“Church’s thesis” (CT) as an axiom in constructive logic states that every total function of type $\mathbb{N} \rightarrow \mathbb{N}$ is computable, i.e. definable in a model of computation. CT is inconsistent both in classical mathematics and in Brouwer’s intuitionism since it contradicts weak König’s lemma and the fan theorem, respectively. Recently, CT was proved consistent for (univalent) constructive type theory.

Since neither weak König’s lemma nor the fan theorem is a consequence of just logical axioms or just choice-like axioms assumed in constructive logic, it seems likely that CT is inconsistent only with a combination of classical logic and choice axioms. We study consequences of CT and its relation to several classes of axioms in Coq’s type theory, a constructive type theory with a universe of propositions which proves neither classical logical axioms nor strong choice axioms.

We thereby provide a partial answer to the question as to which axioms may preserve computational intuitions inherent to type theory, and which certainly do not. The paper can also be read as a broad survey of axioms in type theory, with all results mechanised in the Coq proof assistant.
Kleene noticed that there is a decidable tree predicate with infinitely many nodes but no computable infinite path [28]. If functions and computable functions are identified via \(CT \), a Kleene tree is in conflict with weak König’s lemma \(WKL \) and with Brouwer’s fan theorem.

It is however well-known that \(CT \) is consistent in Heyting arithmetic with Markov’s principle \(MP \) [27] which given \(CT \) states that termination of computation is stable under double negation. Recently, Swan and Uemura [43] proved that \(CT \) is consistent in univalent type theory with propositional truncation and \(MP \).

While predicative Martin-Löf type theory as formalisation of Bishop’s constructive mathematics proves the full axiom of choice \(AC \), univalent type theory usually only proves the axiom of unique choice \(AUC \). But since \(AUC_{\text{N,B}} \) suffices to show that \(LEM \) implies \(\neg CT \), classical logic is incompatible with \(CT \) in both predicative and in univalent type theory.

In the (polymorphic) calculus of (cumulative) inductive constructions, a constructive type theory with a separate, impredicative universe of propositions as implemented by the proof assistant Coq [44], none of \(AC \), \(AUC \), and \(AUC_{\text{N,B}} \) are provable. This is because large eliminations on existential quantifications are not allowed in general [35], meaning one can not recover a function in general from a proof of \(\forall x.\exists y. Rxy \). However, choice axioms as well as \(LEM \) can be consistently assumed in Coq’s type theory [47]. Furthermore, it seems likely that the consistency proof for \(CT \) in [43] can be adapted for Coq’s type theory.

This puts Coq’s type theory in a special position: Since to disprove \(CT \) one needs a (weak) classical logical axiom and a (weak) choice axiom, assuming just classical logical axioms or just choice axioms might be consistent with \(CT \). This paper is intended to serve as a preliminary report towards this consistency question, approximating it by surveying results from intuitionistic logic and constructive reverse mathematics in constructive type theory with a separate universe of propositions, with a special focus on \(CT \) and other axioms based on notions from computability theory. Specifically, we discuss these propositional axioms:

- computational enumerability axioms (\(EA, EPF \)) and Kleene trees (\(KT \)) in Section 5
- extensionality axioms like functional extensionality (\(Fext \)), propositional extensionality (\(Pext \)), and proof irrelevance (\(PI \)) in Section 6
- classical logical axioms like the principle of excluded middle (\(LEM, WLEM \)), independence of premises (\(IP \)), and limited principles of omniscience (\(LPO, WLPO, LLPO \)) in Section 7
- axioms of Russian constructivism like Markov’s principle (\(MP \)) in Section 8
- choice axioms like the axiom of choice (\(AC \)), countable choice (\(ACC, AC_{\text{N,N}}, AC_{\text{N,B}} \)), dependent choice (\(ADC \)), and unique choice (\(AUC, AUC_{\text{N,B}} \)) in Section 9
- axioms on trees like weak König’s lemma (\(WKL \)) and the fan theorem (\(FAN \)) in Section 10
- axioms regarding continuity and Brouwerian principles (\(Homeo, Cont, WC-N \)) in Section 11

The following hyper-linked diagram displays provable implications and incompatible axioms.

![Figure 1](image-url) Overview of results. \(\rightarrow \) are implications, \(\dashrightarrow \) denotes incompatible axioms.
All results in this paper are mechanised in the Coq proof assistant and the proof scripts are accessible at https://github.com/uds-psl/churchs-thesis-coq. The statements in this document are hyperlinked to their Coq proof, indicated by a ♦ symbol.

Outline. Section 2 establishes necessary preliminaries regarding Coq’s type theory and introduces the notions of (synthetic) decidability, enumerability, and semi-decidability. Section 3 introduces CT formally, together with the related synthetic axioms EA and EPF. Section 4 contains undecidability proofs based on CT. Section 5 introduces decidable binary trees and constructs a Kleene tree. The connection of CT to the classes of axioms as listed above is surveyed in Sections 6 to 11. Section 12 contains concluding remarks.

2 Preliminaries

We work in the polymorphic calculus of cumulative inductive constructions as implemented by the Coq proof assistant [44], which we will refer to as “Coq’s type theory”. The calculus is a constructive type theory with a cumulative hierarchy of types T_i (where i is a natural number, but we leave out the index from now on), an impredicative universe of propositions P ⊆ T, and inductive types in every universe. The inductive types of interest in this paper are

\[
\begin{align*}
n &\colon \mathbb{N} ::= 0 \mid s n \\
b &\colon \mathbb{B} ::= \text{false} \mid \text{true} \\
a &\colon \mathbb{O} A ::= \text{None} \mid \text{Some} a \quad \text{where } a : A \\
l &\colon \mathbb{L} A ::= [] \mid a :: l \quad \text{where } a : A \\
A + B &::= \text{inl} a \mid \text{inr} b \quad \text{where } a : A \text{ and } b : B \\
A \times B &::= (a, b) \quad \text{where } a : A \text{ and } b : B
\end{align*}
\]

One can easily construct a pairing function (_ , _): \mathbb{N} \to \mathbb{N} \to \mathbb{N} and for all f : \mathbb{N} \to \mathbb{N} \to X an inverse construction \(\lambda(n, m). f___\text{m}\) of type \(\mathbb{N} \to X\) s.t. \((\lambda(n, m). f___\text{m})(n, m) = f___n\).

We write \(n =_ m\) for the boolean equality decider on \(\mathbb{N}\), and \(\neg___\text{m}\) for boolean negation.

If \(l : \mathbb{L}A\) then \(l[n] : \mathbb{O} A\) denotes the \(n\)-th element of \(l\). If \(n < |l|\) we can assume \(l[n] : A\).

