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Abstract

Spartacus is a tableau prover for hybrid multimodal logic with global modalities and reflexive and transitive
relations. Spartacus is the first system to use pattern-based blocking for termination. To achieve a compet-
itive performance, Spartacus implements a number of optimization techniques, including a new technique
that we call lazy branching. We evaluate the practical impact of pattern-based blocking and lazy branching
for the basic modal logic K and observe high effectiveness of both techniques.
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1 Introduction

Automated reasoning in modal and description logics (DL) is an active field
of research. Arguably the most successful approach to modal reasoning are
tableau-based methods. Several of the most prominent DL reasoners, including
FaCT++ [31] and RacerPro [14], are based on tableau algorithms. In the presence
of global modalities or transitive relations, the naive tableau construction strategy,
sufficient in the case of basic modal logic, no longer terminates. To regain termi-
nation, one employs blocking [22]. Most of the established blocking techniques are
derived from Kripke’s chain-based approach [24]. Kaminski and Smolka [21,22] pro-
pose a different blocking technique, called pattern-based blocking. They conjecture
that pattern-based blocking may display a better performance than the established
techniques. Our goal is to show that pattern-based blocking is useful even for K,
where blocking is not required for termination.

Spartacus is a tableau prover for hybrid multimodal logic with global modali-
ties. It supports reasoning in the presence of reflexive and transitive relations. In
contrast to other systems, Spartacus uses pattern-based blocking to achieve termi-
nation. Similarly to FaCT++ [30,31,32], Spartacus schedules pending rule appli-
cations using a configurable priority queue, which allows for a fine-grained control
over the rule application strategy. To achieve a reasonable performance on realistic
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inputs, Spartacus implements a number of optimizations, including term simplifi-
cation (also called “normalization” [17]), Boolean constraint propagation, semantic
branching and backjumping [32]. Moreover, Spartacus implements a new technique,
called lazy branching. Lazy branching is a generalization of lazy unfolding [32], an
effective optimization technique from DL reasoning.

Spartacus is written in Standard ML and compiled with MLton. The source
code and test data are available from www.ps.uni-sb.de/theses/goetzmann/. A
detailed description of Spartacus can be found in [12].

We evaluate the effects of pattern-based blocking and lazy branching, and com-
pare the performance of Spartacus with that of other reasoners for modal and de-
scription logics. Both techniques prove highly effective.

2 The Logic

Spartacus decides the satisfiability problem for H(E, @), the basic hybrid logic ex-
tended with global modalities. Notationally, our description of H(E, @) follows [21].
We distinguish between variables for states (x, y), properties (p, q), and relations (r).
From these variables, the expressions of H(E, @) can be obtained by the following
grammar:

s, t ::= >̇ | p | ẋ | ¬̇s | s ∧̇ s | 〈r〉s | Es | @xs

We employ the usual abbreviations s ∨̇ t := ¬̇(¬̇s ∧̇ ¬̇t), [r]s := ¬̇〈r〉¬̇s, and As :=
¬̇E¬̇s. For details on H(E, @) and related logics, see [1].

In addition to expressions of the above form, Spartacus accepts reflexivity and
transitivity assertions of the form Reflexive r and Transitive r.

Except for the details of the blocking mechanism, the calculus underlying Spar-
tacus is a restriction of the system in [22] to H(E, @). The calculus works on
formulas of the form sx where s is a negation normal expression of H(E, @) and x

a state. The use of the state variable x in a formula sx corresponds to the use of
prefixes [6] or nodes [19] in related calculi. Since for later discussion the treatment
of equality in Spartacus is inessential, let us consider the following restriction of the
calculus to K.

R¬̇
px, (¬̇p)x

⊥
R∧̇

(s ∧̇ t)x

sx, tx
R∨̇

(s ∨̇ t)x

sx | tx
R3

(〈r〉s)x

rxy, sy
y fresh R2

([r]s)x, rxy

sy

The symbol ⊥ marks closed branches. The formula rxy specifies that y has to be
accessible from x, corresponding to the notation x ♦r y in [6] and 〈x, y〉 ∈ EA(r)
in [19].

