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Abstract
“Church’s thesis” (CT) as an axiom in constructive logic states that every total function of type
N→ N is computable, i.e. definable in a model of computation. CT is inconsistent both in classical
mathematics and in Brouwer’s intuitionism since it contradicts weak Kőnig’s lemma and the fan
theorem, respectively. Recently, CT was proved consistent for (univalent) constructive type theory.

Since neither weak Kőnig’s lemma nor the fan theorem is a consequence of just logical axioms or
just choice-like axioms assumed in constructive logic, it seems likely that CT is inconsistent only
with a combination of classical logic and choice axioms. We study consequences of CT and its
relation to several classes of axioms in Coq’s type theory, a constructive type theory with a universe
of propositions which proves neither classical logical axioms nor strong choice axioms.

We thereby provide a partial answer to the question as to which axioms may preserve computa-
tional intuitions inherent to type theory, and which certainly do not. The paper can also be read as
a broad survey of axioms in type theory, with all results mechanised in the Coq proof assistant.

2012 ACM Subject Classification Theory of computation → Constructive mathematics; Theory of
computation → Type theory

Keywords and phrases Church’s thesis, constructive type theory, constructive reverse mathematics,
synthetic computability theory, Coq

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.21

Supplementary Material https://github.com/uds-psl/churchs-thesis-coq

Acknowledgements I want to thank Gert Smolka, Andrej Dudenhefner, Dominik Kirst, and Domin-
ique Larchey-Wendling for discussions and feedback on drafts of this paper. Special thanks go to
the anonymous reviewers for their helpful ideas, constructive comments, and editorial suggestions.

1 Introduction

The intuition that the concept of a constructively defined function and a computable function
can be identified is prevalent in intuitionistic logic since the advent of recursion theory and
is maybe most natural in constructive type theory, where computation is primitive.

A formalisation of the intuition is the axiom CT (“Church’s thesis”), stating that every
function is computable, i.e. definable in a model of computation. CT is well-studied as part
of Russian constructivism [34] and in the field of constructive reverse mathematics [11,25].

CT allows proving results of recursion theory without extensive references to a model of
computation, since one can reason with functions instead. While such synthethic developments
of computability theory [1, 7, 37] can be carried out in principle without assuming any
axioms [14], assuming CT allows stronger results: CT essentially provides a universal machine
w.r.t. all functions in the logic, allowing to show the non-existence of certain deciding
functions – whose existence is logically independent with no axioms present.

It is easy to see that CT is in conflict with traditional classical mathematics, since the
law of excluded middle LEM together with a form of the axiom of countable choice ACN,N
allows the definition of non-computable functions [46]. This observation can be sharpened
in various ways: To define a non-computable function directly, the weak limited principle
of omniscience WLPO and the countable unique choice axiom AUCN,B suffice. Alternatively,
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21:2 Church’s Thesis and Related Axioms in Coq’s Type Theory

Kleene noticed that there is a decidable tree predicate with infinitely many nodes but no
computable infinite path [28]. If functions and computable functions are identified via CT, a
Kleene tree is in conflict with weak Kőnig’s lemma WKL and with Brouwer’s fan theorem.

It is however well-known that CT is consistent in Heyting arithmetic with Markov’s
principle MP [27] which given CT states that termination of computation is stable under
double negation. Recently, Swan and Uemura [43] proved that CT is consistent in univalent
type theory with propositional truncation and MP.

While predicative Martin-Löf type theory as formalisation of Bishop’s constructive
mathematics proves the full axiom of choice AC, univalent type theory usually only proves
the axiom of unique choice AUC. But since AUCN,B suffices to show that LEM implies ¬CT,
classical logic is incompatible with CT in both predicative and in univalent type theory.

In the (polymorphic) calculus of (cumulative) inductive constructions, a constructive
type theory with a separate, impredicative universe of propositions as implemented by the
proof assistant Coq [44], none of AC, AUC, and AUCN,B are provable. This is because large
eliminations on existential quantifications are not allowed in general [35], meaning one can
not recover a function in general from a proof of ∀x.∃y. Rxy. However, choice axioms as well
al LEM can be consistently assumed in Coq’s type theory [47]. Furthermore, it seems likely
that the consistency proof for CT in [43] can be adapted for Coq’s type theory.

This puts Coq’s type theory in a special position: Since to disprove CT one needs a (weak)
classical logical axiom and a (weak) choice axiom, assuming just classical logical axioms
or just choice axioms might be consistent with CT. This paper is intended to serve as a
preliminary report towards this consistency question, approximating it by surveying results
from intuitionistic logic and constructive reverse mathematics in constructive type theory
with a separate universe of propositions, with a special focus on CT and other axioms based
on notions from computability theory. Specifically, we discuss these propositional axioms:

computational enumerability axioms (EA,EPF) and Kleene trees (KT) in Section 5
extensionality axioms like functional extensionality (Fext), propositional extensionality
(Pext), and proof irrelevance (PI) in Section 6
classical logical axioms like the principle of excluded middle (LEM, WLEM), independence
of premises (IP), and limited principles of omniscience (LPO, WLPO, LLPO) in Section 7
axioms of Russian constructivism like Markov’s principle (MP) in Section 8
choice axioms like the axiom of choice (AC), countable choice (ACC, ACN,N, ACN,B),
dependent choice (ADC), and unique choice (AUC,AUCN,B) in Section 9
axioms on trees like weak Kőnig’s lemma (WKL) and the fan theorem (FAN) in Section 10
axioms regarding continuity and Brouwerian principles (Homeo, Cont, WC-N) in Section 11

The following hyper-linked diagram displays provable implications and incompatible axioms.

DNE LEM DGP WLEM ADC AC

MP LPO WLPO LLPO ACC ACN→N,N

Homeo(BN,NN) Homeo(NN,BN) WKL ACN,N WC-N

KT FAN AUCN,B

EPF EA CT

Fext

MP

PFP S-ACN,B

Fext

Cont

WLPO

Figure 1 Overview of results. → are implications, denotes incompatible axioms.
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All results in this paper are mechanised in the Coq proof assistant and the proof scripts
are accessible at https://github.com/uds-psl/churchs-thesis-coq. The statements in
this document are hyperlinked to their Coq proof, indicated by a -symbol.

Outline. Section 2 establishes necessary preliminaries regarding Coq’s type theory and intro-
duces the notions of (synthetic) decidability, enumerability, and semi-decidability. Section 3
introduces CT formally, together with the related synthetic axioms EA and EPF. Section 4
contains undecidability proofs based on CT. Section 5 introduces decidable binary trees and
constructs a Kleene tree. The connection of CT to the classes of axioms as listed above is
surveyed in Sections 6 to 11. Section 12 contains concluding remarks.

