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Abstract
Tennenbaum’s theorem states that the only countable model of Peano arithmetic (PA) with com-
putable arithmetical operations is the standard model of natural numbers. In this paper, we use
constructive type theory as a framework to revisit and generalize this result.

The chosen framework allows for a synthetic approach to computability theory, by exploiting the
fact that, externally, all functions definable in constructive type theory can be shown computable.
We internalize this fact by assuming a version of Church’s thesis expressing that any function on
natural numbers is representable by a formula in PA. This assumption allows for a conveniently
abstract setup to carry out rigorous computability arguments and feasible mechanization.

Concretely, we constructivize several classical proofs and present one inherently constructive
rendering of Tennenbaum’s theorem, all following arguments from the literature. Concerning the
classical proofs in particular, the constructive setting allows us to highlight differences in their
assumptions and conclusions which are not visible classically. All versions are accompanied by a
unified mechanization in the Coq proof assistant.
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1 Introduction

In classical logic, it is relatively straightforward to establish the existence of non-standard
models of first-order Peano arithmetic (PA), showing that the theory does not possess a
unique model up to isomorphism and is therefore not categorical. Following a typical textbook
presentation [3], one way to construct a non-standard model is by adding a new constant
symbol c to the language of PA together with the enumerable list of new axioms c ̸= 0, c ̸= 1,
c ̸= 2, etc. This yields a theory with the property that every finite subset of its axioms is
satisfied by the standard model N, since we can always give a large enough interpretation of
the constant c in N. Hence by the compactness theorem, the full theory has a model M,
which must then be non-standard, as the interpretation of c in M corresponds to an element
which is larger then any number n :N.

This construction comes with some striking consequences. Since PA can prove that for
every bound n, the products of the form

∏
k≤n ak exist, the presence of the non-standard

element c in M gives rise to infinite products
∏

k≤c ak. The general PA model M can
therefore exhibit behaviors disagreeing with the usual intuition that computations in PA are
finitary, which are largely based on the familiarity with the standard model N.

However, these intuitions are not too far off the mark, as was demonstrated by Stanley
Tennenbaum [38] in a remarkable theorem: N is (up to isomorphism) the only computable
model of first-order PA. Here, a model is considered computable if its elements can be

© Marc Hermes and Dominik Kirst;
licensed under Creative Commons License CC-BY 4.0

7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022).
Editor: Amy P. Felty; Article No. 9; pp. 9:1–9:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hermesmarc@gmail.com
https://orcid.org/0000-0002-0375-759X
mailto:kirst@ps.uni-saarland.de
https://orcid.org/0000-0003-4126-6975
https://doi.org/10.4230/LIPIcs.FSCD.2022.9
https://www.ps.uni-saarland.de/extras/tennenbaum
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


9:2 An Analysis of Tennenbaum’s Theorem in Constructive Type Theory

coded by numbers in N, and the arithmetic operations on model elements can be realized
by computable functions on these codes. Usually, this theorem is formulated in a classical
framework such as ZF set theory and the precise meaning of computable is given by making
reference to a concrete model of computation like Turing machines, µ-recursive functions, or
the λ-calculus [14, 34]. But as is custom, the computability of a function is rarely proven by
exhibiting an explicit construction in the chosen model, but by a call to the Church-Turing
thesis, expressing that every function intuitively computable will be computable in the model.

To offer an alternative and more rigorous perspective, in this paper we revisit Tennen-
baum’s theorem in constructive type theory. Since we can externally observe that all functions
of constructive type theory are computable, we have the freedom to simply treat every func-
tion as being computable, without exhibiting any internal representation in a formal model of
computation. This is known as the synthetic approach to computability [31, 1] and simplifies
computability arguments to the point where the above-mentioned intuitions usually suffice
to give complete proofs with no formal gaps, and renders mechanization much more feasible.

This also leads to a simplification as it comes to the statement of Tennenbaum’s theorem:
In the most natural semantics interpreting the arithmetic operations with type-theoretic
functions, simply all models are computable and we no longer need “computable model” as
part of the theorem statement. We furthermore internalize computability by assuming a
version of Church’s thesis [18, 40, 7], an axiom which expresses that all functions N → N
have a representation in an internally captured formalism, in our case PA. With this setup,
all arguments involving a computability proof reduce to the constructions of type-theoretic
functions, giving a formal counterpart to the informal appeal to the Church-Turing thesis.

Based on this framework, we follow the classical presentations of Tennenbaum’s the-
orem [14, 34] to develop constructive versions only assuming a type-theoretic version of
Markov’s principle [21]. Classically, these proofs all yield the same version of Tennenbaum’s
theorem, but under a constructive lens, they differ in the strength of their respective as-
sumptions and conclusions. This is then complemented by the adaption of an inherently
constructive variant given by McCarty [23, 24].

Concretely, our contributions can be summarized as follows:
We formulate, establish, and compare several versions of Tennenbaum’s theorem in the
setting of synthetic computability based on constructive type theory.
We generalize Tennenbaum’s theorem to models with decidable divisibility relation that
need not be computable in general nor even enumerable (Corollary 43).
We provide a Coq mechanization covering all results studied in this paper.1

To make the paper self-contained, we start out in Section 2 by giving a quick introduction
to the essential features of constructive type theory, synthetic computability, and the type-
theoretic specification of first-order logic. We continue with a presentation of the first-order
axiomatization of PA as given in previous work [15], and of basic results about its standard
and non-standard models in Section 4. These are then used in Section 5 to establish results
that allow the encoding of predicates on N in non-standard models, which are essential in
the proof of Tennenbaum’s theorem. In Section 6 we introduce the chosen formulation of
Church’s thesis, which is then used to derive Tennenbaum’s theorem in several variations in
Section 7. We conclude in Section 8 with observations about these proofs and remarks on
the Coq mechanization as well as related and future work.

1 The only two facts with no formal counterpart in Coq are clearly marked as “Hypothesis” in Section 7.3.
The full mechanization is accessible from the web page listed as supplementary material and systematically
hyperlinked with the highlighted statements in the PDF version of this paper.
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2 Preliminaries

2.1 Constructive Type Theory
Our framework is the calculus of inductive constructions (CIC) [6, 27] which is implemented
in the Coq proof assistant [37], providing a predicative hierarchy of type universes above a
single impredicative universe P of propositions and the capability of inductive type definitions.
On type level, we have the unit type 1 with a single element, the void type 0, function
spaces X → Y , products X × Y , sums X + Y , dependent products2 ∀(x : X). A x, and
dependent sums Σ(x : X). A x. On the propositional level, the notions as listed in the order
above, are denoted by the usual logical notation (⊤, ⊥, →, ∧, ∨, ∀, ∃).3 It is important
to note that the so-called large eliminations from the impredicative P into higher types
of the hierarchy are restricted. In particular it is therefore generally not possible to show
(∃x. p x) → Σx. p x.4 The restriction does however allow for large elimination of the equality
predicate = : ∀X.X → X → P, as well as function definitions by well-founded recursion.

