The Weak Call-By-Value λ-Calculus is Reasonable for Both Time and Space

Yannick Forster
Saarland University, Saarland Informatics Campus (SIC), Saarbrücken, Germany
forster@ps.uni-saarland.de

Fabian Kunze
Saarland University, Saarland Informatics Campus (SIC), Saarbrücken, Germany
kunze@ps.uni-saarland.de

Marc Roth
Cluster of Excellence (MMCI), Saarland Informatics Campus (SIC), Saarbrücken, Germany
mroth@mmci.uni-saarland.de

Abstract

We study the weak call-by-value λ-calculus as a model for computational complexity theory and establish the natural measures for time and space – the number of beta-reductions and the size of the largest term in a computation – as reasonable measures with respect to the invariance thesis of Slot and van Emde Boas [STOC 84]. More precisely, we show that, using those measures, Turing machines and the weak call-by-value λ-calculus can simulate each other within a polynomial overhead in time and a constant factor overhead in space for all computations that terminate in (encodings) of “true” or “false”. We consider this result as a solution to the long-standing open problem, explicitly posed by Accattoli [ENTCS 18], of whether the natural measures for time and space of the λ-calculus are reasonable, at least in case of weak call-by-value evaluation.

Our proof relies on a hybrid of two simulation strategies of reductions in the weak call-by-value λ-calculus by Turing machines, both of which are insufficient if taken alone. The first strategy is the most naive one in the sense that a reduction sequence is simulated precisely as given by the reduction rules; in particular, all substitutions are executed immediately. This simulation runs within a constant overhead in space, but the overhead in time might be exponential. The second strategy is heap-based and relies on structure sharing, similar to existing compilers of eager functional languages. This strategy only has a polynomial overhead in time, but the space consumption might require an additional factor of \(\log n\), which is essentially due to the size of the pointers required for this strategy. Our main contribution is the construction and verification of a space-aware interleaving of the two strategies, which is shown to yield both a constant overhead in space and a polynomial overhead in time.

2012 ACM Subject Classification Theory of computation → Computational complexity and cryptography; Mathematics of computing → Lambda calculus

Keywords and phrases invariance thesis, lambda calculus, weak call-by-value reduction, time and space complexity, abstract machines

Supplement Material A Coq formalisation of the results in Section 2 and Section 3 is available at https://ps.uni-saarland.de/extras/wcbv-reasonable.

1 Introduction

Turing machines are the de-facto foundation of modern computability and complexity theory, in part due to the conceptual simplicity of their definition. However, this simplicity is also one of the biggest disadvantages: When it comes to detailed or formal reasoning, Turing machines soon become impossible to treat, because they lack compositionality and heavy logical machinery has to be used to reason about them. This is best reflected by the fact that modern day researchers in computability and complexity theory usually have not faced
The Weak Call-By-Value λ-Calculus is Reasonable for Both Time and Space

explicit Turing machines since their undergraduate studies. Instead, it is common to rely on
pseudo code or mere algorithmic descriptions. For computability theory, other models of
computation like RAM machines, recursive functions or variants of the λ-calculus can be used
if details are of interest, because the notion of computation is invariant under changing the
model. Especially the λ-calculus shines in this aspect, because tree-like inductive datatypes
can be directly encoded and equational reasoning is accessible to verify the correctness of
programs, which even makes the λ-calculus feasible as a model to formalise computability
theory in proof assistants [19, 12]. However, this notion of invariance does not suffice for
complexity theory. As stated by Slot and van Emde Boas [23]:

"Reasonable" machines can simulate each other within a polynomially bounded overhead in
time and a constant factor overhead in space.

If only reasonable machines are considered, this invariance thesis makes complexity classes
robust under changing the model of computation. Until now, only sequential models
of computation have been shown to fulfill this strong notion of invariance with natural
complexity measures for time and space [10]. The time and space complexity measures
known to be reasonable for the full λ-calculus are "total ink used" and "maximum ink used"
in a computation [18]. While the notion for space is natural, the notion for times is very
unnatural and of no real interest. Other measures rely on concrete implementations, giving
no satisfying answer to the question whether the λ-calculus can be considered reasonable.

Dal Lago and Martini [16] gave a preliminary result in 2008 for the weak call-by-value
λ-calculus and showed that counting β-steps while taking the size of β-redices into account
is a reasonable measure for time. In 2014 Accattoli and Dal Lago [6] showed that counting
(leftmost-outermost) β-steps makes the full λ-calculus reasonable for time, starting a long
line of research regarding measures for and implementations of the λ-calculus (see e.g. [1]).
Whether the natural measure for space, i.e. the size of the largest term in a computation, can
be used together with the number of β-steps or how it has to be adapted is a long-standing
open problem.

We solve this problem for the deterministic weak call-by-value λ-calculus (which we
call L) and show that the size of the largest intermediate term in a reduction makes L a
reasonable machine in the strong sense. We consider our solution more than just a partial
solution on the way to answering the question for the full λ-calculus in several aspects:
First, weak call-by-value evaluation is the standard model of eager functional programming
languages. Second, L is already Turing-complete and one does not gain more power for
the implementation or verification of algorithms by the strong reduction allowed in the
full λ-calculus. Third, from the complexity-theoretic point of view, the problem is solved:
A certain form of the λ-calculus can be used to spell out arguments. However, from an
implementation point of view, many questions remain open: Our simulation uses the freedom
given by "polynomial overhead" and should not be seen as a proposal for a uniform, canonical
implementation, which is still very much desirable.

In what follows, we explain how to simulate L on Turing machines with polynomial
overhead in time and linear overhead in space, based on the natural measures, and vice-versa.

\begin{definition}
For a closed term s that reduces to a normal form $\lambda x.u$

\[s = s_0 \succ s_1 \succ \cdots \succ s_k = \lambda x.u \]

we define the time consumption of the computation to be $\|s\|_T = k$ and the space consumption
to be $\|s\|_S = \max_{i=0}^k \|s_i\|$ where $\|s\|$ is the size of s.
\end{definition}
The conditions there is a Turing machine that on an encoding of \hat{a} term this more precise: For any size-exploding term that matter in the end are characteristic functions which map to ends that explosion is unnecessary to compute the result of the term. Of course, any reduction sequence such computations returning values of bounded size can always be optimised, i.e. the size impossible for Turing machines, we consider this as one of the major insights of this work: reasonable machine allows a computation that requires much more space than time, which is about n_t for a term t.

Here \cdot is an encoding of strings over Σ.

Theorem 2. Let Σ be a finite alphabet such that $\{\text{true}, \text{false}\} \subseteq \Sigma$ and let $f : \Sigma^* \rightarrow \{\text{true}, \text{false}\}$ be a function. Furthermore, let $T, S \in \Omega(n)$.

1. If f is L-computable in time T and space S, then f is computable by a Turing machine in time $O(\text{poly}(T(n)))$ and space $O(S(n))$.
2. If f is computable by a Turing machine in time T and space S, then f is L-computable in time $O(\text{poly}(T(n)))$ and space $O(S(n))$.

The conditions $T \in \Omega(n)$ and $S \in \Omega(n)$ state that we do not consider sublinear time and space. Furthermore, the restriction of f to $\{\text{true}, \text{false}\}$ can be seen as a restriction to characteristic functions, which is sufficient for the complexity theory of decidability problems.