3 Pattern-Based Blocking

Pattern-based blocking (PBB) in Spartacus is implemented following [21]. The
technique yields termination in the presence of nominals, transitive relations, global
and difference modalities. To deal with graded modalities, PBB can be extended
as proposed in [20,23]. These extensions, however, are currently not supported by
Spartacus.
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Like traditional blocking techniques, PBB is an applicability restriction on the
diamond rule R3. Let Rxr := {[r]s | ([r]s)x is on the branch}. PBB as formulated
in [21] restricts R3 to only be applicable to a formula (〈r〉s)x if there are no states
x′, y such that rx′y and sy are on the branch, and Rxr ⊆ Rx′r.

The pattern of a diamond expression 〈r〉s at a state x is defined as Px(〈r〉s) :=
{〈r〉s} ∪ Rxr. Let us reformulate the blocking condition to make explicit how di-
amond patterns come into play here. Let (〈r〉s)x be on the branch. We say the
pattern Px(〈r〉s) is expanded if there are states x′, y such that rx′y and sy are on
the branch, and Rxr ⊆ Rx′r. Then we can say R3 is applicable to a formula (〈r〉s)x
if the pattern Px(〈r〉s) is not expanded.

Clearly, after R3 has been applied to a formula (〈r〉s)x, the pattern Px(〈r〉s)
becomes expanded. Note that while the notation Px(〈r〉s) depends on the state x

of the current tableau branch, generally patterns are just sets of expressions. Given
two patterns P,Q, it is easy to check that if P ⊆ Q and Q is expanded, then
so is P . Additionally, calculi like [6,22] enjoy the property that once a pattern is
expanded on a tableau branch, it will stay expanded on all extensions of the branch.
These considerations suggest an efficient algorithmic implementation of (a slightly
weakened version of) the blocking condition.

Every time we want to apply R3 to a formula sx, we need to check if Pxs is
expanded. Instead of computing this information from the branch we use a special
data structure, called the pattern store, to record and query which patterns are
expanded. The pattern store contains all patterns that are known to be expanded
because of previous diamond rule applications. WheneverR3 is applied to a formula
sx, the pattern Pxs is added to the pattern store. When checking if R3 applies to
a formula sx, we have to check if the pattern store contains a superset of Pxs. The
efficiency of this operation, called subset matching following [9], is crucial for the
performance of PBB.

Giunchiglia and Tacchella [9] propose a satisfiability cache based on a bit ma-
trix representation that allows for straightforward subset matching. Practical inputs
contain a large number of distinct subexpressions, which results in the bit matrix
becoming sparse. To exploit this, one uses a sparse matrix representation. A dif-
ferent data structure for subset and superset matching is proposed by Hoffmann
and Koehler [16]. The approach represents patterns as paths in a forest. The forest
structure allows sharing of common subpatterns, which can considerably reduce the
required space. We implemented both data structures for subset matching so as to
be able to compare their performance. From an implementation point of view, the
forest-based structure by Hoffman and Koehler turned out to be more challenging
than the matrix-based structure. Their evaluation in the present setting, however,
revealed no significant differences in performance. The default configuration of
Spartacus uses the structure by Hoffmann and Koehler.

As an optimization of the basic implementation of blocking described above, we
also add the pattern Px(〈r〉s) to the pattern store whenever the branch is extended
by a formula of the form ([r]t)x, provided R3 has already been applied to (〈r〉s)x
before and the store contains no superset of Px(〈r〉s).

What are the differences of PBB from other blocking techniques? Conceptually,
the main difference is that the blocking relation in PBB is defined on patterns
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rather than states. Given a state x, the label set of x, {s | sx is on the branch},
may contain arbitrary expressions. A pattern, on the other hand, always consists
of exactly one diamond and a set of boxes. With other blocking techniques, the
number of states generated on a branch is bounded by the number of possible label
sets, i.e., subsets of the subterm closure of the input expression. In PBB, the
corresponding bound is the number of patterns contained in the subterm closure of
the input. It is easily seen that the latter number is often much smaller than the
former number: A subterm closure containing m (distinct) diamonds and n boxes
has at least cardinality m+n+1 (typically larger). Hence, the closure contains m·2n

patterns but over 2m+n label sets. This suggests that PBB is likely to terminate
faster and produce smaller models compared to techniques working with label sets.
Other than that, PBB most closely resembles anywhere blocking as described by
Baader et al. [2], and shares the advantages of anywhere blocking over the more
traditional ancestor-based techniques of [24,19,6,22]. In particular, PBB can reduce
the size of a tableau derivation even in the context of K, where ancestor-based
techniques have no effect.