We will also use the basic inductive types of Booleans (B := tt | ff), Peano natural numbers
(n : N := 0 | n + 1), the option type (O(X) := ◦x | ∅) and lists (l : List(X) := [ ] | x :: l).
Furthermore, by Xn we denote the type of vectors v⃗ of length n : N over X.

▶ Definition 1. A proposition P :P is called definite if P ∨ ¬P holds and stable if ¬¬P → P .
The same terminology is used for predicates p :X → P given they are pointwise definite or
stable. We furthermore want to recall the following logical principles:

LEM := ∀P :P. definiteP (Law of Excluded Middle)
DNE := ∀P :P. stableP (Double Negation Elimination)
MP := ∀f :N → N. stable (∃n. fn = 0) (Markov’s Principle)

all of which are not provable in CIC.

Note that LEM and DNE are equivalent while MP is much weaker and has a constructive
interpretation [21]. For convenience, and as used for instance by Bauer [2], we adapt the
reading of double negated statements like ¬¬P as “potentially P”.5

▶ Remark (Handling ¬¬). Given any propositions A,B we constructively have (A → ¬B) ↔
(¬¬A → ¬B), telling us that whenever we are trying to prove a negated goal, we can remove
double negations in front of any available assumption. More specifically then, any statement
of the form ¬¬A1 → . . . → ¬¬An → ¬¬C, is equivalent to A1 → . . . → An → ¬¬C and
since C → ¬¬C holds, it furthermore suffices to show A1 → . . . → An → C in this case. In
the following, we will make use of these facts without further notice.

2.2 Synthetic Computability
As already expressed in Section 1, constructive type theory allows us to interpret all definable
functions as computable. We then get simplified versions [9] of usual definitions:

2 As is custom in Coq, we write ∀ in place of the symbol Π for dependent products.
3 Negation ¬A is used as an abbreviation for both A → ⊥ and A → O.
4 The direction (Σx. p x) → ∃x. p x is however always provable. Intuitively, one can think of ∃x. p x as

stating the mere existence of some value satisfying p, while Σx. p x is a type that also carries a value
satisfying this.

5 ¬¬P expresses the impossibility of P being wrong, so it represents a guarantee that P can potentially
be shown correct.
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▶ Definition 2 (Enumerability). Let p : X → P be some predicate. We say that p is enumerable
if there is an enumerator f : N → O(X) such that ∀x :X. p x ↔ ∃n. fn = ◦x.

▶ Definition 3 (Decidability). Let p : X → P be some predicate. We call f : X → B a decider
for p and write decider p f iff ∀x :X. p x ↔ fx = tt. We then define the following notions of
decidability:

Dec p := ∃f :X → B. decider p f
dec(P :P) := P + ¬P .

In both cases we will often refer to the predicate or proposition simply as being decidable.

We also expand the synthetic vocabulary with notions for types. In the textbook setting,
many of them can only be defined for sets which are in bijection with N, but synthetically
they can be handled in a more uniform way.

▶ Definition 4. We call a type X
enumerable if λx :X.⊤ is enumerable,
discrete if there exists a decider for equality = on X,
separated if there exists a decider for apartness ̸= on X,
witnessing if ∀f :X → B. (∃x. fx = tt) → Σx. fx = tt.

▶ Fact 5. In the particular type theory we use, N is witnessing.

2.3 First-Order Logic
In order to study Tennenbaum’s theorem, we need to give a description of the first-order
theory of PA and the associated intuitionistic theory of Heyting arithmetic (HA), which
has the same axiomatization, but uses intuitionistic first-order logic. We follow prior work
in [9, 10, 15] and describe first-order logic inside of the constructive type theory, by inductively
defining formulas, terms, and the deduction system. We then define a semantics for this
logic, which uses Tarski models and interprets formulas over the respective domain of the
model. The type of natural numbers N will then naturally be a model of HA.

Before specializing to one particular theory, we keep the definition of first-order logic
general and fix some arbitrary signature Σ = (F ; P) for function and predicate symbols.

▶ Definition 6 (Terms and Formulas). We define terms t : tm and formulas φ : fm inductively.

s, t : tm ::= xn | f v⃗ (n :N, f :F , v⃗ : tm|f |)

α, β : fm ::= ⊥ | P v⃗ | α → β | α ∧ β | α ∨ β | ∀α | ∃β (P :P, v⃗ : tm|P |).

Where |f | and |P | are the arities of the function symbol f and predicate symbol P , respectively.

We use de Bruijn indexing to formalize the binding of variables to quantifiers. This means
that the variable xn at some position in a formula is bound to the n-th quantifier preceding
this variable in the syntax tree of the formula. If there is no quantifier binding the variable,
it is said to be free.

▶ Definition 7 (Substitution). Given a variable assignment σ : N → tm we recursively define
substitution on terms by xk[σ] := σ k and f v⃗ := f(v⃗[σ]), further extended to formulas by

⊥[σ]:=⊥ (P v⃗)[σ]:=P (v⃗[σ]) (α □̇ β)[σ]:=α[σ] □̇ β[σ] (∇̇φ)[σ]:=∇̇(φ[x0;λx.(σx)[↑]])

where □̇ is any logical connective and ∇̇ any quantifier. The expression x;σ is defined by
(x;σ) 0 := x as well as (x;σ)(n+ 1) := σ n and is simply appending x as the first element to
σ :N → tm. By ↑ we designate the substitution λn. xn+1 shifting all variable indices by one.
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▶ Definition 8 (Natural Deduction). Natural deduction ⊢ : (fm → P) → fm → P is character-
ized inductively by the usual rules (see Appendix A). We write ⊢ for intuitionistic natural
deduction and ⊢c for the classical variant, extending ⊢ with Peirce’s law ((φ → ψ) → φ) → φ.

▶ Definition 9 (Tarski Semantics). A model M consists of a type D designating its domain
together with functions fM : D|f | → D and PM : D|P | → P for all symbols f in F and P in
P. We will also use M to refer to the domain. Functions ρ : N → M are called environments
and are used as variable assignments to recursively give evaluations to terms:

ρ̂ xk := ρ k ρ̂ (f v⃗) := fM(ρ̂ v⃗) (v : tmn)

This interpretation is then extended to formulas via the satisfaction relation:

M ⊨ρ P v⃗ := PM(ρ̂ v⃗) M ⊨ρ α → β := M ⊨ρ α → M ⊨ρ β

M ⊨ρ α ∧ β := M ⊨ρ α ∧ M ⊨ρ β M ⊨ρ α ∨ β := M ⊨ρ α ∨ M ⊨ρ β

M ⊨ρ ∀α := ∀x :D. M ⊨x;ρ α M ⊨ρ ∃α := ∃x :D. M ⊨x;ρ α

We say that a formula φ holds in the model M and write M ⊨ φ if for every ρ we have M ⊨ρ φ.
We extend this notation to theories T : fm → P by writing M ⊨ T iff ∀φ. T φ → M ⊨ φ and
we write T ⊨ φ if M ⊨ φ for all models M with M ⊨ T .

▶ Fact 10 (Soundness). For any formula φ and theory T , if T ⊢ φ then T ⊨ φ.

