
Call-by-Value Lambda Calculus
as a Model of Computation in Coq

Yannick Forster and Gert Smolka

Received: 26 February 2018 / Accepted: 4 October 2018

Abstract We formalise a (weak) call-by-value λ-calculus we call L in the con-
structive type theory of Coq and study it as a minimal functional programming
language and as a model of computation. We show key results including (1) se-
mantic properties of procedures are undecidable, (2) the class of total procedures
is not recognisable, (3) a class is decidable if it is recognisable, corecognisable, and
logically decidable, and (4) a class is recognisable if and only if it is enumerable.
Most of the results require a step-indexed self-interpreter. All results are verified
formally and constructively, which is the challenge of the project. The verification
techniques we use for procedures will apply to call-by-value functional program-
ming languages formalised in Coq in general.

Keywords Computability Theory · Lambda calculus · Coq · Type theory

1 Introduction

We study a minimal functional programming language L realising a subsystem
of the λ-calculus [5] known as (weak) call-by-value λ-calculus [22,10]. As in most
programming languages, β-reduction in call-by-value λ-calculus is only applicable
if the redex is not below an abstraction and if the argument is an abstraction. Our
goal is to formally and constructively prove the basic results from computability
theory [14,16] for L. The project involves the formal verification of self-interpreters
and other procedures computing with encodings of procedures. The verification
techniques we use will apply to call-by-value functional programming languages
formalised in Coq in general. We base our work on the constructive type theory
of Coq [25] and provide a development verifying all results.

The results from computability theory we prove for L include (1) semantic
properties of procedures are undecidable (Rice’s theorem), (2) the class of total

Saarland University
Saarland Informatics Campus, Saarbrücken, Germany
{forster,smolka}@ps.uni-saarland.de

This is a pre-print of an article published in the Journal of Automated Reasoning. The final
authenticated version is available online at: https://doi.org/10.1007/s10817-018-9484-2

 https://doi.org/10.1007/s10817-018-9484-2


2 Yannick Forster and Gert Smolka

procedures is not recognisable, (3) a class is decidable if it is recognisable, corecog-
nisable, and logically decidable (Post’s theorem), and (4) a class is recognisable if
and only if it is enumerable.

We prove that procedural decidability in L implies functional decidability in
Coq. The converse direction cannot be shown in Coq since Coq is consistent with
the assumption that every class is functionally decidable and procedurally unde-
cidable classes always exist. The same will be true for any Turing-complete model
of computation formalised in Coq.

The result that procedural decidability implies functional decidability seems
contradictory at first since procedures come with unguarded recursion while func-
tions are confined to guarded recursion. The apparent paradox disappears once
one realises that procedural decidability means that termination of a decision pro-
cedure can be shown in Coq’s constructive type theory.

Comparing L with the full λ-calculus, we find that L is more realistic as a
programming language and simpler as it comes to semantics and program verifica-
tion. The restrictions L imposes on β-reduction eliminate the need for capture-free
substitution and provide for a uniform confluence property [20,10] ensuring that
all evaluating reduction sequences of a term have the same length. Uniform conflu-
ence simplifies the construction and verification of a self-interpreter by eliminating
the need for a reduction strategy like leftmost-outermost. Moreover, uniform con-
fluence for L is easier to prove than confluence for the full λ-calculus.

While L simplifies the full λ-calculus, it inherits powerful techniques developed
for the λ-calculus: Procedural recursion can be expressed with self-application,
inductive data types can be expressed with Scott encodings [18,15], and program
verification can be based on one-step reduction, the accompanying equivalence
closure, and the connecting Church-Rosser property.

One place where the commitment to a constructive type theory prominently
shows is Post’s theorem. The classical formulation of Post’s theorem states that a
class is decidable if it is recognisable and corecognisable. The classical formulation
of Post’s theorem is equivalent to a special case of Markov’s principle. Markov’s
principle does not hold in a purely constructive setting [9]. We show Post’s the-
orem with the extra assumption that the class is logically decidable. The extra
assumption is needed so that we can prove termination of the procedure deciding
the class.

Related Work. This paper is an extended version of a previous conference pa-
per [11]. Otherwise, there is not much work on computability theory in constructive
type theory. We are aware of Asperti and Ricciotti [3,4] who formalise Turing ma-
chines in Matita including a verified universal machine and a verified reduction of
multi-tape machines to single-tape machines. They do not consider decidable and
recognisable classes. Ciaffaglione [8] formalises Turing machines coinductively in
Coq and shows the agreement between a big-step and a small-step semantics.

Bauer [6] develops a constructive and anti-classical computability theory ab-
stracting away from concrete models of computation.

There is substantial work on computability theory in classical higher-order
logic. Norrish [21] presents a formal development of computability theory in HOL4
where he considers full λ-calculus and partial recursive functions and proves their
computational equivalence. Norrish studies decidable and recognisable classes, ver-
ifies self-interpreters, and proves basic results including the theorems of Rice and
Post.



Call-by-Value Lambda Calculus as a Model of Computation in Coq 3

There are substantial differences between our work and Norrish [21] apart
from the fact that Norrish works in a classical setting. Following Barendregt [5],
Norrish works with full λ-calculus and Gödel-Church encodings. We work with call-
by-value λ-calculus and Scott encodings instead. We remark that Gödel-Church
encodings are not possible in a setting with weak β-reduction, and that Scott
encodings are a simpler alternative to Gödel-Church encodings in full λ-calculus
(since they don’t involve recursion). Norrish proves Rice’s theorem for partial
recursive functions while we prove the theorem for procedures in L.

Xu, Zhang, and Urban [27] formalise Turing machines, abacus machines, and
partial recursive functions in Isabelle (classical higher-order logic) and show their
computational equivalence following Boolos et al. [7]. They prove the existence of
a universal function. They do not consider the theorems of Rice and Post.

Dal Lago and Martini [10] consider a weak call-by-value λ-calculus and show
that Turing machines and procedures in the calculus can simulate each other with
polynomial-time overhead, thus providing evidence that a weak call-by-value λ-
calculus may serve as a reasonable complexity model. Their λ-calculus is different
from ours in that it employs full substitution and β-reduction is possible if the
argument is a variable. Like us, they use Scott encodings of data types. Their
work is not formalised.

Main Contributions. Our work is the first formal study of call-by-value λ-
calculus covering both language semantics and program verification. We are also
first in proving results from computability theory for a programming language in
constructive type theory.

This paper extends a previous conference paper [11]. Besides more detailed
proofs, we have added Section 15 on computable functions and reducibility and
Section 16 discussing future work. We are grateful for the comments of the anony-
mous reviewers, which helped to improve the presentation of the paper.

The development of this paper is carried out in constructive type theory and
outlines a machine-checked Coq development. The Coq development is surprisingly
compact and consists of less than 2000 lines of code. The theorems in the pdf of
the paper are hyperlinked with their formalisations in the Coq development, which
can be found at http://www.ps.uni-saarland.de/extras/L-computability.