At this point the reader might have the following objection: A well-known problem in the λ-calculus is the issue of size explosion. There exist terms that reduce to a term of size $\Omega(2^n)$ with only $O(n)$ beta reductions. Let us adapt an example from [16]: Given a natural number n, we write π for its Church-encoding, defined as

$$\pi := \lambda f. (f(f(f(\cdots(f\,x)\cdots))))$$

and define the Church encoding of the Boolean true as $\text{true} := \lambda xy.x$. Next we define the term $s_{E, \pi} := \lambda x. \text{true} \, \text{true} \, (x \, \text{true} \, x)$. Note that the application $\pi \, \text{true}$ reduces to a normal form t_n of size $\Omega(2^n)$, extensionally equivalent to the Church-exponentiation true. The term $s_{E, \pi}$ thus encodes a function, computing an exponentially big intermediate result, discarding it and returning true. Formally, we have

$$s_{E, \pi} \, \text{true} \, \pi \, \text{true} \, ((\lambda y. \text{true}) \, (\text{true} \, \text{true} \, (\lambda x. x))) \, \ldots \, (\lambda y. \text{true}) \, t_n \, \text{true}$$

for a term t_n with $\|t_n\| \in \Omega(2^n)$. Now $\|s_{E, \pi}\|_T \in \Theta(n)$, i.e., $s_{E, \pi}$ reduces to true in about n beta reductions. Moreover, $\|s_{E, \pi}\|_S \geq \|(\lambda y. \text{true}) \, t_n\| \in \Omega(2^n)$, i.e., the largest term in the reduction is of exponential size. While it might seem counterintuitive that a reasonable machine allows a computation that requires much more space than time, which is impossible for Turing machines, we consider this as one of the major insights of this work: such computations returning values of bounded size can always be optimised, i.e. the size explosion is unnecessary to compute the result of the term. Of course, any reduction sequence that ends in a term of exponential size cannot be simulated in less space if the result has to be written down explicitly. However, in complexity theory of decision problems, the functions that matter in the end are characteristic functions which map to true and false. We make this more precise: For any size-exploding term $s_{E, \pi}$, we can use Theorem 2 twice to obtain a term $s_{E, \pi}$ computing the same function with polynomial space usage. By Theorem 2 (1) there is a Turing machine that on an encoding of π simulates $s_{E, \pi}$ with time and space...
The Weak Call-By-Value λ-Calculus is Reasonable for Both Time and Space

complexity of $O(n^c)$ (the latter since Turing machines cannot use more space than time). By Theorem 2 (2), there is a term $\hat{s}\pi$ s.t. $\hat{s}\pi$ has the same normal form as $s\pi$ – but with space complexity $O(n^c)$, since the overhead in space is constant-factor.

In [2], Accattoli writes “Essentially one is assuming that space in the λ-Calculus is given by the maximum size of terms during evaluation, and since in sequential models time is greater or equal to space (because one needs a unit of time to use a unit of space), the time cost of the size exploding family must be at least exponential. The wrong hypothesis then is that space is the maximum size of the terms during evaluation. It is not yet clear what accounts for space in the λ-Calculus, however the study of time cost models made clear that space is not the size of the term.” Our result implies that this conclusion does not apply for weak call-by-value evaluation in L. In this particular case, the wrong hypothesis is that even when simulating on Turing machines, where time is greater or equal to space, the space-measure of a λ-calculus term does not have to coincide with the actual resources used when simulating it and can thus be much larger than the time-measure. Furthermore, we point out that there exist reasonable sequential models that might consume asymptotically more space than time as illustrated in Appendix D in case of RAM machines.

Simulation Strategies In the previous paragraph we argued that our proposed cost and time measures for L are not inherently contradictory with respect to the invariance thesis. However, we did not provide explicit information of the simulations yet, which we are going to catch up on now. Note that a simulation of Turing machines in L for the second part of Theorem 2 regarding time has already been given by Accattoli and Dal Lago [5, 15]. We argue in Section 5 that their construction also only has a constant factor overhead in space and thus works for our purposes as well. The main part of the paper thus focuses on the simulation of L by Turing machines. Essentially, we rely on an interleaving of two different strategies for simulating a reduction in L with a Turing machine. Both strategies are formally introduced in Section 3; in what follows, we provide an intuitive overview.

The first one, which we call the substitution-based strategy simulates a reduction sequence naively as given by the reduction rules of L. In particular, all substitutions are executed immediately if a β-reduction is performed. However, we have already seen an example which shows this strategy to be insufficient: Consider again the term $s\pi$ which reduces to true in $O(n)$ beta reductions. If this reduction sequence is simulated naively, exponentially many substitutions have to be performed, and hence the time consumption of that machine would be exponential in n. At the same time, for this term, the strategy is valid if we would only care for space, because the space complexity of the L term is already exponential. In general, we show that any reduction sequence in L can be simulated with only a constant overhead in space by a Turing machine using the substitution-based strategy.

Solving the issue regarding the time consumption requires us to rely on the second simulation strategy which we call the heap-based strategy. Intuitively, we do not execute any substitution if a β-reduction is simulated. Instead we use closures and keep track of the values assigned to variables in an environment. These environments are stored on an explicit heap containing pointers and terms. This allows for structure sharing, similar to real-world execution of functional languages as well as to the strategy used in [6]. Indeed, applying this strategy to the reduction sequence $s\pi \triangleright \ldots \triangleright \text{true}$ yields a polynomial number of steps in a simulation with a Turing machine.

At this point, one might be tempted to think that the heap-based strategy is strictly superior to the substitution-based strategy. However, there is one (major) catch: There exist reduction sequences of time and space linear in the input term size n, which yield an overhead
of factor $\log n$ in space when simulated using the heap-based strategy. The reason is that the number of heap entries is linear, which requires the pointers, i.e. the heap addresses, to grow in size. The following example illustrates this phenomenon: Let $N := (\lambda xy.xx)\text{true}$.

$$s_P := N(\cdots(N\text{true}) \cdots) \mathbin{>}^n (\lambda y.\text{true true})(\cdots((\lambda y.\text{true true})\text{true}) \cdots) \mathbin{>}^{2n} \text{true}$$

Since s_P performs $3n$ beta reductions it needs $3n$ entries on the heap. The heap pointers then make the space consumption “explode” again. They are of size $\log n$ if binary numbers are used and n if unary numbers are used, resulting in an overall space consumption of $\Omega(n \log n)$ or $\Omega(n^2)$, both forming more than constant factor overhead. We call this problem pointer explosion, analogous to the discussed size explosion problem, and point out that both phenomena have already been identified and discussed by Slot and van Emde Boas [23] in their treatment of RAM simulations by Turing machines.

In our case of the weak call-by-value λ-calculus L, we have obtained two simulation strategies, each solving one of the problems: The substitution-based strategy works for space, but is insufficient for time on terms exhibiting size explosion (i.e. which have exponentially big intermediate terms). The heap-based strategy works for time, but is insufficient for space on terms exhibiting pointer explosion. The crucial observation is now that on terms exhibiting size explosion, i.e. reaching a term of size $\Omega(2^n)$ in n steps, pointer explosion is a non-issue: n pointers of size $\log n$ can easily be accommodated for in space $O(2^n)$.

Since it is a-priori not decidable whether a term exhibits size explosion or pointer explosion, we interleave the execution of the two simulation strategies. We simulate the execution for every step number k repeatedly, and always try to run the substitution-based strategy first. If the size of intermediate terms becomes big enough to accommodate exploding pointers, we immediately abort and try the heap-based strategy for k steps instead. The heap-based strategy is thus guaranteed to not encounter the pointer explosion problem and the substitution-based strategy can not encounter the size explosion problem, because it is aborted beforehand. The details of this interleaving machine, which we consider as our main technical contribution, are given in Section 4.

Formalisation in Coq A technically demanding and error-prone part of our proof is analysing the exact complexity of the abstract machines involved (see Section 3).

Because our proofs rely on many simulation notions containing hard-to-check side conditions, we provide a formalisation of all results for the abstract machines, i.e. every theorem and definition needed for and including Section 3, in the proof assistant Coq [25].

A formalisation of the full results, including a formal verification of the Turing machines involved, is an ongoing and challenging project. We reported on the project previously in [11]; the current paper presents the finalised theoretical contributions.

2 Preliminaries

We adopt a notation closely related to type-theory, but the paper can be read with no background in type theory. All defined functions are always total. We use the type X_\bot to denote the type X enriched with a new element \bot. This allows us to view $X \rightarrow Y_\bot$ as the

1 The code is hyperlinked with the PDF version of this document and can be accessed at https://ps.uni-saarland.de/extras/wcbv-reasonable or by clicking on the formalised statements and definitions, which are marked with a \mathbb{H} symbol.
type of partial functions from \(X \) to \(Y \). In the definition of such partial functions, left out cases are meant to default to \(\bot \). Concerning lists \(A, B : X^* \) over \(X \), we use \([] \) for the empty list, write \(x :: A \) to prepend an element to a list and write \([x_1, \ldots, x_k] \) for a list built from the elements \(x_i \). We write \(A \oplus B : X^* \) for list concatenation, \(|A| : \mathbb{N} \) for length and \(A[n] : X_\bot \) for list lookup.

