebra.

Next turning to completeness, a strategy reminiscent to the case of Kripke
semantics can be employed by exhibiting a universal structure, the so-called
Lindenbaum algebra, that exactly coincides with provability.

Fact 48. The type F of formulas together with the preorder ϕ ` ψ and the logical
connectives as corresponding algebraic operations forms a Heyting algebra.

We write L for the Lindenbaum algebra (Fact 48) and Lc for its MacNeille
completion (Fact 44). Formulas are evaluated in Lc according to Definition 45
using the syntactic atom interpretation [[P t]] := (P t )⇓ .

Lemma 49. Evaluating ϕ in Lc yields the set of all ψ with ψ ` ϕ, i.e. [[ϕ]] ≡ ϕ⇓ .

Proof. By size induction on ϕ. The case for atoms is by construction and the
cases for all connectives but the quantifiers are immediate since ⇓ preserves the
structure of L as specified in Fact 44. ut

Theorem 50. If ϕ is valid in every complete Heyting algebra, then ` ϕ.

Proof. If ϕ is valid, then Lemma 49 implies that ψ ` ϕ forall ψ. By for instance
choosing ψ := ⊥̇→̇⊥̇ we can derive ` ϕ since ` ⊥̇→̇⊥̇. ut

A Heyting algebra is Boolean if it satisfies (x⇒y)⇒x ≤ x for all x and y.

Theorem 51. If ϕ is valid in every complete Boolean algebra, then `c ϕ.

Proof. Analogous to the intuitionistic case, using that the Lindenbaum algebra
over ϕ `c ψ and hence its MacNeille completion are Boolean. ut

http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.Lindenbaum.html#hsat
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.Lindenbaum.html#Soundness'
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.Lindenbaum.html#Soundness
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.Lindenbaum.html#lb_alg
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.Lindenbaum.html#lindenbaum_hsat
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.Lindenbaum.html#hcompleteness
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.Lindenbaum.html#bcompleteness
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6 Game Semantics

Dialogues are games modeling a proponent defending the validity of a formula
against an opponent. In the terminology of Felscher [11], the dialogues we con-
sider in this section are the intuitionistic E-dialogues, generalised over their local
rules (F,Fa,A,B,D−). Given abstract types for formulas F and attacks A, the
relation a |ψ B ϕ states that a player may attack ϕ : F with a : A by possibly
admitting a unique ψ : O(F). If ψ = ∅, no admission is made. Each a : A has an
associated set Da of formulas that may be admitted to fend off a. Special rules
restrict when the proponent may admit atomic formulas, members of the set Fa.
We write a B ϕ for a | ∅ B ϕ. The local rules of first-order logic are given below
with atomic formulas Fa := {P t | P : PΣ}.

a∨̇ B ϕ∨̇ψ Da∨̇ = {ϕ,ψ} a→̇ | pϕq B ϕ→̇ψ Da→̇ = {ψ} aL B ϕ∧̇ψ DaL = {ϕ}

at B ∀̇ϕ Dat = {ϕ[t]} a⊥̇ B ⊥̇ Da⊥̇ = {} aR B ϕ∧̇ψ DaR = {ψ}

a∃̇ B ∃̇ϕ Da∃̇ = {ϕ[t] | t : T}

In contrast to their usual presentation as sequences of alternating moves, we
define dialogues as state transition systems over elements (Ao, c) of the type
L(F) × A containing the opponent’s admissions (Ao) and last attack (c). The
proponent opens each round by picking a move. She can defend against the
opponent’s attack c by admitting a justified defense formula ϕ ∈ Dc, meaning
ϕ ∈ Fa implies ϕ ∈ Ao. Alternatively, she can launch an attack a against any of
the opponent’s admissions if the admission resulting from a is justified.