Organisation of the Paper. We start by defining the functional language L we
will work with. We complement the defining big-step semantics with a uniformly
confluent small-step semantics providing the base for the many program verifica-
tions in this paper. With the semantic tools in place, we define the Scott encodings
of numbers and terms needed for the main results. We then prove the theorems of
Scott and Rice. Next we extend our semantic tools with a step-indexed interpreter
and prove that procedural decidability implies functional decidability. We then es-
tablish a procedure choose searching for a number satisfying a test. Choose will be
the only procedure in the development using truly unguarded recursion. We then
realise the step-indexed interpreter for L with a procedure in L and obtain sev-
eral key results including unrecognisability of the class of total procedures, Post’s
theorem, and closure under union for recognisable classes. Next, we give trans-
lations between recognisers and enumerators, again exploiting the step-indexed
self-interpreter. We then establish three characterisations of Markov’s principle
for L. Finally, we formalise many-one reductions and prove their basic properties.
We conclude with a discussion of directions for future work.

http://www.ps.uni-saarland.de/extras/L-computability


4 Yannick Forster and Gert Smolka

2 Definition of L

We will work with the terms of the λ-calculus. We restrict β-reduction such that β-
redexes can only be reduced if (1) they are not within an abstraction and (2) their
argument term is an abstraction. With this restriction the terms λx.(λy.y)(λy.y)
and (λx.x)x are irreducible. We speak of weak call-by-value β-reduction and write
s � t if t can be obtained from s with a single weak call-by-value β-reduction step.
We will define the evaluation relation sB t such that sB t holds iff s �∗ t and t is
an abstraction. Procedures will be defined as closed abstractions.

Since we want formal proofs we are forced to formally define the concrete call-
by-value λ-calculus L we are working with. In fact, there are some design choices.
We will work with de Bruijn terms and capturing substitution, two design decisions
providing for a straightforward formal development.

We start the formal definition of L with an inductive type of terms:

s, t, u, v : T ::= n | st | λs (n : N)

We fix some terms for further use:

I = λx.x T = λxy.x F = λxy.y ω = λx.xx D = λx.ωω

:= λ0 := λ(λ1) := λ(λ0) := λ(00) := λ(ωω)

For readability, we will usually write concrete terms with named abstractions, as
shown above. The Coq development provides a function translating terms with
named abstractions to terms with de Bruijn indices.

Note that the term D defined above is reducible in the full λ-calculus but will
not be reducible in L.

Note that the type T of terms is discrete (i.e., has functionally decidable equal-
ity). We will use this fact tacitly in proofs.

We define a substitution function sku that replaces every free occurrence of a
variable k in a term s with a term u. The definition is by recursion on s:

nku = if n=k then u else n

(st)ku = (sku)(tku)

(λs)ku = λ(sSku )

A substitution sku may capture free variables in u. Capturing will not affect
our development since it doesn’t affect confluence and our results mostly concern
closed terms.

We now give a formal definition of closed terms. Closed terms are important
for our development since procedures will be defined as closed abstractions and
we will often exploit that substitutions do not affect closed terms.

We define a recursive boolean function bound k s satisfying the equations

bound k n = if n<k then true else false

bound k (st) = if bound k s then bound k t else false

bound k (λs) = bound (Sk) s

Speaking informally, bound k s tests whether every free variable in s is smaller
than k. We say that s is bounded by n if bound n s = true. We now define closed



Call-by-Value Lambda Calculus as a Model of Computation in Coq 5

terms as terms bounded by 0, and procedures as closed abstractions. Note that the
terms I, T, F, ω, and D are all procedures. The following fact will be used tacitly
in many proofs.

Fact 1 If s is bound by n and k ≥ n, then sku = s. Moreover, sku = s for closed s.

We define evaluation sB t as an inductive predicate:

λsB λs

sB λu tB v u0v B w

stB w

We write Es and say that s evaluates if sB t for some term t.

Fact 2 T and F are procedures such that T 6= F and Tst B s and Fst B t for all

procedures s, t.

Fact 3 1. If sB t, then t is an abstraction.

2. B is functional.

3. If sB t and s is closed, then t is closed.

4. If st evaluates, then both s and t evaluate.

5. Fst evaluates if and only if both s and t evaluate.

6. ωω does not evaluate.

7. Ds does not evaluate.

3 Reduction Semantics

To enable the verification of procedures in L, we complement the big-step seman-
tics obtained with the evaluation predicate with a uniformly confluent reduction
semantics.

We define one-step reduction s � t as an inductive predicate:

(λs)(λt) � s0λt

s � s′

st � s′t
t � t′

st � st′

We also define two reduction relations s �∗ t and s �n t as inductive predicates:

s �∗ s
s � u u �∗ t

s �∗ t s �0 s

s � u u �n t
s �Sn t

Fact 4 1. s �∗ t is transitive.

2. If s �∗ s′ and t �∗ t′, then st �∗ s′t′.
3. s �∗ t iff s �n t for some n.

4. If s �m s′ and s′ �n t, then s �m+n t.

5. If sB t, then s �∗ t and t is an abstraction.

6. If s � s′ and s′ B t, then sB t.

7. If s �∗ s′ and s′ B t, then sB t.

8. If s �∗ t and t is an abstraction, then sB t.

https://www.ps.uni-saarland.de/extras/L-computability/doc/L.L.html#bound_closed_k
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.L.html#F_correct
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.L.html#evaluates_abst
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.L.html#evaluates_functional
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.L.html#evaluates_closed
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.L.html#app_eva
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.L.html#F_eva
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.L.html#eva_Omega
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.L.html#eva_D
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.L.html#star_trans
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.L.html#star_app
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.L.html#star_stepn
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.L.html#stepn_plus
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.L.html#evaluates_star
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.L.html#step_evaluates
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.L.html#steps_evaluates
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.L.html#star_evaluates


6 Yannick Forster and Gert Smolka

The call-by-value λ-calculus in general and L in particular enjoy a strong con-
fluence property [20,10] we call uniform confluence. Proving uniform confluence
for L is easier than proving confluence for the full λ-calculus.

Fact 5 (Uniform Confluence) If s � t1 and s � t2, then either t1 = t2 or t1 � u

and t2 � u for some u.

Proof By induction on s � t1.

1. Let s = (λs1)(λs2). Then t1 = t2 since abstractions are irreducible.

2. Let s = s1s2, s1 � s′1, and t1 = s′1s2. Case analysis on s � t2.

(a) s1 � s′′1 and t2 = s′′1s2. The claim follows with the inductive hypothesis for
s1 � s′1.

(b) s2 � s′2, and t2 = s1s
′
2. The claim follows with u = s′1s

′
2.

3. Analogous to (2).
ut

The intuitive reason why L is uniformly confluent is that only outermost β-
redexes can be reduced and the reduction of a β-redex is functional. Hence, if
s � t1 and s � t2, either the same redex is reduced and thus t1 = t2, or two disjoint
redexes u1 and u2 are reduced and thus t1 and t2 can be joined by reducing the
remaining redex u2 in t1 and the remaining redex u1 in t2.

As can be shown generally for abstraction reduction systems, uniform conflu-
ence has the important consequence that every weakly normalising term is strongly
normalising. Moreover, uniform confluence implies parametric confluence, conflu-
ence and a property we call unique step index:

Fact 6 (Parametric Confluence) If s �m t1 and s �n t2, then there exist numbers

k ≤ n and l ≤ m and a term u such that t1 �k u and t2 �l u and m+ k = n+ l.

Corollary 7 s � t is confluent.

We define sBn t := s �n t ∧ abstraction t and s �+ t := ∃s′. s � s′ ∧ s′ �∗ t.

Corollary 8 (Unique Step Index) If sBm t and sBn t, then m = n.

Corollary 9 (Triangle) If sBn t and s �+ s′, then s′ Bk t for some k < n.

The triangle property does not hold for the full λ-calculus. In our setting, the
triangle property is crucial to carry out partial correctness proofs for procedures
employing unguarded recursion. The verification of a self-interpreter (Theorem 37)
and a parallel-or operator (Theorem 39) are forthcoming examples of such proofs,
which are done by complete induction on the step index n in sBn t. Given sBn t
and s �+ s′, the triangle property gives us s′Bk t with k < n so that the inductive
hypothesis may apply to s′ Bk t.