We write \(\forall x : X. Ax\) for both dependent functions and logical universal quantification, \(\exists x : X. Ax\) where \(A : X \to \mathbb{P}\) for existential quantification and \(\Sigma x : X. Ax\) where \(A : X \to \mathbb{T}\) for dependent pairs, with elements \((x, y)\). Dependent pairs can be eliminated into arbitrary types, i.e. there is an elimination principle of type \(\forall p : (\Sigma x. Ax) \to T. (\forall(x : X)(y : Ax). p(x, y)) \to \forall(s : \Sigma x. Ax). ps\). We call such a principle eliminating a proposition into arbitrary types a large elimination principle, following the terminology “large elimination” for Coq’s case analysis construct match [35]. Crucially, Coq’s type theory proves a large elimination principle for the falsity proposition \(\bot\), i.e. explosion applies to arbitrary types: \(\forall A : T. \bot \to A\). In contrast, existential quantification can only be eliminated for \(p : (\exists x. Ax) \to \mathbb{P}\), but the following more specific large elimination principle is provable:

\[\begin{align*}
\mu_{\text{true}} &\colon \forall f : \mathbb{N} \to \mathbb{B}. (\exists n. f n = \text{true}) \to \Sigma n. f n = \text{true} \land \forall m. f m = \text{true} \to m \geq n.
\end{align*}\]

There are various implementations of such a minimisation function in Coq’s Standard Library! One uses a (recursive) large elimination principle for the accessibility predicate, see e.g. [32, §2.7, §4.1, §4.2] and [6, §14.2.3, §15.4] for a contemporary overview how to implement large eliminations principles. We will not need any other large elimination principle in this paper. A restriction of large elimination in general is necessary for consistency of Coq [8]. As a by-product, the computational universe \(\mathbb{T}\) is separated from the logical universe \(\mathbb{P}\), allowing classical logic in \(\mathbb{P}\) to be assumed while the computational intuitions for \(\mathbb{T}\) remain intact.

\[\uparrow \text{Lemma 1. There is a guarded minimisation function } \mu_{\text{true}} \text{ of the following type:}\]

\[\mu_{\text{true}} : \forall f : \mathbb{N} \to \mathbb{B}. (\exists n. f n = \text{true}) \to \Sigma n. f n = \text{true} \land \forall m. f m = \text{true} \to m \geq n.\]

1 The idea was conceived independently by Benjamin Werner and Jean-François Monin in the 1990s.
21:4 Church’s Thesis and Related Axioms in Coq’s Type Theory

We define decidability, (co-)semi-decidability, and enumerability for predicates $p : X \to \mathbb{P}$:

$\mathcal{D}p := \exists f : X \to \mathbb{B}. \forall x. px \leftrightarrow fx = true$ ("p is decidable")

$\mathcal{S}p := \exists f : X \to N \to \mathbb{B}. \forall x. px \leftrightarrow \exists n. fxn = true$ ("p is semi-decidable")

$\mathcal{C}p := \exists f : X \to N \to \mathbb{B}. \forall x. px \leftrightarrow \forall n. fxn = false$ ("p is co-semi-decidable")

$\mathcal{E}p := \exists f : N \to \mathbb{O}X. \forall x. px \leftrightarrow \exists n. fxn = Some x$ ("p is enumerable")

2.1 Partial Functions

All definable functions in type theory are total by definition. To model partiality, one often resorts to functional relations $R : A \to B \to \mathbb{P}$ or step-indexed functions $A \to N \to \mathbb{O}B$, as for instance pioneered by Richman [37] in constructive logic, see e.g. [12] for a comprehensive overview.

For our purpose, we simply assume a type $\text{part } A$ for $A : T$ and a definedness relation $\vdash : \text{part } A \to A \to \mathbb{P}$ and write $A \to \text{part } B$ for $A \to \text{part } B$. We assume monadic structure for part (ret and $\gg=$), an undefined value (undef), a minimisation operation (μ), and a step-indexed evaluator (seval). The operations and their specifications are listed in Figure 2.

2.2 Equivalence relations on functions

Besides intensional equality ($=$), we will consider other more extensional equivalence relations in this paper. For instance, extensional equality of functions f,g ($\forall x. fx = gx$), extensional equivalence of predicates p,q ($\forall x. px \leftrightarrow qx$), or range equivalence of functions f,g ($\exists y. fy = x$). We will denote all of these equivalence relations with the symbol \equiv and indicate what is meant by an index. For discrete X (e.g. N, \mathbb{ON}, \mathbb{LB}, ...), \equiv_x denotes equality, \equiv_y denotes logical equivalence, $\equiv_{a \to b}$ denotes an extensional lift of \equiv_b, $\equiv_{A \to B}$ denotes extensional equivalence, and $\equiv_{\mathbb{O}A}$ denotes range equivalence.

Assuming the existence of surjections $A \to (A \to B)$ may or may not be consistent, depending on the particular equivalence relation. We introduce the notion of surjection w.r.t. \equiv_b as $\forall b : B. \exists a : A. fa \equiv_b b$. We call a function $f : A \to B$ an injection w.r.t. \equiv_a and \equiv_b if $\forall a_1 a_2. fa_1 \equiv_b fa_2 \to a_1 \equiv_A a_2$ and a bijection if it is an injection and surjection.

One formulation of Cantor’s theorem is that there is no surjection $N \to (N \to N)$ w.r.t. $\equiv_\mathbb{O}$.

However, the same proof can be used for the following strengthening of Cantor’s theorem:

\begin{figure}
\begin{center}
\begin{tabular}{|c|}
\hline
\textbf{Fact 2 (Cantor). There is no surjection $N \to (N \to N)$ w.r.t. $\equiv_{\mathbb{O}N}$.} \\
\hline
\end{tabular}
\end{center}
\end{figure}

2.3 Decidability, Semi-decidability, Enumerability, Reducibility

We define decidability, (co-)semi-decidability, and enumerability for predicates $p : X \to \mathbb{P}$:
Although all notions are defined on unary predicates, we use them on n-ary relations via (implicit) uncurrying. We write \overline{p} for the complement $\lambda x. \neg p x$ of p. We call a type X discrete if its equality relation $=_X$ is decidable and enumerable if the predicate $\lambda x. \top$ is enumerable.

Traditionally, propositions P s.t. $P \iff (\exists n. f n = \text{true})$ for some f are often called Σ_0^1 or “simply existential”, and P s.t. $P \iff (\forall n. f n = \text{false})$ are called Π_0^1 or “simply universal”. Semi-decidable predicates are pointwise Σ_0^1, and co-semi-decidable predicates are pointwise Π_0^1. Note that neither $Sp \rightarrow \overline{Sp}$ nor the converse is provable, only the following connections:

Lemma 3. The following hold:
1. Decidable predicates are semi-decidable and co-semi-decidable.
2. Semi-decidable predicates on enumerable types are enumerable.
3. Enumerable predicates on discrete types are semi-decidable.
4. The complement of semi-decidable predicates is co-semi-decidable.

Lemma 4. Decidable predicates are closed under complementation. Decidable, enumerable, and semi-decidable predicates are closed under (pointwise) conjunction and disjunction.

3 Church’s thesis in type theory

Church’s thesis for total functions (CT) states that every function of type $\mathbb{N} \rightarrow \mathbb{N}$ is algorithmic. Thus CT is a relativisation of the function space $\mathbb{N} \rightarrow \mathbb{N}$ w.r.t. a given (Turing-complete) model of computation, reminiscent of the axiom $V = L$ in set theory [29].