ϕ ∈ Dc justified Ao ϕ
(Ao, c) p ϕ

PD
ϕ ∈ Ao a |ψ B ϕ justified Ao ψ

(Ao, c) p (a, ϕ)
PA

Given such a move m, the opponent reacts to it by transforming the state
s into s′ (written as s ; m  o s

′). The opponent may attack the proponent’s
defense formula (OA), defend against her attack (OD) or counter her attack by
attacking her admission (OC). We define pϕq :: A := ϕ :: A and ∅ :: A := A.

c′ |ψ B ϕ
(Ao, c) ;ϕ o (ψ :: Ao, c

′)
OA

ψ ∈ Da
(Ao, c) ; (a, ϕ) o (ψ :: Ao, c)

OD

a | pψq B ϕ c′ | θ B ψ
(Ao, c) ; (a, ϕ) o (θ :: Ao, c

′)
OC

A formula ϕ is then considered E-valid if it is non-atomic and for all c |ψBϕ,
there is a winning strategy Win ([ψ], c) as defined below.

s p m ∀s′. s ;m o s
′ →Win s′

Win s

Following the strategy of [48], we first prove the soundness and completeness
of the sequent calculus LJD which is defined in terms of the same notions as
the dialogues. Indeed, as witnessed in the proofs of soundness and complete-
ness, derivations of LJD are isomorphic to winning strategies, the R- and L-rule
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corresponding to a proponent defense and attack, their premises matching the
possible opponent responses to each move. The statement Γ ⇒D S means that
the context Γ entails the disjunction of the formulas contained in the set S.

ϕ ∈ S justified Γ ϕ ∀a |ψ B ϕ. Γ, ψ ⇒D Da
Γ ⇒D S R

ϕ ∈ Γ justified Γ ψ a |ψ B ϕ ∀ θ ∈ Da. Γ, θ ⇒D S ∀a′ | τ B ψ. Γ, τ ⇒D Da′
Γ ⇒D S L

Theorem 52. Any formula ϕ is E-valid if and only if one can derive []⇒D {ϕ}.
Proof. Win (Ao, c)→ Ao ⇒D Dc holds per induction on Win (Ao, c). From this,
completeness follows with an application of the R-rule, transforming Win ([ψ], c)
for any c |ψ B ϕ into [ψ]⇒D Dc. Soundness can be proven symmetrically. ut

To arrive at a more traditional soundness and completeness result, we show
that one can translate between derivations in LJD and the intuitionistic sequent
calculus LJ deriving sequents Γ ⇒J ϕ as defined in Definition 58 of Appendix A.

Lemma 53. One can derive Γ ⇒D {ϕ} if and only if one can derive Γ ⇒J ϕ.

Proof. Completeness is generalised as below and shown per induction on Γ⇒DS:

Γ ⇒D S → ∀ϕ. (∀ψ, Γ ⊆ Γ ′. Γ ′ ⇒J ψ → Γ ′ ⇒J ϕ)→ Γ ⇒J ϕ

Soundness follows analogously from Γ ⇒J ϕ→ ∀σ. Γ [σ]⇒D {ϕ[σ]}. ut
Corollary 54. Any formula ϕ is E-valid if and only if one can derive []⇒J ϕ.

7 Discussion

We have analysed the completeness of common deduction systems for first-order
logic with regards to various explanations of logical validity. Model-theoretic se-
mantics are the most direct implementation of the idea that terms represent
objects of a domain of discourse. Particularly in a formal meta-theory such
as constructive type theory, model-theoretic completeness justifies the common
practice to verify consequences of a first-order axiomatisation by studying models
satisfying corresponding meta-level axioms. However, model-theoretic semantics
typically do not admit constructive completeness and, if not generalised to ex-
ploding models, require Markov’s principle as soon as falsity is involved. Contrar-
ily, evidence for the validity of a first-order formula in algebraic semantics and
game semantics can be algorithmically transformed into syntactic derivations.