We define reduction equivalence s ≡ t as the equivalence closure of reduction:

s � t
s ≡ t s ≡ s

s ≡ t
t ≡ s

s ≡ t t ≡ u
s ≡ u

Reduction equivalence enjoys the usual Church-Rosser properties and will play a
major role in the verification of procedures. Plotkin [22] defines an equivalence for
a similar calculus which also applies below binders.

https://www.ps.uni-saarland.de/extras/L-computability/doc/L.L.html#uniform_confluence
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.L.html#parametric_confluence
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.L.html#confluence
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.L.html#unique_step_index
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.L.html#triangle


Call-by-Value Lambda Calculus as a Model of Computation in Coq 7

Fact 10 (Church-Rosser Properties)

1. If s �∗ t, then s ≡ t.
2. If s ≡ t, then s �∗ u and t �∗ u for some term u.

3. If s ≡ s′ and t ≡ t′, then st ≡ s′t′.
4. s ≡ t↔ s �∗ t if t is a variable or an abstraction.

5. sB t iff s ≡ t and t is an abstraction.

6. If s ≡ t, then sB u iff tB u.

Proof Claim 1 follows by induction on s �∗ t. Claim 2 follows by induction on
s ≡ t and Corollary 7. Claim 3 follows with Claim 2, Fact 4 (2), and Claim 1. The
remaining claims follow with Claim 1 and Claim 2. ut

Because L employs call-by-value reduction, a conditional if u then s else t needs
to be expressed as u(λs)(λt)I in general. We have T(λs)(λt)I �∗ s and F(λs)(λt)I �∗ t.

4 Recursion and Scott Encoding of Numbers

Seen as a programming language, L is a language where all values are procedures.
We now show how procedures can encode data using a scheme known as Scott en-
coding [18,15]. The Scott encoding of a value is a higher-order procedure providing
the match construct for the value.

We start with numbers, whose Scott encoding looks as follows:

0̂ := λab.a Ŝn := λab.b n̂

Note that n̂ is an injective function from numbers to procedures. We have the
equivalences

0̂ s t ≡ s Ŝn s t ≡ t n̂

for all evaluable closed terms s, t and all numbers n. The equivalences tell us that
the procedure n̂ can be used as a match construct for the encoded number n.

We define a procedure Succ := λxab.bx such that Succ n̂ ≡ Ŝn. Note that the
procedures 0̂ and Succ act as the constructors of the Scott encoding of numbers.

In contrast to Church encoding, Scott encoding does not directly enable struc-
turally recursive definitions. We can however specify procedural recursion as fol-
lows:

Fact 11 (Recursion Operator) There is a function ρ from terms to terms such

that (1) ρs is a procedure if s is closed, and (2) (ρu)v �3 u(ρu)v for all procedures u

and v.

Proof ρs := λx.CCsx with C := λxy.y(λz.xxyz) does the job. ut

We call the function ρ a recursion operator since it provides for recursive pro-
gramming in L using well-known techniques from functional programming.

It is possible to define a procedure R in L such that Ru evaluates and Ruv ≡
u(Ru)v for procedures u and v. Using this approach, recursive definitions Ru are
no procedures and thus can not be passed as argument to higher-order functions
directly, making verification difficult.

https://www.ps.uni-saarland.de/extras/L-computability/doc/L.L.html#star_equiv
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.L.html#star_equiv
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.L.html#church_rosser
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.L.html#app_equiv
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.L.html#equiv_star_lam
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.L.html#evaluates_equiv
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.L.html#evaluates_proper
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Encodings.html#rho_correct


8 Yannick Forster and Gert Smolka

In the full λ-calculus, there is a procedure Y fulfilling Y u ≡ u(Y u). For Y to
serve as a recursion procedure in L, Y u would have to reduce to an abstraction in
order to be passed as an argument to u, which is impossible for e.g. u = λx.Ω.

Programming with Scott encodings is convenient in that we can follow famil-
iar patterns from functional programming. The translation of Coq functions to
procedures is mechanical. The idea is that matches on inductive values translate
to applications of the values, and that recursive functions are realized with the
recursion operator.

We demonstrate the case with a functional specification of a procedure Add for
addition:

∀mn. Add m̂ n̂ ≡ m̂+ n.

We say that Add is a procedure realising the addition function m+ n. A well-
known recursive specification for the addition function consists of the quantified
equations 0+n = n and Sm+ n = S(m+ n). This gives us a recursive specification
for the procedure Add (quantification of m and n is omitted):

Add 0̂ n̂ ≡ n̂ Add Ŝm n̂ ≡ Succ (Add m̂ n̂)

With induction on m one can now show that a procedure Add satisfies the func-
tional specification if it satisfies the recursive specification. The recursive specifi-
cation of Add suggests a recursive definition of Add using L’s recursion operator ρ:

Add := ρ(λxyz.yz(λy0.Succ(xy0z)))

Note that the variable x is used to make recursive calls and that the body of
the abstraction performs a match on the natural number value of the variable y.

Using the equivalences for the recursion operator ρ and those for the procedures
0̂, Ŝn, and Succ, one easily verifies that Add satisfies the equivalences of the
recursive specification. Hence Add satisfies the functional specification we started
with.

The functional specification of Add has the virtue that properties of Add like
commutativity (i.e., Add m̂ n̂ ≡ Add n̂ m̂) follow from properties of the addition
function m+ n.

The method we have seen makes it straightforward to obtain a procedure re-
alising a function given a recursive specification of the function. Once we have
Scott encodings for terms and a few other inductive data types, the vast major-
ity of procedures needed for our development can be derived routinely from their
functional specifications. We are working on tactics that, given a recursive func-
tion, automatically derive a realising procedure and the corresponding correctness
lemma.

5 Scott Encoding of Terms

For the use of L as a model of computation it is essential that procedures can be
analysed as data by procedures. We provide for this need with a Scott encoding of
the inductive data type of terms. We define a term encoding function s as follows:

n := λabc.a n̂ st := λabc.b s t λs := λabc.c s

https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Encodings.html#Add
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Encodings.html#Add_correct


Call-by-Value Lambda Calculus as a Model of Computation in Coq 9

This definition agrees with the Scott encoding of the inductive data type for terms.
We define the constructors for variables, applications, and abstractions such that
they satisfy the equivalences

V n̂ ≡ n A s t ≡ st L s ≡ λs

for all numbers n and all terms s and t.
One can show that the term encoding function is injective but we will not make

explicit use of this fact in our proofs.
We will define two procedures N and Q satisfying the equivalences

N n̂ ≡ n̂ Q s ≡ s

for all numbers n and all terms s. The procedure Q will be used in the proof of
Rice’s theorem and provides a functionality that is know as quote in the Scheme
programming language.

The procedure N is an auxiliary procedure needed for the definition of Q. We
define the procedures N and Q with the recursion operator realising the following
recursive specifications:

N 0̂ ≡ 0̂ Q n ≡ L(L(L(A 2 (N n̂))))

N Ŝn ≡ L(L(A 0 (N n̂))) Q st ≡ L(L(L(A(A 1 (Q s))(Q t))))

Q λs ≡ L(L(L(A 0 (Q s))))

Given the definitions of procedures N and Q, one first verifies that they satisfy
the equivalences of the recursive specifications. Then one shows by induction on
numbers and terms that N and Q satisfy the functional specifications we started
with. We summarise the results obtained so far.

Fact 12 There are procedures V, A, L, and Q such that V n̂ ≡ n, A s t ≡ st,

L s ≡ λs, and Q s ≡ s.