We first define CT by abstracting away from a concrete model of computation and work with an abstract model of computation, consisting of an abstract computation function $Tcxn$ (with $T : \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N} \rightarrow 2^\mathbb{N}$), assigning to a code c (to be interpreted as the code of a partial recursive function in a model of computation), an input number x, and a step index n an output number y if the code terminates in n steps on x with value y. The function Tcx is assumed to be monotonic, i.e. increasing the step index does not change the potential value:

$$Tcx_{n_1} = \text{Some } y \rightarrow \forall n_2 \geq n_1. Tcx_{n_2} = \text{Some } y.$$

Based on T we define a computability relation between $c : \mathbb{N}$ and $f : \mathbb{N} \rightarrow \mathbb{N}$:

$$c \sim f := \forall x. \exists n. Tcxn = \text{Some } (fx).$$

Since T is monotonic, \sim is extensional, i.e. $n \sim f_1 \rightarrow n \sim f_2 \rightarrow \forall x. f_1 x = f_2 x$. We define Church’s thesis for total functions relative to an abstract computation function T:

$$\text{CT}_T := \forall f : \mathbb{N} \rightarrow \mathbb{N}. \exists n : \mathbb{N}. n \sim f$$

Note that CT_T is clearly not consistent for every choice of T. If we write CT without index, we mean T to be the step-indexed evaluation function of a concrete, Turing-complete model of computation. For the mechanisation we could for instance pick the equivalent models of Turing machines [17], λ-calculus [21], μ-recursive functions [30], or register machines [18,31]. It seems likely that the consistency proof of CT in [43] can be adapted to Coq.

Since specific properties of the model of computation are not needed, we develop and mechanise all results of this paper parameterised in an arbitrary T. Thus, we could also state all results in terms of a fully synthetic Church’s thesis axiom $\Sigma_T.\text{CT}_T$.

Fact 5. $\text{CT} \rightarrow \Sigma_T.\text{CT}_T$

Note that the implication is strict: An abstract computation function does not rule out oracles for e.g. the halting problem of Turing machines, whereas CT – with T defined in terms of a standard, Turing-complete model of computation – proves the undecidability of the Turing machine halting problem.
3.1 Bauer's enumerability axiom EA

In proofs of theorems with CT$_T$ as assumption, T can be used as replacement for a universal machine. Bauer [1] develops computability theory synthetically using the axiom “the set of enumerable sets of natural numbers is enumerable”, which is equivalent to ΣT.CT$_T$ and thus strictly weaker than CT, but can also be used in place of a universal machine. We introduce Bauer's axiom in our setting as EA' and immediately introduce a strengthening EA s.t. $(\Sigma T$.CT$_T$) \leftrightarrow EA and EA \rightarrow EA':

$$EA' := \Sigma W : N \rightarrow (N \rightarrow \mathcal{P}). \forall p : N \rightarrow \mathcal{P}. \exists c. Wc \equiv_{\text{ran}} p$$

That is, EA' states that there is an enumerator W of all enumerable predicates, up to extensionality. In contrast, EA poses the existence of an enumerator of all possible enumerators, up to range equivalence:

$$EA := \Sigma \varphi : N \rightarrow (N \rightarrow \mathbb{ON}). \forall f : N \rightarrow \mathbb{ON}. \exists c. \varphi c \equiv_{\text{ran}} f$$

That is, φ is a surjection w.r.t. range equivalence $f \equiv_{\text{ran}} g$, where $\varphi c \equiv_{\text{ran}} f \leftrightarrow \forall x.(\exists n. \varphi cn = \text{Some } x) \leftrightarrow (\exists n. fn = \text{Some } x)$.

Note the two different roles of natural numbers in the two axioms: If we would consider predicates over a general type X we would have $W : N \rightarrow (X \rightarrow \mathcal{P})$ and $\varphi : N \rightarrow (N \rightarrow \mathbb{ON})$, i.e. W would be an enumerable predicate and φc an enumerator of a predicate $X \rightarrow \mathcal{P}$.

We start by proving CT$_T$ \rightarrow EA by constructing φ from an arbitrary T:

$$\varphi c(n, m) := \text{if } Tcnm \text{ is Some } x \text{ then } Sx \text{ else } 0$$

Lemma 6. If CT$_T$ then $\forall f : N \rightarrow \mathbb{ON}. \exists c. \varphi c \equiv_{\text{ran}} f$.

Proof. The direction from left to right is based on the fact that if $Tcxn_1 = \text{Some } y_1$ and $Tcxn_2 = \text{Some } y_2$ then $y_1 = y_2$. The other direction is straightforward. □

Theorem 7. $\forall T. \text{CT}_T \rightarrow \text{EA}$

We now prove EA \rightarrow EA' by constructing W from φ: $Wcx := \exists n. \varphi cn = \text{Some } x$.

Lemma 8. If EA then $\forall p : N \rightarrow \mathcal{P}. \exists c. Wc \equiv_{\text{ran}} p$.

Proof. $\exists c. Wc \equiv_{\text{ran}} p$ (def. \exists)

$\exists c. \forall x. px \equiv \exists n. fn = \text{Some } x$ (EA)

$\exists c. Wc \equiv_{\text{ran}} p$ (def. \equiv_{ran}) □

Theorem 9. EA \rightarrow EA'

3.2 Richman's Enumerability of Partial Functions EPF

Richman [37] introduces a different purely synthetic axiom as replacement for a universal machine and assumes that "partial functions are countable", which is equivalent to EA.

$$\text{EPF} := \Sigma e : N \rightarrow (N \rightarrow \mathcal{N}). \forall f : N \rightarrow \mathcal{N}. \exists n. \text{en} \equiv_{\text{ran}} f$$

Theorem 10. EPF \rightarrow EA

Proof. Let e be given. $\varphi c(n, m) := \text{seval } (ecn) m$ is the wanted enumerator. □
Theorem 11. \(\text{EA} \rightarrow \text{EPF} \)

Proof. Let \(\varphi \) be given. Then

\[
ecx := (\mu (\lambda n. \text{if } \varphi cn \text{ is Some } (x', y') \text{ then } x =_\mathbb{N} x' \text{ else false})) > >
\lambda n. \text{if } \varphi cn \text{ is Some } (x', y') \text{ then } \text{ret } y' \text{ else undef}
\]

is the wanted enumerator.

EPF implies the fully synthetic version of CT:

Lemma 12. \(\text{EPF} \rightarrow \Sigma CT \)

Proof. Assume \(c : \mathbb{N} \rightarrow (\mathbb{N} \rightarrow \mathbb{N}) \) surjective w.r.t. \(\equiv_{\mathbb{N} \rightarrow \mathbb{N}} \). Define \(Tcn := \text{seval} (ecx) n \). It is straightforward to prove that \(T \) is monotonic and that CT holds.

The axiom EPF can be weakened to cover just boolean functions:

\[
\text{EPF}_B := \Sigma e : \mathbb{N} \rightarrow (\mathbb{N} \rightarrow \mathbb{B}) \forall f : \mathbb{N} \rightarrow \mathbb{B}. \exists n. en \equiv_{\mathbb{N} \rightarrow \mathbb{B}} f
\]

Lemma 13. \(\text{EPF} \rightarrow \text{EPF}_B \)

The reverse direction seems not to be provable.

