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Abstract. We formalise a weak call-by-value λ-calculus we call L in the
constructive type theory of Coq and study it as a minimal functional
programming language and as a model of computation. We show key
results including (1) semantic properties of procedures are undecidable,
(2) the class of total procedures is not recognisable, (3) a class is decidable
if it is recognisable, corecognisable, and logically decidable, and (4) a
class is recognisable if and only if it is enumerable. Most of the results
require a step-indexed self-interpreter. All results are verified formally
and constructively, which is the challenge of the project. The verification
techniques we use for procedures will apply to call-by-value functional
programming languages formalised in Coq in general.

1 Introduction

We study a minimal functional programming language L realising a subsystem of
the λ-calculus [3] known as weak call-by-value λ-calculus [8]. As in most program-
ming languages, β-reduction in weak call-by-value λ-calculus is only applicable if
the redex is not below an abstraction and if the argument is an abstraction. Our
goal is to formally and constructively prove the basic results from computability
theory [9,11] for L. The project involves the formal verification of self-interpreters
and other procedures computing with encodings of procedures. The verification
techniques we use will apply to call-by-value functional programming languages
formalised in Coq in general. We base our work on the constructive type theory
of Coq [15] and provide a development verifying all results.

The results from computability theory we prove for L include (1) seman-
tic properties of procedures are undecidable (Rice’s theorem), (2) the class of
total procedures is not recognisable, (3) a class is decidable if it is recognis-
able, corecognisable, and logically decidable (Post’s theorem), and (4) a class is
recognisable if and only if it is enumerable.

We prove that procedural decidability in L implies functional decidability in
Coq. The converse direction cannot be shown in Coq since Coq is consistent
with the assumption that every class is functionally decidable and procedurally
undecidable classes always exist. The same will be true for any Turing-complete
model of computation formalised in Coq.
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The result that procedural decidability implies functional decidability seems
contradictory at first since procedures come with unguarded recursion while func-
tions are confined to guarded recursion. The apparent paradox disappears once
one realises that procedural decidability means that termination of a decision
procedure can be shown in Coq’s constructive type theory.

Comparing L with the full λ-calculus, we find that L is more realistic as a pro-
gramming language and simpler when it comes to semantics and program verifi-
cation. The restrictions L imposes on β-reduction eliminate the need for capture-
free substitution and provide for a uniform confluence property [13,8] ensuring
that all evaluating reduction sequences of a term have the same length. Uniform
confluence simplifies the construction and verification of a self-interpreter by
eliminating the need for a reduction strategy like leftmost-outermost. Moreover,
uniform confluence for L is easier to prove than confluence for the full λ-calculus.

While L simplifies the full λ-calculus, it inherits powerful techniques de-
veloped for the λ-calculus: Procedural recursion can be expressed with self-
application, inductive data types can be expressed with Scott encodings [12,10],
and program verification can be based on one-step reduction, the accompanying
equivalence, and the connecting Church-Rosser property.

One place where the commitment to a constructive theory prominently shows
is Post’s theorem. The classical formulation of Post’s theorem states that a class
is decidable if it is recognisable and corecognisable. The classical formulation of
Post’s theorem is equivalent to Markov’s principle and does not hold in a purely
constructive setting [7]. We show Post’s theorem with the extra assumption that
the class is logically decidable. The extra assumption is needed so that we can
prove termination of the procedure deciding the class. We refer to the classical
formulation of Post’s theorem for L as Markov’s principle for L and establish
two complementary characterisations.

Related Work. There is not much work on computability theory in con-
structive type theory. We are aware of Asperti and Ricciotti [1,2] who formalise
Turing machines in Matita including a verified universal machine and a verified
reduction of multi-tape machines to single-tape machines. They do not consider
decidable and recognisable classes. Ciaffaglione [6] formalises Turing machines
coinductively in Coq and shows the agreement between a big-step and a small-
step semantics.

Bauer [4] develops a constructive and anti-classical computability theory ab-
stracting away from concrete models of computation.

There is substantial work on computability theory in classical higher-order
logic. Norrish [14] presents a formal development of computability theory in
HOL4 where he considers full λ-calculus and partial recursive functions and
proves their computational equivalence. Norrish studies decidable and recog-
nisable classes, verifies self-interpreters, and proves basic results including the
theorems of Rice and Post.

There are substantial differences between our work and Norrish [14] apart
from the fact that Norrish works in a classical setting. Following Barendregt [3],
Norrish works with full λ-calculus and Gödel-Church encodings. We work with L
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and Scott encodings instead. Church encodings are not possible using weak
β-reduction. We remark that Scott encodings are simpler than Gödel-Church
encodings (since they don’t involve recursion). Norrish proves Rice’s theorem
for partial recursive functions while we prove the theorem directly for proce-
dures in L.