6 Decidable and Recognisable Classes

Definition 13 A class (of terms) is a unary predicate on terms. The letters p and q

will range over classes of terms. Deciders, recognizers, and corecognizers of classes

are procedures defined as follows:

– A procedure u decides a class p if ∀s. (ps ∧ usB T) ∨ (¬ps ∧ usB F).

– A procedure u recognises a class p if ∀s. ps↔ E(us).

– A procedure u corecognises a class p if ∀s. ¬ps↔ E(us).

We say that a class is decidable [ recognisable, corecognisable] if it has a decider

[recogniser, corecogniser].

We establish the existence of undecidable and unrecognisable classes.

Fact 14 Let u decide p. Then ps↔ usB T and ¬ps↔ usB F.

Fact 15 λs.¬(ssB T) is not decidable, and λs.¬E(ss) is not recognisable.

https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Encodings.html#Var_correct
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.DecidableRecognisable.html#decidable_spec
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.DecidableRecognisable.html#undecidable_russell


10 Yannick Forster and Gert Smolka

Proof Suppose u decides λs.¬(ss B T). Then us B T ↔ ¬(ss B T) for all s. The
equivalence is contradictory for s := u. The proof for the unrecognisable class is
similar. ut

We will prove the following basic facts about decidable and recognisable classes
of terms: decidable classes are recognisable; the family of decidable classes is closed
under intersection, union, and complement; and the family of recognisable classes is
closed under intersection. We establish these facts constructively with translation
functions.

Fact 16 Let u decide p and v decide q. Then:

1. λx.ux I D I recognises p.

2. λx.ux(vx)F decides λs.ps ∧ qs.
3. λx.uxT(vx) decides λs.ps ∨ qs.
4. λx.uxF T decides λs.¬ps.

Fact 17 λx.F(ux)(vx) recognises λs.ps ∧ qs if u recognises p and v recognises q.

7 Scott’s Theorem

We now prove Scott’s theorem for L following Barendregt’s proof [5] of Scott’s
theorem for the full λ-calculus. Scott’s theorem says that every nontrivial class of
closed terms that is closed under reduction equivalence is undecidable.

Fact 18 Let s be closed. Then there exists a closed term t such that t ≡ st.

Proof t := CC with C := λx.s(Ax(Qx)) does the job. ut

Theorem 19 (Scott)

Every class p satisfying the following conditions is undecidable.

1. There are closed terms s1 and s2 such that ps1 and ¬ps2.

2. If s and t are closed terms such that s ≡ t and ps, then pt.

Proof Let p be a class as required and u be a decider for p. Let s1 and s2 be closed
terms such that ps1 and ¬ps2. We define v := λx.ux(λ .s2)(λ .s1) I. Fact 18 gives
us a closed term t such that t ≡ vt ≡ ut(λs2)(λs1)I. Since u is a decider for p, we
have two cases: (1) If ut ≡ T and pt, then t ≡ s2 contradicting ¬ps2; (2) If ut ≡ F
and ¬pt, then t ≡ s1 contradicting ps1. ut

Corollary 20 The class of evaluating terms is undecidable.

Corollary 21 The class λs.s ≡ t is undecidable for every closed term t.

8 Reduction Lemma

The reduction lemma formalises a basic result of computability theory and will be
used in our proofs of Rice’s theorem. Speaking informally, the reduction lemma
says that a class is unrecognisable if it can represent the class λs. closed s∧¬E(ss)
via a procedurally realisable function. We start with two facts needed for the
reduction lemma.

https://www.ps.uni-saarland.de/extras/L-computability/doc/L.DecidableRecognisable.html#dec_recognisable
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.DecidableRecognisable.html#decidable_intersection
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.DecidableRecognisable.html#decidable_union
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.DecidableRecognisable.html#decidable_complement
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.DecidableRecognisable.html#recognisable_intersection
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.DecidableRecognisable.html#SecondFixedPoint
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.DecidableRecognisable.html#Scott
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.DecidableRecognisable.html#eva_dec
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.DecidableRecognisable.html#equiv_spec_decidable


Call-by-Value Lambda Calculus as a Model of Computation in Coq 11

Fact 22 The class λs. closed s ∧ ¬E(ss) is not recognisable.

Proof Suppose u is a recogniser for the class. Then E(uu) ↔ closed u ∧ ¬E(uu),
which is contradictory. ut

Fact 23 There is a decider for the class of closed terms.

Proof The decider can be obtained with a procedure realising the boolean function
bound k s defined in Section 2. For this we need a procedure realising a boolean
test m < n. The construction and verification of both procedures is routine using
the techniques from Section 4. ut

Lemma 24(Reduction) A class p is unrecognisable if there exists a function f : T→ T

such that:

1. p(fs)↔ ¬E(ss) for every closed terms s.

2. There is a procedure v such that vs ≡ fs for all s.

Proof Let f be a function satisfying (1) and (2) for a procedure v. Suppose u

recognises p. Let C be a recogniser for the class of closed terms (available by
Fact 23). We define the procedure

w := λx.F(Cx)(u(vx))

We have ws ≡ F(Cs)(u(fs)). Thus E(ws) ↔ closed s ∧ E(u(fs)). Since u is a
recogniser for p, we have E(u(fs)) ↔ p(fs) for all s. Since p(fs) ↔ ¬E(ss) for
closed s by assumption, we have closed s ∧ E(u(fs)) ↔ closed s ∧ ¬E(ss) for all s.
Thus w is recogniser for the unrecognisable class of Fact 22. Contradiction. ut

9 Rice’s Theorem

We now come to Rice’s theorem. Rice’s theorem says that every nontrivial class
of procedures that is closed under semantic equivalence is undecidable. Using the
reduction lemma, we will first prove a lemma that is stronger than Rice’s theorem
in that it establishes unrecognisability rather than undecidability. We will refer to
this lemma as Rice’s lemma (although we did not find it in the literature).

Semantic equivalence of terms is defined as follows:

s ≈ t := ∀uv. suB v ↔ tuB v

Semantic equivalent terms have the same input output behaviour. If s ≈ t and su

evaluates to v, so does tu, and if su does not evaluate, neither does tu.

We have s ≡ t → s ≈ t using Fact 10. We say that a class p is semantic for

procedures if the implication s ≈ t→ ps→ pt holds for all procedures s and t.

Lemma 25 (Rice) Let p be a class that is semantic for procedures such that D is

in p and some procedure N is not in p. Then p is unrecognisable.

https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Rice.html#unrecognisable_russell
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Rice.html#decidable_closed
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Rice.html#Reduction
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Rice.html#Rice


12 Yannick Forster and Gert Smolka

Proof By the reduction lemma. We define fs as a procedure such that for closed s

we have fs ≈ D if ¬E(ss) and fs ≈ N if E(ss). Here are the definitions of f and
the realising procedure v:

f := λs.λy.F(ss)Ny

v := λx.L(A(A(A F(Ax(Qx)))N)0)

Verifying the proof obligations of the reduction lemma is straightforward. ut

A term s is total if the application st evaluates for every term t. If s and t are
semantically equivalent terms, then s is total iff t is total.

Corollary 26 1. The class of non-total terms is unrecognisable.

2. The class of non-total closed terms is unrecognisable.

3. The class of non-total procedures is unrecognisable.

Theorem 27 (Rice) Every nontrivial class of procedures that is semantic for proce-

dures is undecidable.

Proof Let p be a nontrivial class that is semantic for procedures. Suppose p is
decidable. We proceed by case analysis for pD.

Let pD. Then p is unrecognisable by Rice’s Lemma, contradicting the assump-
tion that p is decidable.