4 Halting Problems

For this section we assume EA, i.e. \(\varphi : \mathbb{N} \rightarrow (\mathbb{N} \rightarrow \mathbb{N}) \) surjective w.r.t. \(\equiv_{\mathbb{N} \rightarrow \mathbb{N}} \). Define \(Tcn := \text{seval} (ecx) n \). It is straightforward to prove that \(T \) is monotonic and that CT holds.

Recall Lemma 8 stating that \(\forall p : \mathbb{N} \rightarrow \mathbb{P}. \exists c. Wc \equiv_{\mathbb{N} \rightarrow \mathbb{P}} p \).

We define \(K_0n := Wnn \) and prove our first negative result:

Lemma 14. \(\neg E K_0 \)

Proof. Assume \(E (\lambda n. \neg Wnn) \). By specification of \(W \) there is \(c \) s.t. \(\forall n. Wcn \leftrightarrow \neg Wnn \). In particular, \(Wcc \leftrightarrow \neg Wcc \), which is contradictory.

Corollary 15. \(\neg D K_0, \neg D K_0', \neg D W \) and \(\neg D W \).

Intuitively, \(K_0 \) can be seen as analogous to the self-halting problem: \(K_0n \) states that \(n \) considered as an enumerator outputs itself in its range (rather than halting on itself).

It is also easy to show that \(W \) and thus \(K_0 \) are enumerable:

Lemma 16. \(E W \)

Proof. Via \(f(n, m) := \text{if } \varphi nm \text{ is Some } k \text{ then Some } (n, k) \text{ else None.} \)

Corollary 17. \(E K_0 \)

Since Bauer [1] bases his development on \(\text{EA}' \), he needs the axiom of countable choice to prove that \(W \) is enumerable, whereas \(\text{EA} \) allows an axiom-free proof of this fact.

Another well-known traditional result is that a problem is enumerable if and only if it many-one reduces to the halting problem \(K \), which can be proved without reference to \(\text{EA} \).

\[
p \preceq_m q := \exists f : X \rightarrow Y. \forall x. px \leftrightarrow q(fx) \quad K(f : \mathbb{N} \rightarrow \mathbb{B}) := \exists n. fn = \text{true}
\]

Fact 18. For all \(p : X \rightarrow \mathbb{P} \), \(p \preceq_m K \leftrightarrow Sp \).
We follow Bauer [2] to construct a Kleene tree. That \(\tau_K \) is a decidable tree is immediate. To show that \(\tau_K \) is infinite let \(k \) be given. We define \(f_0 := [] \) and \(f(Sn) := fn + [if DKn is Some x then x else false] \). We have \(|fn| = n \). In particular, \(|fk| \geq k \) and \(\tau_K(fk) \).

For well-foundedness let \(f : \mathbb{N} \to \mathbb{B} \) be given. There is \(n \) s.t. \(dn \upharpoonright b \) and \(fn \neq b \). Thus there is \(k \) s.t. \(\text{seval} (dn) k = \text{Some} b \). Now \(\neg \tau_K u \) for \(u := [f0, \ldots, f(n + k)] \).
6 Extensionality Axioms

Coq’s type theory is intensional, i.e. \(f \equiv \lambda x. n \) and \(f = g \) do not coincide. Extensionality properties can however be consistently assumed as axioms. In this section we briefly discuss the relationship between CT and functional extensionality \(\text{Fext} \), propositional extensionality \(\text{Pext} \) and proof irrelevance \(\Pi \), defined as follows:

\[
\text{Fext} := \forall AB \forall fg : A \to B. (\forall a. fa = ga) \to f = g
\]

\[
\text{Pext} := \forall PQ : \mathbb{P}. (P \leftrightarrow Q) \to P = Q
\]

\[
\Pi := \forall P : \mathbb{P}. \forall(x_1, x_2 : P). x_1 = x_2
\]

\[\blacktriangleleft\text{Fact 28.} \text{Pext} \to \Pi\]

Swan and Uemura [43] prove that intensional predicative Martin-Löf type theory remains consistent if CT, the axiom of univalence, and propositional truncation are added. Since functional extensionality and propositional extensionality are a consequence of univalence, and propositions are semantically defined as exactly the irrelevant types, \(\text{Fext} \), \(\text{Pext} \), and \(\Pi \) hold in this extension of type theory. It seems likely that the consistency result can then be adapted to Coq’s type theory, yielding a consistency proof for CT with \(\text{Fext} \), \(\text{Pext} \), and \(\Pi \).

It is however crucial to formulate CT using \(\exists \) instead of \(\Sigma \). The formulation as \(\Sigma \text{CT} := \forall f. \Sigma n. n \sim f \) is inconsistent with functional extensionality \(\text{Fext} \), as already observed in [46].

\[\blacktriangleleft\text{Lemma 29.} \text{CT}_\Sigma \to \text{Fext} \to \bot\]

\[\text{Proof.} \text{Since CT}_\Sigma \text{ implies EA, it suffices to prove that } \lambda f. \forall n. fn = 0 \text{ is decidable by Fact 22. Assume } G : \forall f. \Sigma c. c \sim f \text{ and let } F f := \text{if } \pi_1(Gf) = \pi_1(G(\lambda x.0)) \text{ then } \text{true else false.}
\]

If \(Ff = \text{true} \), then \(\pi_1(Gf) = \pi_1(G(\lambda x.0)) \) and by extensionality of \(\sim \), \(fn = (\lambda x.0)n = 0 \).

If \(\forall n. fn = 0 \), then \(f = \lambda x.0 \) by \(\text{Fext} \), thus \(\pi_1(Gf) = \pi_1(G(\lambda x.0)) \) and \(Ff = \text{false}. \]

7 Classical Logical Axioms

In this section we consider consequences of the law of excluded middle \(\text{LEM} \). Precisely, besides \(\text{LEM} \), we consider the weak law of excluded middle \(\text{WLEM} \), the Gödel-Dummett-Principle \(\text{DGP} \)? and the principle of independence of premises \(\text{IP} \), together with their respective restriction of propositions to the satisfaction of boolean functions, resulting in the limited principle of omniscience \(\text{LPO} \), the weak principle of omniscience \(\text{WLPO} \), and the lesser limited principle of omniscience \(\text{LLPO} \).

\[
\text{LEM} := \forall P : \mathbb{P}. P \lor \neg P
\]

\[
\text{WLEM} := \forall P : \mathbb{P}. \neg \neg P \lor \neg P
\]

\[
\text{DGP} := \forall PQ : \mathbb{P}. (P \lor Q) \lor (Q \lor P)
\]

\[
\text{LLPO} := \forall fg : N \to B. ((\exists n. fn = true) \to (\exists n. gn = true)) \lor ((\exists n. gn = true) \to (\exists n. fn = true))
\]

\[
\text{IP} := \forall P : \mathbb{P}. \forall q : N \to P. (P \to \exists n.qn) \to \exists n. P \lor qn
\]

\[\blacktriangleleft\text{Fact 30.} \text{LEM} \to \text{DGP} \], \(\text{DGP} \to \text{WLEM} \), \(\text{LEM} \to \text{IP} \).