2 Preliminaries

We work in the polymorphic calculus of cumulative inductive constructions as implemented by
the Coq proof assistant [44], which we will refer to as “Coq’s type theory”. The calculus is a
constructive type theory with a cumulative hierarchy of types Ti (where i is a natural number,
but we leave out the index from now on), an impredicative universe of propositions P ⊆ T,
and inductive types in every universe. The inductive types of interest in this paper are

n : N ::= 0 | Sn b : B ::= false | true
o : OA ::= None | Some a where a : A l : LA ::= [] | a :: l where a : A
A+B := inl a | inr b where a : A and b : B A×B := (a, b) where a : A and b : B

One can easily construct a pairing function 〈_ , _〉 : N→ N→ N and for all f : N→ N→ X

an inverse construction λ〈n,m〉. fnm of type N→ X s.t. (λ〈n,m〉. fnm)〈n,m〉 = fnm.
We write n =B m for the boolean equality decider on N, and ¬B for boolean negation.
If l : LA then l[n] : OA denotes the n-th element of l. If n < |l| we can assume l[n] : A.
We write ∀x : X. Ax for both dependent functions and logical universal quantification, ∃x :

X. Ax where A : X → P for existential quantification and Σx : X. Ax where A : X → T for
dependent pairs, with elements (x, y). Dependent pairs can be eliminated into arbitrary types,
i.e. there is an elimination principle of type ∀p : (Σx. Ax)→ T. (∀(x : X)(y : Ax). p(x, y))→
∀(s : Σx. Ax). ps. We call such a principle eliminating a proposition into arbitrary types
a large elimination principle, following the terminology “large elimination” for Coq’s case
analysis construct match [35]. Crucially, Coq’s type theory proves a large elimination principle
for the falsity proposition ⊥, i.e. explosion applies to arbitrary types: ∀A : T. ⊥ → A. In
contrast, existential quantification can only be eliminated for p : (∃x. Ax) → P, but the
following more specific large elimination principle is provable:

Lemma 1. There is a guarded minimisation function µN of the following type:

µN : ∀f : N→ B. (∃n. fn = true)→ Σn. fn = true ∧ ∀m. fm = true→ m ≥ n.

There are various implementations of such a minimisation function in Coq’s Standard
Library.1 One uses a (recursive) large elimination principle for the accessibility predicate, see
e.g. [32, §2.7, §4.1, §4.2] and [6, §14.2.3, §15.4] for a contemporary overview how to implement
large eliminations principles. We will not need any other large elimination principle in this
paper. A restriction of large elimination in general is necessary for consistency of Coq [8]. As
a by-product, the computational universe T is separated from the logical universe P, allowing
classical logic in P to be assumed while the computational intuitions for T remain intact.

1 The idea was conceived independently by Benjamin Werner and Jean-François Monin in the 1990s.
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partA : T partial values over A : T
!= : partA→ A→ P definedness of values x

!= a1 → x
!= a2 → a1 = a2

(x : partA) ↓ : P x ↓ := ∃a. x != a

≡part A : partA→ partA→ P equivalence x ≡part A y := (∀a. x != a↔ y
!= a)

ret : A→ partA monadic return ret a != a

undef : partA undefined value @a.undef != a

>>=: partA→ (A→ partB)→ partB monadic bind x >>= f
!= b↔ (∃a. x != a ∧ fa != b)

µ : (N→ B)→ partN unbounded search µf
!= n↔ fn = true∧

∀m < n. fm = false
seval : partA→ N→ OA step-indexed evaluation x

!= a↔ ∃n. sevalxn = Some a

Figure 2 A monad for partial values.

2.1 Partial Functions
All definable functions in type theory are total by definition. To model partiality, one often
resorts to functional relations R : A→ B → P or step-indexed functions A→ N→ OB, as
for instance pioneered by Richman [37] in constructive logic, see e.g. [12] for a comprehensive
overview.

For our purpose, we simply assume a type partA for A : T and a definedness relation
!= : partA → A → P and write A 9 B for A → partB. We assume monadic structure
for part (ret and >>=), an undefined value (undef), a minimisation operation (µ), and a
step-indexed evaluator (seval). The operations and their specifications are listed in Figure 2.

2.2 Equivalence relations on functions
Besides intensional equality (=), we will consider other more extensional equivalence re-
lations in this paper. For instance, extensional equality of functions f, g (∀x. fx = gx),
extensional equivalence of predicates p, q (∀x. px↔ qx), or range equivalence of functions
f, g (∀x. (∃y. fy = x)↔ (∃y. gy = x)). We will denote all of these equivalence relations with
the symbol ≡ and indicate what is meant by an index. For discrete X (e.g. N, ON, LB, . . . ),
≡

X
denotes equality, ≡P denotes logical equivalence, ≡

A→B
denotes an extensional lift of ≡

B
,

≡
A→P denotes extensional equivalence, and ≡ran denotes range equivalence.
Assuming the existence of surjections A → (A → B) may or may not be consistent,

depending on the particular equivalence relation. We introduce the notion of surjection w.r.t.
≡

B
as ∀b : B. ∃a : A.fa ≡

B
b. We call a function f : A→ B an injection w.r.t. ≡

A
and ≡

B

if ∀a1a2. fa1 ≡B
fa2 → a1 ≡A

a2 and a bijection if it is an injection and surjection.
One formulation of Cantor’s theorem is that there is no surjection N→ (N→ N) w.r.t. =.

However, the same proof can be used for the following strengthening of Cantor’s theorem:

Fact 2 (Cantor). There is no surjection N→ (N→ N) w.r.t. ≡N→N .

2.3 Decidability, Semi-decidability, Enumerability, Reducibility
We define decidability, (co-)semi-decidability, and enumerability for predicates p : X → P:

Dp := ∃f : X → B. ∀x. px↔ fx = true (“p is decidable”)
Sp := ∃f : X → N→ B. ∀x. px↔ ∃n.fxn = true (“p is semi-decidable”)
Sp := ∃f : X → N→ B. ∀x. px↔ ∀n.fxn = false (“p is co-semi-decidable”)
Ep := ∃f : N→ OX. ∀x. px↔ ∃n.fn = Somex (“p is enumerable”)

https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.axioms.html#Cantor
https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.axioms.html#Cantor
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Although all notions are defined on unary predicates, we use them on n-ary relations via
(implicit) uncurrying. We write p for the complement λx. ¬px of p. We call a type X discrete
if its equality relation =X is decidable and enumerable if the predicate λx.> is enumerable.