Let ¬pD. We observe that λs.¬ps is semantic for procedures and contains D.
Thus λs.¬ps is unrecognisable by Rice’s Lemma, contradicting the assumption
that p is decidable. ut

Corollary 28 The class of total procedures is undecidable.

Rice’s theorem looks similar to Scott’s theorem but neither can be obtained
from the other. Note that procedures are reduction equivalent only if they are
identical.

The key idea in the proof of Rice’s lemma is the construction of the procedure v,
which builds a procedure that has the right properties. In textbooks (e.g., [14,16]),
this intriguing piece of meta-programming is usually carried out in English using
Turing machines in place of procedures. We doubt that there is a satisfying formal
proof of Rice’s lemma using Turing machines. In contrast, we have just seen a
concise formal proof of Rice’s theorem for procedures in L. The tools needed for
meta-programming are simply the Scott encoding of terms and the accompanying
procedures A, L, and Q.

10 Step-Indexed Interpreter and Modesty

Note the distinction between functions and procedures. While functions are entities
of the typed specification language (i.e., Coq’s type theory), procedures are entities
of the untyped programming language L formalised in the specification language by
means of a deep embedding. As we have seen, L comes with unbounded recursion
and thus admits nonterminating procedures. In contrast, Coq’s type theory is
designed such that functions always terminate.

We need different notions of decidability in this paper. We call a class p

https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Rice.html#rec_total
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Rice.html#rec_total_cls
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Rice.html#rec_total_proc
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Rice.html#Rice_Theorem
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Rice.html#dec_total


Call-by-Value Lambda Calculus as a Model of Computation in Coq 13

– logically decidable if there is a proof of ∀s. ps ∨ ¬ps.
– functionally decidable if there is a function f such that ∀s. ps↔ fs = true.

– procedurally decidable if there is a procedure deciding p.

If we say decidable without further qualification, we always mean procedurally
decidable. Note that functionally decidable classes are logically decidable.

We will now prove that procedural decidability implies functional decidability, a
property we call modesty. The proof employs a step-indexed interpretation function
for the evaluation relation sB t. The interpretation function will also serve as the
basis for a step-indexed self-interpreter for L, which is needed for the remaining
results of this paper.

We use T∅ to denote the option type for T (the type of terms), and bsc and ∅
to denote the values of T∅. We define a function eval : N→ T→ T∅ satisfying the
following recursive specification.

eval n k = ∅
eval n (λs) = bλsc
eval 0 (st) = ∅

eval (Sn) (st) = match eval n s, eval n t with

| bλsc, btc ⇒ eval n s0t

| ⇒ ∅

Fact 29 1. If eval n s = btc, then eval (Sn) s = btc.
2. If s � s′ and eval n s′ = btc, then eval (Sn) s = btc.
3. sB t if and only if eval n s = btc for some n.

Proof Claim 1 follows by induction on n. Claim 2 follows by induction on n using
Claim 1. Claim 3, direction→, follows by induction on s �∗ t and Claim 2. Claim 3,
direction ←, follows by induction on n. ut

Lemma 30 There is a function of type ∀s. E s→ Σt. sB t.

Proof Let s be a term such that Es. Then we have ∃nt. eval n s = btc by Fact 29.
Since the predicate λn. ∃t. eval n s = btc is functionally decidable, constructive
choice for N gives us an n such that ∃t. eval n s = btc. Hence we have t such that
eval n s = btc. Thus sB t with Fact 29. ut

Theorem 31 (Modesty) Procedurally decidable classes are functionally decidable.

Proof Let u be a decider for p. Let s be a term. Lemma 30 gives us a term v such
that usB v. Now we return true if v = T and false otherwise. ut

11 Choose

We give a procedure C that given a decidable test searches for a number sat-
isfying the test. This is reminiscent of minimisation for recursive functions [7].
The procedure C will be the only procedure in our development using truly un-
guarded recursion. We will use C to obtain unbounded self-interpreters and to
obtain recognisers from enumerators.

https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Interpreter.html#eval_S
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Interpreter.html#eval_step
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Interpreter.html#evaluates_eval
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Interpreter.html#computable_eva
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Interpreter.html#decidable_dec


14 Yannick Forster and Gert Smolka

A test is a procedure u such that for every number n either un̂B T or un̂B F.
A number n satisfies a test u if un̂ B T. A test u is satisfiable if it is satisfied by
some number.

Theorem 32 (Choose) There is a procedure C such that for every test u:

1. If u is satisfiable, then CuB n̂ for some n satisfying u.

2. If Cu evaluates, then u is satisfiable.

Proof We start with an auxiliary procedure H satisfying the recursive specification

H n̂u ≡ u n̂ (λn̂) (λ(H(Succ n̂)u)) I

and define C := λx.H 0̂x. Speaking informally, H realises a loop incrementing n

until u n̂ succeeds. We say that H n̂u is ok if H n̂uBk̂ for some number k satisfying u
and proceed as follows:

1. If n satisfies u, then H n̂u is ok.

2. If H Ŝnu is ok, then H n̂u is ok.

3. If H n̂u is ok, then H 0̂u is ok. Follows by induction on n with (2).

4. Claim 1 follows with (1) and (3).

5. If H n̂u evaluates in k steps, then u is satisfiable. Follows by complete induction
on k using the triangle property.

6. Claim 2 follows from (5) with n = 0. ut

Note that the verification of C employs for (6) complete induction on the step-
index of an evaluation together with the triangle property (Fact 9) to handle the
unguarded recursion of the auxiliary procedure H. This is the only time these
devices are used in our development.

12 Results Obtained with Self-Interpreters

We now come to some of the key results of this paper:

– Totality. The class of total procedures is unrecognisable.

– Self-interpreter. There is a procedure U such that for all terms s, t:

1. If sB t, then U sB t.

2. If U s evaluates, then s evaluates.

– Parallel or. There is procedure O such that:

1. If s or t evaluates, then O s t evaluates.

2. If O s t evaluates, then either O s tB T and E s, or O s tB F and E t.
– Post’s Theorem. A class is decidable if it is recognisable, corecognisable, and

logically decidable.

– Closure under union. The union of recognisable languages is recognisable.

We start with the construction of a step-indexed self-interpreter. For the speci-
fication of this procedure, we define an injective encoding function for term options:

b̃sc := λab.as

∅̃ := λab.b

https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Choose.html#C
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Choose.html#C_complete
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Choose.html#C_sound
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Choose.html#H_ok
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Choose.html#H_n_Sn
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Choose.html#H_0_n
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Choose.html#C_complete
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Choose.html#H_correct
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Choose.html#C_sound


Call-by-Value Lambda Calculus as a Model of Computation in Coq 15

Fact 33 There is a procedure E such that E n̂ s ≡ ˜eval n s for all n and s.

Proof We first construct and verify procedures realising the functions m=n and sku.
We then construct and verify the procedure E following the recursive specification
of the function eval in Section 10. ut

Theorem 34 (Step-Indexed Self-Interpreter)

The procedure E satisfies the following properties:

1. If E n̂ sB b̃tc, then E Ŝn sB b̃tc.
2. ∀sn. (E n̂ sB ∅̃) ∨ (∃t. E n̂ sB b̃tc ∧ sB t).

3. If sB t, then E n̂ sB b̃tc for some n.

Proof Follows with Facts 33 and 29. ut

Theorem 35 (Totality) The class of total procedures is not recognisable.

Proof By the reduction lemma. We define fs as a procedure that for closed s is
total iff ¬E(ss). We define fs such that (fs)t evaluates if t is an application or an
abstraction. If t represents a number n, we evaluate ss with the step-indexed self-
interpreter for n steps. If this succeeds, we diverge using D, otherwise we return I.
Here are the definitions of f and the realising procedure v:

f := λs.λy.y (λz.E z (ss) D I) F I

v := λx.L(A(A(A 0 (L(A(A(A(A E 0)(Q (Ax(Qx)))) D) I))) F) I) ut

Corollary 36 The class of total terms is neither recognisable nor corecognisable.