The converses are likely not provable: Diener constructs a topological model where \(\text{DGP} \) holds but not \(\text{LEM} \), and one where \(\text{WLEM} \) holds but not \(\text{DGP} \) [11, Proposition 8.5.3]. Pédrot and Tabareau [36] construct a syntactic model where \(\text{IP} \) holds, but \(\text{LEM} \) does not.

2 We follow Diener [11] in using the abbreviation \(\text{DGP} \) instead of \(\text{GDP} \).
Fact 31. LPO \leftrightarrow WLPO and WLPO \rightarrow LLPO.

The converses are likely not provable: Both implications are strict over IZF with dependent choice [23, Theorem 5.1].

LPO is Σ^0_1-LEM and WLPO is simultaneously Σ^0_1-WLEM and Π^0_1-LEM, due to the following:

Fact 32. $(\forall n. fn = \text{false}) \leftrightarrow \neg (\exists n. fn = \text{true})$

Both can also be formulated for predicates:

Fact 33. The following equivalences hold:

1. LPO $\leftrightarrow \forall X. \forall (p : X \rightarrow \mathbb{B}). \exists p \rightarrow \forall x. px \lor \neg px$
2. WLPO $\leftrightarrow \forall X. \forall (p : X \rightarrow \mathbb{B}). \forall x. \neg(px \land qx) \rightarrow \neg px \lor \neg qx$
3. WLPO $\leftrightarrow \forall X. \forall (p : X \rightarrow \mathbb{B}). \exists px \lor \neg px \lor \neg qx$

In our formulation, LLPO is the Gödel-Dummet rule for Σ^0_1 propositions. It can also be formulated as Σ^0_1 or \mathcal{S} De Morgan rule (2, 3 in the following Lemma), \mathcal{S}-DGP (4), or as a double negation elimination principle on \mathcal{S} relations into booleans (5):

Lemma 34. The following are equivalent:

1. LLPO
2. $\forall f g : N \rightarrow \mathbb{B}. \neg((\exists n. fn = \text{true}) \land (\exists n. gn = \text{true})) \rightarrow \neg (\exists n. fn = \text{true}) \lor \neg (\exists n. gn = \text{true})$
3. $\forall X. \forall (p q : X \rightarrow \mathbb{B}). \forall sp \rightarrow \forall x. px \lor \neg px \lor \neg qx$
4. $\forall X. \forall (p : X \rightarrow \mathbb{B}). \forall sp \rightarrow \forall x. (\neg px \lor qx) \lor (px \lor \neg qx)$
5. $\forall X. \forall (R : X \rightarrow \mathbb{B} \rightarrow \mathbb{B}). \forall x. \neg (\exists b. Rxb) \rightarrow \exists b. Rxb$
6. $\forall f. ((\forall n. fn = \text{true}) \rightarrow \neg f n = \text{true}) \rightarrow n = m) \rightarrow (\forall n.f(2n) = \text{false}) \lor (\forall n.f(2n + 1) = \text{false})$

We define the principle of finite possibility as $\text{PFP} := \forall f. (\forall n. fn = \text{false}) \leftrightarrow (\exists n. gn = \text{true})$. PFP unifies WLPO and LLPO:

Fact 35. WLPO \leftrightarrow LLPO \land PFP

A principle unifying the classical axioms with their counterparts for Σ^0_1 is Kripke’s schema $\text{KS} := \forall P : \mathbb{B}. \forall f : N \rightarrow \mathbb{B}. P \leftrightarrow \exists n. fn = \text{true}$.

Fact 36. LEM \rightarrow KS

Fact 37. Given KS we have LPO \rightarrow LEM, WLPO \rightarrow WLEM, and LLPO \rightarrow DGP.

KS could be strengthened to state that every predicate is semi-decidable (to which KS is equivalent using $\text{AC}_{\forall N, n \rightarrow n}$). The strengthening would be incompatible with CT.

In general, the compatibility of classical logical axioms (without assuming choice principles) with CT seems open. We conjecture that Coq’s restriction preventing large elimination principles for non-sub-singleton propositions makes LEM and CT consistent in Coq.

8 Axioms of Russian Constructivism

The Russian school of constructivism morally identifies functions with computable functions, sometimes assuming CT explicitly. Another axiom considered valid is Markov’s principle:

$$\text{MP} := \forall f : N \rightarrow \mathbb{B}. \neg(\exists n. fn = \text{true}) \rightarrow \exists n. fn = \text{true}$$

Markov’s principle is consistent with CT [43] and follows from LPO:

Fact 38. LPO \leftrightarrow WLPO \land MP
Corollary 39. LPO \implies MP.

It seems likely that the converse is not provable: There is a logic where MP holds, but not LPO [24]. As observed by Herbelin [24] and Pedrót and Tabareau [36], IP \land MP yields LPO:

Lemma 40. MP \implies IP \implies LPO

Proof. Given $f : \mathbb{N} \to \mathbb{B}$ there is $n_0 : \mathbb{N}$ s.t. $\forall k. fk = \text{true} \implies fn_0 = \text{true}$ using MP and IP: By MP, $\neg\neg(\exists k. fk = \text{true}) \implies \exists n. fn = \text{true}$ and by IP, $\exists n. \neg\neg(\exists k. fk = \text{true}) \implies fn = \text{true}$, which suffices. Now $fn_0 = \text{true} \iff \exists n. fn = \text{true}$ and LPO follows.

A nicer factorisation would be to prove IP \implies WLPO, but the implication seems unlikely.

Lemma 41. The following are equivalent:

1. MP
2. $\forall X.\forall p : X \to \mathbb{P}. S p \to \forall x. \neg\neg px \to px$
3. $\forall X.\forall p : X \to \mathbb{P}. S p \to \forall x. px \to \neg px$
4. $\forall X.\forall p : X \to \mathbb{P}. S p \to \delta p \to D p$
5. $\forall X. \forall (R : X \to \mathbb{B} \to \mathbb{P}). SR \to \forall x. \neg\neg (\exists b. Rxb) \implies \exists b. Rxb$

Proof. $\iff 1$ is immediate.

$2 \to 3$: Since S is closed under disjunctions and since $\neg\neg(\neg px \land \neg px)$ is a tautology.

$3 \to 4$ is immediate by Lemma 49 with $Rxb := (px \land b = \text{true}) \lor (\neg px \land b = \text{false})$.

$4 \to 1$: Let $\neg\neg(\exists n. fn = \text{true})$. Let $p(x : \mathbb{N}) := \exists n. fn = \text{true}$. Now p is semi-decided by $\lambda x.f, \bar{p}$ by $\lambda x.n.\text{false}$, and $\emptyset \lor \neg\emptyset$ by 4. One case is easy, the other contradictory.

9 Choice Axioms

We consider the axioms of choice AC, unique choice AUC, dependent choice ADC, and countable choice ACC. AC_{0,N} and AC_{n→N,0} are often called AC_{0,0} and AC_{1,0} in the literature.