From the next section onwards, we will no longer explicitly write formulas with de Bruijn
indices, but will use the conventional notation which uses named variables.

3 Axiomatization of Peano Arithmetic

We present PA following [15], as a first-order theory with a signature consisting of symbols
for the constant zero, the successor function, addition, multiplication and equality:

ΣPA := (FPA; PPA) = (0, S,+,×; =)

The finite core of PA axioms consists of statements characterizing the successor function, as
well as addition and multiplication:

Disjointness : ∀x. Sx = 0 → ⊥ Injectivity : ∀xy. Sx = Sy → x = y

+-base : ∀x. 0 + x = x +-recursion : ∀xy. (Sx) + y = S(x+ y)
×-base : ∀x. 0 × x = 0 ×-recursion : ∀xy. (Sx) × y = y + x× y

We then get the full (and infinite) axiomatization of PA with the axiom scheme of induction
for unary formulas. In our meta-theory the schema is a type-theoretic function on formulas:

λφ. φ[0] → (∀x. φ[x] → φ[Sx]) → ∀x. φ[x]

If instead of the induction scheme we add the axiom ∀x. x = 0 ∨ ∃ y. x = Sy, we get the
theory Q known as Robinson arithmetic. Both PA and Q also contain axioms for equality:

Reflexivity : ∀x. x = x

Symmetry : ∀xy. x = y → y = x

Transitivity : ∀xyz. x = y → y = z → x = z

S-equality : ∀xy. x = y → Sx = Sy

+-equality : ∀xyuv. x = u → y = v → x+ y = u+ v

×-equality : ∀xyuv. x = u → y = v → x× y = u× v

FSCD 2022

https://www.ps.uni-saarland.de/extras/tennenbaum/Tennenbaum_paper/Tennenbaum.Deduction.html#prv
https://www.ps.uni-saarland.de/extras/tennenbaum/Tennenbaum_paper/Tennenbaum.Tarski.html#sat
https://www.ps.uni-saarland.de/extras/tennenbaum/Tennenbaum_paper/Tennenbaum.Tarski.html#eval
https://www.ps.uni-saarland.de/extras/tennenbaum/Tennenbaum_paper/Tennenbaum.Tarski.html#sat
https://www.ps.uni-saarland.de/extras/tennenbaum/Tennenbaum_paper/Tennenbaum.Deduction.html#tsoundness
https://www.ps.uni-saarland.de/extras/tennenbaum/Tennenbaum_paper/Tennenbaum.Peano.html#PA_funcs
https://www.ps.uni-saarland.de/extras/tennenbaum/Tennenbaum_paper/Tennenbaum.Peano.html#ax_zero_succ
https://www.ps.uni-saarland.de/extras/tennenbaum/Tennenbaum_paper/Tennenbaum.Peano.html#ax_succ_inj
https://www.ps.uni-saarland.de/extras/tennenbaum/Tennenbaum_paper/Tennenbaum.Peano.html#ax_add_zero
https://www.ps.uni-saarland.de/extras/tennenbaum/Tennenbaum_paper/Tennenbaum.Peano.html#ax_add_rec
https://www.ps.uni-saarland.de/extras/tennenbaum/Tennenbaum_paper/Tennenbaum.Peano.html#ax_mult_zero
https://www.ps.uni-saarland.de/extras/tennenbaum/Tennenbaum_paper/Tennenbaum.Peano.html#ax_mult_rec
https://www.ps.uni-saarland.de/extras/tennenbaum/Tennenbaum_paper/Tennenbaum.Peano.html#PA
https://www.ps.uni-saarland.de/extras/tennenbaum/Tennenbaum_paper/Tennenbaum.Peano.html#ax_induction
https://www.ps.uni-saarland.de/extras/tennenbaum/Tennenbaum_paper/Tennenbaum.Peano.html#ax_zero_or_succ
https://www.ps.uni-saarland.de/extras/tennenbaum/Tennenbaum_paper/Tennenbaum.Peano.html#Q
https://www.ps.uni-saarland.de/extras/tennenbaum/Tennenbaum_paper/Tennenbaum.Peano.html#ax_refl
https://www.ps.uni-saarland.de/extras/tennenbaum/Tennenbaum_paper/Tennenbaum.Peano.html#ax_sym
https://www.ps.uni-saarland.de/extras/tennenbaum/Tennenbaum_paper/Tennenbaum.Peano.html#ax_trans
https://www.ps.uni-saarland.de/extras/tennenbaum/Tennenbaum_paper/Tennenbaum.Peano.html#ax_succ_congr
https://www.ps.uni-saarland.de/extras/tennenbaum/Tennenbaum_paper/Tennenbaum.Peano.html#ax_add_congr
https://www.ps.uni-saarland.de/extras/tennenbaum/Tennenbaum_paper/Tennenbaum.Peano.html#ax_mult_congr


9:6 An Analysis of Tennenbaum’s Theorem in Constructive Type Theory

The classical first-order theory of Peano arithmetic is described by PA ⊢c , while its
intuitionistic counterpart – Heyting arithmetic – is given by PA ⊢ .6 Since the constructive
type theory we have chosen to work in only gives us a model for Heyting arithmetic, we will
only work with the intuitionistic theory PA ⊢ . To emphasize this we will from now on write
HA instead of PA.

For simplicity, we only consider models that interpret the equality symbol with the
actual equality relation of its domain, so-called extensional models. Note that in the Coq
development we even make the equality symbol a syntactic primitive, therefore enabling the
convenient behavior that the interpreted equality reduces to actual equality.

▶ Definition 11. We recursively define a function · : N → tm by 0 := 0 and n+ 1 := Sn,
giving every natural number a representation as a term. Any term t which is of the form n

will be called numeral.

We furthermore use notations for expressing less than x < y := ∃ k. S(x + k) = y, less or
equal x ≤ y := ∃ k. x+ k = y and for divisibility x | y := ∃ k. x× k = y.

The formulas of HA can be classified in a hierarchy based on the their computational
properties. We will only consider two levels of this hierarchy, namely ∆1 and Σ1 formulas:

▶ Definition 12. A formula φ is ∆1 if we have HA ⊢ φ ∨ ¬φ and if for every substitution σ

such that φ[σ] is closed we even have Q ⊢ φ[σ] or Q ⊢ ¬φ[σ].
We call a formula ∃n if it is of the form ∃ . . . ∃φ0, where φ0 is a ∆1 formula preceded by

exactly n existential quantifiers. If a formula is ∃n for some n, it is called Σ1.

Note that every ∃n formula can be proven equivalent to a ∃1 formula by replacing the n
quantifiers ∃x1 . . . ∃xn with ∃x∃x1 < x . . .∃xn < x. A more syntactic definition of ∆1 would
characterize them as the formulas which are equivalent to both a Π0 and Σ0 formula. For our
purposes the more semantic definition simply stipulating the necessary decidability properties
is preferable, as it directly implies the absoluteness properties we will actually need:

▶ Lemma 13 (∆1-Absoluteness). Let M ⊨ HA and φ be any closed ∆1 formula, then we
have N ⊨ φ ↔ M ⊨ φ.

