
Fault-Tolerant Mobile Agents in MozartIli�es Alouini and Peter Van Roy�IntroductionIn any wide-area distributed system such as the Internet, fault tolerance is crucial for real-worldapplications. We describe a new practical fault-tolerant mobile agent platform. The agent platform isbuilt on the top of a global store abstraction [1, 2] that provides a globally coherent and fault tolerantmemory. The global store abstraction is implemented as a user library that runs on the Mozartplatform. The implementation does not require recompiling the platform. Mozart is a general-purposedevelopment platform for open, robust distributed applications that is based on the Oz language [3].The global store implementation is based on Mozart's reective fault model and takes full advantageof the platform's network-transparent properties.The global store abstractionA global store consists of a set of objects replicated on several processes. A user is any computationthat is part of an OS process running Mozart. Users can connect to or disconnect from a storedynamically. This adds or removes processes from the global store. A user invokes objects by initiatinga transaction, which calls the objects. It is possible to use the store so that a user's object updates areseen instantaneously by that user without waiting for the network. This implies a possible speculativeexecution, which is completely managed by the store. Users invoke objects without worrying aboutconcurrency control or store failure. Both concerns are managed by the store. Because Mozart isnetwork transparent, users can communicate and collaborate by sharing a global store. The globalstore tolerates any number of user failures, as long as it exists on at least one process. The store canmigrate without dependencies, i.e., the migration depends on no �xed process.The store is lightweight and requires no persistence to recover from failure. The store uses processredundancy; with n processes it tolerates up to n� 1 fail-stop process failures.Mobile agents using the global store abstractionOne of the challenges for mobile agent platforms is to provide robust and fault-tolerant mobile agents[4, 5]. We build an agent API on top of the global store that provides fault tolerance, agent mobilitywithout site dependencies, and permits home communication without any dependencies. In general,an agent can create any number of global stores. A �rst global store is used for the agent's own state,so that it can migrate. A second global store is shared between agents, for communication. Thesecond global store is used to implement Send & Receive operations in a few lines of code. Our agentshave the following properties:� An agent can move from one site (i.e., OS process) to another, e.g., to reduce network latency.� The agent's internal state is maintained when moving.� Agents live in Mozart's shared computation space and can therefore communicate any dataincluding compound structures, procedures, classes, etc.�Universit�e catholique de Louvain, D�epartement d'Ing�enierie Informatique, B-1348 Louvain-la-Neuve, Belgium. E-mail: fila,pvrg@info.ucl.ac.be 1



� An agent can continue to function despite network inactivity (disconnected operation).� Agents are not a�ected by process or host failures, if at least one process survives somewhere.� Agents do not reference the �le system when they move (except possibly initially, when creatinga global store). When an agent moves from one site to another, there is no need to load agentclasses from a �le system, e.g., like in IBM Aglets. The agent classes are transferred in atransparent way through interprocess communication.Mobile agent APIWe de�ne a mobile agent to be any distributed computation that has the ability to move from onesite to another. An agent is a set of concurrent tasks where a task is a computation that uses theresources of a single process and can communicate or collaborate with other agents. Here is an APIthat allows to program an agent:� Agent creation: MA={New Agent.agent init(NewObj AgentStore)}, with arguments:
Agent.agent (input agent class), NewObj (returned procedure to create new objects in theagent store), and AgentStore (returned reference to agent store).� Execute the task F of agent MA: {MA run(F)}, with argument F (a task). In Mozart, the taskis de�ned as a functor, which is a �rst-class data structure de�ning a component speci�cation.A functor de�nes the process-speci�c resources the task needs. The functor F can be created onthe y during task execution.� Move the agent MA to host IPadd and execute F remotely: {MA move(IPadd F)}, with argu-ments IPadd (IP host address) and F (a task). The original task is not moved, but because theglobal store contains the agent state and depends on no �xed process, the result is a move whosestrength is intermediate between weak and strong mobility.� Move to home site: {MA movehome()}.� Communicate with other agents: {MA send(M)} (send asynchronously message M to agent MA)and {MA receive(M)} (receive message M at agent MA).ConclusionThis extended abstract explains the highlights of our simple mobile agent platform. We have shownhow a fault-tolerant agent platform can be built naturally using a general-purpose platform for opendistributed computing augmented with the global store abstraction. Our current research includesbuilding other high-level abstractions for fault tolerance, secure distributed programming, and theimplementation of agent-based applications.References[1] Ili�es Alouini. Global Store Module. Available athttp://www.mozart-oz.org/mogul/info/alouini/globalstore.html, April 2000.[2] Ili�es Alouini and Peter Van Roy. A Practical Fault-tolerant Store Abstraction for Multiple ApplicationDomains. To be submitted, July 2000.[3] Mozart Consortium. The Mozart Programming System (Oz 3). Available at http://www.mozart-oz.org,January 1999.[4] Holger Pals, Stefan Petri, and Claus Grewe. FANTOMAS: Fault Tolerance for Mobile Agents in Clusters.IPDS 2000 Workshops, LNCS 1800, pages 1236-1247, 2000.[5] Detlef Schoder and Torsten Eymann. The Real Challenges of Mobile Agents. Communications of the ACM(43) 6, pages 111-112, June 2000.