$AC_{X,Y} := \forall R : X \to Y \to \mathbb{P}. \forall x.\exists y.R xy \to \exists f : X \to Y.\forall x. R x(f x)$

$AUC_{X,Y} := \forall R : X \to Y \to \mathbb{P}. \forall x.\exists y.R xy \to \exists f : X \to Y.\forall x. R x(f x)$

$ADC_{X} := \forall R : X \to X \to \mathbb{P}. \forall x.\exists y.\exists z. R xy \to \forall x.\exists y.\exists z. f : X \to X. f0 = x0 \land \forall n. R(f n)(f(n + 1)))$

$AC := \forall XY : T. AUC := \forall XY. AUC_{X,Y} \quad ADC := \forall X : T. ADC_{X} \quad ACC := \forall X : T. AC_{X,N}$

Fact 42. $AC_{X,X} \implies ADC_{X,0} \implies AUC_{X,Y}

The following well-known fact is due to Diaconescu [10] and Myhill and Goodman [22]:

Fact 43. AC \implies Fext \implies Fext \implies LEM

Given that AC_{n→N,0} turns CT into CT_{T}, and that EA $\iff \Sigma T.\text{CT}_{T}$ we have:

Fact 44. AC_{n→N,0} \implies Fext \implies EA $\implies \bot$

We will later see that LPO \land AC_{N,N} implies weak Kőnig’s lemma, which is incompatible with KT. Already now we can prove that WLPO \land AUC_{N,B} is incompatible with EA:

Fact 45. AUC_{N,B} $\implies (\forall n : \mathbb{N}. pn \lor \neg pn) \implies DP$

Lemma 46. WLPO \implies AUC_{N,B} \implies EA $\implies DP$

Proof. WLPO implies $\forall n.\neg K_0 n \lor \neg K_0 n$. By AUC_{N,B} and the last lemma K_0 is decidable.

Corollary 47. WLPO \implies AUC_{N,B} \implies EA $\implies \bot
9.1 Provable choice axioms

In contrast to predicative Martin-Löf type theory, Coq’s type theory does not prove the axiom of choice, nor the axioms of dependent and countable choice. This is due to the fact that arbitrary large eliminations are not allowed. However, recall that a large elimination principle for the accessibility predicate is provable, resulting in Lemma 1. Using Lemma 1 we can then prove $D\cdot AC_X, N$ for all X, i.e. choice for decidable relations into natural numbers:

\[\forall X. D : X \rightarrow N \rightarrow P \rightarrow (\forall x. \exists n. Rx) \rightarrow \exists f : X \rightarrow N. \forall x. Rx(fx). \]

As a consequence and with no further reference to Lemma 1 we can then prove choice principles for semi-decidable and enumerable relations, i.e. $S\cdot AC_X, N$ and $E\cdot AC_N, X$ for all X:

\[\forall X. \forall R : X \rightarrow N \rightarrow P. \exists f : X \rightarrow N. \forall x. Rx(fx). \]

Principle 2 can be relaxed to arbitrary discrete types instead of N, and in particular $S\cdot AC_{N,B}$ follows from 1. In Appendix A we discuss consequences of the here mentioned principles with regards to CT for oracles and in the next section $\mathcal{S}\cdot AC_{N,B}$ will be central.

10 Axioms on Trees

We have already introduced (decidable) binary trees and Kleene trees in Section 5. We now give a broader overview and give formulations of LPO, WLPO, LLPO, and MP in terms of decidable binary trees, following Berger et al. [5].

\[\exists n. \forall x. Rnx \]

Recall Fact 25 stating that every bounded tree is well-founded and that every tree with an infinite path is infinite. The respective converse implications are known as Brouwer’s fan theorem FAN and weak König’s lemma WKL respectively:

\[\text{FAN} := \text{Every well-founded decidable binary tree is bounded.} \]
\[\text{WKL} := \text{Every infinite decidable binary tree has an infinite path.} \]

Fact 52. $\text{KT} \rightarrow \neg \text{FAN}$ and $\text{KT} \rightarrow \neg \text{WKL}$.

Note that FAN is called FAN_Δ in [26] and FAN_Δ in [11], and WKL is called WKL_Δ in [15]. Ishihara [26] shows how to deduce FAN from WKL constructively:

A formulation of (1) for disjunctions (equivalently: $R : X \rightarrow B \rightarrow \mathbb{P}$) is due to Andrej Dudenhefner and was received in private communication. (2) was anticipated by Larchey-Wendling [30], who formulated it for μ-recursively enumerable instead of synthetically enumerable predicates.
Fact 53. Bounded trees τ have a longest element, i.e. $\exists u. \tau u \land \forall v. \tau v \rightarrow |v| \leq |u|$.

Lemma 54. For every tree τ there is an infinite tree τ' s.t. for any infinite path f of τ' $\forall u. \tau u \rightarrow \tau[f_0, \ldots, f|u|]$.

Theorem 55. $\text{WKL} \rightarrow \text{FAN}$

Proof. Let τ be well-founded. By Lemma 54 and WKL, there is f s.t. $\forall a. \tau a \rightarrow \tau[f_0, \ldots, f|u|]$. Since τ is well-founded there is n s.t. $\neg\tau[f_0, \ldots, f_n]$. Then n is a bound for τ: For u with $|u| > n$ and τu we have $\tau[f_0, \ldots, f_n, u]$ and $\tau[f_0, \ldots, f_n]$, contradiction. ▶

Corollary 56. $\text{KT} \rightarrow \neg\text{WKL}$.

Berger and Ishihara [4] show that $\text{FAN} \leftrightarrow \text{WKL}$, a restriction of WKL stating that every infinite decidable binary tree with at most one infinite path has an infinite path. Schwichtenberg [40] gives a more direct construction and mechanises the proof in Minlog.

Berger, Ishihara, and Schuster [5] characterise WKL as the combination of the logical principle LLPO and the function existence principle $\mathfrak{S}-\text{AC}_{\aleph_0, \mathbb{B}}$ (called Π^0_1-ACC^\uparrow in [5]). We observe that WKL can also be characterised as one particular choice or dependent choice principle. The proofs are essentially rearrangements of [5, Theorem 27 and Corollary 5].

Theorem 57. The following are equivalent:

1. WKL
2. $\text{LLPO} \land \mathfrak{S}-\text{AC}_{\aleph_0, \mathbb{B}}$
3. $\forall R : \mathbb{N} \rightarrow \mathbb{B} \rightarrow \mathbb{P}, \mathfrak{S} R \rightarrow (\forall n. \forall i \exists b. Rnb) \rightarrow \exists f : \mathbb{N} \rightarrow \mathbb{B} \forall n. R n (f n)$
4. $\forall R : \text{LB} \rightarrow \mathbb{B} \rightarrow \mathbb{P}, \mathfrak{S} R \rightarrow (\forall u. \forall i \exists b. Rub) \rightarrow \exists f : \mathbb{N} \rightarrow \mathbb{B} \forall n. R [f_0, \ldots, f(n-1)](f n)$

Proof. For WKL \rightarrow LLPO we use the characterisation 3 of LLPO from Lemma 51. Let τ be an infinite tree. By WKL there is an infinite path f. Then $\tau[f_0]$ is a direct infinite subtree.