Xu, Zhang, and Urban [16] formalise Turing machines, abacus machines, and
partial recursive functions in Isabelle (classical higher-order logic) and show their
computational equivalence following Boolos et al. [5]. They prove the existence
of a universal function. They do not consider the theorems of Rice and Post.

Dal Lago and Martini [8] consider a weak call-by-value λ-calculus and show
that Turing machines and procedures in the calculus can simulate each other
with polynomial-time overhead, thus providing evidence that a weak call-by-
value λ-calculus may serve as a reasonable complexity model. Their λ-calculus
is different from ours in that it employs full substitution and β-reduction is
possible if the argument is a variable. Like us, they use Scott encodings of data
types. Their work is not formalised.

Main Contributions. Our work is the first formal study of weak call-by-
value λ-calculus covering both language semantics and program verification. We
are also first in proving results from computability theory for a programming
language in constructive type theory.

The development of this paper is carried out in constructive type theory
and outlines a machine-checked Coq development. The Coq development is sur-
prisingly compact and consists of less than 2000 lines of code. The theorems in
the pdf of the paper are hyperlinked with their formalisations in the Coq de-
velopment, which can be found at http://www.ps.uni-saarland.de/extras/

L-computability.

2 Specification

We start by specifying essential properties of the functional language L we will
work with and by describing main results from computability theory we will
prove for L.

We assume a discrete type of terms and a class of terms called procedures.
We will use the letters s, t, u, v, w for terms and the letters p, q for classes of
terms.

We assume a functional relation sB t on terms called evaluation. We say that
a term s evaluates and write Es if there is a term t such that sB t.

We assume a function st from terms to terms called application.

We assume two procedures T and F such that T 6= F and TstBs and FstB t
for all procedures s, t. As usual, we omit parentheses in nested applications; for
instance, Tst stands for (Ts)t.

We assume an injective function s from terms to procedures called term en-
coding. The purpose of the encoding function is to encode a term into a procedure
providing the term as data to other procedures. This is a subtle point that will

http://www.ps.uni-saarland.de/extras/L-computability
http://www.ps.uni-saarland.de/extras/L-computability
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become clear later. For now it suffices to know that s is a function from terms
to procedures.

We now define decidable, recognisable, and corecognisable classes of terms:

– A procedure u decides a class p if ∀s. ps ∧ usB T ∨ ¬ps ∧ usB F.

– A procedure u recognises a class p if ∀s. ps↔ E(us).

– A procedure u corecognises a class p if ∀s. ¬ps↔ E(us).

Our assumptions suffice to establish the existence of undecidable and un-
recognisable classes.

Fact 1. Let u decide p. Then ps↔ usB T and ¬ps↔ usB F.

Fact 2. λs.¬(ssB T) is not decidable, and λs.¬E(ss) is not recognisable.

Proof. Suppose u decides λs.¬(ssBT). Then usBT↔ ¬(ssBT) for all s. The
equivalence is contradictory for s := u. The proof for the unrecognisable class is
similar. ut

We need different notions of decidability in this paper. We call a class p

– logically decidable if there is a proof of ∀s. ps ∨ ¬ps.
– functionally decidable if there is a function f such that ∀s. ps↔ fs = true.

– procedurally decidable if there is a procedure deciding p.

If we say decidable without further qualification, we always mean procedurally
decidable. Note that functionally decidable classes are logically decidable.

We define two semantic properties of terms. A term s is total if the applica-
tion st evaluates for every term t. Semantic equivalence of terms is defined as
s ≈ t := ∀uv. suB v ↔ tuB v. Note that if s ≈ t, then s is total iff t is total.

We can now specify major results we will prove in this paper.

– Rice’s theorem. Every nontrivial class of procedures that doesn’t distinguish
between semantically equivalent procedures is undecidable.

– Modesty. Procedurally decidable classes are functionally decidable.

– Totality. The class of total procedures is unrecognisable.

– Post’s Theorem. A class is decidable if it is recognisable, corecognisable, and
logically decidable.

We will also consider enumerable classes and show that they agree with recog-
nisable classes. All results but Rice’s theorem require a step-indexed interpreter
or step-indexed self-interpreter.

Note the distinction between functions and procedures. While functions are
entities of the typed specification language (i.e., Coq’s type theory), procedures
are entities of the untyped programming language L formalised in the specifi-
cation language by means of a deep embedding. As we will see, L comes with
unbounded recursion and thus admits nonterminating procedures. In contrast,
Coq’s type theory is designed such that functions always terminate.

https://www.ps.uni-saarland.de/extras/L-computability/doc/DecidableRecognisable.html#decidable_spec
https://www.ps.uni-saarland.de/extras/L-computability/doc/DecidableRecognisable.html#undecidable_russell
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3 Definition of L

We will work with the terms of the λ-calculus. We restrict β-reduction such
that β-redexes can only be reduced if (1) they are not within an abstraction
and (2) their argument term is an abstraction. With this restriction the terms
λx.(λy.y)(λy.y) and (λx.x)x are irreducible. We speak of weak call-by-value
β-reduction and write s � t if t can be obtained from s with a single weak
call-by-value β-reduction step. We will define the evaluation relation such that
sB t holds iff s �∗ t and t is an abstraction. Procedures will be defined as closed
abstractions.