Traditionally, propositions P s.t. P ↔ (∃n. fn = true) for some f are often called Σ0
1

or “simply existential”, and P s.t. P ↔ (∀n. fn = false) are called Π0
1 or “simply universal”.

Semi-decidable predicates are pointwise Σ0
1, and co-semi-decidable predicates are pointwise

Π0
1. Note that neither Sp→ Sp nor the converse is provable, only the following connections:

Lemma 3. The following hold:
1. Decidable predicates are semi-decidable and co-semi-decidable.
2. Semi-decidable predicates on enumerable types are enumerable.
3. Enumerable predicates on discrete types are semi-decidable.
4. The complement of semi-decidable predicates is co-semi-decidable.

Lemma 4. Decidable predicates are closed under complementation. Decidable, enumerable,
and semi-decidable predicates are closed under (pointwise) conjunction and disjunction.

3 Church’s thesis in type theory

Church’s thesis for total functions (CT) states that every function of type N→ N is algorithmic.
Thus CT is a relativisation of the function space N → N w.r.t. a given (Turing-complete)
model of computation, reminiscent of the axiom V = L in set theory [29].

We first define CT by abstracting away from a concrete model of computation and work
with an abstract model of computation, consisting of an abstract computation function Tcxn
(with T : N → N → N → ON), assigning to a code c (to be interpreted as the code of a
partial recursive function in a model of computation), an input number x, and a step index n
an output number y if the code terminates in n steps on x with value y. The function Tcx is
assumed to be monotonic, i.e. increasing the step index does not change the potential value:

Tcxn1 = Some y → ∀n2 ≥ n1. T cxn2 = Some y.

Based on T we define a computability relation between c : N and f : N→ N:

c ∼ f := ∀x.∃n. Tcxn = Some (fx).

Since T is monotonic, ∼ is extensional, i.e. n ∼ f1 → n ∼ f2 → ∀x. f1x = f2x. We define
Church’s thesis for total functions relative to an abstract computation function T :

CTT := ∀f : N→ N.∃n : N. n ∼ f

Note that CTT is clearly not consistent for every choice of T . If we write CT without index,
we mean T to be the step-indexed evaluation function of a concrete, Turing-complete model
of computation. For the mechanisation we could for instance pick the equivalent models of
Turing machines [17], λ-calculus [21], µ-recursive functions [30], or register machines [18, 31].
It seems likely that the consistency proof of CT in [43] can be adapted to Coq.

Since specific properties of the model of computation are not needed, we develop and
mechanise all results of this paper parameterised in an arbitrary T . Thus, we could also
state all results in terms of a fully synthetic Church’s thesis axiom ΣT.CTT .

I Fact 5. CT→ ΣT.CTT

Note that the implication is strict: An abstract computation function does not rule out
oracles for e.g. the halting problem of Turing machines, whereas CT – with T defined in
terms of a standard, Turing-complete model of computation – proves the undecidability of
the Turing machine halting problem.
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3.1 Bauer’s enumerability axiom EA
In proofs of theorems with CTT as assumption, T can be used as replacement for a universal
machine. Bauer [1] develops computability theory synthetically using the axiom “the set
of enumerable sets of natural numbers is enumerable”, which is equivalent to ΣT.CTT and
thus strictly weaker than CT, but can also be used in place of a universal machine. We
introduce Bauer’s axiom in our setting as EA′ and immediately introduce a strengthening EA
s.t. (ΣT.CTT )↔ EA and EA→ EA′:

EA′ := ΣW : N→ (N→ P).∀p : N→ P. Ep↔ ∃c. Wc ≡N→P p

That is, EA′ states that there is an enumerator W of all enumerable predicates, up to exten-
sionality. In contrast, EA poses the existence of an enumerator of all possible enumerators,
up to range equivalence:

EA := Σϕ : N→ (N→ ON).∀f : N→ ON.∃c. ϕc ≡ran f

That is, ϕ is a surjection w.r.t. range equivalence f ≡ran g, where ϕc ≡ran f ↔
∀x.(∃n.ϕcn = Somex)↔ (∃n.fn = Somex).

Note the two different roles of natural numbers in the two axioms: If we would consider
predicates over a general type X we would have W : N→ (X → P) and ϕ : N→ (N→ OX),
i.e. Wc would be an enumerable predicate and ϕc an enumerator of a predicate X → P.

We start by proving CTT → EA by constructing ϕ from an arbitrary T :

ϕc〈n,m〉 := if Tcnm is Somex then Sx else 0

Lemma 6. If CTT then ∀f : N→ ON.∃c. ϕc ≡ran f .

Proof. The direction from left to right to establish ≡ran is based on the fact that if Tcxn1 =
Some y1 and Tcxn2 = Some y2 then y1 = y2. The other direction is straightforward. J

Theorem 7. ∀T. CTT → EA

We now prove EA→ EA′ by constructing W from ϕ: Wcx := ∃n.ϕcn = Somex.

Lemma 8. If EA then ∀p : N→ P. Ep↔ ∃c. Wc ≡N→P p.

Proof. Ep↔ ∃f : N→ ON.∀x. px↔ ∃n. fn = Somex (def. E)
↔ ∃c.∀x. px↔ ∃n. ϕcn = Somex (EA)
↔ ∃c.Wc ≡N→P p (def. ≡N→P) J

Theorem 9. EA→ EA′

3.2 Richman’s Enumerability of Partial Functions EPF
Richman [37] introduces a different purely synthetic axiom as replacement for a universal
machine and assumes that “partial functions are countable”, which is equivalent to EA.

EPF := Σe : N→ (N 9 N).∀f : N 9 N.∃n. en ≡N9N f

Theorem 10. EPF→ EA

Proof. Let e be given. ϕc〈n,m〉 := seval (ecn) m is the wanted enumerator. J

https://uds-psl.github.io/churchs-thesis-coq/coq/website/SyntheticComputability.Axioms.axioms.html#CT_to_EA'
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Theorem 11. EA→ EPF

Proof. Let ϕ be given. Then

ecx := (µ (λn. if ϕcn is Some 〈x′, y′〉 then x =B x
′ else false)) >>=

λn. if ϕcn is Some 〈x′, y′〉 then ret y′ else undef

is the wanted enumerator. J

EPF implies the fully synthetic version of CT:

Lemma 12. EPF→ ΣT. CTT

Proof. Assume e : N→ (N 9 N) surjective w.r.t. ≡N9N . Define Tcxn := seval (ecx) n. It is
straightforward to prove that T is monotonic and that CT holds. J

The axiom EPF can be weakened to cover just boolean functions:

EPFB := Σe : N→ (N 9 B).∀f : N 9 B.∃n. en ≡N9B f

Lemma 13. EPF→ EPFB

The reverse direction seems not to be provable.