For WKL $\rightarrow \mathfrak{S}$-$\text{AC}_{\aleph_0, \mathbb{B}}$ let R be total and f s.t. $\forall i n. Rnb \leftrightarrow \forall m. fnbm = \text{false}$. Define the tree $\tau' := (\forall i < |u|. \forall m < |u|. f_i(u[m])m = \text{false})$. Infinity of τ' follows from $\forall n. \exists u. |u| = n \land \forall i < n. Ri(u[i])$, proved by induction on n using totality of R. If g is an infinite path of τ, $Rn(gn)$ follows from $\forall m. \tau'[g_0, \ldots, g(n + m + 1)]$.

$2 \rightarrow 3$ is immediate using characterisation 3 of LLPO from Lemma 34.

For $3 \rightarrow 4$ let $F : \mathbb{N} \rightarrow \text{LB} \rightarrow \mathbb{P}$ and $G : \text{LB} \rightarrow \mathbb{N}$ invert each other. Let $R : \text{LB} \rightarrow \mathbb{B} \rightarrow \mathbb{P}$ and f be the choice function obtained from 3 and $\lambda n. R(Fn)h$. Then $\lambda n. f(G(n))$ where $g_0 := \emptyset$ and $g(Sn) := gn + |f(G(gn))|$ is a choice function for R as wanted.

For $4 \rightarrow 1$ let τ be an infinite tree and let $d_m := \exists v. |v| = m \land \tau v$, i.e. d_m if τ_n has depth at least m and in particular τ_n is infinite if $\forall m. d_m$. Define $Rnb := \forall m. d_n[0]m \lor \neg d_{n + m}$. R is co-semi-decidable (since d is decidable), and $\neg R \land \text{true} \land \neg R \land \text{false}$ is contradictory. Thus 4 yields a choice function f which fulfils $f([0, \ldots, f_n])$ by induction on n.

11 Continuity: Baire Space, Cantor Space, and Brouwer’s Intuitionism

The total function space $\mathbb{N} \rightarrow \mathbb{N}$ is often called Baire space, whereas $\mathbb{N} \rightarrow \mathbb{B}$ is called Cantor space. We will from now on write $\mathbb{N}^\mathbb{N}$ and $\mathbb{B}^\mathbb{N}$ for the spaces.

Constructively, one cannot prove that $\mathbb{N}^\mathbb{N}$ and $\mathbb{B}^\mathbb{N}$ are in bijection. However, KT is equivalent to the existence of a continuous bijection $\mathbb{B}^\mathbb{N} \rightarrow \mathbb{N}^\mathbb{N}$ with a continuous modulus of continuity, i.e. a modulus function which is continuous (in the point) itself [11]. Furthermore, KT yields a continuous bijection $\mathbb{N}^\mathbb{N} \rightarrow \mathbb{B}^\mathbb{N}$ [3].

4 These so called coding functions is easy to construct even formally using e.g. techniques from [14].
We call a function $F : A^N \to B^N$ continuous if $\forall f : A^N. \forall n : N. \exists L : LN. \forall g : A^N. (\text{map } f L = \text{map } g L) \to F(fn = Fgn)$. A function $M : A^N \to N \to LN$ is called the modulus of continuity for F if $\forall n : N. \forall f : A^N. \text{map } f (M fn) = \text{map } g (M fn) \to F(fn = Fgn)$. We define:

$\text{Homeo}(A^N, B^N) := \exists F : A^N \to B^N \exists M. M$ is a continuous modulus of continuity for F

We start by proving that $\text{KT} \leftrightarrow \text{Homeo}(B^N, N^N)$. To do so, we say that $u + [b]$ is a leaf of a Kleene tree τ_K if $\tau_K u$, but $\neg \tau_K(u + [b])$.

Fact 58. For every τ_K, there is an injective enumeration $\ell : N \to \mathbb{L}_B$ of the leaves of τ_K.

We define $F(f : N \to N)n := (\ell(f0) + \cdots + \ell(f(n + 1)))[n]$. Since leaves cannot be empty, the length of the accessed list is always larger than n and F is well-defined.

Lemma 59. F is injective w.r.t. $\equiv_{\mathbb{L}}$ and $\equiv_{\mathbb{L}_B}$.

Lemma 60. F is continuous with continuous modulus of continuity.

Lemma 61. The following hold for a Kleene tree τ_K:
1. There is a function $\ell^{-1} : \mathbb{L}_B \to N$ s.t. for all leaves l, $\ell(\ell^{-1} l) = l$.
2. For all l s.t. $\neg \tau_K l$ there exists $l' \subseteq l$ s.t. l' is a leaf of τ_K.
3. There is pref : $(N \to N) \to \mathbb{L}_B$ s.t. pref g is a leaf of τ_K and $\exists n. \text{pref } g = \text{map } g [0, \ldots, n]$.

We can now define the inverse as $G g n := \ell^{-1}(\text{pref } (\text{nxt}^n g))$ where nxt $g n := g(n + |\text{pref } g|)$.

Lemma 62. $F(G g) \equiv_{n \to n} g$

Lemma 63. G is continuous with continuous modulus of continuity.

The following proof is due to Diener [11, Proposition 5.3.2].

Lemma 64. $\text{Homeo}(B^N, N^B) \to \text{KT}$

Proof. Let F be a bijection with continuous modulus of continuity M. Then $\tau u := \forall 0 < i \leq |u|. \exists k < i. k \in M(\lambda n. \text{if } l[n] \text{ is Some } b \text{ then } b \text{ else false}) 0$ is a Kleene tree.

Theorem 65. $\text{KT} \leftrightarrow \text{Homeo}(B^N, N^N)$ and $\text{KT} \to \text{Homeo}(N^N, B^N)$.

Deiser [9] proves in a classical setting that $\text{Homeo}(N^N, B^N)$ holds. It would be interesting to see whether the proof can be adapted to a constructive proof $\text{WKL} \to \text{Homeo}(N^N, B^N)$.

We have already seen that CT is inconsistent with FAN. Besides FAN, in Brouwer’s intuitionism the continuity of functionals $\mathbb{N}^N \to \mathbb{N}$ is routinely assumed:

$$\text{Cont} := \forall F : (N \to N) \to N. \forall f : N \to A. \exists L : LN. \forall g : N \to A. (\text{map } f L = \text{map } g L) \to F(f) \equiv_a F(g)$$

Since every computable function is continuous, we believe Cont to be consistent with CT. Combining Cont with $\text{AC}_N \to N, N$ yields Brouwer’s continuity principle5 called WC_N in [46]:

$$\text{WC}_N := \forall R : (N \to N) \to N \to \mathbb{P}. (\forall f. \exists n. R(fn) \to \forall f. \exists L_n. \forall g. \text{map } f L = \text{map } g L \to Rgn)$$

5 But note that $\text{Cont} \to \text{AC}_N \to N, N \to \bot$, since the resulting modulus of continuity function allows for the construction of a non-continuous function [13].
Theorem 66. WC-N → Cont

WC-N is inconsistent with CT, since the computability relation ∼ is not continuous:

Theorem 67. WC-N → CT → ⊥

Proof. Recall that if two functions have the same code they are extensionally equal. By CT, \(\lambda f.c.c \sim f \) is a total relation. Using WC-N for this relation and \(\lambda x.0 \) yields a list \(L \) and a code \(c \) s.t. \(\forall g. \text{map} g L = [0, \ldots, 0] \rightarrow c \sim g \).