Since we want formal proofs we are forced to formally define the concrete
weak call-by-value λ-calculus L we are working with. In fact, there are some
design choices. We will work with de Bruijn terms and capturing substitution,
two design decisions providing for a straightforward formal development.

We start the formal definition of L with an inductive type of terms:

s, t ::= n | st | λs (n : N)

We fix some terms for further use:

I = λx.x T = λxy.x F = λxy.y ω = λx.xx D = λx.ωω

:= λ0 := λ(λ1) := λ(λ0) := λ(00) := λ(ωω)

For readability, we will usually write concrete terms with named abstractions, as
shown above. The Coq development provides a function translating named ab-
straction to the implementation using de Bruijn indices. Note that D is reducible
in the full λ-calculus but will not be reducible in L.

We define a substitution function sku that replaces every free occurrence of a
variable k in a term s with a term u. The definition is by recursion on s:

nku = if n=k then u else n

(st)ku = (sku)(tku)

(λs)ku = λ(sSku )

A substitution sku may capture free variables in u. Capturing will not affect our
development since it doesn’t affect confluence and our results mostly concern
closed terms.

We now give a formal definition of closed terms. Closed terms are important
for our development since procedures are defined as closed abstractions and
substitutions do not affect closed terms. Moreover, we need a decider for the
class of closed terms.

We define a recursive boolean function bound k s satisfying the equations

bound k n = if n<k then true else false

bound k (st) = if bound k s then bound k t else false

bound k (λs) = bound (Sk) s
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Speaking informally, bound k s tests whether every free variable in s is smaller
than k. We say that s is bound by n if bound n s = true. We now define closed
terms as terms bound by 0, and procedures as closed abstractions. Note that the
terms I, T, F, ω, and D are all procedures. The following fact will be used tacitly
in many proofs.

Fact 3. If s is bound by n and k ≥ n, then sku = s. Moreover, sku = s for closed s.

We define evaluation sB t as an inductive predicate:

λsB λs

sB λu tB v u0v B w

stB w

Recall that we write Es and say that s evaluates if sB t for some term t.

Fact 4. 1. If sB t, then t is an abstraction.

2. If sB t and s is closed, then t is closed.

3. If st evaluates, then both s and t evaluate.

4. Fst evaluates if and only if both s and t evaluate.

5. ωω does not evaluate.

6. Ds does not evaluate.

4 Uniformly Confluent Reduction Semantics

To provide for the verification of procedures in L, we complement the big-step
semantics obtained with the evaluation predicate with a uniformly confluent
reduction semantics.

We define one-step reduction s � t as an inductive predicate:

(λs)(λt) � s0λt

s � s′

st � s′t
t � t′

st � st′

We also define two reduction relations s �∗ t and s �n t as inductive predicates:

s �∗ s
s � u u �∗ t

s �∗ t s �0 s

s � u u �n t
s �Sn t

Fact 5. 1. s �∗ t is transitive.

2. If s �∗ s′ and t �∗ t′, then st �∗ s′t′.
3. s �∗ t iff s �n t for some n.

4. If s �m s′ and s′ �n t, then s �m+n t.

5. If sB t, then s �∗ t and t is an abstraction.

6. If s � s′ and s′ B t, then sB t.

7. If s �∗ s′ and s′ B t, then sB t.

https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#bound_closed_k
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#evaluates_abst
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#evaluates_closed
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#app_eva
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#F_eva
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#eva_Omega
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#eva_D
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#star_trans
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#star_app
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#star_stepn
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#stepn_plus
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#evaluates_star
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#step_evaluates
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#steps_evaluates
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8. If s �∗ t and t is an abstraction, then sB t.

With the reduction semantics we can specify procedural recursion, which is
essential for our goals.

Fact 6. (Recursion Operator) There is a function ρ from terms to terms
such that (1) ρs is a procedure if s is closed and (2) (ρu)v �3 u(ρu)v for all
procedures u and v.

Proof. ρs := λx.CCsx with C := λxy.y(λz.xxyz) does the job. ut

We call the function ρ recursion operator since it provides for recursive pro-
gramming in L using well-known techniques from functional programming.

The weak call-by-value λ-calculus in general and L in particular enjoy a
strong confluence property [13,8] we call uniform confluence.

Fact 7. (Uniform Confluence)

1. If s � t1 and s � t2, then either t1 = t2 or t1 � u and t2 � u for some u.

2. If s �m t1 and s �n t2, then there exist numbers k ≤ n and l ≤ m and a
term u such that t1 �k u and t2 �l u and m+ k = n+ l.