4 Halting Problems

For this section we assume EA, i.e. ϕ : N → (N → ON) s.t. ∀f : N → ON.∃c. ϕc ≡ran f .
Recall Lemma 8 stating that ∀p : N→ P. Ep↔ ∃c. Wc ≡N→P p.

We define K0n :=Wnn and prove our first negative result:

Lemma 14. ¬EK0

Proof. Assume E(λn.¬Wnn). By specification of W there is c s.t. ∀n.Wcn ↔ ¬Wnn. In
particular, Wcc↔ ¬Wcc, which is contradictory. J

Corollary 15. ¬DK0, ¬DK0, ¬DW and ¬DW.

Intuitively, K0 can be seen as analogous to the self-halting problem: K0n states that n
considered as an enumerator outputs itself in its range (rather than halting on itself).

It is also easy to show that W and thus K0 are enumerable:

Lemma 16. EW

Proof. Via f〈n,m〉 := if ϕnm is Some k then Some (n, k) else None. J

Corollary 17. EK0

Since Bauer [1] bases his development on EA′, he needs the axiom of countable choice to
prove that W is enumerable, whereas EA allows an axiom-free proof of this fact.

Another well-known traditional result is that a problem is enumerable if and only if it
many-one reduces to the halting problem K, which can be proved without reference to EA.

p �m q := ∃f : X → Y.∀x. px↔ q(fx) K(f : N→ B) := ∃n. fn = true

Fact 18. For all p : X → P, p �m K↔ Sp.
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Corollary 19. SK
Corollary 20. For all p : N→ P, p �m K↔ Ep.
Using the non-enumerability of K0 we can now prove our first negative result by reduction:

Corollary 21. K0 �m K, and thus ¬EK, ¬DK, and ¬DK.
We can also define KN := λf : N→ N. ∃n. fn 6= 0:

Fact 22. K �m KN, KN �m K, KN ≡(N→N)→P λf. ∀n. fn = 0, and thus ¬D(λf. ∀n. fn = 0).

5 Kleene Trees

In a lecture in 1953 Kleene [28] gave an example how the axioms of Brouwer’s intuitionism fail
if all functions are considered computable by constructing an infinite decidable binary tree
with no computable infinite path. The existence of such a Kleene tree (KT) is in contradiction
to Brouwer’s fan theorem, which we will discuss later. We prove that EPFB implies KT.

For this purpose, we call a predicate τ : LB→ P a (decidable) binary tree if
(a) τ is decidable: ∃f.∀u.τu↔ fu = true
(b) τ is non-empty: ∃u.τu
(c) τ is prefix-closed: If τu2 and u1 v u2 then τu1 (where u1 v u2 := ∃u′. u2 = u1 ++ u′).

We will just speak of trees instead of decidable binary trees in the following.

Fact 23. For every tree τ , τ [] holds.

Furthermore, a decidable binary tree τ . . .
. . . is bounded if ∃n.∀u.|u| ≥ n→ ¬τu
. . . is well-founded if ∀f.∃n.¬τ [f0, . . . , fn]
. . . has an infinite path if ∃f.∀n.τ [f0, . . . , fn]

Fact 24. A tree is not bounded if and only if it is infinite, defined as ∀n.∃u. |u| ≥ n ∧ τu.

Fact 25. Every bounded tree is well-founded and every tree with an infinite path is infinite.

Note that both implications are strict: In our setting we cannot prove bounded-
ness from well-foundedness nor obtain an infinite path from infiniteness, as can
be seen from a Kleene tree:

KT := There exists an infinite, well-founded, decidable binary tree.

We follow Bauer [2] to construct a Kleene tree.

Lemma 26. Given EPFB one can construct d : N 9 B s.t. ∀f : N→ B.∃nb. dn != b∧fn 6= b.

Proof. Define dn := enn >>= λb. ret (¬Bb). J

We define τKu := ∀n < |u|.∀x. seval (dn) |u| = Somex→ u[n] = Somex. Intuitively, τK

contains all paths u = [b0, b1, . . . , bn] which might be prefixes of d given n as step index, i.e.
where n does not suffice to verify that d is no prefix of d. An infinite path through τK would
be a totalisation of d.

Theorem 27. EPFB → KT
Proof. We show that τK is a Kleene tree. That τK is a decidable tree is immedi-
ate. To show that τK is infinite let k be given. We define f0 := [] and f(Sn) :=
fn ++ [if Dkn is Somex then x else false]. We have |fn| = n. In particular, |fk| ≥ k

and τK(fk).
For well-foundedness let f : N → B be given. There is n s.t. dn != b and fn 6= b. Thus

there is k s.t. seval (dn) k = Some b. Now ¬τKu for u := [f0, . . . , f(n+ k)]. J
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6 Extensionality Axioms

Coq’s type theory is intensional, i.e. f ≡
A→B

g and f = g do not coincide. Extensionality
properties can however be consistently assumed as axioms. In this section we briefly discuss
the relationship between CT and functional extensionality Fext, propositional extensionality
Pext and proof irrelevance PI, defined as follows:

Fext := ∀AB.∀fg : A→ B. (∀a.fa = ga)→ f = g

Pext := ∀PQ : P. (P ↔ Q)→ P = Q

PI := ∀P : P.∀(x1x2 : P ). x1 = x2

Fact 28. Pext→ PI

Swan and Uemura [43] prove that intensional predicative Martin-Löf type theory remains
consistent if CT, the axiom of univalence, and propositional truncation are added. Since
functional extensionality and propositional extensionality are a consequence of univalence,
and propositions are semantically defined as exactly the irrelevant types, Fext, Pext, and PI
hold in this extension of type theory. It seems likely that the consistency result can then be
adapted to Coq’s type theory, yielding a consistency proof for CT with Fext, Pext, and PI.

It is however crucial to formulate CT using ∃ instead of Σ. The formulation as CTΣ :=
∀f. Σn. n ∼ f is inconsistent with functional extensionality Fext, as already observed in [46].