2.1 Call-by-value \(\lambda \)-calculus \(L \)

The call-by-value \(\lambda \)-calculus introduced by Plotkin [20] in his seminal paper is known to be a reasonable machine for time complexity [16]. In those works, abstractions and variables are treated as values, but \(\beta \)-reduction below binders is not allowed, i.e. reduction is weak. We use a deterministic version of the weak call-by-value \(\lambda \)-calculus we call \(L \), originally introduced in [12]. We treat only abstractions as values but keep the weak behaviour of reduction. On closed terms, the number of steps to a normal form agrees with the number of steps needed in the version in [16]. We keep the definitions short and use the same notations as in [14], where more details can be found.

We define the syntax of the \(\lambda \)-calculus using a de Bruijn representation of terms [9]:

\[
\text{Ter} ::= n \mid st \mid \lambda s
\]

where \(n : \mathbb{N} \).

\[\textbf{Definition 3.}\] We define a recursive function \(s^k_u \) providing a single-point, capturing substitution operation:

\[
\begin{align*}
k^k_u &:= u \\
(n^k_u) &:= n \quad \text{if } n \neq k \\
(st)^k_u &:= (s^k_u)(t^k_u) \\
(\lambda s)^k_u &:= \lambda(s_1^{1+k})
\end{align*}
\]

We say that \(s \) is bounded by \(k \) if all free de Bruijn indices in \(s \) are lower than \(k \). Consequently, \(s \) is a closed term iff it is bounded by 0.

\[\textbf{Definition 4.}\] We define a deterministic inductive reduction relation \(s \bowtie t \), which is weak, call-by-value and agreeing with the reduction relation in [20, 16] on closed terms:

\[
(\lambda s)(\lambda t) \bowtie s^k_{\lambda t} \\
st \bowtie s't \\
(\lambda s)t \bowtie (\lambda s)t'
\]

Note that the only closed, irreducible terms are abstractions. We write \(s \bowtie^k t \) and \(s \bowtie^k_n t \) if \(s \bowtie^k t \) for \(t \) being an abstraction and \(m = \|s\|_S \) as defined in Definition 1.

The size of a term is defined with a unary encoding of indices in mind:

\[
\begin{align*}
\|n\| &:= 1 + n \\
\|\lambda s\| &:= 1 + \|s\| \\
\|st\| &:= 1 + \|s\| + \|t\|
\end{align*}
\]

For a binary encoding, i.e. \(\|n\| := 1 + \log_2 n \), we conjecture that the remainder of this paper can be adapted with no essential change.

2.2 Encoding Terms as Programs

Turing machines cannot directly operate on tree-like data structures like \(L \)-terms. We encode terms as programs \(P, Q, R : \text{Pro} \), which are lists of commands:

\[
\text{Com} ::= \text{ret} \mid \text{var} n \mid \text{lam} \mid \text{app} \quad \text{with } n : \mathbb{N}
\]

\[\textbf{Definition 5.}\] The encoding function \(\gamma : \text{Ter} \rightarrow \text{Pro} \) compiles terms to programs:

\[
\begin{align*}
\gamma n &:= [\text{var} n] \\
\gamma(st) &:= \gamma s + \gamma t + [\text{app}] \\
\gamma(\lambda s) &:= \text{lam} :: \gamma s + [\text{ret}]
\end{align*}
\]
This encoding is similar to postfix notation, the additional command lam makes it easier to detect subprograms representing values when traversing the encoding.

Definition 6. We write \(P \gg s \), read as \(P \) represents \(s \), to connect programs with values in \(\mathcal{L} \). This relation is defined with the single rule \(\gamma t \gg \lambda t \).

To store the encoding of de Bruijn indices on tapes, we will use a unary encoding, motivating the following definition of the size of commands and programs:

\[
\| \text{var } n \| := 1 + n \quad \| c \| := 1 \quad \text{if } c \text{ is no variable} \quad \| P \| := 1 + \sum_{c \in P} \| c \|
\]

This size is compatible with term size, with factor 2 due to the two commands for abstractions:

Lemma 7. \(1 \leq \| s \| \leq \| \gamma s \| \leq 2 \| s \| - 1 \)

The use of \(\text{lam} \) and \(\text{ret} \) to encode abstraction allows to define a function \(\varphi P : (\text{Pro} \times \text{Pro})_{\bot} \) that extracts the body of an abstraction by matching \(\text{lam} \) with \(\text{ret} \) like parentheses. It uses an auxiliary function \(\varphi_{k,Q} P \) that stores the number \(k \) of currently unmatched \(\text{lam} \) and the prefix \(Q \) already processed.

Definition 8.

\[
\varphi P := \varphi_{P,0}[]
\]

\[
\varphi_{0,Q}(\text{ret} :: P) := (Q, P) \quad \varphi_{1+k,Q}(\text{ret} :: P) := \varphi_{k,Q+\{\text{ret}\}} P
\]

\[
\varphi_{k,Q}(\text{lam} :: P) := \varphi_{1+k,Q+\{\text{lam}\}} P \quad \varphi_{k,Q}(c :: P) := \varphi_{k,Q+\{c\}} P \quad \text{if } c = \text{var } n \text{ or } \text{app}
\]

Lemma 9. \(\varphi(\gamma s + \text{ret} :: P) = (\gamma s, P) \)

We define a substitution operation \(P^k_Q \) on programs, analogous to substitution on terms.

Definition 10 (Substitution on programs).

\[
\begin{align*}
(\text{var } k :: P)^k_Q & := Q :: P^k_Q \\
(\text{lam} :: P)^k_Q & := \text{lam} :: P^k_Q \\
(\text{ret} :: P)^0_Q & := [\text{ret}] \\
\end{align*}
\]

Term and program substitution are compatible:

Lemma 11. \((\gamma s)^0_{\gamma t} = (\gamma s^0_t) \)

2.3 Closures and Heaps

To allow for structure sharing later, we introduce closures whose environments are stored in an explicitly modelled heap. Environments are stored as linked lists of closures on the heap, and closures \(g : \text{HC} := \text{Pro} \times \text{HA} \) contain programs and pointers \(a, b : \text{HA} := \mathbb{N} \) to the environment. We represent the heap \(H : \text{Heap} := \text{HE}^* \) as a list of its cells \(e : \text{HE} := (g, a) \) that store the head and the address of the tail. To interpret the linked list structure, we define a lookup function \(H[a, n] : \text{HC}_{\bot} \) that returns the \(n \)-th entry of the list at address \(a \), i.e. the value bound to the de Bruijn index \(n \) in the environment \(a \):

\[
H[a, n] := \begin{cases}
\text{if } n = 0 \text{ then } g \text{ else } H[b, n - 1]
\end{cases}
\]

where \(H[a] = (g, b) \)
The Weak Call-By-Value λ-Calculus is Reasonable for Both Time and Space

The operation put \(H e : \text{Heap} \times \text{HA}\) puts a heap entry on the heap and returns the new heap and the address of the new element.

\[
\text{put } H e := (H \rightarrow [e], 1 + |H|)
\]

In our setting, we allocate at the end of the heap and have no need for garbage collection.

A closure \((P, a)\) represents some term if the environment \(a\) contains bindings for all free variables in \(P\). To make this more precise, we first define the unfolding of a term relative to some environment:

Definition 12 (Unfolding). The unfolding \(s\langle a, k \rangle \downarrow_H s'\) is inductively given by the rules

\[
\begin{align*}
\frac{n < k}{n(a, k) \downarrow_H n} \quad & \quad \frac{n \geq k}{H[a, n - k] = (P, b)} \quad \frac{P \gg s}{n(a, k) \downarrow_H s'} \\
\frac{s\langle a, 1 + k \rangle \downarrow_H s'}{\lambda s\langle a, k \rangle \downarrow_H \lambda s'} \quad & \quad \frac{s\langle a, k \rangle \downarrow_H s'}{t\langle a, k \rangle \downarrow_H t'} \quad \frac{st\langle a, k \rangle \downarrow_H s't'}{st\langle a, k \rangle \downarrow_H s't'}
\end{align*}
\]

Intuitively, \(s\langle a, k \rangle \downarrow_H s'\) holds if \(s'\) is obtained by recursively substituting all free variables in \(s\) by their values in the environment \(a\). The index \(k\) is an artefact of the de Bruijn representation and denotes which variables in \(s\) are locally bound during the traversal of \(s\).