The implementation of PBB in Spartacus is inspired by modal caching tech-
niques, in particular the one described by Giunchiglia and Tacchella [9]. In fact,
the sets of expressions that are considered in [9] are nothing other than patterns,
and the satisfiability cache of [9] provides exactly the kind of storage and lookup op-
erations that are also necessary for PBB. So how does PBB differ from satisfiability
caching in [9]? While PBB subsumes satisfiability caching, the converse is not true.
In particular, the system of [9] does not terminate in the presence of transitivity
or global modalities and hence needs to be complemented by a blocking technique.
To retain completeness in the presence of blocking, however, satisfiability caching
needs to be refined considerably [13].

Yet another approach to termination is global caching [10,11]. Global caching
combines properties of anywhere blocking, satisfiability and unsatisfiability caching.
Rather than looking at a single tableau branch at a time, global caching incremen-
tally constructs the entire tableau (as an and-or graph), which allows to naturally
re-use intermediate satisfiability and unsatisfiability results. Global caching has
potential advantages as well as potential disadvantages compared to PBB. An ad-
vantage is the ability to re-use unsatisfiability results from previous branches, which
is not provided by PBB, but can potentially be obtained by combining PBB with
an unsatisfiability cache. A potential disadvantage of global caching and unsatisfia-
bility caching alike is the higher memory consumption, which may have an adverse
effect on performance [18].

4 Lazy Branching

Lazy branching (LB) is a technique that dynamically reorders the processing of
disjunctions, aiming at a more goal directed exploration of the search space. Con-
ceptually, LB is a rule application strategy, somewhat unusual in that it may avoid a
rule application forever. The idea is to avoid the processing of disjunctions that are
consistent with the current tableau branch. LB is inspired by lazy unfolding [3,32].

Lazy unfolding aims at improving DL reasoning with respect to TBoxes. Using
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our present formalism, a TBox T can be seen as a set of expressions of the form As.
To test if an expression s is consistent with respect to T , one tests if the conjunction
s ∧̇

∧̇
t∈T t is satisfiable. The naive idea to treat a TBox T is to add tx to the

tableau branch for every state x on the branch and every expression At ∈ T . Lazy
unfolding provides a better treatment of TBoxes (or parts of TBoxes), provided the
(sub-)TBox is unfoldable. A TBox T is unfoldable if:

(i) Every expression in T is of the form A(p →̇ s) or A(p ↔̇ s).

(ii) If A(p ↔̇ s) ∈ T , then T contains no expressions A(p ↔̇ t) or A(p →̇ t).

(iii) Expressions A(p ↔̇ s) ∈ T satisfy a certain acyclicity condition, essentially
meaning that p does not occur in s (see [32] for details).

Let us restrict our attention to expressions of the form A(p →̇ s); expressions
A(p ↔̇ s) are treated in essentially the same way. If A(p →̇ s) is part of an un-
foldable TBox T and px is on the branch, then lazy unfolding extends the branch
by sx. This can be seen as a unit resolution step between px and the disjunction
(¬̇p ∨̇ s)x that would have been added to the branch by the naive treatment, only
that the actual addition never takes place.