Lemma 29. CTΣ → Fext→ ⊥

Proof. Since CTΣ implies EA, it suffices to prove that λf.∀n. fn = 0 is decidable by Fact 22.
Assume G : ∀f. Σc. c ∼ f and let Ff := if π1(Gf) = π1(G(λx.0)) then true else false.

If Ff = true, then π1(Gf) = π1(G(λx.0)) and by extensionality of ∼, fn = (λx.0)n = 0.
If ∀n. fn = 0, then f = λx. 0 by Fext, thus π1(Gf) = π1(G(λx. 0)) and Ff = true. J

7 Classical Logical Axioms

In this section we consider consequences of the law of excluded middle LEM. Precisely,
besides LEM, we consider the weak law of excluded middle WLEM, the Gödel-Dummett-
Principle DGP,2 and the principle of independence of premises IP, together with their respective
restriction of propositions to the satisfiability of boolean functions, resulting in the limited
principle of omniscience LPO, the weak limited principle of omniscience WLPO, and the
lesser limited principle of omniscience LLPO.

LEM := ∀P : P. P ∨ ¬P LPO := ∀f : N→ B. (∃n. fn = true) ∨ ¬(∃n. fn = true)
WLEM := ∀P : P. ¬¬P ∨ ¬P WLPO := ∀f : N→ B. ¬¬(∃n. fn = true) ∨ ¬(∃n. fn = true)

DGP := ∀PQ : P.(P → Q) ∨ (Q→ P ) LLPO := ∀fg : N→ B. ((∃n. fn = true)→ (∃n. gn = true))
∨ ((∃n. gn = true)→ (∃n. fn = true))

IP := ∀P : P.∀q : N→ P. (P → ∃n.qn)→ ∃n. P → qn

Fact 30. LEM→ DGP, DGP→WLEM, LEM→ IP.

The converses are likely not provable: Diener constructs a topological model where DGP
holds but not LEM, and one where WLEM holds but not DGP [11, Proposition 8.5.3]. Pédrot
and Tabareau [36] construct a syntactic model where IP holds, but LEM does not.

2 We follow Diener [11] in using the abbreviation DGP instead of GDP.
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Fact 31. LPO→WLPO and WLPO→ LLPO.

The converses are likely not provable: Both implications are strict over IZF with dependent
choice [23, Theorem 5.1].

LPO is Σ0
1-LEM and WLPO is simultaneously Σ0

1-WLEM and Π0
1-LEM, due to the following:

Fact 32. (∀n.fn = false)↔ ¬(∃n.fn = true)

Both can also be formulated for predicates:

Fact 33. The following equivalences hold:
1. LPO ↔ ∀X.∀(p : X → P). Sp→ ∀x. px ∨ ¬px
2. WLPO↔ ∀X.∀(p : X → P). Sp→ ∀x.¬px ∨ ¬¬px
3. WLPO↔ ∀X.∀(p : X → P). Sp→ ∀x. px ∨ ¬px

In our formulation, LLPO is the Gödel-Dummet rule for Σ0
1 propositions. It can also be

formulated as Σ0
1 or S De Morgan rule (2, 3 in the following Lemma), S-DGP (4), or as a

double negation elimination principle on S relations into booleans (5):

Lemma 34. The following are equivalent:
1. LLPO
2. ∀fg : N→ B. ¬((∃n.fn = true) ∧ (∃n.gn = true))→ ¬(∃n.fn = true) ∨ ¬(∃n.gn = true)
3. ∀X.∀(p q : X → P). Sp→ Sq → ∀x. ¬(px ∧ qx)→ ¬px ∨ ¬qx
4. ∀X.∀(p : X → P). Sp→ ∀xy. (px→ py) ∨ (py → px)
5. ∀X.∀(R : X → B→ P). SR→ ∀x. ¬¬(∃b. Rxb)→ ∃b. Rxb
6. ∀f. (∀nm.fn = true→ fm = true→ n = m)→ (∀n.f(2n) = false) ∨ (∀n.f(2n+ 1) = false)

We define the principle of finite possibility as PFP := ∀f.∃g. (∀n. fn = false)↔ (∃n. gn =
true). PFP unifies WLPO and LLPO:

Fact 35. WLPO↔ LLPO ∧ PFP

A principle unifying the classical axioms with their counterparts for Σ0
1 is Kripke’s schema

KS := ∀P : P.∃f : N→ B. P ↔ ∃n. fn = true:

Fact 36. LEM→ KS

Fact 37. Given KS we have LPO→ LEM, WLPO→WLEM, and LLPO→ DGP.

KS could be strengthened to state that every predicate is semi-decidable (to which KS is
equivalent using ACN,N→N). The strengthening would be incompatible with CT.

In general, the compatibility of classical logical axioms (without assuming choice principles)
with CT seems open. We conjecture that Coq’s restriction preventing large elimination
principles for non-sub-singleton propositions makes LEM and CT consistent in Coq.

8 Axioms of Russian Constructivism

The Russian school of constructivism morally identifies functions with computable functions,
sometimes assuming CT explicitly. Another axiom considered valid is Markov’s principle:

MP := ∀f : N→ B. ¬¬(∃n. fn = true)→ ∃n. fn = true

Markov’s principle is consistent with CT [43] and follows from LPO:

Fact 38. LPO↔WLPO ∧MP
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Corollary 39. LPO→ MP.
It seems likely that the converse is not provable: There is a logic where MP holds, but not

LPO [24]. As observed by Herbelin [24] and Pedrót and Tabareau [36], IP ∧MP yields LPO:

Lemma 40. MP→ IP→ LPO
Proof. Given f : N → B there is n0 : N s.t. ∀k. fk = true → fn0 = true using MP and IP:
By MP, ¬¬(∃k. fk = true) → ∃n. fn = true and by IP, ∃n.¬¬(∃k.fk = true) → fn = true,
which suffices. Now fn0 = true↔ ∃n. fn = true and LPO follows. J

A nicer factorisation would be to prove IP→WLPO, but the implication seems unlikely.