Proof. By Definition 12 we have either HA ⊢ φ or HA ⊢ ¬φ. Since N ⊨ φ we must have
HA ⊢ φ and therefore M ⊨ φ by soundness. ◀

▶ Lemma 14 (Σ1-Completeness). For any unary ∆1 formula φ(x) we have N ⊨ ∃x. φ(x) iff
HA ⊢ ∃x. φ(x).

Proof. The assumption N ⊨ ∃x. φ(x) gives us n :N with N ⊨ φ(n). By Lemma 13 we then
have HA ⊢ φ(n), which in turn shows HA ⊢ ∃x. φ(x). The converse follows by soundness. ◀

4 Standard and Non-standard Models of HA

From now on M will always designate a HA model. We will now see that there is a canonical
way to embed N into any model of PA.

▶ Fact 15. We recursively define a function ν : N → M by ν 0 := 0M and ν (n+ 1) :=
SM(ν n). We define the predicate std := λe. ∃n.n = e and refer to e as a standard number
if std e and non-standard if ¬ std e. We then have

6 Another way to treat the distinction between classical and intuitionistic theories would be to add all
instances of Peirce’s law to the axioms of a theory, instead of building them into the deduction system.
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1. ρ̂ n = ν n for any n :N and environment ρ :N → M.
2. ν is an injective homomorphism and therefore an embedding of N into M.

We take both facts as a justification to abuse notation and also write n for ν n.

Usually we would have to write 0M, SM,+M,×M,=M for the interpretations of the re-
spective symbols in a model M. For better readability we will however take the freedom to
overload the symbols 0, S,+, ·,= to also refer to these interpretations.

▶ Definition 16. M is called a standard model if there is a bijective homomorphism
φ : N → M. We will accordingly write M ∼= N if this is the case.

We can show that ν is essentially the only homomorphism from N to M we need to worry
about, since it is unique up to functional extensionality:

▶ Lemma 17. Let φ : N → M be a homomorphism, then ∀x :N. φ x = ν x.

Proof. By induction on x and using the fact that both are homomorphisms. ◀

We now have two equivalent ways to express standardness of a model.

▶ Lemma 18. M ∼= N iff ∀e :M. std e.

Proof. Given M ∼= N, there is an isomorphism φ : N → M. Since φ is surjective, Lemma 17
implies that ν must also be surjective. For the converse: if ν is surjective, it is an isomorphism
since it is injective by Fact 15. ◀

Having seen that every model contains a unique embedding of N, one may wonder whether
there is a formula φ which could define and pick out precisely the standard numbers in M.
Lemma 19 gives a negative answer to this question:

▶ Lemma 19. There is a unary formula φ(x) with ∀e :M.
(

std e ↔ M ⊨ φ(e)
)

if and only
if M ∼= N.

Proof. Given a formula φ with the stated property, we certainly have M ⊨ φ(0) since 0 is a
standard number, and clearly M ⊨ φ(x) =⇒ stdx =⇒ std (Sx) =⇒ M ⊨ φ(Sx). Thus
by induction in the model, we have M ⊨ ∀x. φ(x), which is equivalent to ∀e :M. std e. The
converse implication holds by choosing the formula x = x. ◀

We now turn our attention to models which are not isomorphic to N.

▶ Fact 20. For any e :M, we have ¬ std e iff ∀n :N. e > n.

▶ Definition 21. Founded on the result of Fact 20 we write e > N iff ¬ std e and call M
non-standard (written M > N) iff there is e :M such that e > N,
not standard (written M ≁= N) iff ¬M ∼= N.

We will also write e :M > N to express the existence of a non-standard element e in M.

Of course we have M > N → M ≁= N, but the converse implication does not hold construct-
ively in general, so the distinction of both notions becomes meaningful.

▶ Lemma 22 (Overspill). If M ≁= N and φ(x) is unary with M ⊨ φ(n) for every n :N, then
1. ¬

(
∀e :M.M ⊨ φ(e) → std e

)
2. stable std → ¬¬ ∃ e > N.M ⊨ φ(e)
3. DNE → ∃ e > N.M ⊨ φ(e).

FSCD 2022

https://www.ps.uni-saarland.de/extras/tennenbaum/Tennenbaum_paper/Tennenbaum.Peano.html#eval_num
https://www.ps.uni-saarland.de/extras/tennenbaum/Tennenbaum_paper/Tennenbaum.Peano.html#inu_inj
https://www.ps.uni-saarland.de/extras/tennenbaum/Tennenbaum_paper/Tennenbaum.Peano.html#stdModel'
https://www.ps.uni-saarland.de/extras/tennenbaum/Tennenbaum_paper/Tennenbaum.Peano.html#hom_agree_inu
https://www.ps.uni-saarland.de/extras/tennenbaum/Tennenbaum_paper/Tennenbaum.Peano.html#stdModel_eqiv
https://www.ps.uni-saarland.de/extras/tennenbaum/Tennenbaum_paper/Tennenbaum.Coding.html#stdModel_equiv
https://www.ps.uni-saarland.de/extras/tennenbaum/Tennenbaum_paper/Tennenbaum.Coding.html#num_lt_nonStd
https://www.ps.uni-saarland.de/extras/tennenbaum/Tennenbaum_paper/Tennenbaum.Peano.html#nonStd
https://www.ps.uni-saarland.de/extras/tennenbaum/Tennenbaum_paper/Tennenbaum.Peano.html#nonStd
https://www.ps.uni-saarland.de/extras/tennenbaum/Tennenbaum_paper/Tennenbaum.Peano.html#notStd
https://www.ps.uni-saarland.de/extras/tennenbaum/Tennenbaum_paper/Tennenbaum.Peano.html#nonStd_notStd
https://www.ps.uni-saarland.de/extras/tennenbaum/Tennenbaum_paper/Tennenbaum.Coding.html#Overspill
https://www.ps.uni-saarland.de/extras/tennenbaum/Tennenbaum_paper/Tennenbaum.Coding.html#Overspill
https://www.ps.uni-saarland.de/extras/tennenbaum/Tennenbaum_paper/Tennenbaum.Coding.html#Overspill_DN
https://www.ps.uni-saarland.de/extras/tennenbaum/Tennenbaum_paper/Tennenbaum.Coding.html#Overspill_DNE


9:8 An Analysis of Tennenbaum’s Theorem in Constructive Type Theory

Proof. (1) Assuming ∀e :M. M ⊨ φ(e) → std e and combining it with our assumption that φ
holds on all numerals, Lemma 19 implies M ∼= N, giving us a contradiction. For (2) note that
we constructively have that ¬∃e :M.¬std e ∧ M ⊨ φ(e) implies ∀e :M.M ⊨ φ(e) → ¬¬ std e,
and by using the stability of std we therefore get a contradiction in the same way as in (1).
Statement (3) immediately follows from (2). ◀

In Section 5 we will use Overspill to encode arbitrary predicates by non-standard elements.