LB generalizes lazy unfolding in that it applies to propositional literals (i.e.,
possibly negated properties) within arbitrary disjunctions, not just disjunctions
coming from unfoldable expressions of the form A(p →̇ s) and A(p ↔̇ s). Also, the
approach easily generalizes from propositional literals to other “simple” expressions
such as boxes. The idea for propositional literals is as follows. Assume the branch
contains a disjunction (l ∨̇ s)x where l is a propositional literal. As long as there
are no formulas on the branch that constrain lx to be false, we can assume lx to
be true and ignore the disjunction (l ∨̇ s)x. In other words, we delay the processing
of disjunctions for which we know that one of the alternatives (the witness) is
consistent with the branch. There are two cases in which (l ∨̇ s)x cannot be delayed.
Obviously, the disjunction has to be processed if the branch contains lx, the negation
of the witness lx. Also, we cannot delay (l ∨̇ s)x if we already delay (l ∨̇ t)x, since
delaying both formulas results in inconsistent assumptions about the truth value
of lx. A disjunction (l1 ∨̇ . . . ∨̇ lm ∨̇ s)x with several propositional literals can be
delayed as long as at least one of them can serve as a witness.

Propositional literals make good witnesses because their consistency with the
branch can be checked “locally” within a label set. A similar observation holds for
box expressions. As long as the branch contains no formulas (〈r〉s)x, x does not
need to have any r-successors. Hence, all formulas ([r]t)x can be assumed true,
allowing us to delay disjunctions of the form ([r]t ∨̇ s′)x.

Compared to lazy unfolding, LB is more general in that it is applicable in more
cases. On the other hand, in cases where both techniques apply, lazy unfolding is
likely to be more effective. This is because, rather than restricting the processing
of delayed disjunctions, it does not generate such disjunctions in the first place.

LB for propositional literals and boxes is implemented as an additional layer on
top of the rule application queue. While conventional rule application heuristics
(as in [30]) influence the position of a pending rule application in the queue, LB
prevents disjunctions from being added to the queue as long as they are delayed.
This allows LB to work independently of the conventional rule application strategy.
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Götzmann, Kaminski, and Smolka

5 Evaluation

We evaluate the effects of PBB and LB by comparing the performance of the default
configuration of Spartacus with two modified configurations where we switch off
PBB and LB, respectively. The default configuration applies R∨̇ with the lowest
priority, in particular with a lower priority than R3. This differs from the default
rule application strategy in many other provers, like FaCT++ or *SAT [8], which
apply the diamond rule with the lowest priority. Therefore, we also include in the
tests a configuration where R3 is applied with the lowest priority (“3 last”), which
is achieved by the option --exp-ord="[@nAE|<". To see how Spartacus (v1.0.1)
performs compared to other provers, we include four systems into the evaluation:

• A prototype prover for propositional dynamic logic (PDL) by Goré and
Widmann [11]. The prover implements a worst-case optimal decision procedure
for PDL featuring global caching. In the tables, we refer to it as “pdl”.

• FaCT++ (v1.3.0), currently one of the leading DL reasoners. It supports the logic
SROIQ(D), which is more expressive than the language supported by Spartacus.
FaCT++ implements anywhere blocking.

• HTab [15] (v1.4.0), a prover for hybrid logic. Compared to Spartacus, HTab
additionally supports the difference modality, but has no support for reflexive or
transitive relations. HTab implements ancestor-based blocking.

• *SAT [8] (v1.3), a reasoner for ALC, featuring matrix-based satisfiability and
unsatisfiability caching. In contrast to the other systems, which are all tableau-
based, *SAT implements a modal extension of the Davis-Putnam procedure.
*SAT uses no blocking mechanism.

All provers are compiled and run with the default settings. Unfortunately, we were
not able to include into the comparison the prover DLP [27], reportedly one of the
fastest provers for K. The reason is that DLP relies on an outdated version of the
SML/NJ compiler that we were not able to install on our test machine. To get an
impression of the performance of DLP, refer to [28,7].

The tests are performed on a Pentium 4 2.8GHz, 1GB RAM, with a 60s time limit
per formula (60s is enough for most problems). For each setting/system, we count
the number of problems solved (left subcolumn). In addition (right subcolumn),
we record the average time (in seconds) spent on the successful problems (except
for Table 2, where it suffices to give the time for the hardest successful problem).
The timings are only relevant for the comparison of two runs if they solve the same
number of problems. The best results are set in bold. In the figures, we plot the
number of instances that could be solved from a given class of problems against
time. Each figure consists of two plots, the one on the left-hand side comparing the
performance of different configurations of Spartacus, and the one on the right-hand
side comparing the default configuration of Spartacus against other provers.