Proof Suppose the class of total terms is recognisable. Then the class of total
procedures is recognisable since the class of procedures is recognisable (follows
with Fact 23). Contradiction with Theorem 35. The other case is provided by
Corollary 26. ut

We now construct an unbounded self-interpreter using the procedure choose
and the step-indexed self-interpreter E.

Theorem 37 (Self-Interpreter) There is a procedure U such that:

1. If sB t, then U sB t.

2. If U s evaluates, then s evaluates.

Proof We define u := λx.λy.Eyx(λT)F and U := λx. E (C(ux))x I I. Observe that
u s is a test and that n satisfies u s if and only if eval n s = bt′c for some t′.

For (1), assume that sB t. Then there is n s.t. eval n s = btc and n satisfies u s.
By Theorem 32 (2) we get m satisfying u s with C(u s)Bm̂. Thus U s ≡ E m̂ s I I ≡ t′
for some t′ with eval ms = bt′c. By Lemmas 3 (2) and 29. we have t = t′ and U sBt.

For (2), assume that U s evaluates. Then C(u s) evaluates. By Theorem 32 (1)
we get n and t with eval n s = btc. Thus s evaluates by Lemma 29 (3). ut

Corollary 38 The self-interpreter U recognises the class of evaluable terms.

For Post’s theorem we need a special self-interpreter considering two terms.
We speak of a parallel or operator.

https://www.ps.uni-saarland.de/extras/L-computability/doc/L.InterpreterResults.html#E_correct
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.InterpreterResults.html#E_S
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.InterpreterResults.html#E_S
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.InterpreterResults.html#E_sound
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.InterpreterResults.html#E_complete
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.InterpreterResults.html#totality
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.InterpreterResults.html#totality_hard
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.InterpreterResults.html#U
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.InterpreterResults.html#U_complete
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.InterpreterResults.html#U_sound
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.InterpreterResults.html#recognisable_eva


16 Yannick Forster and Gert Smolka

Theorem 39 (Parallel Or) There is a procedure O such that:

1. If s or t evaluates, then O s t evaluates.

2. If O s t evaluates, then either E s and O s tB T, or E t and O s tB F.

Proof O := λxy. (λz.Ezx(λT)(Ezy(λF) I)) (C(λz.Ezx(λT)(Ezy(λT) F))) does the
job. The verification is similar to the proof of Theorem 37. ut

We can now also show that a class is decidable if it is recognisable, corecognis-
able, and logically decidable (Post’s theorem).

Corollary 40 (Post) If u recognises p and v recognises λs.¬ps, then the procedure

λx.O (Au (Qx)) (A v (Qx)) decides p provided p is logically decidable.

Note that the assumption that p is logically decidable can be dropped if we
assume excluded middle.

With parallel or we can also show that the family of recognisable classes is
closed under union.

Corollary 41 (Union) If u recognises p and v recognises q, then the procedure

λx.O (Au (Qx)) (A v (Qx))

recognises λs. ps∨ qs.

13 Enumerable Classes

We now define enumerable classes and show that a class is enumerable if and only
if it is recognisable.

Definition 42 A procedure u enumerates a class p if:

1. ∀n. (un̂B ∅̃) ∨ (∃s. un̂B b̃sc ∧ ps).

2. ∀s. ps→ ∃n. un̂B b̃sc.
A procedure that enumerates a class is called an enumerator for the class, and a class

is called enumerable if it has an enumerator.

Fact 43 Given an enumerator for p, one can construct a recogniser for p.

Proof Given a term s, the recogniser for p searches for a number n such that the
enumerator for p yields s (using the procedure choose). ut

The translation of a recogniser to an enumerator is more involved and requires
the step-indexed self-interpreter we already have (Theorem 34) and an enumerator
for the class of all terms. The construction of the enumerator requires some effort.
We first construct an enumeration function for the type of terms, which we then
translate to a procedure enumerating the class of all terms.

Lemma 44 Let R : N→ T∅ be a function and u be a procedure such that

1. ∀s∃n. Rn = bsc.
2. ∀n. un̂B R̃n.

Then u is an enumerator for the class of all terms.

https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Por.html#O
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Por.html#O_complete
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Por.html#O_sound
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Por.html#Post
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Por.html#recognisable_union
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Enumerable.html#enumerable_recognisable
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Enumerable.html#R_enumerates


Call-by-Value Lambda Calculus as a Model of Computation in Coq 17

Proof Straightforward. ut

We construct the enumeration function for the type of terms using lists. We
denote the inductive type of lists over X with L(X) and obtain lists with the con-
structors [] (nil) and x :: A (cons). We write A++B and A[n] = bxc for applications
of the recursive functions for list concatenation and list position selection.

We now define the function R : N→ T∅ required for Lemma 44 with a recursive
auxiliary functions L : N→ L(T) as follows:

L0 = [ ]

L(Sn) = Ln ++ n :: [st | s ∈ Ln, t ∈ Ln] ++ [λs | s ∈ Ln]

Rn := (L(Sn))[n]

Note the use of a notation for list comprehension, which abbreviates applications
of a map function and a product function for lists.

Lemma 45

1. |Ln| ≥ n.

2. ∀n∃s. (L(Sn))[n] = bsc.
3. If m ≤ n, then Ln = Lm++A for some A.

4. If A[k] = bsc, then (A++B)[k] = bsc.
5. If (Lm)[k] = bsc and (Ln)[k] = btc, then s = t.

Proof Routine inductions. ut

Lemma 46 ∀s∃n. Rn = bsc.

Proof We define a recursive function β : T→ N such that

β(n) = Sn

β(st) = S(βs+ βt)

and show by induction on s that s ∈ L(βs) for all s.
Let s be a term. Since s ∈ L(βs), we have (L(βs))[n] = bsc for some n. By (2)

and (5) of Lemma 45 we have Rn = (L(Sn))[n] = bsc. ut

Fact 47 The class of all terms is enumerable.

Proof We translate the function R defined above and the necessary auxiliary func-
tions into procedures using a Scott encoding for lists over terms. We relate each
procedure with the specifying function with a canonical correctness lemma, as it
was done before, for instance, for the step-indexed self-interpreter (Fact 33). With
Lemmas 44 and 46 we then show that the procedure for R is an enumerator for
the class of all terms. ut

Fact 48 Given a recogniser for p, one can construct an enumerator for p.

Proof Given n, the enumerator for p obtains the term option for n using the term
enumerator. If the option is not of the form bmsc, the enumerator for p fails. If
the option is of the form bmsc, the recogniser for p is run on s for m steps using
the step-indexed self-interpreter. If this succeeds, the enumerator for p succeeds
with s, otherwise it fails. ut

Theorem 49 A class of terms is recognisable if and only if it is enumerable.

Proof Facts 43 and 48. ut

https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Enumerable.html#length_L
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Enumerable.html#L_exists
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Enumerable.html#L_cum
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Enumerable.html#nth_app_l
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Enumerable.html#L_inv
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Enumerable.html#R_surjective
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Enumerable.html#enumerable_all
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Enumerable.html#recognisable_enumerable


18 Yannick Forster and Gert Smolka

14 Markov’s Principle

Markov’s principle is a proposition not provable constructively [9] and weaker
than excluded middle [13]. Formulated for L, Markov’s principle says that a class
is decidable if it is recognisable and corecognisable. We establish two further char-
acterisations of Markov’s principle for L using parallel or (Theorem 39) and the
enumerability of terms (Fact 47).