Lemma 41. The following are equivalent:
1. MP
2. ∀X.∀p : X → P. Sp→ ∀x. ¬¬px→ px

3. ∀X.∀p : X → P. Sp→ Sp→ ∀x. px ∨ ¬px
4. ∀X.∀p : X → P. Sp→ Sp→ Dp
5. ∀X.∀(R : X → B→ P). SR→ ∀x. ¬¬(∃b. Rxb)→ ∃b. Rxb

Proof. 1→ 2 is immediate.
2→ 3: Since S is closed under disjunctions and since ¬¬(px ∨ ¬px) is a tautology.
3→ 4 is immediate by Lemma 49 with Rxb := (px ∧ b = true) ∨ (¬px ∧ b = false).
4→ 1: Let ¬¬(∃n.fn = true). Let p(x : N) := ∃n.fn = true. Now p is semi-decided by
λx.f , p by λxn.false, and p0 ∨ ¬p0 by 4. One case is easy, the other contradictory. J

Note that 4 is often called “Post’s theorem”. 1↔ 3↔ 4 is already discussed in [14]. 5 is
dual to Lemma 34 (5). Replacing Sp with Sp in 2 does however not result in an equivalent
of LLPO, but turns 2 into an assumption-free fact. While in general Sp↔ Sp does not hold
it seems possible that they can be exchanged in 3 and 4, but we are not aware of a proof.

9 Choice Axioms

We consider the axioms of choice AC, unique choice AUC, dependent choice ADC, and
countable choice ACC. ACN,N and ACN→N,N are often called AC0,0 and AC1,0 in the literature.

ACX,Y := ∀R : X → Y → P.(∀x.∃y.Rxy)→ ∃f : X → Y.∀x. Rx(fx)
AUCX,Y := ∀R : X → Y → P.(∀x.∃!y.Rxy)→ ∃f : X → Y.∀x. Rx(fx)

ADCX := ∀R : X → X → P.(∀x.∃x′.Rxx′)→ ∀x0.∃f : N→ X.f0 = x0 ∧ ∀n. R(fn)(f(n+ 1)))
AC := ∀XY : T. ACX,Y AUC := ∀XY. AUCX,Y ADC := ∀X : T. ADCX ACC := ∀X : T. ACN,X

Fact 42. ACX,X → ADCX , ACX,Y → AUCX,Y , ADC→ ACC, ACC→ ACN,N, and ACN→N,N → ACN,N.

The following well-known fact is due to Diaconescu [10] and Myhill and Goodman [22]:

Fact 43. AC→ Fext→ Pext→ LEM
Given that ACN→N,N turns CT into CTΣ, and that EA↔ ΣT.CTT we have:

Fact 44. ACN→N,N → Fext→ EA→ ⊥
We will later see that LLPO ∧ ACN,N implies weak Kőnig’s lemma, which is incompatible

with KT. Already now we can prove that WLPO ∧ AUCN,B is incompatible with EA:
Fact 45. AUCN,B → (∀n : N. pn ∨ ¬pn)→ Dp

Lemma 46. WLPO→ AUCN,B → EA→ DK0

Proof. WLPO implies ∀n.¬K0n∨¬¬K0n. By AUCN,B and the last lemma K0 is decidable. J

Corollary 47. WLPO→ AUCN,B → EA→ ⊥
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9.1 Provable choice axioms
In contrast to predicative Martin-Löf type theory, Coq’s type theory does not prove the
axiom of choice, nor the axioms of dependent and countable choice. This is due to the fact
that arbitrary large eliminations are not allowed. However, recall that a large elimination
principle for the accessibility predicate is provable, resulting in Lemma 1. Using Lemma 1 we
can then prove D-ACX,N for all X, i.e. choice for decidable relations into natural numbers:

Lemma 48. ∀X.∀R : X → N→ P. DR→ (∀x.∃n.Rxn)→ ∃f : X → N.∀x. Rx(fx).

As a consequence and with no further reference to Lemma 1 we can then prove choice
principles for semi-decidable and enumerable relations, i.e. S-ACX,N and E-ACN,X for all X:

Lemma 49. The following two choice principles are provable3:
1. ∀X.∀R : X → N→ P. SR→ (∀x.∃n. Rxn)→ ∃f : X → N.∀x. Rx(fx)
2. ∀X.∀R : N→ X → P. ER→ (∀n.∃x. Rnx)→ ∃f : N→ X.∀n. Rn(fn)

Principle 2 can be relaxed to arbitrary discrete types instead of N, and in particular
S-ACN,B follows from 1. In Appendix A we discuss consequences of the here mentioned
principles with regards to CT for oracles and in the next section S-ACN,B will be central.

10 Axioms on Trees

We have already introduced (decidable) binary trees and Kleene trees in Section 5. We now
give a broader overview and give formulations of LPO, WLPO, LLPO, and MP in terms of
decidable binary trees, following Berger et al. [5].

Fact 50. Let τ be a tree. Then τuv := τ(u++ v) is a tree if and only if τu.

If τu holds we call τu a subtree of τ and τ[b] a direct subtree of τ .

Lemma 51. The following equivalences hold:
1. LPO↔ every tree is bounded or infinite.
2. WLPO↔ every tree is infinite or not infinite.
3. LLPO↔ every infinite tree has a direct infinite subtree.
4. MP↔ if a tree is not infinite it is bounded.
5. MP↔ if a tree has no infinite path it is well-founded.

Recall Fact 25 stating that every bounded tree is well-founded and that every tree with
an infinite path is infinite. The respective converse implications are known as Brouwer’s fan
theorem FAN and weak Kőnig’s lemma WKL respectively:

FAN := Every well-founded decidable binary tree is bounded.
WKL := Every infinite decidable binary tree has an infinite path.

Fact 52. KT→ ¬FAN and KT→ ¬WKL.

Note that FAN is called FAN′∆ in [26] and FAN∆ in [11], and WKL is called WKLD in [15].
Ishihara [26] shows how to deduce FAN from WKL constructively:

3 A formulation of (1) for disjunctions (equivalently: R : X → B→ P) is due to Andrej Dudenhefner and
was received in private communication. (2) was anticipated by Larchey-Wendling [30], who formulated
it for µ-recursively enumerable instead of synthetically enumerable predicates.
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Fact 53. Bounded trees τ have a longest element, i.e. ∃u. τu ∧ ∀v. τv → |v| ≤ |u|.

Lemma 54. For every tree τ there is an infinite tree τ ′ s.t. for any infinite path f of τ ′
∀u. τu→ τ [f0, . . . , f |u|].

Theorem 55. WKL→ FAN

Proof. Let τ be well-founded. By Lemma 54 and WKL, there is f s.t. ∀a. τu→ τ [f0, . . . , f |u|].
Since τ is well-founded there is n s.t. ¬τ [f0, . . . , fn]. Then n is a bound for τ : For u with
|u| > n and τu we have τ [f0, . . . , fn, . . . , f |u|]. But then τ [f0, . . . , fn], contradiction. J

Corollary 56. KT→ ¬WKL.