Corollary 8. s � t is confluent.

We define sBn t := s �n t∧abstraction t and s �+ t := ∃s′. s � s′∧s′ �∗ t.

Corollary 9. (Unique Step Index) If sBm t and sBn t, then m = n.

Corollary 10. (Triangle) If sBn t and s �+ s′, then s′ Bk t for some k < n.

We define reduction equivalence s ≡ t as the equivalence closure of reduction:

s � t
s ≡ t s ≡ s

s ≡ t
t ≡ s

s ≡ t t ≡ u
s ≡ u

Reduction equivalence enjoys the usual Church-Rosser properties and will play
a major role in the verification of procedures.

Fact 11. (Church-Rosser Properties)

1. If s �∗ t, then s ≡ t.
2. If s ≡ t, then s �∗ u and t �∗ u for some term u.

3. If s ≡ s′ and t ≡ t′, then st ≡ s′t′.
4. s ≡ t↔ s �∗ t if t is a variable or an abstraction.

5. sB t iff s ≡ t and t is an abstraction.

6. If s ≡ t, then sB u iff tB u.

Proof. Claim 1 follows by induction on s �∗ t. Claim 2 follows by induction on
s ≡ t and Corollary 8. Claim 3 follows with Claim 2, Fact 5 (2), and Claim 1.
The remaining claims follow with Claim 1 and Claim 2. ut

Because L employs call-by-value reduction, a conditional if u then s else t
needs to be expressed as u(λs)(λt)I in general. We have T(λs)(λt)I �∗ s and
F(λs)(λt)I �∗ t.

https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#star_evaluates
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#rho_correct
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#uniform_confluence
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#uniform_confluence
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#parametric_confluence
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#confluence
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#unique_step_index
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#triangle
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#star_equiv
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#star_equiv
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#church_rosser
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#app_equiv
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#equiv_star_lam
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#evaluates_equiv
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.html#evaluates_proper
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5 Scott Encoding of Numbers

Seen as a programming language, L is a language where all values are procedures.
We now show how procedures can encode data using a scheme known as Scott
encoding [12,10]. We start with numbers, whose Scott encoding looks as follows:

0̂ := λab.a Ŝn := λab.b n̂

Note that n̂ is an injective function from numbers to procedures. We have the
equivalences

0̂ s t ≡ s Ŝn s t ≡ t n̂

for all evaluable closed terms s, t and all numbers n. The equivalences tell us that
the procedure n̂ can be used as a match construct for the encoded number n.

We define a procedure Succ := λxab.bx such that Succ n̂ ≡ Ŝn. Note that the
procedures 0̂ and Succ act as the constructors of the Scott encoding of numbers.

Programming with Scott encodings is convenient in that we can follow fa-
miliar patterns from functional programming. We demonstrate the case with a
functional specification

∀mn. Add m̂ n̂ ≡ m̂+ n

of a procedure Add for addition. We say that we are looking for a procedure
Add realising the addition function m+ n. A well-known recursive specification
for the addition function consists of the quantified equations 0 + n = n and
Sm+ n = S(m+ n). This gives us a recursive specification for the procedure
Add (quantification of m and n is omitted):

Add 0̂ n̂ ≡ n̂ Add Ŝm n̂ ≡ Succ (Add m̂ n̂)

With induction on m one can now show that a procedure Add satisfies the
functional specification if it satisfies the recursive specification. The recursive
specification of Add suggest a recursive definition of Add using L’s recursion
operator ρ:

Add := ρ(λxyz.yz(λy0.Succ(xy0z)))

Using the equivalences for the recursion operator ρ and those for the procedures
0̂, Ŝn, and Succ, one easily verifies that Add satisfies the equivalences of the
recursive specification. Hence Add satisfies the functional specification we started
with.

The functional specification of Add has the virtue that properties of Add
like commutativity (i.e., Add m̂ n̂ ≡ Add n̂ m̂) follow from properties of the
addition function m+ n.

The method we have seen makes it straightforward to obtain a procedure
realising a function given a recursive specification of the function. Once we have

https://www.ps.uni-saarland.de/extras/L-computability/doc/Encodings.html#Add
https://www.ps.uni-saarland.de/extras/L-computability/doc/Encodings.html#Add_correct
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Scott encodings for terms and a few other inductive data types, the vast ma-
jority of procedures needed for our development can be derived routinely from
their functional specifications. We are working on tactics that, given a recur-
sive function, automatically derive a realising procedure and the corresponding
correctness lemma.