Lemma 50 If p is decidable, then λ .∃s.ps is recognisable.

Proof Follows with Fact 47 and 32. ut

Theorem 51 (Markov’s Principle) The following statements are equivalent:

1. If a class is recognisable and corecognisable, then it is decidable.

2. Satisfiability of decidable classes is stable under double negation:

∀p. decidable p→ ¬¬(∃s.ps)→ ∃s.ps.
3. Evaluation of closed terms is stable under double negation:

∀s. closed s→ ¬¬Es→ Es.

Proof 1→ 2. Let p be decidable and ¬¬∃s.ps. We show ∃s.ps. By (1), Lemma 50,
and ¬(∃s.ps)↔ ⊥ we know that the class λ .∃s.ps is decidable. Thus we have either
∃s.ps or ¬∃s.ps. The first case is the claim and the second case is contradictory
with the assumption.

2 → 3. Let s be a closed term such that ¬¬Es. We show Es. Consider the
decidable class p := {n | eval n s 6= ∅ }. We have Es ↔ ∃t.pt. By (2), it suffices to
show ¬¬∃t.pt, which follows with the assumption ¬¬Es.

3 → 1. Let u be a recogniser for p and v be a recogniser for λs.¬ps. We show
that λx.O (Au (Qx)) (A v (Qx)) is a decider for p. By Theorem 39 it suffices to

show that O (us) (vs) evaluates for all terms s. Using (3), we prove this claim by

contradiction. Suppose O (us) (vs) does not evaluate. Then, using Theorem 39,
neither us nor vs evaluates. Thus ¬ps and ¬¬ps. Contradiction. ut

We remark that Markov’s principle for L follows from a global Markov’s princi-
ple stating that satisfiability of functionally decidable classes of numbers is stable
under double negation. This can be shown with Theorem 51 (3) and the equiva-
lence Es↔ ∃n. eval n s 6= ∅.

15 Computable Functions and Reducibility

Another standard notion besides decidability and recognisability in computability
theory is computability of functions. We say that a procedure u computes a function
f : T→ T if ∀s. us . fs.

As for decidability, there is a modesty result for computable functions. Larchey-
Wendling [17] proves a similar result, namely that all µ-recursively definable func-
tions which are provably total in Coq correspond to functions in Coq.

For this we first need a decoding for the Scott encoding of terms.

Fact 52 (Decoding) There is a function δ : T → T∅ such that (1) δ s = bsc and

(2) δ s = btc → t = s for all terms s and t.

https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Markov.html#DA
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Markov.html#Markov_Post
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Markov.html#Markov_Post_to_Sat
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Markov.html#Markov_Sat_to_Eva
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Markov.html#Markov_Eva_to_Post
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Reduction.html#decode_correct


Call-by-Value Lambda Calculus as a Model of Computation in Coq 19

Fact 53 (Modesty) Let u be a procedure such that ∀s∃t. u s B t. Then there is a

function f : T→ T such that ∀s. u sB fs.

Proof Follows with Lemma 30 and Fact 52. ut

In most of our unrecognisability proofs we did not prove unrecognisability
directly, but instead deduced a contradiction by constructing a recogniser for e.g.
λs. ¬E(ss). Lemma 24 makes this technique explicit.

We now generalise this further by introducing the standard notion of (many-
one) reducibility between classes. Intuitively, a class p is reducible to a class q if
ps can be checked by checking qt for a computable witness t.

Formally, we define that a computable function f : T → T reduces a class p
to a class q if ∀s. ps ↔ q(fs). We then say that p reduces to q and write p � q.
Note that reducibility can also be formulated without referring to a function f .
The advantage of the explicit function f is that the logical part of the reduction
and its implementation can be clearly separated.

Fact 54 p � q if and only if there is a procedure u s.t. ∀s∃t. us . t ∧ (ps↔ qt).

Proof For the direction from left to right, the procedure u computing the reduc-
tion f does the job. From right to left, we observe that ∀s. ∃t.us.t and use Fact 53
to obtain a function f computed by u. ut

Fact 55 The following hold:

1. � is reflexive.

2. � is transitive.

3. If ∀s. ps↔ p′s and ∀s. qs↔ q′s then p � q → p′ � q′.
4. p � λs.> if and only if ∀s. ps.
5. p � λs.⊥ if and only if ∀s. ¬ps.

Proof (1) fs := s does the job. (2) Let f reduce p to q and g reduce q to r. Then
p � r via hs := g(fs). (3) If p � q via f , then also p′ � q′ via f . (4,5) The direction
from left to right is immediate, the direction from right to left follows from (3). ut

Fact 56 The following hold:

1. If q is decidable and p � q, then p is decidable.

2. If q is recognisable and p � q, then p is recognisable.

Proof If u decides q, f reduces p to q and v computes f , λx.u(vx) decides p. The
proof for (2) is similar. ut

Corollary 57 If p is undecidable (unrecognisable) and p � q, then q is undecidable

(unrecognisable).

Note that Lemma 24 is an instance of this corollary for p := λs.¬E(ss).
We now show that E is a greatest element of the class of recognisable classes

under �. That E is recognisable follows from Corollary 38.

Fact 58 A class p is recognisable if and only if p � E.

Proof The direction from right to left follows from Fact 56 (2) and Corollary 38.
For the other direction, let u recognise p. Then fs := us reduces p to E. ut

https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Reduction.html#L_computable_computable
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Reduction.html#mreducible_sane
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Reduction.html#mreducible_preorder
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Reduction.html#mreducible_preorder
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Reduction.html#mreducible_ext
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Reduction.html#mreducible_full
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Reduction.html#mreducible_empty
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Reduction.html#mreducible_dec
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Reduction.html#mreducible_dec
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Reduction.html#mreducible_recognisable
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Reduction.html#recognisable_iff


20 Yannick Forster and Gert Smolka

We also prove that decidable classes are lower bounds for nontrivial classes
under � and that any two classes have a least upper bound:

Fact 59 If p is decidable and q is nontrivial, then p � q.

Proof Let g be a computable functional decider for p using Theorem 31, qt1 and
¬qt2. Then fs := if gs then t1 else t2 reduces p to q. ut

Fact 60 Two classes p and q always have a least upper bound w.r.t �.

Proof Let p and q be classes. We use the tree structure of terms and define:

rs :=


ps′ if s = 0s′

qs′ if s = (Sn)s′

qs otherwise

Now λs. 0s reduces p to r and λs. 1s reduces q to r.
Let r′ be a class s.t. p � r′ via f and q � r′ via g. Then

hs :=


fs′ if s = 0s′

gs′ if s = (Sn)s′

gs otherwise

reduces r to r′. ut

Classically p reduces to q if and only if the complement of p reduces to the
complement of q. The direction from left to right holds constructively.

Fact 61 If p � q, then (λs. ¬ps) � (λs. ¬qs).

Proof ps↔ q(fs) implies ¬ps↔ ¬q(fs). ut

It seems unlikely that the other direction is provable constructively, as it implies
Markov’s principle for L:

Fact 62 If ∀pq. (λs. ¬ps) � (λs. ¬qs)→ p � q, then Markov’s principle for L holds.

Proof We prove characterisation (3) from Theorem 51, i.e. that ¬¬Es implies Es.
By easy logical reasoning, this holds if E � (λs. ¬¬Es). By assumption, it suffices
to prove that (λs. ¬Es) � (λs. ¬¬¬Es), which holds by Fact 55 (3). ut

16 Future work

Stack Machines. Plotkin [22] defines a stack machine for his call-by-value λ-
calculus, which uses an evaluation order similar to the order used in our evaluation
relation (.). His proofs, while explained very carefully and in detail, do not make
use of modern tools like inductive predicates or structural induction.