The first rule states that bound variables are left unchanged. The second rule states that for free variables, the environment \(a\) binds \(n\) to some value \(s'\) that can be looked up in \(H\). The third rule descends under an abstraction and thus one more variable is considered bound in \(s\). The last rule descends under application.

Definition 13. The relation \(P \gg_H s\), read as \(P\) represents \(s\) relative to \(H\), is defined by the single rule

\[
\frac{P \gg t \quad t\langle a, 0 \rangle \downarrow_H s}{(P, a) \gg_H s}
\]

3 Abstract Machines

In order to analyse the two mentioned strategies on a more semantic level than just as implementations on Turing machines we introduce two abstract machines implementing these strategies – based on substitutions and based on heaps. The machines are variants of the ones presented in [14]. Both machines will take \(O(|s|_T)\) abstract steps to evaluate a term \(s\), but differ in the size of intermediate states and in the complexity of their respective implementations as Turing machines, which we construct in Section 4.

3.1 Substitution Machine

We define an abstract machine that uses substitution on programs. The implemented strategy is close to the small-step semantics for L. One important property is that the size of machine states during the machine run is linear in the size of the intermediate terms. Therefore, the substitution-based Turing machine will have constant factor overhead for space.

The abstract machine executes terms using two stacks of programs \(T\) and \(V\) called task and value stack. The task stack holds the parts of the program yet to be executed, and the value stack holds the already fully evaluated parts.
This machine is defined in Figure 2. Its task and value stacks contain closures. The lambda rule copies a subprogram representing an abstraction to the value stack. The application rule calls the subprogram \(Q\) after adding the value \(g\) as argument to the environment of \(Q\). The return rule drops finished tasks. The use of closures instead of programs allows an explicit variable rule instead of program-level substitution. The initial state \(\sigma_s\) for a closed term \(s\) is \([(\langle \gamma_s, 0 \rangle), [], []]\) as \(s(0, 0) \downarrow_H s\) by Lemma 30.

3.2 Heap Machine

This machine uses the heap described in Section 2.3 to enable sharing of environments. One important feature of this machine is that the size of intermediate states does only depend on the size of the initial term \(s\) and the number of machine steps, but not on \(\|s\|_S\).

The machine is defined in Figure 2. Its task and value stacks contain closures. The variable rule loads the value bound to a variable to the value stack. The lambda rule copies a subprogram representing an abstraction to the value stack. The application rule calls the subprogram \(Q\) after adding the value \(g\) as argument to the environment of \(Q\). The return rule drops finished tasks. The use of closures instead of programs allows an explicit variable rule instead of program-level substitution. The initial state \(\sigma_s\) for a closed term \(s\) is \([(\langle \gamma_s, 0 \rangle), [], []]\) as \(s(0, 0) \downarrow_H s\) by Lemma 30.

Figure 1 Reduction rules of the substitution machine

- \((\text{var } n :: P, a) :: T, V, H \Rightarrow (P, a) :: T, g :: V, H\) if \(H[a, n] = g\)
- \((\text{lam } :: P, a) :: T, V, H \Rightarrow (P', a) :: T, (Q, a) :: V, H\) if \(\varphi P = (Q, P')\)
- \((\text{app } :: P, a) :: T, g :: (Q, b) :: V, H \Rightarrow (Q, b') :: (P, a) :: T, V, H'\) if \(H(g, b) = (H', b')\)

Figure 2 Reduction rules of the heap machine
The machine evaluates L with a number of steps linear in the time-measure:

\[\text{Theorem 16 (Heap machine runtime). If } s \overset{\tau}{\Rightarrow}^T t \text{ and } s \text{ is closed, then } \sigma_s \gtrsim_{4k+2} ([], [g], H) \text{ for some } g, H \text{ with } g \gg_H t. \]

We define the size of a closure as \(\| (P, a) \| := \| P \| + a \) and the size of a heap entry to be \(\| (g, a) \| := \| g \| + a \). The size of a state is the sum of the sizes of all elements in \(T, V \) and \(H \).

The size of the \(k \)-th state starting from \(\sigma_s \) is a polynomial in \(k \) and \(\| s \| \):

\[\text{Theorem 17 (Heap machine state size). If } \sigma_s \gtrsim_k \sigma, \text{ then } \| \sigma \| \leq (k + 1)(3k + 4\| s \|) \]

4 Simulating L with Turing Machines

We now sketch how to construct the Turing machine that simulates L with polynomially bounded overhead time and constant factor overhead in space. The considered Turing machines will operate on various kinds of data (e.g. natural numbers, programs, heap closures, heap entries, heaps, ...). For programs, we use a symbol for each of the four constructors and a fifth symbol to encode de Bruijn indices in unary. All other natural numbers will also be encoded in unary, unless explicitly stated. The encoding of the further structures on tapes is straightforward.

4.1 The Substitution-based Turing Machine Simulating L

We construct a Turing machine \(M_{\text{subst}} \) that executes the substitution-based strategy from Section 3.1 for \(k \) steps, where \(k \) is an input. The Turing machine takes an additional input \(m \) and aborts if the abstract machine would reach a state of size greater \(m \).

\[\text{Theorem 18. There is a Turing machine } M_{\text{subst}} \text{ that, given two binary numbers } k, m \text{ and a term } s, \text{ halts in time } O(k \cdot \text{poly}(\min(m, \| s \|))) \text{ and space } O(\min(m, \| s \|) + \log m + \log k). \]

Either the machine outputs a term \(t \), then \(s \) has normal form \(t \) and \(m \geq \| s \|_S \) and \(k \geq 3 \cdot \| s \|_T + 1 \). Or it halts in one of two other final states: Either a state named space bound reached, implying that \(m \leq 2 \cdot \| s \|_S \) holds, or in a state named space bound not reached, implying that \(k \leq 3 \cdot \| s \|_T + 1 \) holds.

Furthermore, by Theorem 15, the machine can only approximate the size of the ‘current’ term up to a factor of 2, which further complicates the theorem.

Proof. The Turing machine can be constructed by iterating the rules of the abstract substitution machine from Figure 1 on the initial state \(\tau_s \). The machine has to keep track of the size of the abstract machine state, even during the execution of the substitution: As soon as the size of the next state to be computed is known to exceed \(m \), it aborts before consuming more than \(\Theta(m) \) space. This is necessary because the result of a substitution \(P \sigma \) with \(\| P \| + \| Q \| \in O(m) \) could have quadratic size \(O(m^2) \), e.g. if \(P \) applies the variable \(\theta \) to itself \(m \) times and \(Q \) has size \(m \) as well. The function \(\varphi P \) can be implemented via the tail-recursive \(\varphi_{k,Q} P \), which takes space and time \(O(\| Q \| + k + \| P \|) \), as it just traverses \(P \) and accumulates the result. The argument \(k \) during the run is bound by \(\| s \|_S \). Then the size of all intermediate states and the overall space consumption follow from Theorem 15. The existence of the result for large enough \(k \) follows in combination with Theorem 14. ▶

The precise specification of the machine is subtle: Intuitively, the machine state size is as large as the ‘current’ term, but we don’t know if a state larger \(m \) is reached in the first \(k \)
steps. Therefore, we don’t specify which of the last two cases occurs if both bounds on \(k \)
and \(m \) are exceeded.

If \(s \) diverges, Theorem 18 states that \(M_{\text{sub}} \) can only halt in the two special final states
(with \(\|s\|_T = \infty \) for diverging terms \(s \)).

4.2 The Heap-based Turing Machine Simulating \(L \)

We construct a Turing machine executing the heap-based strategy from Sect. 3.2 for \(k \) steps:

Theorem 19. There is a Turing machine \(M_{\text{heap}} \) that, given a number \(k \) and a closed

term \(s \), halts in time \(O(\text{poly}(\|s\|, k)) \) and space \(O(\|s\| \cdot \text{poly}(k)) \). If \(s \) has a normal form \(t \)

and \(k \geq 4 \cdot \|s\|_T + 2 \), it computes a heap \(H \) and a closure \(g \) such that \(g \gg_H t \). Otherwise, it

halts in a distinguished final state (denoting ‘failure’).

Proof. The Turing machine can be constructed by iterating the rule of the abstract substitution

machine on the initial state \(\sigma_s \). We already argued on the runtime of \(\varphi \) for Theorem 18.