6 Scott Encoding of Terms

We define the term encoding function s specified in Section 2 as follows:

n := λabc.a n̂ st := λabc.b s t λs := λabc.c s

This definition agrees with the Scott encoding of the inductive data type for
terms. We define the constructors for variables, applications, and abstractions
such that they satisfy the equivalences

V n̂ ≡ n A s t ≡ st L s ≡ λs

for all numbers n and all terms s and t.
We will define two procedures N and Q satisfying the equivalences

N n̂ ≡ n̂ Q s ≡ s

for all numbers n and all terms s. The procedure Q is known as quote and will be
used in the proof of Rice’s theorem. The procedure N is an auxiliary procedure
needed for the definition of Q. We define the procedures N and Q with the
recursion operator realising the following recursive specifications:

N 0̂ ≡ 0̂ Q n ≡ L(L(L(A 2 (N n̂))))

N Ŝn ≡ L(L(A 0 (N n̂))) Q st ≡ L(L(L(A(A 1 (Q s))(Q t))))

Q λs ≡ L(L(L(A 0 (Q s))))

Given the definitions of procedures N and Q, one first verifies that they satisfy
the equivalences of the recursive specifications. Then one shows by induction on
numbers and terms that N and Q satisfy the functional specifications we started
with. We summarise the results obtained so far.

Fact 12. There are procedures V, A, L, and Q such that V n̂ ≡ n, A s t ≡ st,
L s ≡ λs, and Q s ≡ s.

7 Decidable and Recognisable Classes

Now that we have established the term encoding function, we can start proving
properties of decidable and recognisable classes. Recall the definitions from Sec-
tion 2. We will prove the following facts: decidable classes are recognisable; the
family of decidable classes is closed under intersection, union, and complement;
and the family of recognisable classes is closed under intersection. We establish
these facts constructively with translation functions.

https://www.ps.uni-saarland.de/extras/L-computability/doc/Encodings.html#Var_correct
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Fact 13. Let u decide p and v decide q. Then:

1. λx.ux I D I recognises p.

2. λx.ux(vx)F decides λs.ps ∧ qs.
3. λx.uxT(vx) decides λs.ps ∨ qs.
4. λx.uxF T decides λs.¬ps.

Fact 14. λx.F(ux)(vx) recognises λs.ps∧ qs if u recognise p and v recognise q.

We now prove Scott’s theorem for L following Barendregt’s proof [3] of
Scott’s theorem for the full λ-calculus. Scott’s theorem is useful for proving
undecidability of classes that do not distinguish between reduction equivalent
closed terms.

Fact 15. Let s be closed. Then there exists a closed term t such that t ≡ st.

Proof. t := CC with C := λx.s(Ax(Qx)) does the job. ut

Theorem 16. (Scott)
Every class p satisfying the following conditions is undecidable.

1. There are closed terms s1 and s2 such that ps1 and ¬ps2.

2. If s and t are closed terms such that s ≡ t and ps, then pt.

Proof. Let p be a class as required and u be a decider for p. Let s1 and s2 be
closed terms such that ps1 and ¬ps2. We define v := λx.ux(λs2)(λs1) I. Fact 15
gives us a closed term t such that t ≡ vt ≡ ut(λs2)(λs1)I. Since u is a decider
for p, we have two cases: (1) If ut ≡ T and pt, then t ≡ s2 contradicting ¬ps2;
(2) If ut ≡ F and ¬pt, then t ≡ s1 contradicting ps1. ut

Corollary 17. The class of evaluating terms is undecidable.

Corollary 18. For every closed term t the class λs.s ≡ t is undecidable.

8 Reduction Lemma and Rice’s Theorem

The reduction lemma formalises a basic result of computability theory and will
be used in our proofs of Rice’s theorem and the totality theorem. Speaking
informally, the reduction lemma says that a class is unrecognisable if it can
represent the class λs. closed s ∧ ¬E(ss) via a procedurally realisable function.

Fact 19. The class λs. closed s ∧ ¬E(ss) is not recognisable.

Proof. Suppose u is a recogniser for the class. Then E(uu)↔ closed u∧¬E(uu),
which is contradictory. ut

Fact 20. There is a decider for the class of closed terms.

https://www.ps.uni-saarland.de/extras/L-computability/doc/DecidableRecognisable.html#dec_recognisable
https://www.ps.uni-saarland.de/extras/L-computability/doc/DecidableRecognisable.html#decidable_intersection
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Proof. The decider can be obtained with a procedure realising the boolean func-
tion bound k s defined in Section 3. For this we need a procedure realising a
boolean test m < n. The construction and verification of both procedures is
routine using the techniques from Section 5. ut

Lemma 21. (Reduction) A class p is unrecognisable if there exists a func-
tion f such that:

1. p(fs)↔ ¬E(ss) for every closed terms s.