Berger and Ishihara [4] show that FAN ↔ WKL!, a restriction of WKL stating that
every infinite decidable binary tree with at most one infinite path has an infinite path.
Schwichtenberg [40] gives a more direct construction and mechanises the proof in Minlog.

Berger, Ishihara, and Schuster [5] characterise WKL as the combination of the logical
principle LLPO and the function existence principle S-ACN,B (called Π0

1-ACC∨ in [5]). We
observe that WKL can also be characterised as one particular choice or dependent choice
principle. The proofs are essentially rearrangements of [5, Theorem 27 and Corollary 5].

Theorem 57. The following are equivalent:
1. WKL
2. LLPO ∧ S-ACN,B
3. ∀R : N→ B→ P. SR→ (∀n.¬¬∃b.Rnb)→ ∃f : N→ B.∀n. R n (fn)
4. ∀R : LB→ B→ P. SR→ (∀u.¬¬∃b.Rub)→ ∃f : N→ B.∀n. R [f0, . . . , f(n− 1)] (fn)

Proof. For WKL→ LLPO we use the characterisation 3 of LLPO from Lemma 51. Let τ be
an infinite tree. By WKL there is an infinite path f . Then τ[f0] is a direct infinite subtree.

For WKL → S-ACN,B let R be total and f s.t. ∀nb. Rnb ↔ ∀m.fnbm = false. Define
the tree τu := ∀i < |u|.∀m < |u|. fi(u[i])m = false. Infinity of τ follows from ∀n.∃u.|u| =
n ∧ ∀i < n.Ri(u[i]), proved by induction on n using totality of R. If g is an infinite path of
τ , Rn(gn) follows from ∀m.τ [g0, . . . , g(n+m+ 1)].

2→ 3 is immediate using characterisation 3 of LLPO from Lemma 34.
For 3→ 4 let F : N→ LB and G : LB→ N invert each other.4 Let R : LB→ B→ P and

f be the choice function obtained from 3 for λnb.R(Fn)b. Then λn.f(G(gn)) where g0 := []
and g(Sn) := gn++ [f(G(gn))] is a choice function for R as wanted.

For 4→ 1 let τ be an infinite tree and let dum := ∃v.|v| = m∧τuv, i.e. dum if τu has depth
at least m and in particular τu is infinite iff ∀m.dum. Define Rub := ∀m.du++[b]m∨¬du++[¬Bb].
R is co-semi-decidable (since d is decidable), and ¬Ru true∧¬Ru false is contradictory. Thus
4 yields a choice function f which fulfils τ [f0, . . . , fn] by induction on n. J

11 Continuity: Baire Space, Cantor Space, and Brouwer’s Intuitionism

The total function space N→ N is often called Baire space, whereas N→ B is called Cantor
space. We will from now on write NN and BN for the spaces.

Constructively, one cannot prove that NN and BN are in bijection. However, KT is
equivalent to the existence of a continuous bijection BN → NN with a continuous modulus of
continuity, i.e. a modulus function which is continuous (in the point) itself [11]. Furthermore,
KT yields a continuous bijection NN → BN [3].

4 These so called coding functions is easy to construct even formally using e.g. techniques from [14].
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We call a function F : AN → BN continuous if ∀f : AN.∀n : N.∃L : LN.∀g :
AN. (map f L = map g L) → Ffn = Fgn. A function M : AN → N → LN is called the
modulus of continuity for F if ∀n : N.∀fg : AN. map f (Mfn) = map g (Mfn)→ Ffn = Fgn.
We define:

Homeo(AN, BN) := ∃F : AN → BN.∃M. M is a continuous modulus of continuity for F

We start by proving that KT↔ Homeo(BN,NN). To do so, we say that u++ [b] is a leaf
of a Kleene tree τK if τKu, but ¬τK(u++ [b]).

Fact 58. For every τK , there is an injective enumeration ` : N→ LB of the leaves of τK .

We define F (f : N → N)n := (`(f0) ++ · · · ++ `(f(n + 1)))[n]. Since leaves cannot be
empty, the length of the accessed list is always larger than n and F is well-defined.

Lemma 59. F is injective w.r.t. ≡
NB

and ≡
NN
.

Lemma 60. F is continuous with continuous modulus of continuity.

Lemma 61. The following hold for a Kleene tree τK :
1. There is a function `−1 : LB→ N s.t. for all leafs l, `(`−1l) = l.
2. For all l s.t. ¬τK l there exists l′ v l s.t. l′ is a leaf of τK .
3. There is pref : (N→ B)→ LB s.t. pref g is a leaf of τK and ∃n. pref g = map g [0, . . . , n].

We can now define the inverse as G g n := `−1(pref (nxtng)) where nxt g n := g(n+|pref g|).

Lemma 62. F (G g) ≡N→B g

Lemma 63. G is continuous with continuous modulus of continuity.

The following proof is due to Diener [11, Proposition 5.3.2].

Lemma 64. Homeo(BN,NB)→ KT

Proof. Let F be a bijection with continuous modulus of continuity M . Then τu := ∀0 <
i ≤ |u|.∃k < i.k ∈M(λn.if l[n] is Some b then b else false) 0 is a Kleene tree. J

Theorem 65. KT↔ Homeo(BN,NN) and KT→ Homeo(NN,BN).

Deiser [9] proves in a classical setting that Homeo(NN,BN) holds. It would be interesting
to see whether the proof can be adapted to a constructive proof WKL→ Homeo(NN,BN).

We have already seen that CT is inconsistent with FAN. Besides FAN, in Brouwer’s
intuitionism the continuity of functionals NN → N is routinely assumed:

Cont := ∀F : (N→ N)→ N. ∀f : N→ A.∃L : LN.∀g : N→ A. (map f L = map g L)→ Ff ≡B Fg

Since every computable function is continuous, we believe Cont to be consistent with CT.
Combining Cont with ACN→N,N yields Brouwer’s continuity principle,5 called WC-N in [46]:

WC-N := ∀R : (N→ N)→ N→ P.(∀f.∃n.Rfn)→ ∀f.∃Ln.∀g. map f L = map g L→ Rgn

5 But note that Cont→ ACN→N,N → ⊥, since the resulting modulus of continuity function allows for the
construction of a non-continuous function [13].
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Theorem 66. WC-N→ Cont

WC-N is inconsistent with CT, since the computability relation ∼ is not continuous:

Theorem 67. WC-N→ CT→ ⊥

Proof. Recall that if two functions have the same code they are extensionally equal. By CT,
λfc.c ∼ f is a total relation. Using WC-N for this relation and λx. 0 yields a list L and a
code c s.t. ∀g. map g L = [0, . . . , 0]→ c ∼ g.