And \(H[a, n] \) can be computed by iterating over \(H \) for at most \(n \) times. So each abstract

step \((T, V, H) \rightarrow (T', V', H') \) can be implemented in time \(O(\text{poly}(\|(T, V, H)\|)) \) and space

\(O(\max(\|(T, V, H)\|, \|(T', V', H')\|)) \). The space consumption of all involved operations in

Figure 2 is bounded by their input or output. Using Theorem 17, the size of all intermediate

\((T, V, H) \) can be bound by \(k \) and \(\|s\| \) to derive the claimed resource bounds. The successful

computation of \(g \) and \(H \) for large enough \(k \) follows with Theorem 16.

\[\blacksquare \]

4.3 The Combined Turing Machine Simulating \(L \)

We now combine the machines from the last two sections to execute the heap-machine only if

we know that its space consumption is bounded by the space measure of the simulated term:

Theorem 20. There is a Turing machine \(M_L \) that, given a normal form \(t \) and a closure \(g \) such that \(g \gg_H t \) in time \(O(\text{poly}(\|s\| \cdot \|s\|_T)) \)

and space \(O(\|s\| \cdot p(k)) \). Then the combined machine executes the following algorithm:

1. Initialise \(k := 0 \) (in binary)
2. Compute \(m := \|s\| \cdot p(k) \) (in binary)
3. Run \(M_{\text{sub}} \) on \(s \), \(k \) and \(m \).
 - If \(M_{\text{sub}} \) computes the normal form \(t \), output \((\gamma t, 0)\) and an empty heap \([\]\) and halt.
 - If \(M_{\text{sub}} \) halts with space bound not reached, set \(k := k + 1 \) and go to 2.
 - If \(M_{\text{sub}} \) halts with space bound reached, continue at 4.
4. Run \(M_{\text{heap}} \) on \(s \) and \(k \).
 - If this computed a closure and a heap representing \(t \), output that and halt.
 - Otherwise, set \(k := k + 1 \) and go to 2.

First, we show that if this machine halts, its output is a closure-heap pair representing the

normal form \(t \) of \(s \): If the machine halts during 3, the output is a representation of the

normal form by Theorem 18 and Lemma 30. If it halts during 4, it does so by Theorem 19.

Second, we analyse termination and the time complexity of this machine. As intermediate

step, we analyse the run time for a fixed \(k \). Step 2 takes time \(O(\text{poly}(\|s\|, k)) \), and the size
of s can be computed from its encoding in straightforward fashion. Using Theorem 18, Step 3 takes time

$$O(k \cdot \text{poly}(m)) \subseteq O(k \cdot \text{poly}(\min(m, \|s\|_S))) \subseteq O(k \cdot \text{poly}(\|s\| \cdot p(k)))$$

where p is a polynomial

If Step 4 is executed, this takes time $O(\text{poly}(\|s\|_F, k))$ by Theorem 19. This means for arbitrary k, one iteration of the described algorithm can be computed in time $O(\text{poly}(\|s\|_F, k))$.

The algorithm will eventually halt: We consider $k = 4\|s\|_T + 2$, which is larger than the two values required in Theorem 18 and Theorem 19: By Theorem 18, the machine does halt during Step 3, unless $m < \|s\|_S$. In the latter case, 4 is tried. Then, by Theorem 19, as k is large enough, we have that M_{heap} indeed halts with a closure-heap pair.

Summing up the run time of each iteration, we have that the machine terminates in time

$$O(\sum_{k=0}^{4\|s\|_T + 2} \text{poly}(\|s\|, k)) \subseteq O(\text{poly}(\|s\|_T \cdot (\text{poly}(\|s\|_S, \|s\|_T))) \subseteq O(\text{poly}(\|s\|, \|s\|_T))$$

Third, we analyse the space complexity of this machine. Again, we first analyse one iteration for a fixed k. Step 2 takes space $O(\log m)$, since we use binary numbers. By Theorem 18, Step 3 takes space $O(\log m + \log k + \|s\|_S) \subseteq O(\log m + \log k + \|s\|_S)$. If Step 4 is executed, then $m < \|s\|_S$. By Theorem 19, this step runs in space $O(m) \subseteq O(\|s\|_S)$.

So, we can compute the space consumption of a single iteration as:

$$O(\log m + \log k + \|s\|_S)$$

$$= O(\log (\|s\| \cdot p(k)) + \log k + \|s\|_S) \quad \text{definition } m$$

$$\subseteq O(\log \|s\| + \log p(k)) + \log k + \|s\|_S)$$

$$= O(\log p(k) + \log k + \|s\|_S) \quad \text{as } \|s\| \leq \|s\|_S$$

$$\subseteq O(\log k + \|s\|_S) \quad \log(p(k)) \in O(\log k) \text{ as } p \text{ polynomial}$$

Overall, we have that the whole machine runs in space (the last equation is by Theorem 21):

$$O(\sum_{0 \leq k \leq 4\|s\|_T + 2} \log k + \|s\|_S) \subseteq O(\log \|s\|_T + \|s\|_S) = O(\|s\|_S) \quad \triangle$$

Note that the machine only terminates for terminating terms, making this a full simulation also for diverging terms. For terms with $\|s\|_T \notin O(\|s\|_S)$ it is crucial that the machine tracks the step number k in binary, because it would need $\Omega(\|s\|_T)$ space otherwise. This suffices due to the following theorem, which is proved in the appendix:

▶ **Theorem 21.** $\log \|s\|_T \in O(\|s\|_S)$.

The simulation of L on Turing machines computes normal form as pair of closure and heap, as defined in Definition 13. It is possible to unfold this heap into a program:

▶ **Lemma 22.** There is a machine M_{unf} that, given a heap H and a closure g that represent s, i.e. $g \triangleright_H s$, computes s (explicitly encoded as γs) in time $O(\text{poly}(\|s\|, \|H\|, \|g\|))$ and space $O(\|s\| \cdot (\|g\| + \|H\|))$.

The Weak Call-By-Value λ-Calculus is Reasonable for Both Time and Space
5 Simulating Turing Machines in L

The remaining direction of the proof of the strong invariance thesis requires us to prove that Turing machines can be simulated with L consuming only a constant overhead in space and a polynomial overhead in time with respect to our measures $\|\cdot\|_S$ and $\|\cdot\|_T$.

Accattoli and Dal Lago [5] show that counting head-reductions is an invariant time measure. In the associated technical report, they give a linear simulation of Turing machines in the deterministic λ-calculus, a fragment of the λ-calculus where all weak evaluation strategies coincide. Although they treat variables as values, reduction in L also coincides, because all considered terms are closed. The construction uses standard Scott encodings $\langle x \rangle$ for strings x and is explained in all detail in [15], spelling out all intermediate terms during simulation explicitly.

It turns out that this construction also only has a constant factor overhead in space w.r.t. our measure $\|\cdot\|_S$. This can easily be verified by checking all intermediate terms spelled out in the proofs of [15]. One has to take care that a linear amount of steps (i.e. all steps annotated with $O(\cdot)$ or $\Theta(\cdot)$ instead of constants) does not introduce a super-linear space overhead. This is the case, because all such sequences of steps only use substitutions where the substituted variable occurs at most once, effectively decreasing the term size. Note that since names in the simulation are all distinct, the translation to de Bruijn indices has no overhead. Thus the simulation is linear in time and space:

\textbf{Theorem 23.} Let $f : \Sigma^* \to \Sigma^*$ be a function that is computable by a Turing machine M in time T and in space S. Then there exists an L-term \overline{M} such that for every $x \in \Sigma^*$ we have that

1. $\overline{M} \xrightarrow{\ast} \langle f(x) \rangle$,
2. $\|\overline{M} \langle x \rangle\|_S \in O(|x| + S(|x|))$, and
3. $\|\overline{M} \langle x \rangle\|_T \in O(|x| + T(|x|))$.

\textbf{Proof.} Take \overline{M} as in Theorem 5.5. in [15].

6 The Weak Call-By-Value λ-Calculus is Reasonable

We explain how existing simulations of Turing machines in the λ-calculus already have polynomial time and constant factor space overhead in 5. With both the simulations, we are now able to show Theorem 2, that is, the invariance thesis for the weak call-by-value λ-calculus.