2. There is a procedure v such that vs ≡ fs for all s.

Proof. Let f be a function satisfying (1) and (2) for a procedure v. Suppose u
recognises p. Let C be a recogniser for the class of closed terms (available by
Fact 20). We define the procedure

w := λx.F(Cx)(u(vx))

We have ws ≡ F(Cs)(u(fs)). Thus E(ws) ↔ closed s ∧ E(u(fs)). Since u is a
recogniser for p, we have E(u(fs)) ↔ p(fs) for all s. Since p(fs) ↔ ¬E(ss) for
closed s by assumption, we have closed s∧E(u(fs))↔ closed s∧¬E(ss) for all s.
Thus w is recogniser for the unrecognisable class of Fact 19. Contradiction. ut

We now come to Rice’s theorem. Using the reduction lemma, we will first
prove a lemma that is stronger than Rice’s theorem in that it establishes un-
recognisability rather than undecidability. We did not find this lemma in the
literature, but for ease of language we will refer to it as Rice’s lemma.

Recall the definition of semantic equivalence

s ≈ t := ∀uv. suB v ↔ tuB v

from Section 2. We have s ≡ t → s ≈ t using Fact 11. We say that a class p is
semantic for procedures if the implication s ≈ t→ ps→ pt holds for all proce-
dures s and t.

Lemma 22.(Rice) Let p be a class that is semantic for procedures such that D
is in p and some procedure N is not in p. Then p is unrecognisable.

Proof. By the reduction lemma. We define fs as a procedure such that for
closed s we have fs ≈ D if ¬E(ss) and fs ≈ N if E(ss). Here are the definitions
of f and the realising procedure v:

f := λs.λy.F(ss)Ny

v := λx.L(A(A(A F(Ax(Qx)))N)0)

Verifying the proof obligations of the reduction lemma is straightforward. ut

Corollary 23. 1. The class of non-total terms is unrecognisable.

2. The class of non-total closed terms is unrecognisable.

3. The class of non-total procedures is unrecognisable.
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Theorem 24. (Rice) Every nontrivial class of procedures that is semantic for
procedures is undecidable.

Proof. Let p be a nontrivial class that is semantic for procedures. Suppose p is
decidable. We proceed by case analysis for pD.

Let pD. Then p is unrecognisable by Rice’s Lemma, contradicting the as-
sumption that p is decidable.

Let ¬pD. We observe that λs.¬ps is semantic for procedures and contains D.
Thus λs.¬ps is unrecognisable by Rice’s Lemma, contradicting the assumption
that p is decidable. ut

Corollary 25. The class of total procedures is undecidable.

Rice’s theorem looks similar to Scott’s theorem but neither can be obtained
from the other. Recall that procedures are reduction equivalent only if they are
identical.

The key idea in the proof of Rice’s lemma is the construction of the proce-
dure v that constructs a procedure that has the right properties. In textbooks
this intriguing piece of meta-programming is usually carried out in English us-
ing Turing machines in place of procedures. We doubt that there is a satisfying
formal proof of Rice’s lemma using Turing machines.

9 Step-Indexed Interpreter and Modesty

We will now prove that procedural decidability implies functional decidability.
The proof employs a step-indexed interpretation function for the evaluation re-
lation sB t. The interpretation function will also serve as the basis for a step-
indexed self-interpreter for L, which is needed for the remaining results of this
paper.

We use T to denote the type of terms, T∅ to denote the option type for T, and
bsc and ∅ to denote the values of T∅. We define a function eval : N→ T→ T∅
satisfying the following recursive specification.

eval n k = ∅
eval n (λs) = bλsc
eval 0 (st) = ∅

eval (Sn) (st) = match eval n s, eval n t with

| bλsc, btc ⇒ eval n s0t
| ⇒ ∅

Fact 26. 1. If eval n s = btc, then eval (Sn) s = btc.
2. If s � s′ and eval n s′ = btc, then eval (Sn) s = btc.
3. sB t if and only if eval n s = btc for some n.

Proof. Claim 1 follows by induction on n. Claim 2 follows by induction on n
using Claim 1. Claim 3, direction→, follows by induction on s �∗ t and Claim 2.
Claim 3, direction ←, follows by induction on n. ut
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Lemma 27. There is a function of type ∀s. E s→ Σt. sB t.

Proof. Let s be a term such that Es. Then we have ∃nt. eval n s = btc by Fact 26.
Since the predicate λn. ∃t. eval n s = btc is functionally decidable, constructive
choice for N gives us an n such that ∃t. eval n s = btc. Hence we have t such
that eval n s = btc. Thus sB t with Fact 26. ut

Theorem 28. (Modesty) Procedurally decidable classes are functionally de-
cidable.

Proof. Let u be a decider for p. Let s be a term. Lemma 27 gives us a term v
such that usB v. Now we return true if v = T and false otherwise. ut

We can also show modesty results for procedures other than deciders. For
this we need a decoding for the Scott encoding of terms.

Fact 29. (Decoding) There is a function δ : T→ T∅ such that (1) δ s = bsc
and (2) δ s = btc → t = s for all terms s and t.

Fact 30. (Modesty) Let u be a procedure such that ∀s∃t. u sB t. Then there is
a function f : T→ T such that ∀s. u sB fs.