5 Coding Finite and Infinite Predicates

There is a standard way in which finite sets of natural numbers can be encoded by a single
natural number. This is readily established in N and can then be carried over with relative
ease to any HA model. Overspill has interesting consequences when it comes to this encoding,
as for models M ≁= N, it allows the potential encoding of any predicate p : N → P.

For the natural number version of the encoding, we only need some injective function
π : N → N whose image consists only of prime numbers.

▶ Lemma 23 (Finite Coding in N). Given any predicate p : N → P and bound n :N, we have

¬¬ ∃c :N ∀u :N.
(
u < n → (p u ↔ πu | c)

)
∧

(
πu | c → u < n

)
i.e. up to the specified bound n, the code c is divisible by the prime πu iff p holds on u :N.
The second part of the conjunction assures that no primes bigger than πn are present in the
code. Note that if p is definite, we can drop the ¬¬.

Proof. We do a proof by induction on n. For n = 0 we can choose c = 1. For the induction
step we first note that ¬¬(p n ∨ ¬p n) is constructively provable and that the induction
hypothesis as well as the goal come with double negations at the front. Using p n ∨ ¬p n we
can now consider two cases. If ¬p n we can simply take the code c given by the induction
hypothesis. If p n, we set the new code to be c · πn. In both cases the separate parts of the
conjunction are checked by making use of the fact that π is an injective prime function. ◀

▶ Remark 24. To formulate the above result in a generic model M ⊨ HA, we require an
object level representation of the prime function π. For now we will simply assume that we
have such a binary formula Π(x, y) and defer the justification to Section 6.

This now makes it possible to express “πu divides c” by ∃ p. Π(u, p) ∧ p | c, where we will
abuse notation and simply write Π(u) | c for this. With Π then, we can take the coding
result established for N and use it to show a similar result in any model of HA.

▶ Lemma 25 (Finite Coding in M). For any binary formula α(x, y) and n :N we have

M ⊨ ∀ b¬¬ ∃ c∀u < n. α(u, b) ↔ Π(u) | c.

If M ⊨ α(u, b) is definite for every u :N, b :M, we can drop the ¬¬ in the above.

Proof. Let b : M, then define the predicate p := λu : N.M ⊨ α(u, b). Then Lemma 23
potentially gives us a code a :N for p up to the bound n. It now suffices to show that the
actual existence of a :N already implies

M ⊨ ∃ c∀u < n. α(u, b) ↔ Π(u) | c.
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And indeed, we can verify that c = a shows the existential claim: given u :M with M ⊨ u < n

we can conclude that u must be a standard number u. We then have the equivalences

M ⊨ α(u, b) ⇐⇒ p u ⇐⇒ πu | a ⇐⇒ M ⊨ Π(u) | a

since a codes p and Π represents π. ◀

▶ Lemma 26 (Infinite Coding in M). If std is stable, M ̸∼= N and α(x) a unary formula, we
have

¬¬ ∃c :M ∀u :N. M ⊨ α(u) ↔ Π(u) | c.

Proof. Using Lemma 25 for the present case where α is unary, we get

M ⊨ ¬¬ ∃ c∀u < n. α(u) ↔ Π(u) | c

for every n :N, so by Lemma 22 (Overspill) we get

¬¬ ∃ e > N. M ⊨ ¬¬ ∃ c∀u < e. α(u) ↔ Π(u) | c
=⇒ ¬¬ ∃c :M ∀u :N. M ⊨ α(u) ↔ Π(u) | c.

Where we used that given ∀u :M < e. (. . .) we can show ∀u :N. (. . .), since we have e > N
and therefore u < e for any u :N by Fact 20. ◀

▶ Lemma 27. If std is stable, M ≁= N and M ⊨ α(u, b) is definite for every b : M, u :N,
then we have

¬¬ ∀b :M ∃c :M ∀u :N. M ⊨ α(u, b) ↔ Π(u) | c.

Proof. Similar to the proof of Lemma 26, but we make use of the definiteness to get the
stronger result out of Lemma 25 and then use Overspill to conclude. ◀

6 Church’s Thesis for First-Order Arithmetic

Church’s thesis (CT) [18, 40], states that every function N → N has a representation in a
previously chosen, concrete model of computation. In the constructive type theory that we
are working in, it is possible to consistently add CT as an axiom [42, 35, 8]. Given that we
are treating computability in the context of HA, we choose a version of CT which uses a
model of computation based on representing functions by formulas in the language of HA.

▶ Axiom 28 (CTQ). For every function f : N → N there exists a binary ∃1 formula φf (x, y)
such that for every n :N we have Q ⊢ ∀y. φf (n, y) ↔ fn = y.

This formulation takes its justification from the standard result establishing the represent-
ability of µ-recursive functions by Σ1 formulae in Q [33, 26], combined with the fact that
existential quantifiers can be compressed as mentioned in Section 3, to get the desired ∃1
formula. We can now apply CTQ on the injective prime function π to immediately settle
Remark 24:

▶ Fact 29. There is a binary formula representing the injective prime function π in Q.

Furthermore, we can use it to establish the representability of decidable and enumerable
predicates in Q [30].
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▶ Definition 30. We call p : N → P weakly representable by φp(x) if ∀n :N. p n ↔ Q ⊢ φp(n),
and strongly representable if p n → Q ⊢ φp(n) and ¬p n → Q ⊢ ¬φp(n) for every n :N.

▶ Lemma 31 (Representability Theorem (RT)). Assume CTQ, and let p : N → P be given.
1. If p is decidable, it is strongly representable by a unary ∃1 formula.
2. If p is enumerable, it is weakly representable by a unary ∃2 formula.

Proof. If p is decidable, then there is a function f : N → N such that ∀x :N. p x ↔ fx = 0 and
by CTQ there is a binary ∃1 formula φf (x, y) representing f . We then define φp(x) :=φf (x, 0)
and deduce

p n =⇒ fn = 0 =⇒ Q ⊢ fn = 0 =⇒ Q ⊢ φf (n, 0) =⇒ Q ⊢ φp(n)
¬p n =⇒ fn ̸= 0 =⇒ Q ⊢ ¬(fn = 0) =⇒ Q ⊢ ¬φf (n, 0) =⇒ Q ⊢ ¬φp(n)

which shows that p is strongly representable.
If p is enumerable, then there is f : N → N such that ∀x : N. p x ↔ ∃n. fn = x + 1

and by CTQ there is a binary ∃1 formula φf (x, y) representing f . We then define φp(x) :=
∃n. φf (n, Sx) giving us

Q ⊢ φp(x) ⇐⇒ Q ⊢ ∃n. φf (n, Sx) ⇐⇒ ∃n :N.Q ⊢ φf (n, Sx)
⇐⇒ ∃n :N.Q ⊢ fn = Sx ⇐⇒ ∃n :N. fn = x+ 1 ⇐⇒ p x

which shows that p is weakly representable by a ∃2 formula. ◀

7 Tennenbaum’s Theorem

We will now present several proofs of Tennenbaum’s theorem, differing in the assumptions
they make and the strength of their results. All of the proofs have in common that they start
by the assumption M > N to then make use of the coding lemma to encode a particular
formula or predicate by an element of the model.