\textbf{Proof.} Let Σ be a finite alphabet such that $\{\text{true}, \text{false}\} \subseteq \Sigma$ and let $f : \Sigma^* \to \{\text{true}, \text{false}\}$ be a function. Furthermore, let $b = \max\{|\text{true}|, |\text{false}|\}$ and $T, S \in \Omega(n)$. Note that b is a constant only depending on the fixed alphabet Σ.

For the first direction, we assume that f is L-computable in time T and space S. By definition, there is hence a term s_f such that for all $x \in \Sigma^*$ we have that

$s_f \langle x \rangle \xrightarrow{\ast} \langle f(x) \rangle$ and $\|s_f \langle x \rangle\|_T \leq T(|x|)$ and $\|s_f \langle x \rangle\|_S \leq S(|x|)$.

We construct a Turing machine M_f as follows. On input x, M_f executes M_L on the (closed) term $s := s_f \langle x \rangle$, which computes a heap H and a closure g such that $g \gg_H \langle f(x) \rangle$ in time $O(\text{poly}(\|s\|, \|s\|_T))$ and space $O(\|s\|_S)$, by Theorem 20 – note that s_f as well as M_L are hard-coded in M_f. We observe that

\[\|g\| + \|H\| \in O(\text{poly}(\|s\|, \|s\|_T)) \quad \text{and} \quad \|g\| + \|H\| \in O(\|s\|_S), \] (1)
where the former holds as writing down g and H cannot take more time than the overall running time bound $O(poly(\|s\|, \|s\|_T))$ and the latter is due to the space bound $O(\|s\|_S)$ of M_f. After that, M_f executes M_{unf} on H and g which yields $f(x)$ and finally, depending on whether $f(x) = \text{true}$ or $f(x) = \text{false}$, M_f outputs true or false accordingly. By Lemma 22, the final steps take time $O(poly(b, \|H\|, \|g\|))$ and space $O(b \cdot (\|g\| + \|H\|))$. Now the final time consumption is given by

$$O(poly(\|s\|, \|s\|_T) + poly(b, \|H\|, \|g\|)) \leq O(poly(\|s\|, \|s\|_T) + poly(b, \|s\|, \|s\|_T)) \leq O(poly(|x|, T(|x|))) \leq O(poly(|x|)), \quad (2)$$

where (2) is due to Equation (1), (3) holds as $\|s_f\|$ and b are constants and (4) follows from the fact that $T \in \Omega(n)$. The overall space consumption is bounded by

$$O(\|s\|_S + b \cdot (\|H\| + \|g\|)) \leq O((b + 1) \cdot \|s\|_S) \leq O(S(|x|)), \quad (5)$$

where (5) is due to Equation (1) and (6) holds as b is a constant.

For the converse direction, we assume that f can be computed by a Turing machine M in time T and space S. We invoke Theorem 23 to obtain a term \overline{M} which shows that f is L-computable in space $O(|x| + S(|x|))$, and time $O(|x| + T(|x|))$. We conclude the proof by observing that $O(|x| + S(|x|)) = O(S(|x|))$ and $O(T(|x|)) = O(|x| + T(|x|))$ as both, S and T are contained in $\Omega(n)$. □

7 Related and Future Work

We have already mentioned the recent long line of work by Accattoli, Dal Lago, Sacerdoti Coen, Guerrini and Martini (for an overview see [2]) analysing reasonable time measures and implementations of several λ-calculi.

Type systems for call-by-name and call-by-value λ-calculi can be used to logically characterise complexity classes (P [7], LOGSPACE [22], PSPACE [13]). Connecting these insights with our measures would make it even more feasible to use L as a formal basis for complexity theory, which we plan to do as future work, building on existing formalisations of computability theory [12].

There is recent work in investigating strategies to evaluate open terms, for instance open call-by-value, which is reasonable for time [4, 3], but the question for space is open. On the more applied side, there is work on time and space profiling based on lazy graph reduction [21] in Haskell. More recent work uses a graph-based cost-semantics used for space-profiling [24], based on earlier measures in [8]. Moreover, computation in sub-linear space with an external memory has been studied [17], which we do not cover in this paper.

And finally, the full λ-calculus can be translated into weak call-by-value e.g. using a CPS translation. The longstanding question whether the natural time and space measures for the λ-calculus are reasonable remains open. We want to investigate whether our results can contribute to an answer.

References

1 Beniamino Accattoli. The Complexity of Abstract Machines. In Proceedings Third International Workshop on Rewriting Techniques for Program Transformations and Evalu-

The Weak Call-By-Value λ-Calculus is Reasonable for Both Time and Space

A Big-step characterisation of reduction

While the characterisation of our time and space measure in terms of a normalising reduction $s_0 \succ \ldots \succ s_k$ are intuitive, a big-step characterisation allows for easy, inductive analyses of the abstract machines evaluating L in Section 3.

Definition 24 (Time Measure).

\[
\begin{array}{c}
\frac{\lambda s \Downarrow^T_{k_1} \lambda s'}{s \Downarrow^T_{k_1 + k_2 + 1 + k_3} t \Downarrow^T_{k_2} \lambda t' \Downarrow^T_{k_3} u} \\
\frac{s' \Downarrow^{S}_{m_1} \Downarrow^{S}_{|\lambda s|} \lambda s}{s \Downarrow^{S}_{m_1} \Downarrow^{S}_{m_2} \Downarrow^{S}_{m_3} \Downarrow^{S}_{m} u}
\end{array}
\]

Definition 25 (Space Measures).

In the second rule, each of the three recursive assumptions could contain the largest subterm, so we take the maximum of each m_i, while accounting for the size of the remaining part of the term, e.g. during the reduction of s in st, the t and the application itself contribute to $1 + |t|$ additional size by definition of the term size.

The following lemmas allow us to use the two characterisations interchangeably:

Lemma 26. $s \Downarrow^T t$ iff $s \succ^k t$ and t is an abstraction.

Note that especially if $|s|_T = k$, then $s \Downarrow^T t$ for some t.

We write $s \succ^* m t$ if s reduces to t where the largest intermediate term has size m.

Lemma 27. $s \Downarrow^S m t$ iff $s \succ^* m t$ and t is an abstraction.

Note that especially, if $|s|_S = m$, then $s \Downarrow^S m t$ for some t.

B Technical Definitions and Lemmas

Lemma 28. γ is injective.

Adding a value t' to an environment a results in substitution in the unfolded term:

Lemma 29. If $H[a'] = (g, a)$ with $g \succ_H t'$ and $s(a, 1) \Downarrow_H s'$, then $s(a', 0) \Downarrow_H s'^0$.

Unfolding only changes de Bruijn indices starting at k:

Lemma 30. If s is bounded by k, then $s(a, k) \Downarrow_H s$.

Proof. Induction on $s < k$.

In particular, closed terms are invariant under unfolding.

The unfolding relation only holds if all de Bruijn indices up to k are bound in a.

Lemma 31. If $s(a, k) \Downarrow_H s'$, then $s' < k$.

Proof. Induction on $s(a, k) \Downarrow_H s'$.
In particular for $k = 0$, unfolding results in closed terms.

A heap is extended by another heap if the latter contains a superset of the entries:

Definition 32. $H \subseteq H' := \forall a, H[a] \neq \bot \rightarrow H'[a] = H'[a]$

Lemma 33. Heap extension $H \subseteq H'$ is transitive and reflexive.

Heap extension does not change the result of certain operations:

Lemma 34. Assume $H \subseteq H'$

1. If $H[a,n] \neq \bot$, then $H'[a,n] = H'[a,n]$.
2. If $s(a,k) \downarrow_H s'$, then $s(a,k) \downarrow_{H'} s'$.
3. If $g \gg_{H} s$, then $g \gg_{H'} s$.

Proof. The first claim follow by induction on n. The second claim follows by induction on $s(a,k) \downarrow_H s'$. The only interesting case is the one where $s = n \geq k$, which requires the first claim. The third claim follows from the second by definition of \gg_H. □

Lemma 35. Assume $\sigma_s \succ^k (T,V,H) = \sigma$ for some term s.