Of course, there are more semantics than the selection studied in this paper.
For instance, there are hybrid variants such as interpreting both terms in a
model and logical operations in an algebra, or dialogues with atomic formulas
represented as underlying games. More generally, there are entirely different
approaches like realisability semantics or proof-theoretic semantics, all coming
with interesting completeness problems worth analysing in constructive type
theory. Ideas for future work are outlined after a brief summary of related work.

http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.Sorensen.html#esoundness
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.DialogFull.html#fprv_Dprv
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.DialogFull.html#evalid_fprv
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7.1 Related Work

Our analysis of completeness in constructive type theory was motivated by pre-
vious work [14], carried out in Wehr’s bachelor’s thesis [55], and is directly influ-
enced by multiple prior works. In their analysis of Henkin’s proof, Herbelin and
Ilik [23] give a constructive model existence proof and the constructivisation
of completeness via exploding models. Herbelin and Lee [24] demonstrate the
constructive Kripke completeness proof for minimal models and mention how to
extend the approach to standard and exploding models. Scott [47] establishes
completeness of free logic interpreted in a hybrid semantics comprising model-
theoretic and algebraic components. Urzyczyn and Sørensen [48] give a proof of
dialogue completeness via generalised dialogues for classical propositional logic.

The first proof that the completeness of intuitionistic first-order logic entails
Markov’s principle was given by Kreisel [29], although he attributes the proof
idea to Gödel. The proof has since inspired a range of works deriving related
non-constructivity results for different kinds of completeness [30,34,39,41,40].
By almost exclusively focusing our analysis on the ∀,→,⊥-fragment, we did not
concern ourselves with the contributions of ∃ and ∨ to the non-constructivity of
completeness. Krivtsov’s [32,33] work has the exact opposite focus: His analysis
reveals that completeness with regards to exploding Tarski and Beth models,
for full classical and intuitionistic first-order logic, respectively, are equivalent
to the weak fan theorem. Another noteworthy work is that of Berardi [2], who
analyses which abstract notions of models admit constructive completeness.

The completeness of first-order logic has been formalised in many interac-
tive theorem provers such as Isabelle/HOL [4,44,45], NuPRL [6,53], Mizar [5],
Lean [19], and Coq [24,25]. Among them, [6] and [25] share our focus on the
constructivity of completeness. Constable and Bickford [6] give a constructive
proof of completeness for the BHK-realisers of full intuitionistic first-order logic
in NuPRL. Their proof is fully constructive when realisers are restricted to be
normal terms, requiring Brouwer’s fan theorem when lifting that restriction. In
his PhD thesis [25], Ilik formalises multiple constructive proofs of first-order
completeness in Coq. Especially noteworthy are the highly non-standard, con-
structivised Kripke models for full classical and intuitionistic first-order logic he
presents in Chapters 2 and 3.

7.2 Future Work

We plan to further extend our constructive analysis and Coq library to all logical
connectives and to uncountable signatures, both relying on additional logical as-
sumptions. Subsequently, it would be interesting to study other aspects of model
theory in the setting of constructive type theory, for instance the Löwenheim-
Skolem theorems or first-order axiomatisations of arithmetic and set theory.
Another idea is to analyse the completeness of second-order logic interpreted in
Henkin semantics, as this formalism suffices to express the higher-order axioma-
tisation of set theory studied in [28]. Lastly, we conjecture that MPL is strictly
weaker than MP, but are not aware of a proof.
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A Overview of Deduction Systems

Definition 55. Intuitionistic natural deduction is defined by the following rules:

ϕ ∈ Γ
Γ ` ϕ C

Γ ` ⊥̇
Γ ` ϕ E

Γ, ϕ ` ψ
Γ ` ϕ→̇ψ II

Γ ` ϕ→̇ψ Γ ` ϕ
Γ ` ϕ IE

Γ ` ϕ Γ ` ψ
Γ ` ϕ∧̇ψ

CI
Γ ` ϕ∧̇ψ
Γ ` ϕ

CE1

Γ ` ϕ∧̇ψ
Γ ` ψ

CE2

Γ ` ϕ
Γ ` ϕ∨̇ψ

DI1
Γ ` ψ

Γ ` ϕ∨̇ψ
DI2

Γ ` ϕ∨̇ψ Γ, ϕ ` θ Γ, ψ ` θ
Γ ` θ DE

↑Γ ` ϕ
Γ ` ∀̇ϕ

AI
Γ ` ∀̇ϕ
Γ ` ϕ[t]

AE
Γ ` ϕ[t]
Γ ` ∃̇ϕ

EI
Γ ` ∃̇ϕ ↑Γ, ϕ `↑ψ

Γ ` ψ
EE

We write ` ϕ whenever ϕ is intuitionistically provable from the empty context.