In Section 7.1 we will assume enumerability of the model, enabling a direct diagonal
argument. This proof idea can be found in [3]. In Section 7.2 we look at the proof approach
that is most prominently found in the literature [34, 14] and uses the existence of recursively
inseparable sets. We sharpen this approach to a generalization only relying on decidability
of the divisibility relation of the model.

Another variant of the usual proof was proposed in [20] and circumvents the usage of
Overspill. In our constructive setting, this leads to a perceivable difference when it comes to
the strength of the result. Lastly we look at the consequences of Tennenbaum’s theorem,
once the underlying semantics is made explicitly constructive. The latter two variations are
discussed in Section 7.3.

7.1 Via a Diagonal Argument
We start by noting that every HA model can prove the most basic fact about divisibility.

▶ Lemma 32 (Euclidean Lemma). Given e, d :M we have

M ⊨ ∃ r q. e = q · d+ r ∧ (0 < d → r < d)

and the uniqueness property telling us that if r1, r2 < d then q1 · d+ r1 = q2 · d+ r2 implies
q1 = q2 and r1 = r2.
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Proof. For Euclid’s lemma, there is a standard proof by induction on e :M. The uniqueness
claim requires some basic results about the order relation <. ◀

▶ Lemma 33. If M is enumerable and discrete, then λnd.M ⊨ n | d has a decider.

Proof. Let n :N and d :M be given. By the Euclidean Lemma 32 we have ∃q, r :M. e = q·d+r.
This existence is propositional, so presently we cannot use it to give a decision for e | d. Since
M is enumerable, there is a surjective function g : N → M and the above existence therefore
shows ∃q, r :N. e = (g q) · d+ (g r). Since equality is decidable in M and N2 is witnessing,
we get Σq, r :N. e = (g q) · d+ (g r), giving us computational access to r, now allowing us to
construct the decision. By the uniqueness part of Lemma 32 we have g r = 0 ↔ e | d, so the
decidability of e | d is entailed by the decidability of g r = 0. ◀

▶ Lemma 34.
1. If std is stable, then so is M ∼= N.
2. Assuming MP and discreteness of M, then std is stable.

Proof. The first statement is trivial by Lemma 18. For the second, recall that std e stands
for ∃n :N. n = e. Since n = e in M is decidable, stability follows from Fact 5. ◀

▶ Lemma 35. If std is stable, M ̸∼= N, and p :N → P decidable, then potentially there is a
code c :M such that ∀n :N. p n ↔ M ⊨ πn | c.

Proof. By RT, there is a formula φp strongly representing p. Under the given assumptions,
we can use the coding Lemma 26, yielding a code c :M for φp, such that ∀u :N.M ⊨ φp(u) ↔
Π(u) | c. Overall this shows:

p n =⇒ Q ⊢ φp(n) =⇒ M ⊨ φp(n) =⇒ M ⊨ Π(n) | c
¬p n =⇒ Q ⊢ ¬φp(n) =⇒ ¬ M ⊨ φp(n) =⇒ ¬ M ⊨ Π(n) | c.

Since p is decidable, the latter implication entails M ⊨ Π(n) | c =⇒ p n, which overall
shows the desired equivalence. ◀

This gives us the following version of Tennenbaum’s theorem:

▶ Theorem 36. Assuming MP, if M is enumerable and discrete, then M ∼= N.

Proof. By Lemma 34 it suffices to show ¬¬M ∼= N. So assume M ≁= N and try to derive ⊥.
Given the enumerability, there is a surjective function g :N → M. We use this to define the
predicate p := λn :N.¬ M ⊨ πn | g n, which is decidable by Lemma 33. By Lemma 35 and
surjectivity of g then, there is some c :N, such that ¬ M ⊨ πc | g c def.⇐⇒ p c

35⇐⇒ M ⊨ πc | g c
which gives the desired contradiction. ◀

7.2 Via Inseparable Predicates
The usual proof of Tennenbaum’s theorem [14, 34] uses the existence of recursively inseparable
sets and non-standard coding to establish the existence of a non-recursive set. In this situation,
if we then were to again assume enumerability and discreteness of M, we could easily reach
the same conclusion as in Theorem 36. In the following however, we want to highlight that
the proof which uses inseparable sets allows for a characterization of M ∼= N which only
makes reference to the decidability of divisibility by numerals:

▶ Definition 37. For d :M define the predicate · | d := λn :N.M ⊨ n | d.
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So in particular, in the following we will not assume enumerability or discreteness of M.

▶ Definition 38. A pair A,B : N → P of predicates is called inseparable iff
1. they are disjoint, meaning ∀n :N.¬(An ∧B n)
2. there is no decidable D : N → P which includes A i.e. ∀n :N. An → Dn and is disjoint

from B i.e. ∀n :N.¬(B n ∧Dn).

▶ Lemma 39. There are inseparable enumerable predicates A,B : N → P.

Proof. We use an enumeration Φn : fm of formulas to define disjoint predicates A := λn :
N.Q ⊢ ¬ Φn(n) and B :=λn :N.Q ⊢ Φn(n). Since proofs over Q can be enumerated, A and B
are enumerable. Assume we are given a decidable predicate D which includes A and is disjoint
from B. Using RT and the enumeration, there is d :N such that Φd strongly represents D. This
gives us Dd =⇒ Q ⊢ Φd(d) =⇒ B d, contradicting the disjointness of B and D, therefore
showing ¬Dd. Furthermore, representability gives us ¬Dd =⇒ Q ⊢ ¬Φd(d) =⇒ Ad and
since A is included in D, this shows ¬Dd =⇒ Dd. Overall this gives us a contradiction. ◀

▶ Corollary 40. There is a pair α(z), β(z) of unary ∃2 formulas such that A:=λn :N.Q ⊢ α(n)
and B := λn :N.Q ⊢ β(n) are inseparable and enumerable.

Proof. We get the desired formulas by using the weak representability of Lemma 31 on the
predicates given by Lemma 39. ◀

▶ Lemma 41. Assuming stability of std and M ≁= N, then ¬¬ ∃d :M.¬Dec( · | d).

Proof. By Corollary 40 there are inseparable formulas ∃x, y. α0(x, y, z) and ∃x, y. β0(x, y, n)
such that α0, β0 are ∆1. Since they are disjoint, we have:

N ⊨ ∀x y u v z < n.¬(α0(x, y, z) ∧ β0(u, v, z))

for every bound n :N. By Lemma 13 we then get

M ⊨ ∀x y u v z < n.¬(α0(x, y, z) ∧ β0(u, v, z))

and using Overspill we therefore potentially have e :M with

M ⊨ ∀x y u v z < e.¬(α0(x, y, z) ∧ β0(u, v, z))

showing the disjointness of α0, β0 when everything is bounded by e. We now define the
predicate X := λn :N.M ⊨ ∃x, y < e. α0(x, y, n) and note that

If Q ⊢ ∃x, y. α0(x, y, n) there are m1,m2 with N ⊨ α0(m1,m2, n) and M ⊨ α0(m1,m2, n)
by Lemma 13. We therefore get Xn.
Assume that Xn ∧ Q ⊢ ∃x, y. β0(x, y, n). Then similarly to above, there are m1,m2 :N
with M ⊨ β0(m1,m2, n), showing M ⊨ ∃x, y < e. β0(x, y, n). Together with Xn this
contradicts the disjointness of α0, β0 under the bound e.