The functions λx. 0 and λx. if x ∈ L then 0 else 1 both fulfil the hypothesis and thus
have the same code – a contradiction since they are not extensionally equal. J

12 Conclusion

In this paper we surveyed the known connections of axioms in Coq’s type theory, a constructive
type theory with a separate, impredicative universe of propositions, with a special focus on
Church’s thesis CT and formulations of axioms in terms of notions of synthetic computability.
Furthermore, all results are mechanised in the Coq proof assistant.

In constructive mathematics, countable choice is often silently assumed, as critised e.g. by
Richman [38,39]. In contrast, constructive type theory with a universe of propositions seems
to be a suitable base system for matters of constructive (reverse) mathematics sensitive
to applications of countable choice. Due to the separate universe of propositions, such a
constructive type theory neither proves countable nor dependent choice, allowing equivalences
like the one in Theorem 57 to be stated sensitively to choice. We conjecture that Lemma 49
deducing S-ACX,N and E-ACN,X directly from D-ACX,N cannot be significantly strengthened.
The proof of D-ACX,N in turn crucially relies on a large elimination principle for ∃n. fn = true
(Lemma 1). The theory of [5] proves D-ACN,B and thus likely also S-ACN,B.

Predicative Martin-Löf type theory proves AC and type theories with propositional
truncation and a semantic notion of (homotopy) propositions prove AUCN,B, thus LEM
suffices to disprove CT for both these flavours of type theory. Based on the current state of
knowledge in the literature it seems likely that S-ACN,B and LEM together do not suffice to
disprove CT, which seems to require at least classical logic of the strength of LLPO and a
choice axiom for co-semi-decidable predicates. Thus we conjecture that a consistency proof
of e.g. LEM ∧ CT might be possible for Coq’s type theory.

Another advantage of basing constructive investigations on constructive type theory
is that implementations of type theory in proof assistants already exist. For this paper,
mechanising the results in Coq was tremendously helpful in keeping track of all details. For
example, many of the presented proofs are very sensitive to small changes in formulations,
and Coq actually helped in understanding the proofs and getting them right.

Besides consistency, another interesting property of axioms is admissibility. For instance,
Pédrot and Tabareau [36] prove MP admissible in constructive type theory. CT seems to be
admissible in constructive type theory in the sense that for every defined function f : N→ N
one can define a program in a model of computation with the same input output behaviour,
as witnessed by the certifying extraction for a fragment of Coq to the λ-calculus [16]. An
admissibility proof of CT could then serve as a theoretical underpinning of the Coq library of
undecidability proofs [19]. However, any formal admissibility proof would have to deal with
the intricacies of Coq’s type theory. It would be interesting to investigate whether Letouzey’s
semantic proof for the correctness of type and proof erasure [33] can be connected with
the mechanisation of meta-theoretical properties of Coq’s type theory [41] in the MetaCoq
project [42], yielding a mechanised admissibility proof for CT in Coq’s type theory.
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A Modesty and Oracles

Using D-ACN,N from Lemma 48 allows proving a choice axiom w.r.t. models of computation,
observed by Larchey-Wendling [30] and called “modesty” by Forster and Smolka [20].

I Lemma 68. Let T be an abstract computation function. We have

∀c.(∀n.∃mk. Tcnk = Somem)→ ∃f : N→ N.∀n.∃k. T cnk = Some (fn)

That is, if c is the code of a function inside the model of computation which is provably
total, the total function can be computed outside of the model. This modesty principle
simplifies the mechanisation of computability theory in type theory as e.g. in [21]. For
instance, it allows to prove that defining decidability as “a total function in the model of
computation deciding the predicate” and as “a meta-level function deciding the predicate
which is computable in the model of computation” is equivalent.

However, the modesty principle prevents synthetic treatments of computability theory
based on oracles. Traditionally, computability theory based on oracles is formulated using
a computability function Tp, s.t. for p : N → P there exists a code cp representing a total
function s.t. ∀n.(∃k.T cpnk = Some 0)↔ pn.

Synthetically, we would now like to assume an abstract computability function for every
p as “Church’s thesis with oracles”. “Church’s thesis with oracles” implies CT, and we know
that under CT the predicate K0 is not decidable. However, under the presence of D-ACN,N
we can use TK0 and obtain cK0 which can be turned into a decider f : N→ B for K0 using
the choice principle above – a contradiction.

B Coq mechanisation

The Coq mechanisation of the paper comprises 4250 lines of code, with 3300 lines of proofs
and 950 lines of statements and definitions, i.e. 77% proofs. The mechanisation is based on
the Coq-std++ library [45], plus around 1500 additional lines of code with custom extensions
to Coq’s standard library which are shared with the Coq library of undecidability proofs [19].
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The 4250 lines of the main development are distributed as follows: The basics of synthetic
computability (decidablility, semi-decidability, enumerability, many-one reductions) need
1150 lines of code. The mechanisation of Section 3, covering CT, EA, and EPF, comprises
400 lines of code. 120 lines of codes are needed for the undecidability results of Section 4.
Section 5 and Section 10, covering trees and in particular Kleene trees, need 1000 lines of
code. Section 11 on continuity is mechanised in 800 lines. The rest, i.e. Sections 6 to 9, needs
750 lines of code.

No advanced mechanisation techniques were needed. Discreteness and enumerability
proofs for types were eased using type classes to assemble proofs for compound types such
as LB×ON, as already done in [14]. Defining the notions of ≡A→B , ≡A→P, and so on was
made possible by using type classes as well.

The technically most challenging mechanised proofs correspond to Lemmas 59 - 63, i.e.
prove KT → Homeo(BN,NN) ∧ Homeo(NN,BN). For these proofs, lots of manipulation of
prefixes of lists was needed, and while the functions firstn and dropn are defined in Coq’s
standard library, the very useful lemmas of Coq-std++ where needed to make the proofs
feasible.

In the development of this paper, the Coq proof assistant, while also acting as proof
checker, was truly used as an assistant: Lots of proofs were developed and understood
directly while working in Coq rather than on paper, allowing to identify for instance the
equivalent characterisations of LLPO, MP, and WKL as in Lemma 34 (5), Lemma 41 (5),
and Theorem 57 (3,4), which are hard to observe on paper because lots of bookkeeping for
side-conditions would have to be done manually then.
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