Definition 56. Classical natural deduction is defined by the following rules:

ϕ ∈ Γ
Γ `c ϕ

C
Γ `c ⊥̇
Γ `c ϕ

E
Γ, ϕ `c ψ
Γ `c ϕ→̇ψ

II
Γ `c ϕ→̇ψ Γ `c ϕ

Γ `c ϕ
IE

Γ `c ϕ Γ `c ψ
Γ `c ϕ∧̇ψ

CI
Γ `c ϕ∧̇ψ
Γ `c ϕ

CE1

Γ `c ϕ∧̇ψ
Γ `c ψ

CE2

Γ `c ϕ
Γ `c ϕ∨̇ψ

DI1
Γ `c ψ

Γ `c ϕ∨̇ψ
DI2

Γ `c ϕ∨̇ψ Γ, ϕ `c θ Γ, ψ `c θ
Γ `c θ

DE

↑Γ `c ϕ
Γ `c ∀̇ϕ

AI
Γ `c ∀̇ϕ
Γ `c ϕ[t]

AE
Γ `c ϕ[t]
Γ `c ∃̇ϕ

EI
Γ `c ∃̇ϕ ↑Γ, ϕ `c↑ψ

Γ `c ψ
EE

Γ `c ((ϕ→̇ψ)→̇ϕ)→̇ϕ
P

We write `c ϕ whenever ϕ is classically provable from the empty context.

Definition 57. The intuitionistic sequent calculus LJT is defined as follows:

Γ ;ϕ⇒ϕ
A

Γ ;ϕ⇒ψ ϕ ∈ Γ
Γ⇒ψ

C
Γ⇒ϕ Γ ;ψ⇒θ

Γ ;ϕ→̇ψ⇒θ
IL

Γ, ϕ⇒ψ

Γ⇒ϕ→̇ψ IR
Γ ;ϕ[t]⇒ψ

Γ ; ∀̇ϕ⇒ψ
AL

↑Γ⇒ϕ

Γ⇒∀̇ϕ
AR Γ⇒⊥̇

Γ⇒ϕ
E

http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.FullND.html#prv
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.FullND.html#prv
http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.Gentzen.html#sprv
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Definition 58. The intuitionistic sequent calculus LJ is defined as follows:

Γ, ϕ⇒J ϕ
A

Γ, ϕ, ϕ⇒J ψ

Γ,ϕ⇒J ψ
C

Γ ⇒J ψ

Γ,ϕ⇒J ψ
W

Γ, ψ, ϕ, Γ ′ ⇒J θ

Γ, ϕ, ψ, Γ ′ ⇒J θ
P

Γ ⇒J ⊥̇
Γ ⇒J ϕ

E
Γ ⇒J ϕ Γ, ψ ⇒J θ

Γ, ϕ→̇ψ ⇒J θ
IL

Γ, ϕ⇒J ψ

Γ ⇒J ϕ→̇ψ
IR

Γ, ϕ, ψ ⇒J θ

Γ, ϕ∧̇ψ ⇒J θ
CL

Γ ⇒J ϕ Γ ⇒J ψ

Γ ⇒J ϕ∧̇ψ
CR

Γ, ϕ⇒J θ Γ, ψ ⇒J θ

Γ, ϕ∨̇ψ ⇒J θ
DL

Γ ⇒J ϕ

Γ ⇒J ϕ∨̇ψ
DR1

Γ ⇒J ψ

Γ ⇒J ϕ∨̇ψ
DR2

Γ, ϕ[t]⇒J ψ

Γ, ∀̇ϕ⇒J ψ
AL

↑Γ ⇒J ϕ

Γ ⇒J ∀̇ϕ
AR

↑Γ, ϕ⇒J↑ψ
Γ, ∃̇ϕ⇒J ψ

EL
Γ ⇒J ϕ[t]

Γ ⇒J ∃̇ϕ
ER

B Notes on the Coq Formalisation

Our formalisation consists of about 7500 lines of code, with an even split between
specification and proofs. The code is structured as follows.