1. $|T| + |V| \leq k + 1$
2. $|H| \leq k$
3. $\|P\| \leq \|s\|$ and $a \leq |H|$ for all $P/a \in T + V$
4. $\|P\| \leq \|s\|$ and $a \leq |H|$ and $b \leq |H|$ for all $((P,a),b) \in H$

C Proofs

Proof of Lemma 7:

Proof. Induction on s. □

Proof of Lemma 9:

Proof. The generalisation $\varphi_{k,Q}(\gamma s + P) = \varphi_{k,Q} \gamma s P$ follows by induction on s. □

Proof of Lemma 11:

Proof. The generalisation $(\gamma s + P)^k_{\gamma t} = \gamma (s^k_{\gamma t}) + P^k_{\gamma t}$ holds by induction on s. □

Proof of Theorem 14:

Proof. We show the generalisation, if $s \downarrow^T_k t$, then for all Q,T,V we have $((\gamma s + Q) :: T,V) \succ^{3k+1} (Q ::_{tc} T,P :: V)$ for some P with $P \gg t$, from which the claim follows for $Q = R = V = []$.

Proof by induction on $s \downarrow^T_k t$ as defined in Definition 24.

In the case $\lambda s \downarrow^T_k s$, we have

$$(\gamma (\lambda s) + Q) :: T,V) = ((\lambda (s + Q) :: T,V)$$

and $\gamma s \gg s$ holds by definition.
In the case \(st \Downarrow^T_{k_1+k_2+1+k_3} u \) with all names as in Definition 24, we have
\[
((\gamma st) + Q) :: T, V) = ((\gamma s + \gamma t + \text{app} :: Q) :: T, V) \\
\succ^{3k_1+1} ((\gamma t + \text{app} :: Q) :: tc T, \gamma s' :: V) \quad \text{IH for } s \Downarrow^T_{k_1} \lambda s' \\
\succ^{3k_2+1} ((\text{app} :: Q) :: tc T, \gamma t' :: \gamma s' :: V) \quad \text{IH for } t \Downarrow^T_{k_2} \lambda t' \\
\succ ((\gamma s' \gamma_0 (\lambda t')) :: Q :: tc T, \gamma t' :: \gamma s' :: V) \\
= (\gamma (s'_0 \lambda t') :: Q :: tc T, V) \quad \text{Lemma } 11 \\
\succ^{3k_3+1} (Q :: tc T, \gamma u :: V) \quad \text{IH for } s'_0 \lambda \gamma_3 u
\]

Note that \(:: tc \) is \(:: \) in the first two reductions.

The claim follows as \(3(k_1 + k_2 + 1 + k_3) + 1 = (3k_1 + 1) + (3k_2 + 1) + 1 + (3k_3 + 1) \) and \(\gamma u \gg \lambda u \) by definition.

\[\square\]

Proof of Theorem 15:

Proof. We show a generalisation, if \(s \Downarrow^S_m t \), then for all \(Q,T,V \) we have \(((\gamma s + Q) :: T,V) \Downarrow^{\gamma'}_m (Q :: tc T,P :: V)\) for some \(P,m' \) with \(P \gg t \) and \(m + \| P :: tc T \| + \| V \| \leq m' \leq 2m + \| P :: tc T \| + \| V \| \), from which the claim follows with \(Q = T = V = \emptyset \).

Proof by induction on \(s \Downarrow^S_m t \) as defined in Definition 25. By definition of \(\Downarrow^S \), this proof is very similar to the one for Theorem 14. The only difference is the needed equalities between the various space-measures \(m_i \). Those are proven by tedious, but straightforward computations when using the facts that \(\| P \| + \| T \| \leq \| P :: tc T \| \leq \| P \| + \| T \| + 1 \) and Lemma 11 and Lemma 7 and the fact that \(s \Downarrow^S_m t \) implies \(\| s \| \leq m \geq \| t \| \).

\[\square\]

Proof of Theorem 16:

Proof. We show a generalisation, If \(s \Downarrow^T_k t \) and \(s_0 \langle a,0 \rangle \Downarrow_H s \), then there are \(g \) and \(H' \) with \(g \gg_H t \) such that \(((\gamma s_0 + P,a) :: T,V,H) \Downarrow^{\gamma_{s_0}}_{H'} ((P,a) :: T,g :: V,H')\) for any \(P,T,V \), and \(H \subseteq H' \). Here \(H \subseteq H' \) is meant as in Definition 32. The original claim follows with \(P = T = V = H = \emptyset \), Lemma 30 and the reduction rule for empty tasks.

Proof by induction on \(s \Downarrow^T_k t \) as in Definition 24. In the case of \(\lambda s \Downarrow^T_0 \lambda s \), a case distinction on \(s_0 \langle a,0 \rangle \Downarrow_H \lambda s \) yields two cases: \(s_0 \) is either a variable with a value bound in \(a \), or \(s_0 \) is an abstraction.

In the case \(s_0 = a \), we obtain \(Q,b,s_1 \) such that \(H[a,n] = (Q,b) \) with \(Q \gg s_1 \) and \(s_1 \langle b,0 \rangle \Downarrow_H \lambda s \). The claim holds as \((Q,b) \gg_H \lambda s \) and \(((\gamma n + P,a) :: T,V,H) = ((\text{var} n :: P,a) :: T,V,H) \gg ((P,a) :: T,(Q,b) :: V,H)\).

In the case \(s_0 = \lambda s_1 \), we have that \(s_1 \langle a,1 \rangle \Downarrow_H s \). The claim holds as \((\gamma s_1,a) \gg_H \lambda s \) and \(((\gamma (\lambda s_1) + P,a) :: T,V,H) = ((\text{lam} :: \gamma s_1 + \text{ret} :: P,a) :: T,V,H) \gg ((P,a) :: T,(\gamma s_1,a) :: V,H)\).

In the other case of the induction, \(st \Downarrow^T_{k_1+k_2+1+k_3} u \), we have \(s \Downarrow^T_{k_1} \lambda s' \) and \(t \Downarrow^T_{k_2} \lambda t' \) and \(s'_0 \lambda \Downarrow^T_{k_3} u \) and an inductive hypothesis for each of those. We also have \(s_0 \langle a,0 \rangle \Downarrow_H s_t \) now \(s_0 = s_t t_1 \) must be an application. Note that even in the second rule of Definition 12, the definition of \(\gg \) on programs implies that the unfolded term would be an abstraction.

So we have \(s_1 \langle a,0 \rangle \Downarrow_H s \) and \(t_1 \langle a,0 \rangle \Downarrow_H t \) for some \(s_1,t_1 \). We now construct the reduction of the machine using the inductive hypothesis. We will explain where the new objects in the
The Weak Call-By-Value λ-Calculus is Reasonable for Both Time and Space

following reduction come from in the next paragraph.

\[
(\gamma(s_1 t_1) + P, a) :: T, V, H) = (\gamma s_1 + \gamma t_1 + \text{app} :: P, a) :: T, V, H) \quad (7)
\]

\[
\succ^{4k_1 + 1} ((\gamma t_1 + \text{app} :: P, a) :: T, (\gamma s_2, a_2) :: V, H_1) \quad \text{IH} \quad (8)
\]

\[
\succ^{4k_2 + 1} ((\text{app} :: P, a) :: T, g_t :: (\gamma s_2, a_2) :: V, H_2) \quad \text{IH} \quad (9)
\]

\[
\succ ((\gamma s_2, a_2) :: (P, a) :: T, V, H_2') \quad (10)
\]

\[
\succ^{4k_3 + 1} ([], a_2') :: (P, a) :: T, H_3) \quad \text{IH} \quad (11)
\]

\[
\succ ((P, a) :: T, g_u :: V, H_3) \quad (12)
\]

In this reduction, the inductive hypothesis for s_1 in (8) yields s_2, a_2 and H_1 such that $H \subseteq H_1$ and $s_2(a_2, 1) \downarrow_{H_1} s'$. The inductive hypothesis on t_1 in (9) yields g_t and H_2 such that $H_1 \subseteq H_2$ and $g_t \gg_{H_2} \lambda t'$. In the step for beta reduction, (10), we have $(H_2', a_2') = \text{put}_{H_2}(g_t, a_2)$ and $H_2 \subseteq H_2'$. With Lemma 29, this implies $s_2(a_2', 0) \downarrow_{H_2'} s_0^{\lambda'}$. This now allows the use of the third inductive hypothesis in (11), obtaining g_u and H_3 with $g_u \gg u$ and $H_3 \subseteq H_3$. Note that we use Lemma 33 to transfer several properties along the changing heaps. Now the claim holds for g_u and H_3. ◀

Proof of Theorem 17:

Proof. Follows from Lemma 35 ◀

Proof of Theorem 21:

Proof. The main insight is that for any given size, there are only exponentially many terms smaller than that size. As reduction is deterministic, a terminating term s cannot contain the same intermediate term twice. This bounds $\|s\|_T$ by the number of terms with size smaller than $\|s\|_S$, i.e. $\|s\|_T \leq c\|s\|_S$ for a constant c.