The functions \(\lambda x.0 \) and \(\lambda x.\text{if } x \in L \text{ then } 0 \text{ else } 1 \) both fulfil the hypothesis and thus have the same code – a contradiction since they are not extensionally equal. ◀

12 Conclusion

In this paper we surveyed the known connections of axioms in Coq’s type theory, a constructive type theory with a separate, impredicative universe of propositions, with a special focus on Church’s thesis CT and formulations of axioms in terms of notions of synthetic computability. Furthermore, all results are mechanised in the Coq proof assistant.

In constructive mathematics, countable choice is often silently assumed, as critised e.g. by Richman [38,39]. In contrast, constructive type theory with a universe of propositions seems to be a suitable base system for matters of constructive (reverse) mathematics sensitive to applications of countable choice. Due to the separate universe of propositions, such a constructive type theory neither proves countable nor dependent choice, allowing equivalences like the one in Theorem 57 to be stated sensitively to choice. We conjecture that Lemma 49 deducing \(\text{S-AC}_{N,B} \) and \(\text{E-AC}_{N,X} \) directly from \(\text{D-AC}_{N} \) cannot be significantly strengthened. The proof of \(\text{D-AC}_{N,X} \) in turn crucially relies on a large elimination principle for \(\exists_n. f_n = \text{true} \) (Lemma 1). The theory of [5] proves \(\text{D-AC}_{N,B} \) and thus likely also \(\text{S-AC}_{N,B} \).

Predicative Martin-Löf type theory proves AC and type theories with propositional truncation and a semantic notion of (homotopy) propositions prove \(\text{AUC}_{N,B} \), thus LEM suffices to disprove CT for both these flavours of type theory. Based on the current state of knowledge in the literature it seems likely that \(\text{S-AC}_{N,B} \) and LEM together do not suffice to disprove CT, which seems to require at least classical logic of the strength of LLPO and a choice axiom for co-semi-decidable predicates. Thus we conjecture that a consistency proof of e.g. LEM ∧ CT might be possible for Coq’s type theory.

Another advantage of basing constructive investigations on constructive type theory is that implementations of type theory in proof assistants already exist. For this paper, mechanising the results in Coq was tremendously helpful in keeping track of all details. For example, many of the presented proofs are very sensitive to small changes in formulations, and Coq actually helped in understanding the proofs and getting them right.

Besides consistency, another interesting property of axioms is admissibility. For instance, Pédrot and Tabareau [36] prove MP admissible in constructive type theory. CT seems to be admissible in constructive type theory in the sense that for every defined function \(f : \mathbb{N} \rightarrow \mathbb{N} \) one can define a program in a model of computation with the same input output behaviour, as witnessed by the certifying extraction for a fragment of Coq to the \(\lambda \)-calculus [16]. An admissibility proof of CT could then serve as a theoretical underpinning of the Coq library of undecidability proofs [19]. However, any formal admissibility proof would have to deal with the intricacies of Coq’s type theory. It would be interesting to investigate whether Letouzey’s semantic proof for the correctness of type and proof erasure [33] can be connected with the mechanisation of meta-theoretical properties of Coq’s type theory [41] in the MetaCoq project [42], yielding a mechanised admissibility proof for CT in Coq’s type theory.
References

Y. Forster 21:17

A Modesty and Oracles

Using \mathcal{D}-$\mathcal{AC}_{\mathbb{N},\mathbb{N}}$ from Lemma 48 allows proving a choice axiom w.r.t. models of computation, observed by Larchey-Wendling [30] and called “modesty” by Forster and Smolka [20].

Lemma 68. Let T be an abstract computation function. We have

$$\forall c. (\forall n. \exists m k. Tc = \text{Some } m) \rightarrow \exists f : \mathbb{N} \rightarrow \mathbb{N}. \forall n. \exists k. Tc = \text{Some } (fn)$$

That is, if c is the code of a function inside the model of computation which is provably total, the total function can be computed outside of the model. This modesty principle simplifies the mechanisation of computability theory in type theory as e.g. in [21]. For instance, it allows to prove that defining decidability as “a total function in the model of computation deciding the predicate” and as “a meta-level function deciding the predicate which is computable in the model of computation” is equivalent.

However, the modesty principle prevents synthetic treatments of computability theory based on oracles. Traditionally, computability theory based on oracles is formulated using a computability function T_p, s.t. for $p : \mathbb{N} \rightarrow \mathbb{P}$ there exists a code c_p representing a total function s.t. $\forall n. (\exists k. Tc = \text{Some } 0) \leftrightarrow pn$.

Synthetically, we would now like to assume an abstract computability function for every p as “Church’s thesis with oracles”. “Church’s thesis with oracles” implies \mathcal{CT}, and we know that under \mathcal{CT} the predicate K_0 is not decidable. However, under the presence of \mathcal{D}-$\mathcal{AC}_{\mathbb{N},\mathbb{N}}$ we can use T_{K_0} and obtain c_{K_0} which can be turned into a decider $f : \mathbb{N} \rightarrow \mathbb{B}$ for K_0 using the choice principle above – a contradiction.

B Coq mechanisation

The Coq mechanisation of the paper comprises 4250 lines of code, with 3300 lines of proofs and 950 lines of statements and definitions, i.e. 77% proofs. The mechanisation is based on the Coq-std++ library [45], plus around 1500 additional lines of code with custom extensions to Coq’s standard library which are shared with the Coq library of undecidability proofs [19].
The 4250 lines of the main development are distributed as follows: The basics of synthetic computability (decidability, semi-decidability, enumerability, many-one reductions) need 1150 lines of code. The mechanisation of Section 3, covering CT, EA, and EPF, comprises 400 lines of code. 120 lines of codes are needed for the undecidability results of Section 4. Section 5 and Section 10, covering trees and in particular Kleene trees, need 1000 lines of code. Section 11 on continuity is mechanised in 800 lines. The rest, i.e. Sections 6 to 9, needs 750 lines of code.

No advanced mechanisation techniques were needed. Discreteness and enumerability proofs for types were eased using type classes to assemble proofs for compound types such as $\mathbb{L} \times \mathbb{Q}$, as already done in [14]. Defining the notions of $\equiv_{A \rightarrow B}$, $\equiv_{A \rightarrow P}$, and so on was made possible by using type classes as well.

The technically most challenging mechanised proofs correspond to Lemmas 59 - 63, i.e. prove $\text{KT} \rightarrow \text{Homeo}(\mathbb{B}^N, \mathbb{N}^N) \land \text{Homeo}(\mathbb{N}^N, \mathbb{B}^N)$. For these proofs, lots of manipulation of prefixes of lists was needed, and while the functions firstn and dropn are defined in Coq’s standard library, the very useful lemmas of Coq-std++ where needed to make the proofs feasible.

In the development of this paper, the Coq proof assistant, while also acting as proof checker, was truly used as an assistant: Lots of proofs were developed and understood directly while working in Coq rather than on paper, allowing to identify for instance the equivalent characterisations of LLPO, MP, and WKL as in Lemma 34 (5), Lemma 41 (5), and Theorem 57 (3,4), which are hard to observe on paper because lots of bookkeeping for side-conditions would have to be done manually then.