We restrict our attention to K since PBB and LB are not specific to hybrid
logic, but the selection of available benchmarks and provers is much larger for K
than for H(@) or H(E, @). For an evaluation of Spartacus on H(E, @), see [12]; a
more detailed evaluation is reserved for future work.

We use the following well-known benchmarks:
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Table 1, Fig. 1, 2: Randomly generated 3CNFK formulas [7] for several settings
of d (modal depth), L (number of clauses), and N (number of propositional
variables). We group the problems in two subclasses according to d, namely
one subclass with d = 1 and one with d = 2, 4, and 6. The former class is
generated with N = 5, L = 110, and p = 0, where p is the probability of a
disjunct occurring at depth < d being purely propositional (see [7] for details).
The ratio of satisfiable to unsatisfiable instances is 14/31, which allows us to test
the behaviour in the presence of backtracking. The latter class is designed to test
the behaviour on formulas of increasingly high modal depth. For each setting of d,
the problems consist of 9 formulas for L = 30, 60, 90, 120, and 150, respectively.
In all cases, N is set to 3 and p to 0. To keep the complexity manageable, we
restrict ourselves to satisfiable problems.

Table 2: A subset of the Tableaux’98 benchmark suite for K [4,5]. The suite
consists of 9 satisfiable and 9 unsatisfiable classes, each consisting of 21 problems
of increasing size and difficulty. We do not display the results for the classes dum n,
dum p, and grz n because these classes can be solved in the hardest instance by
all configurations of Spartacus and all the other provers that we consider.

Table 3, Fig. 3, 4: A subset (the easier problems) of the TANCS-2000 Un-
bounded Modal QBF (MQBF) benchmarks for K [26].

Table 4, Fig. 5, 6: Randomly generated modalized MQBF formulas [25]. Modal-
ization aims at reducing the influence of propositional optimizations by encoding
different propositional variables as different modal subexpressions.

The results for Tables 3 and 4 are grouped by the quantifier alternation depth D

and the number of variables V used per alternation in the original QBF. In both
cases, the sets contain 8 formulas for each setting of C (number of QBF clauses),
which ranges between 10 and 50.

Compared to the other problem sets, 3CNFK with d = 1 (Table 1, Fig. 1)
contains many hard propositional subproblems and requires a lot of backtracking.
With LB we observe a noticeable speedup. PBB, on the other hand, shows no
positive effect, which we believe is due to the low modal depth of the problems.
Compared to the other provers, Spartacus is second only to *SAT. *SAT, being
based on a SAT solver engine, is expectedly successful on problems dominated by
propositional reasoning. On problems with d = 2, 4, and 6 (Table 1, Fig. 2), we can
clearly see how the effect of PBB increases with growing modal depth. Similarly if
not more influential is, however, the chosen rule application strategy.

d default 3 last no PBB no LB pdl FaCT++ HTab *SAT

1 45 5.2 0 — 45 4.3 45 12.0 0 — 29 33.1 0 — 45 0.4

2 40 2.5 32 2.7 40 2.4 40 3.5 7 1.3 17 5.4 12 5.6 25 9.8

4 38 11.5 45 0.9 32 12.0 34 12.2 7 9.3 9 3.1 10 4.8 9 19.9

6 29 19.2 45 10.6 13 14.9 19 17.0 1 37.9 0 — 8 6.3 0 —

Table 1
3CNFK (upper part: 45 formulas; lower part: 3×45 formulas)

On the Tableaux’98 benchmarks (Table 2), one can see that PBB is crucial
for the competitiveness of Spartacus, having a decisive influence on the results for
d4 n, path n, and path p. In fact, the only prover that does not perform well on
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Fig. 1. 3CNFK d = 1
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Fig. 2. 3CNFK d = 2..6

these three problems is HTab, i.e., the only prover that has no effective blocking
or caching technique for K. On branch p, the default strategy shows inferior to
applyingR3 last. Note that in [7], *SAT is reported to display a better performance
on branch p, lin n and ph n than we observe here. We believe this to be the case
because the evaluation in [7] uses a version of *SAT compiled with non-default
settings specifically tailored for the Tableaux’98 benchmark suite (see [29]).