Due to the inseparability of the given formulas, this shows that X cannot be decidable and
by Lemma 27 there is now potentially a code d :M with Xn ⇔ M ⊨ πn | d. ◀

▶ Fact 42. For every e :M we have std e → Dec( · | e).

▶ Corollary 43. Given MP and discrete M, we have M ∼= N iff ∀d :M.¬¬Dec( · | d).

Proof. The first implication follows by Fact 42. For the converse, note that the contraposition
of Lemma 41 shows ∀d :M.¬¬Dec( · | d) → ¬¬M ∼= N where the conclusion is equivalent
to M ∼= N due to Lemma 34. ◀
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7.3 Variants of the Theorem
We now investigate two further variants of the theorem, by making two further assumptions:
the existence of formulas which satisfy a stronger notion of inseparability and that the coding
lemma can be proven inside of HA.

▶ Definition 44. Two formulas α(x), β(x) are called HA-inseparable if λn :N.Q ⊢ α(n) and
λn :N.Q ⊢ β(n) are inseparable and one can also show HA ⊢ ¬∃x. α(x) ∧ β(x).

▶ Hypothesis 1. There are ∆1 formulas α0, β0 such that ∃z. α0(z, x) and ∃z. β0(z, x) are
HA-inseparable.

▶ Hypothesis 2. For any binary ∆1 formula φ(x, y), HA can prove the following coding
lemma: HA ⊢ ∀n b∃ c∀u < n. (∃z < b. φ(z, u)) ↔ Π(u) | c.

According to [24], one way of establishing Hypothesis 1 is by taking the construction of
inseparable formulas as seen earlier, and internalizing the given proof within HA. Similarly,
Hypothesis 2 is justified by noting that its proof should be an internalized version of the
proof of Lemma 23.

The following variant of Tennenbaum’s theorem is based on an observation by Mak-
holm [20]. Most importantly, it avoids the usage of Overspill, by using Hypothesis 2. In
contrast to the result in Section 7.1 we want to highlight that the next theorem does not
presuppose MP or the stability of std.

▶ Theorem 45 (Makholm). We have M > N if and only if ∃d :M.¬Dec( · | d).

Proof. First note that the converse follows from Fact 42. Now assume we have e :M > N.
By Hypothesis 1 there are HA-inseparable ∃1 formulas ∃z. α0(z, x) and ∃z. β0(z, x), where
α0, β0 are binary ∆1 formulas. Then let X := λn :N.M ⊨ ∃ z < e. α0(z, n).

If Q ⊢ ∃ z. α0(z, n) there is m :N with N ⊨ α0(m,n) and M ⊨ α0(m,n) by Lemma 13.
We therefore get Xn.
Assuming Xn∧Q ⊢ ∃ z. β0(z, n), then similarly to above, there is m :N with M ⊨ β0(m,n),
showing M ⊨ ∃ z < e. β0(z,m). But together with Xn this contradicts the deductive
disjointness property of the HA-inseparable formulas α0 and β0.

Due to the inseparability of the given ∃1 formulas, this shows that X is not decidable. Using
soundness on Hypothesis 2 for φ := α0 and n, b := e, we get

M ⊨ ∃ c∀u < e.
(
∃ z < e. α0(z, u)

)
↔ Π(u) | c.

So there is a code c :M such that X is coded by it, showing that · | c cannot be decidable. ◀

▶ Corollary 46. We have ∀e :M.¬¬ std e iff ∀d :M.¬¬Dec( · | d).

McCarty [24, 23] considered Tennenbaum’s theorem with constructive semantics. Instead of
models placed in classical set theory, he assumes an intuitionistic theory (e.g. IZF), making
the interpretation of the object-level disjunction much stronger. We simulate this in our type
theory by assuming the following choice principle:

▶ Definition 47. By AUC we denote the principle of unique choice:

∀X Y R. (∀x ∃!y.Rxy) → ∃f :X → Y.∀x.Rx(fx)

Note that CT and AUC combined prove the negation of LEM [7]. In the following, we are
therefore (deliberately) anti-classical.
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▶ Lemma 48. For any formula φ(x, y) we have M ⊨ ∀ b.¬¬∀x, y < b. φ(x, y) ∨ ¬φ(x, y).

Proof. Single instances of the law of excluded middle are provable under double negation.
We can then use this in combination with an induction on the bound b to prove the claim. ◀

▶ Lemma 49. Assuming AUC and M > N, we have ∀d :M.¬¬Dec( · | d).

Proof. Let d :M be given and assume e :M > N. Then we have e+ d+ 1 > N and using
Lemma 48 we get

M ⊨ ∀ b.¬¬∀x, y < b. φ(x, y) ∨ ¬φ(x, y)
=⇒ ¬¬ M ⊨ ∀x, y < (e+ d+ 1). φ(x, y) ∨ ¬φ(x, y)
=⇒ ¬¬ ∀n :N.M ⊨ φ(n, d) ∨ ¬φ(n, d)
=⇒ ¬¬ ∀n :N.M ⊨ φ(n, d) + ¬ M ⊨ φ(n, d)

where the last implication is possible, since AUC implies the decidability of definite proposi-
tions. For the choice φ(x, y) := x | y we then get the desired result. ◀

▶ Corollary 50. Assuming AUC, then there are no non-standard models.

Proof. Given M > N, Lemma 49 entails ¬∃d : M.¬Dec( · | d), in contradiction to The-
orem 45. ◀

Still assuming both Hypothesis 1 and Hypothesis 2 we can then derive:

▶ Corollary 51 (McCarty). Given AUC and MP, HA is categorical.

Proof. Given that HA ⊢ ∀xy. x = y ∨ ¬x = y, AUC entails that every model M ⊨ HA is
discrete, showing the stability of std by Lemma 34. Combined with Corollary 50 this shows
M ∼= N. ◀

8 Discussion

8.1 General Remarks
In Section 7, we presented several proofs of Tennenbaum’s theorem which we summarize in
the below table, listing their assumptions7 on the left and the conclusion on the right.

MP AUC discrete HA-insep. Conclusion from
• • N ∼= M iff M enumerable Theorem 36
• • M > N → ¬¬∃d.¬Dec( · | d) Lemma 41

• M > N ↔ ∃d.¬Dec( · | d) Theorem 45
• • • N ∼= M Corollary 51

First note that since HA can show definiteness of equality, the above listed assumption of
the model M being discrete is equivalent to M being separated.

Comparing Theorem 45 to Theorem 36 and Lemma 41 we see that its conclusion is
constructively stronger. The noteworthy observation about Theorem 45 is that it cannot
be reached by the proofs given in Section 7.2, as they crucially depend on Overspill and
therefore MP and discreteness. The result only becomes possible once we use a stronger
notion of inseparability for formulas and avoid the usage of Overspill.