Proof. Follows with Lemma 27 and Fact 29. ut

10 Choose

Choose is a procedure that given a decidable test searches for a number satis-
fying the test. Choose is reminiscent of minimisation for recursive functions [5].
Choose will be the only procedure in our development using truly unguarded re-
cursion. We will use choose to obtain unbounded self-interpreters and to obtain
recognisers from enumerators.

A test is a procedure u such that for every number n either un̂BT or un̂BF.
A number n satisfies a test u if un̂BT. A test u is satisfiable if it is satisfied by
some number.

Theorem 31. (Choose) There is a procedure C such that for every test u:

1. If u is satisfiable, then CuB n̂ for some n satisfying u.

2. If Cu evaluates, then u is satisfiable.

Proof. We start with an auxiliary procedure H satisfying the recursive specifi-
cation

H n̂u ≡ u n̂ (λn̂) (λ(H(Succ n̂)u)) I

and define C := λx.H 0̂x. Speaking informally, H realises a loop incrementing n
until u n̂ succeeds. We say that H n̂u is ok if H n̂u B k̂ for some number k
satisfying u and proceed as follows:

1. If n satisfies u, then H n̂u is ok.
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2. If H Ŝnu is ok, then H n̂u is ok.

3. If H n̂u is ok, then H 0̂u is ok. Follows by induction on n with (2).

4. Claim 1 follows with (1) and (3).

5. If H n̂u evaluates in k steps, then u is satisfiable. Follows by complete in-
duction on k using the triangle property.

6. Claim 2 follows from (5) with n = 0. ut
ut

Note that the verification of choose employs in (6) complete induction on
the step-index of an evaluation together with the triangle property (Fact 10) to
handle the unguarded recursion of the auxiliary procedure H. This is the only
time these devices are used in our development.

11 Results Obtained with Self-Interpreters

For the specification of a step-indexed self-interpreter, we define an injective
encoding function for term options:

b̂sc := λab.as

∅̂ := λab.b

Fact 32. There is a procedure E such that E n̂ s ≡ ̂eval n s for all n and s.

Proof. We first construct and verify procedures realising the functions m=n
and sku. We then construct and verify the procedure E following the recursive
specification of the function eval in Section 9. ut

Theorem 33. (Step-Indexed Self-Interpreter)

1. If E n̂ sB b̂tc, then E Ŝn sB b̂tc.
2. ∀sn. (E n̂ sB ∅̂) ∨ (∃t. E n̂ sB b̂tc ∧ sB t).

3. If sB t, then E n̂ sB b̂tc for some n.

Proof. Follows with Facts 32 and 26. ut

Theorem 34. (Totality) The class of total procedures is not recognisable.

Proof. By the reduction lemma. We define fs as a procedure that for closed s
is total iff ¬E(ss). We define fs such that (fs)t evaluates if t is an application
or an abstraction. If t is a number n, we evaluate ss with the step-indexed
self-interpreter for n steps. If this succeeds, we diverge using D, otherwise we
return I. Here are the definitions of f and the realising procedure v:

f := λs.λy.y (λz.E z (ss) D I) F I

v := λx.L(A(A(A 0 (L(A(A(A(A E 0)(Q (Ax(Qx)))) D) I))) F) I) ut

ut

https://www.ps.uni-saarland.de/extras/L-computability/doc/Choose.html#H_n_Sn
https://www.ps.uni-saarland.de/extras/L-computability/doc/Choose.html#H_0_n
https://www.ps.uni-saarland.de/extras/L-computability/doc/Choose.html#C_complete
https://www.ps.uni-saarland.de/extras/L-computability/doc/Choose.html#H_correct
https://www.ps.uni-saarland.de/extras/L-computability/doc/Choose.html#C_sound
https://www.ps.uni-saarland.de/extras/L-computability/doc/InterpreterResults.html#E_correct
https://www.ps.uni-saarland.de/extras/L-computability/doc/InterpreterResults.html#E_S
https://www.ps.uni-saarland.de/extras/L-computability/doc/InterpreterResults.html#E_S
https://www.ps.uni-saarland.de/extras/L-computability/doc/InterpreterResults.html#E_sound
https://www.ps.uni-saarland.de/extras/L-computability/doc/InterpreterResults.html#E_complete
https://www.ps.uni-saarland.de/extras/L-computability/doc/InterpreterResults.html#totality


Weak Call-by-Value Lambda Calculus as a Model of Computation in Coq 15

Corollary 35. The class of total terms is neither recognisable nor corecognis-
able.

Proof. Suppose the class of total terms is recognisable. Then the class of total
procedures is recognisable since the class of procedures is recognisable (follows
with Fact 20). Contradiction with Theorem 34. The other direction is provided
by Corollary 23. ut

We now construct an unbounded self-interpreter using the procedure choose
and the step-indexed self-interpreter E.