Section Specification Proofs
Preliminaries Autosubst 169 53
Preliminaries for F∗ 680 599
Tarski Semantics 655 682
Kripke Semantics 342 255
On Markov’s Principle 593 978
Preliminaries for F 523 430
Heyting Semantics 297 456
Dialogue Semantics 312 488
Total 3571 3941

In general, we find that Coq provides the ideal grounds for formalising
projects like ours. It has external libraries supporting the formalisation of syn-
tax, enough automation to support the limited amounts we need and allows
constructive reverse mathematics due to its axiomatic minimality.

In the remainder of the section, we elaborate on noteworthy design choices
of the formalisation.

Formalisation of binders There are various competing techniques to formalise
binders in proof assistants. In first-order logic, binders occur in quantification.
The chosen technique especially affects the definition of deduction systems and
can considerably ease or impede proofs of standard properties like weakening.

http://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.FullSequent.html#fprv


26 Yannick Forster, Dominik Kirst, Dominik Wehr

We opted for a de Bruijn representation of variables and binders with parallel
substitutions. The Autosubst 2 tool [50] provides convenient automation for the
definition of and proofs about this representation of syntax.

Notably, our representation then results in very straightforward proofs for
weakening with only 5 lines. In contrast, using other representations for binders
results in considerably more complicated weakening proofs, e.g. 150 lines in an
approach using names [14] and 95 lines in an approach using traced syntax [24].

Also note that first-order logic has the simplest structure of binders possible:
Since quantifiers range over terms, but terms do not contain binders, we do not
need a prior notion of renaming, as usually standard in de Bruijn presentations
of syntax. This observation results in more compact code (because usually, every
statement on substitutions has to be proved for renamings first, with oftentimes
the same proof) and was incorporated into Autosubst 2, which now does not
generate renamings if they are not needed. Furthermore, we remark that the
HOAS encoding of such simple binding structures results in a strictly positive
inductive type and would thus be in principle definable in Coq.

Formalisoation of signatures Our whole development is parametrised against a
signature, defined as a typeclass in Coq:

Class Signature := B_S { Funcs : Type; fun_ar : Funcs -> nat ;
Preds : Type; pred_ar : Preds -> nat }.

We implement term and predicate application using the dependent vector type.
While the vector type is known to cause issues in dependent programming, in
this instance it was the best choice. Recursion on terms is accepted by Coq’s
guardness checker, and while the generated induction principle (as is always
the case for nested inductives) is too weak, a sufficient version can easily be
implemented by hand:

Inductive vec_in (A : Type) (a : A) : forall n, vector A n -> Type :=
| vec_inB n (v : vector A n) : vec_in a (cons a v)
| vec_inS a’ n (v :vector A n) : vec_in a v -> vec_in a (cons a’ v).

Lemma strong_term_ind (p : term -> Type) :
(forall x, p (var_term x)) ->
(forall F v, (forall t, vec_in t v -> p t) -> p (Func F v)) ->
forall (t : term), p t.

Syntactic fragments There are essentially four ways to formalise the syntactic
fragment F∗. First, we could parametrise the type of formulas with tags, as
done in [14] and second, we could use well-explored techniques for modular syn-
tax [27,9]. However, both of these approaches would not be compatible with the
Autosubst tool. Additionally, modular syntax would force users of our developed
library for first-order logic to work on the peculiar representation of syntax using
containers or functors instead of regular inductive types.
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The third option is to only define the type F, and then define a predicate
on this formulas characterising the fragment F∗. This approach introduces many
additional assumptions in almost all statements, decreasing their readability and
yielding many simple but repetitive proof obligations. Furthermore, we would
have to parameterise natural deduction over predicates as well, in order for the
(IE) rule to not introduce terms e.g. containing ∃̇ when only deductions over F∗
should be considered.