On the TANCS-2000 benchmarks (Table 3), PBB proves very successful on
cnfSSS (Fig. 3) while LB yields a notable speedup on cnfLadn (Fig. 4). The increase
in effectiveness of LB on cnfLadn compared to cnfSSS correlates well with the fact
that cnfLadn requires significantly more backtracking than cnfSSS. Also, applying
R3 last significantly improves the performance of Spartacus on cnfLadn. While
being behind pdl and FaCT++ with respect to the number of problems solved with
the default strategy, Spartacus achieves the best result with the alternative strategy.

Modalized MQBF problems (Table 4, Fig. 5, 6) have a higher modal depth than
their non-modalized counterparts, which suggests a potentially higher effectiveness
of PBB. And indeed, PBB proves highly successful on modalized formulas. While
Spartacus can solve almost none of the problems without PBB, with PBB it handles
most of them easily. Since the problems can be solved without much backtracking,
the effectiveness of LB is limited. Note also that applying R3 last, while being
superior to the default strategy on modKSSS, is largely ineffective on modKLadn.

8
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Test default 3 last no PBB no LB pdl FaCT++ HTab *SAT

branch n 9 18.8 10 14.8 8 12.3 8 42.5 7 22.9 10 49.2 8 20.8 12 50.0

branch p 11 58.9 16 26.8 8 12.3 8 21.3 4 8.8 9 11.6 8 18.5 18 57.1

d4 n 21 0.2 21 0.6 6 54.4 21 0.2 21 0.1 21 27.7 6 57.5 21 0.2

d4 p 21 0.1 21 0.1 21 0.3 21 0.1 21 0.1 21 0.1 18 59.3 21 0.0

grz p 21 0.0 21 0.0 21 0.0 21 0.0 14 27.0 21 0.0 21 0.0 21 0.0

lin n 21 0.0 21 0.0 21 0.0 21 0.0 21 0.1 21 0.1 21 0.1 13 50.5

lin p 21 0.0 21 0.0 21 0.0 21 0.0 7 9.7 21 0.0 21 0.0 21 0.0

path n 21 0.6 21 0.6 9 50.8 21 0.9 21 0.4 21 0.1 8 27.6 21 0.2

path p 21 0.6 21 0.5 10 46.7 21 0.9 21 0.4 21 0.1 9 35.9 21 0.1

ph n 21 1.2 21 1.2 21 1.2 21 4.0 7 5.1 12 18.8 16 39.5 11 23.8

ph p 8 46.1 8 42.6 8 43.6 8 58.4 5 6.3 7 12.3 6 10.1 8 3.8

poly n 21 0.2 21 0.2 21 4.7 21 0.2 9 45.6 21 0.1 21 6.4 21 0.1

poly p 21 0.2 21 0.1 21 4.5 21 0.3 8 17.7 21 0.1 21 11.4 21 0.1

t4p n 21 0.1 21 0.0 21 0.1 21 0.5 21 0.1 21 0.3 4 16.8 21 0.1

t4p p 21 0.0 21 0.0 21 0.0 21 0.2 21 0.1 21 0.1 6 32.4 21 0.0

Table 2
Tableaux’98 benchmarks for K (15×21 formulas)

V, D default 3 last no PBB no LB pdl FaCT++ HTab *SAT

4,4 40 0.1 40 0.0 40 0.1 40 0.1 28 5.2 30 0.1 39 2.3 40 0.1

4,6 40 0.1 40 0.1 40 3.0 40 0.2 27 3.3 21 0.9 17 10.2 40 0.8

8,4 40 0.6 40 0.2 15 9.6 40 1.0 25 3.8 12 0.1 7 11.5 40 8.7

8,6 39 3.7 40 1.3 9 8.9 36 6.3 25 3.7 13 1.5 3 21.4 26 8.5

16,4 38 2.7 40 2.0 4 11.8 37 4.6 29 7.7 14 1.8 0 — 24 6.9

16,6 39 1.9 40 1.3 3 22.4 37 4.4 27 9.7 15 1.8 0 — 24 9.7

4,4 40 4.9 40 2.4 40 5.3 25 30.5 28 13.7 40 1.3 7 16.9 15 23.9

4,6 4 29.9 23 14.1 4 33.2 1 4.4 17 13.1 21 11.8 1 48.1 0 —

Table 3
TANCS-2000 benchmarks for K (upper part: 6×40 cnfSSS formulas; lower part: 2×40 cnfLadn formulas)
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Fig. 3. TANCS-2000: cnfSSS