Theorem 36. (Self-Interpreter) There is a procedure U such that:

1. If sB t, then U sB t.

2. If U s evaluates, then s evaluates.

Proof. U := λx. E (C(λy.Eyx(λT)F))x I I does the job. The verification uses
Theorems 33 and 31. ut

Corollary 37. The self-interpreter U recognises the class of evaluable terms.

For Post’s theorem we need a special self-interpreter considering two terms.
We speak of a parallel or operator.

Theorem 38. (Parallel Or) There is a procedure O such that:

1. If s or t evaluates, then O s t evaluates.

2. If O s t evaluates, then either E s and O s tB T, or E t and O s tB F.

Proof. O := λxy. (λz.Ezx(λT)(Ezy(λF) I)) (C(λz.Ezx(λT)(Ezy(λT) F))) does
the job. The verification uses Theorems 33 and 31. ut

Corollary 39. (Post) If u recognises p and v recognises λs.¬ps, then the pro-
cedure λx.O (Au (Qx)) (A v (Qx)) decides p provided p is logically decidable.

With parallel or we can also show that the family of recognisable classes is
closed under union.

Corollary 40. (Union) If u recognises p and v recognises q, then the procedure
λx.O (Au (Qx)) (A v (Qx)) recognises λs. ps∨ qs.

12 Enumerable Classes

A class is enumerable if there is a procedurally realisable function from numbers
to term options that yields exactly the terms of the class. More precisely, a
procedure u enumerates a class p if:

1. ∀n. (un̂B ∅̂) ∨ (∃s. un̂B b̂sc ∧ ps).
2. ∀s. ps→ ∃n. un̂B b̂sc.
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Following well-known ideas, we show that a class is recognisable if and only if
it is enumerable. We will be content with informal outlines of the proof in the
Coq development since we have already seen all necessary formal techniques.

Fact 41. Given an enumerator for p, one can construct a recogniser for p.

Proof. Given a term s, the recogniser for p searches for a number n such that
the enumerator for p yields s (using the procedure choose). ut

Fact 42. The class of a all terms is enumerable.

Proof. One first writes an enumerator function and then translates it into a
procedure. The translation to a procedure is routine. Coming up with a compact
enumeration function is a nice programming exercise. Our solution is in the Coq
development. ut

Fact 43. Given a recogniser for p, one can construct an enumerator for p.

Proof. Given n, the enumerator for p obtains the term option for n using the
term enumerator. If the option is not of the form bnsc, the enumerator for p fails.
If the option is of the form bnsc, the recogniser for p is run on s for n steps using
the step-indexed self-interpreter. If this succeeds, the enumerator for p succeeds
with s, otherwise it fails. ut

13 Markov’s Principle

Markov’s principle is a proposition not provable constructively and weaker than
excluded middle [7]. Formulated for L, Markov’s principle says that a class is
decidable if it is recognisable and corecognisable. We establish two further char-
acterisations of Markov’s principle for L using parallel or (Theorem 38) and the
enumerability of terms (Fact 42).

Lemma 44. If p is decidable, then λ .∃s.ps is recognisable.

Proof. Follows with Fact 42 and 31. ut

Theorem 45.(Markov’s Principle) The following statements are equivalent:

1. If a class is recognisable and corecognisable, then it is decidable.

2. Satisfiability of decidable classes is stable under double negation:
∀p. decidable p→ ¬¬(∃s.ps)→ ∃s.ps.

3. Evaluation of closed terms is stable under double negation:
∀s. closed s→ ¬¬Es→ Es.

Proof. 1→ 2. Let p be decidable and ¬¬∃s.ps. We show ∃s.ps. By (1), Lemma 44,
and ¬(∃s.ps) ↔ ⊥ we know that the class λ .∃s.ps is decidable. Thus we have
either ∃s.ps or ¬∃s.ps. The first case is the claim and the second case is contra-
dictory with the assumption.
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2 → 3. Let s be a closed term such that ¬¬Es. We show Es. Consider the
decidable class p := {n | eval n s 6= ∅ }. We have Es ↔ ∃t.pt. By (2) it suffices
to show ¬¬∃t.pt, which follows with the assumption ¬¬Es.

3→ 1. Let u be a recogniser for p and v be a recogniser for λs.¬ps. We show
that λx.O (Au (Qx)) (A v (Qx)) is a decider for p. By Theorem 38 it suffices to

show that O (us) (vs) evaluates for all terms s. Using (3) we prove this claim by

contradiction. Suppose O (us) (vs) does not evaluate. Then, using Theorem 38,
neither us nor vs evaluates. Thus ¬ps and ¬¬ps. Contradiction. ut

We remark that Markov’s principle for L follows from a global Markov’s
principle saying that satisfiability of functionally decidable classes of numbers is
stable under double negation. This can be shown with Theorem 45 (3) and the
equivalence Es↔ ∃n. eval n s 6= ∅.
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