Now, we show that the number of terms smaller than a certain size m is an exponential. We use the encoding γ to allow us to count linear strings (programs) instead of trees (terms):

\[
\# \{ t \mid \|t\| \leq m \} \\
= \# \{ t \mid 2 \cdot \|t\| \leq 2 \cdot m \} \\
\leq \# \{ t \mid \|\gamma t\| \leq 2 \cdot m \} \quad \text{Lemma 7} \\
= \# \{ \gamma t \mid \|\gamma t\| \leq 2 \cdot m \} \quad \text{Lemma 28} \\
\leq \# \{ P \mid \|P\| \leq 2 \cdot m \} \\
\leq 5^2 m
\]

In the last step, we use that $\# \{ P \mid \|P\| \leq n \} \leq 5^{n-1}$ for all $n > 0$ by induction on n, where the intuition behind the 5 is that there are four different symbols with which a program can start, and that variables require a fifth symbol to encode the index in unary. Thus the claim holds for $c = 5^2$. ◀

Proof of Lemma 22:

Proof. We first consider a partial function $f_{H}Pak$ that computes the unfolding, but on programs instead of terms:
Proof of Lemma 26:

Proof. For the direction assuming \(s \uparrow^T_k t \), the claim follows by induction on \(\uparrow^T \) using two compatibility lemmas of \(\succ^k \) with term-level application, the first beeing that \(s \succ^k s' \) implies \(st \succ^k s't \), and the second that \(t \succ^k t' \) implies \((\lambda s)t \succ^k (\lambda s)t' \).

For the other direction, we first show

\[\Box \text{Claim 1. If } s \succ s' \text{ and } s' \uparrow^T_k t, \text{ then } s \uparrow^T_{1+k} t. \]

This claim follows by induction in \(s \succ s' \).

Now, assuming \(s \succ^k \lambda t \), we can show \(\uparrow^T_k t \) by induction on \(k \) using Claim 1 in the case where \(k > 0 \).

Proof of Lemma 27:

Proof. For the direction assuming \(s \uparrow_m^S t \), the claim follows by induction on \(\uparrow^S \). In the inductive case, two compatibility lemmas of \(\succ^m \) with term-level application are helpful: the first beeing that \(s \succ^m s' \) implies \(st \succ^m s't \), and the second that \(t \succ^m t' \) implies \((\lambda s)t \succ^m (\lambda s)t' \). Furthermore, the fact that \(t \uparrow_m^S \lambda t' \) implies \(\|\lambda t'\| \leq m_2 \) is needed.

For the other direction, we first show

\[\Box \text{Claim 2. If } s \succ s' \text{ and } s' \uparrow_m^S t, \text{ then } s \uparrow_m^S \max(\|s\|,m) t. \]

This claim follows by induction in \(s \succ s' \). The equalities between expressions involving max are tedious to check, but follow only using the inductive hypothesis, the definition of \(\uparrow^S \), the definition of the size of terms and that \(s \uparrow_m^S t \) implies \(\|s\| \leq m \geq \|t\| \).
Now, assuming $s \succ^k_m \lambda t$, we can show $s \varphi^S_{v_m} \lambda t$ by induction on k. In the base case, $\lambda t \varphi^0_m \lambda t$ implies $m = \|\lambda t\|$ implies $\lambda \varphi^S_{v_m} \lambda t$.

In the inductive case, $s \succ^{s+k}_m \lambda t$ implies a decomposition $s \succ s' \succ^k_{m'} \lambda t$ for some s', m' with $m = \max(\|s\|, m')$. Then the inductive hypothesis for k is $s' \varphi^S_{v_{m'}} \lambda t$, which together with Claim 2 implies $s \varphi^S_{v_m} \lambda t$.

\begin{proof}{Lemma 35}
Proof. Transitivity and reflexivity follow from the same properties for equality.

\begin{proof}{Lemma 33}
Proof. We define an inverse $\delta : N \rightarrow \text{Pro} \rightarrow \text{Ter}^* \rightarrow \text{Ter}^*_{\perp}$ of γ:

\begin{align*}
\delta k(\text{var } u :: P) A & := \delta k P(u :: P) \\
\delta k(\text{lam } P) A & := \delta k (1 + k) P A \\
\delta k(\text{app } P(t :: s :: A)) & := \delta k P(st :: A) \\
\delta k[\lambda] : A & := A
\end{align*}

Now $\delta k(\gamma st + P) A = \delta k P(s :: A)$ holds by induction on s.

\begin{proof}{Lemma 29}
Proof. Let $H[a'] = (g, a)$ and $g \gg_H t'$. We show a generalisation: If $s(a, 1 + k) \downarrow_H s'$, then $s(a', k) \downarrow_H s'_t$.

In the case $s = n < 1 + k$ and $s' = n$, there are two subcases: Assuming $n < k$, $n(a', k) \downarrow_H n = s'_t$ holds by definition. Otherwise, we have $n = k$. Since $H[a'] = (g, a)$, we have $H[a', n - k] = H[a', 0] = g$. With P, b such that $g = (P, b)$, we have $n(a', k) \downarrow_H n_k = t'$ by the second rule since $(P, b) \gg_H t'$ implies $(P \gg t)$ and $(t, b) \gg_H t'$ for some t.

In the case $s = n \geq 1 + k$, we have $H[a, n - (1 + k)] = H[a, b] = (b, 0)$ and $P \gg u$ with $u(b, 0) \downarrow_H s'$ for some P, b. As $H[a'] = (g, a)$, we have $H[a', n - k] = H[a, n - (1 + k)] = (P, b)$. Therefore $n(a, k) \downarrow_H n_k = s'$ by the second rule, where the equality holds as s' is closed by Lemma 31.

In the other cases, i.e. application and abstraction, the claim follows by the inductive hypothesis and the definition of $\langle \cdot, k \rangle \downarrow_H \cdot$.

\begin{proof}{Lemma 33}
Proof. Transitivity and reflexivity follow from the same properties for equality.

\begin{proof}{Lemma 35}
Proof. All claims follow by induction on k. The third claim uses that φP always returns a sublist of P.

\section{RAM machines can consume more space than time}

Turing machines can not consume more space than time, since it costs a time unit to allocate a new space unit. For RAM machines, this is different, as analysed by Slot and van Emde Boas [23].

The time consumption of a RAM computation is the number of steps; we denote it by T. The space consumption is given by

$$S_b = \sum_{i=0}^{m} \text{size}_b(i, \max(i)),$$
where \(m \) is the index of the highest address for which a register was accessed and \(\max(i) \) is the maximal content of register \(R[i] \) during the computation. Furthermore,

\[
\text{size}_b(i, x) := \begin{cases}
0 & \text{if } R[i] \text{ is unused} \\
\log(x) + \log(i) & \text{otherwise}
\end{cases}
\]

Now, intuitively, \(S_b \) is the sum of the maximum sizes of contents of used registers and the sizes of the addresses required to access those registers. It is known that, using \(S_b \) as space measure and \(T \) as time measure, RAM machines and Turing machines can simulate each other with a constant overhead in space and a polynomial overhead in time (see e.g. Section 1 in [23]). Next we consider the following RAM program \(P \):

\begin{verbatim}
Input: x
a ← 1;
for i = 1 to \(|x|\) do (where \(|x|\) is the length of x in binary)
 a ← a + a;
 R[a] ← 1;
od;
Output: 1
\end{verbatim}

Observe that \(P \) is similar to the size-exploding term \(s \) we have seen in the introduction. The time consumption of \(P \) is given by the following function; recall that the size of an input is given by its length.

\[
n \mapsto 2n + 2 \in O(n) .
\]

However, the space consumption is given by

\[
n \mapsto \sum_{i=0}^{2^n} \text{size}_b(i, \max(i)) = \sum_{i=0}^{n} \text{size}_b(2^i, \max(2^i)) = \sum_{i=0}^{n} \log(2^i) + 1 \in \Omega(n^2) .
\]

Thus there are RAM machines that consume asymptotically more space than time, despite being a sequential model.