6 Conclusion

The evaluation confirms the effectiveness of PBB on a wide range of problems. On
3CNFK the effect of PBB can be seen growing with increasing modal depth. On
some problems from the Tableaux’98 suite, on cnfSSS from TANCS-2000, and on
the modalized problems, PBB demonstrates an improvement up to several orders of
magnitude. The influence of LB is less noticeable on the majority of the problems.
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Fig. 4. TANCS-2000: cnfLadn

V, D default 3 last no PBB no LB pdl FaCT++ HTab *SAT

4,4 40 0.4 40 0.2 4 34.6 40 0.4 19 3.0 21 0.1 0 — 40 0.5

4,6 40 5.2 40 0.8 0 — 38 3.8 17 1.3 9 0.1 0 — 40 5.1

8,4 33 9.9 40 5.1 0 — 31 10.3 21 2.4 11 0.5 0 — 26 10.9

8,6 24 3.7 37 8.8 0 — 24 6.8 21 4.5 13 3.8 0 — 18 5.4

16,4 22 7.3 33 7.4 0 — 21 10.2 21 4.2 15 4.0 0 — 17 5.2

16,6 23 6.3 30 5.3 0 — 21 8.1 21 8,4 13 3.1 0 — 18 8.2

4,4 40 0.3 5 32.1 0 — 40 0.3 0 — 38 13.2 0 — 40 1.8

4,6 40 0.6 0 — 0 — 40 0.6 0 — 21 26.5 0 — 40 2.9

8,4 40 1.1 0 — 0 — 40 1.3 0 — 2 40.2 0 — 18 27.0

8,6 40 2.3 0 — 0 — 40 2.8 0 — 0 — 0 — 18 25.8

16,4 40 5.2 0 — 0 — 40 8.3 0 — 0 — 0 — 0 —

16,6 40 9.9 0 — 0 — 40 18.9 0 — 0 — 0 — 0 —

Table 4
480 modalized MQBF formulas (upper part: 6×40 modKSSS formulas; lower part: 6×40 modKLadn formulas)
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Fig. 5. Modalized MQBF: modKSSS

Given that LB is a technique for optimizing the exploration of the search space,
this is not surprising since most of the problems we consider require no or little
backtracking. On the two problem classes that do require a lot of backtracking,
3CNFK with d = 1 and cnfLadn from TANCS-2000, LB proves quite successful. In
no case do PBB or LB lead to notable performance penalties.

A major factor influencing the performance of Spartacus is the chosen rule ap-
plication strategy. Giving R3 the lowest priority strongly boosts performance on
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Fig. 6. Modalized MQBF: modKLadn

some of the benchmarks, even surpassing the effect of PBB on 3CNFK with d ≥ 4,
on branch p from Tableaux’98, and on cnfLadn from TANCS-2000. At the same
time, the strategy leads to an even more significant degradation of performance on
3CNFK with d = 1 and modKLadn. Since the default rule application strategy dis-
plays a reasonable performance on all of the benchmarks, overall, it appears more
attractive. Still, as noted by Tsarkov and Horrocks [30], finding an adequate rule
application strategy is of crucial importance for the performance of modal tableau
algorithms. Devising adaptive strategies that would be competitive on a wide range
of inputs remains a challenging open problem.

Compared to other systems, the performance of Spartacus proves highly compet-
itive, yielding a promising basis for further research. One interesting direction would
be extending Spartacus to more expressive logics. Some constructs, like the differ-
ence modality, can be integrated within the existing architecture. Graded modalities
and role hierarchies could be integrated by extending PBB following [20,23]. Since
PBB does not support converse modalities, extending the system to handle converse
would require complementing PBB by other techniques.
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