We want to verify a stack machine for L, which also can be considered as a
first step of simulating L using Turing machines.

Automated Extraction. It is believed that every program definable in Coq
without axioms is computable. While this can not be proven inside the theory of

https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Reduction.html#mreducible_red
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Reduction.html#preceq_lub
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Reduction.html#mreducible_comp
https://www.ps.uni-saarland.de/extras/L-computability/doc/L.Reduction.html#mreducible_comp_conv


Call-by-Value Lambda Calculus as a Model of Computation in Coq 21

Coq, it is still possible to translate every individual Coq function to L and prove
the correctness of the resulting procedure.

In fact, this translation can be mechanised. We are working on a tactics frame-
work that allows the automatic verified translation of a large class of Coq func-
tions into L. Using this framework, the Coq development of this article could be
considerably shortened, because explicit verification of total procedures becomes
unnecessary.

Undecidability Proofs. Most introductory books on computation also give
undecidability proofs for problems which do not mention the model of computation
explicitly, for instance for Post’s correspondence problem [24].

We want to verify such reductions, including reductions concerning the unde-
cidability of various logics, ultimately working towards a library of undecidable
problems.

Reducibility Degrees and Turing Reducibility. Many-one reducibility as we
defined it can be extended to a strict order on so called reducibility degrees, which
are equivalence classes of the equivalence relation induced by �.

An interesting question is whether there are recognisable classes strictly be-
tween decidable classes and E. They would be undecidable classes whose comple-
ments fail to be recognisable, but where unrecognisability can not be proven by
reduction from λs. ¬Es or λs. ¬E(ss), which was possible for all recognisable classes
considered in this paper. Post [23] constructs a “simple” set which yields such a
class.

We want to formalise the theory of reducibility degrees including the construc-
tion of a simple set. The theory can then be extended further to the notion of
Turing reducibility, which needs a definition of L with oracles. For Turing re-
ducibility, simple sets do not suffice to establish intermediate degrees, and their
existence is proven via the more complicated priority method by Friedberg and
Muchnik [12,19].

Complexity Theory. Formalised complexity theory may be considered as a
natural follow-up topic to formalised computability theory. To formalise complex-
ity theory, we first have to formalise a model of computability with reasonable time
and space measures. However, the only models with well-understood reasonable
time and space measures are Turing machines and RAM machines [26]. Serious
verified programming using those models, even to the extent as it was needed for
this paper, would be unfeasible.

Dal Lago and Martini [10] give a reasonable time measure for their weak call-
by-value λ-calculus by simulating it using Turing machines, but do not consider
space. Accattoli and Dal Lago provide a polynomial algorithm to simulate full
λ-calculus [2] and a polynomial implementation of Turing machines in the full λ-
calculus [1]. We think that L is a sweet spot for complexity theory and want to
extend the existing work to also include space, which would establish L as a model
for complexity theory in Coq.

References

1. B. Accattoli and U. Dal Lago. On the invariance of the unitary cost model for head
reduction. In LIPIcs-Leibniz International Proceedings in Informatics, volume 15. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2012.



22 Yannick Forster and Gert Smolka

2. B. Accattoli and U. Dal Lago. (Leftmost-outermost) beta reduction is invariant, indeed.
Logical Methods in Computer Science, 12, 2016.

3. A. Asperti and W. Ricciotti. Formalizing Turing machines. In Logic, Language, Informa-
tion and Computation, pages 1–25. Springer, 2012.

4. A. Asperti and W. Ricciotti. A formalization of multi-tape Turing machines. Theoretical
Computer Science, 603:23–42, Oct. 2015.

5. H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland, 2nd
revised edition, 1984.

6. A. Bauer. First steps in synthetic computability theory. ENTCS, 155:5–31, 2006.
7. G. Boolos, J. P. Burgess, and R. C. Jeffrey. Computability and Logic. Cambridge University

Press, 5th edition, 2007.
8. A. Ciaffaglione. Towards Turing computability via coinduction. Science of Computer

Programming, 126:31–51, Sept. 2016.
9. T. Coquand and B. Mannaa. The independence of Markov’s principle in type theory. In

FSCD 2016, volume 52 of LIPIcs, pages 17:1–17:18. Schloss Dagstuhl, 2016.
10. U. Dal Lago and S. Martini. The weak lambda calculus as a reasonable machine. Theor.

Comput. Sci., 398(1-3):32–50, 2008.
11. Y. Forster and G. Smolka. Weak call-by-value lambda calculus as a model of computation

in Coq. In ITP 2017, pages 189–206. Springer, LNCS 10499, 2017.
12. R. M. Friedberg. Two recursively enumerable sets of incomparable degrees of unsolvability

(solution of post’s problem, 1944). Proceedings of the National Academy of Sciences,
43(2):236–238, 1957.

13. H. Herbelin. An intuitionistic logic that proves Markov’s principle. In Proceedings of the
25th Annual IEEE Symposium on Logic in Computer Science, LICS 2010, 11-14 July
2010, Edinburgh, United Kingdom, pages 50–56, 2010.

14. J. Hopcroft, R. Motwani, and J. Ullman. Introduction to Automata Theory, Languages,
and Computation. Pearson, 2013.

15. J. M. Jansen. Programming in the λ-calculus: From Church to Scott and back. In The
Beauty of Functional Code, volume 8106 of LNCS, pages 168–180. Springer, 2013.

16. D. Kozen. Automata and computability. Springer, 1997.
17. D. Larchey-Wendling. Typing total recursive functions in coq. In Interactive Theorem

Proving - 8th International Conference, ITP 2017, Braśılia, Brazil, September 26-29,
2017, Proceedings, pages 371–388, 2017.

18. T. Æ. Mogensen. Efficient self-interpretations in lambda calculus. J. Funct. Program.,
2(3):345–363, 1992.

19. A. A. Muchnik. On the unsolvability of the problem of reducibility in the theory of
algorithms. In Dokl. Akad. Nauk SSSR, volume 108, page 1, 1956.

20. J. Niehren. Functional computation as concurrent computation. In POPL 1996, pages
333–343. ACM, 1996.

21. M. Norrish. Mechanised computability theory. In ITP 2011, volume 6898 of LNCS, pages
297–311. Springer, 2011.

22. G. D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theor. Comput. Sci.,
1(2):125–159, 1975.

23. E. L. Post. Recursively enumerable sets of positive integers and their decision problems.
bulletin of the American Mathematical Society, 50(5):284–316, 1944.

24. E. L. Post. A variant of a recursively unsolvable problem. Bulletin of the American
Mathematical Society, 52(4):264–268, 1946.

25. The Coq Proof Assistant. http://coq.inria.fr.
26. P. Van Emde Boas. Machine models and simulations. Handbook of Theoretical Computer

Science, volume A, pages 1–66, 1991.
27. J. Xu, X. Zhang, and C. Urban. Mechanising Turing machines and computability theory

in Isabelle/HOL. In ITP 2013, volume 7998 of LNCS, pages 147–162. Springer, 2013.

http://coq.inria.fr

	Introduction
	Definition of L
	Reduction Semantics
	Recursion and Scott Encoding of Numbers
	Scott Encoding of Terms
	Decidable and Recognisable Classes
	Scott's Theorem
	Reduction Lemma
	Rice's Theorem
	Step-Indexed Interpreter and Modesty
	Choose
	Results Obtained with Self-Interpreters
	Enumerable Classes
	Markov's Principle
	Computable Functions and Reducibility
	Future work