To make the formalisation as clear and reusable as possible, we chose the
fourth and most simple possible approach: We essentially duplicate the contents
of Section 2 for both F∗ and F, resulting in two independent developments on
top of the two preliminary parts.

Parametrised deduction systems When defining the minimal, intuitionistic, and
classical versions of natural deduction, a similar issue arises. Here, we chose to
use one single predicate definition, where the rules for explosion and Peirce can
be enabled or disabled using tags, which are parameters of the predicate.

Inductive peirce := class | intu.
Inductive bottom := expl | lconst.
Inductive prv : forall (p : peirce) (b : bottom),

list (form) -> form -> Prop := (* ... *).

We can then define all considered variants of ND by fixing those parameters:

Notation "A `CE phi" := (@prv class expl A phi) (at level 30).
Notation "A `CL phi" := (@prv class lconst A phi) (at level 30).
Notation "A `IE phi" := (@prv intu expl A phi) (at level 30).

This definition allows us to give for instance a general weakening proof,
which can then be instantiated to the different versions. Similarly, we can give
a parametrised soundness proof, and depending on the parameters fix required
properties on the models used in the definition of validity.

Object tactics At several parts of our developments we have to build concrete
ND derivations. This can always be done by explicitly applying the constructors
of the ND predicate, which however becomes tedious quickly. We thus developed
object tactics reminiscent of the tactics available in Coq. The tactic ointros for
instance applies the (II) rule, whereas the tactic oapply can apply hypotheses,
i.e. combine the rules (IE) and (C). All object tactics are in the file FullND.v.

Extraction to λ-calculus The proof that completeness of provability w.r.t. stan-
dard Tarski and Kripke semantics is equivalent to MPL crucially relies on an
L-enumeration of provable formulas. While giving a Coq enumeration is easy
using techniques described in [14], the translation of any function to a model of
computation is considered notoriously hard. We use the framework by Forster
and Kunze [16] which allows the automated translation of Coq functions to L.

Using the framework was mostly easy and spared us considerable formal-
isation effort. However, the framework covers only simple types, whereas our
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representation of both terms and formulas contains the dependent vector type.
We circumvent this problem by defining a non-dependent term type term’ and a
predicate wf characterising exactly the terms in correspondence with our original
type of terms.

Inductive term’ := var_term’ : nat -> term’ | Func’ (name : nat)
| App’ : term’ -> term’ -> term’.

Inductive varornot := isvar | novar.
Inductive wf : varornot -> term’ -> Prop :=
| wf_var n : wf isvar (var_term’ n)
| wf_fun f : wf novar (Func’ f)
| wf_app v s t : wf v s -> wf novar t -> wf novar (App’ s t).

We then define a formula type form’ based on term’ and a suitable deduc-
tion system. One can give a bijection between well-formed non-dependent terms
term’ and dependent terms term and prove the equivalence of the corresponding
deduction systems under this bijection.

Functions working on term’ and form’ were easily extracted to L using the
framework, yielding an L-enumerability proof for ND essentially with no manual
formalisation effort.

Library of formalised undecidable problems in Coq We take the formalisation
of synthetic undecidability from [14], which is part of the Coq library of for-
malised undecidable problems [12]. The reduction from L-halting to provability
is factored via Turing machines, Minsky machines, binary stack machines and
the Post correspondence problem (PCP), all part of the library as well.

Equations package Defining non-structurally recursive functions is sometimes
considered hard in Coq and other proof assistants based on dependent type the-
ory. One such example is the function [[_]] used to embed formulas into Heyting
algebras (Definition 45). We use the Equations package [49] to define this func-
tion by recursion on the size of the formula, ignoring terms. The definition then
becomes entirely straightforward and the provided simp tactic, while sometimes
a bit premature, enables compact proofs.
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