7 We do not list the global assumption CTQ. Both Hypothesis 1 and Hypothesis 2 are provable but left
unmechanized in Coq, we only list the former to highlight where it was used.
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As was pointed out by McCarty in [24], a weaker version WCT of CT suffices for his proof,
where the code representing a given function is hidden behind a double negation. He mentions
in [25] that WCT is still consistent with the Fan theorem, while CT is not. Analogously, the
following weakening of CTQ suffices for all of the proofs that we have presented:

▶ Definition 52 (WCTQ). For every function f : N → N there potentially is a binary ∃1
formula φf (x, y) such that for every n :N we have Q ⊢ ∀y. φf (n, y) ↔ fn = y.

This only needs few changes of the presented proofs and we verified this in the Coq project.8
An advantage of WCTQ over CTQ is that the former follows from the double negation of the
latter and is therefore negative, ensuring that its assumption does not block computation [5].

Depending on the fragment of first-order logic one can give constructive proofs of the
model existence theorem [10], producing a countable syntactic model with computable
functions for every consistent theory. By the argument given in the introduction, model
existence would yield a countable and computable non-standard model of PA, which at first
glance seems to contradict the statement of Tennenbaum’s theorem. For any countable
non-standard model of PA however, Theorem 45 and Lemma 33 entail that neither equality
nor apartness can be decidable. This is similar in spirit to the results in [36], showing that
even if the functions of the model are computable, non-computable behavior still emerges,
but in relation to equality.

8.2 Coq Mechanization
The Coq development is axiom-free and the usage of crucial but constructively justified
axioms CTQ and MP are localized in the relevant sections. Apart from these, there are the
two facts in Section 7.3 we have labeled as hypotheses, and which were taken as additional
assumptions in the relevant sections. They are expected to be provable and would on paper
usually be treated as facts and simply used, but since our treatment is backed up by a
mechanization, we prefer to make these assumptions very explicit in the accompanying text.

In total, the development counts roughly 5400 lines of code. From those, 3000 loc on the
specification of first-order logic and basic results about PA models were reused from earlier
work [9, 10, 16, 15]. Notably, the formalization of the various coding lemmas from Section 5
took 460 loc and all variants of Tennenbaum’s theorem come to a total of only 860 lines.

In contrast to the previous developments, where equality was treated as a relation
symbol, we decided to treat equality as a primitive of the syntax. This is chosen as a mere
simplification to ease working in an abstract model and is expected to be straightforward to
eliminate.

8.3 Related Work
Presentations of first-order logic in the context of proof-checking have already been discussed
and used, among others, by Shankar [32], Paulson [28], O’Connor [26], as well as Han and
van Doorn [12]. The particular mechanization of first-order logic we use is based on several
previous projects [9, 10, 16, 15] and part of the Coq library of undecidability proofs [11].

Classical proofs of Tennenbaum’s theorem can be found in [3, 34, 14]. There are also
refinements of the theorem which show that computability of either operation suffices [22] as
well as a weaker induction scheme [41, 4]. Constructive accounts were given by McCarty [23,

8 We could have presented all of the results with respect to WCTQ. We opted against this in favor of
CTQ, to avoid additional handling of double negations and to keep the proofs more readable.
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24] and Plisko [29], and a relatively recent investigation into Tennenbaum phenomena was
conducted by Godziszewski and Hamkins [36].

Synthetic computability theory was introduced by Richman and Bauer [31, 1] and initially
applied to constructive type theory by Forster, Kirst, and Smolka [9]. Their synthetic
approach to undecidability results has been used in several other projects, all merged into
the Coq library of undecidability proofs [11].

For an account of CT as an axiom in constructive mathematics we refer to Kreisel [18]
and Troelstra [39]. Investigations into CT and its connections to other axioms of synthetic
computability based on constructive type theory were done by Forster [7, 8].

8.4 Future Work
We would like to give a proper formalization of the arithmetical hierarchy, in particular
implementing our semantic treatment of ∆1 formulas with a syntactic restriction to formulas
with bounded quantification. For a suitable definition, it could then also be shown that every
Σ1 formula is ∃1, making the treatment of CTQ and RT more uniform. A definition of the
full hierarchy would allow us to conduct an analysis concerning the arithmetical strength of
the induction scheme needed to establish Tennenbaum’s theorem.

We would like to further justify CTQ by starting off with the more conventional formulation
of CT for some canonical model of computation, as for instance stated in [7], and verifying
that it yields CTQ. This should be in reach by connecting the mechanization of the DPRM
theorem, given by Larchey-Wendling and Forster [19], with its reduction to Q, given by Kirst
and Hermes [15].

We plan to mechanize the facts left informal in Section 7.3, namely Hypothesis 1 and
Hypothesis 2. As these require sizeable syntactic derivations inside of HA but are not so
central for the main result, we decided to avoid the necessary cumbersome manipulations in
Coq. Their mechanization could possibly benefit from the proof mode developed in [13].

A more satisfying rendering of McCarty’s result will be achieved by changing Definition 9,
putting the interpretations of formulas on the (proof-relevant) type level instead of the
propositional level, therefore removing the need to assume AUC to break the barrier from
the propositional to the type level.

Following usual practice in textbooks, in Coq we consider equality a syntactic primitive
and only regard models interpreting it as actual equality. When treated as axiomatized
relation instead, we could consider the (slightly harder to work with) setoid models and
obtain the more general result that no computable non-standard setoid model exists.

The presented versions of Tennenbaum’s theorem do not explicitly mention the comput-
ability of addition or multiplication of the model, and as mentioned in Section 1 this is due to
the chosen synthetic approach. To make these assumptions explicit again, we could assume
an abstract version of CT which makes reference to a T predicate [17, 7], and expresses that
every T -computable function is representable in Q. We can then then distinguish between
addition or multiplication being T -computable and formalize the result that T -computability
of either operation leads to the model being standard [22].
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A Deduction Systems

Intuitionistic natural deduction ⊢ : List(fm) → fm → P is defined inductively by the rules

φ ∈ Γ
Γ ⊢ φ

Γ ⊢ ⊥
Γ ⊢ φ

Γ, φ ⊢ ψ

Γ ⊢ φ → ψ

Γ ⊢ φ → ψ Γ ⊢ φ

Γ ⊢ φ

Γ ⊢ φ Γ ⊢ ψ

Γ ⊢ φ ∧ ψ

Γ ⊢ φ ∧ ψ

Γ ⊢ φ

Γ ⊢ φ ∧ ψ

Γ ⊢ ψ

Γ ⊢ φ

Γ ⊢ φ ∨ ψ

Γ ⊢ ψ

Γ ⊢ φ ∨ ψ

Γ ⊢ φ ∨ ψ Γ, φ ⊢ θ Γ, ψ ⊢ θ

Γ ⊢ θ

Γ[↑] ⊢ φ

Γ ⊢ ∀φ
Γ ⊢ ∀φ
Γ ⊢ φ[t]

Γ ⊢ φ[t]
Γ ⊢ ∃φ

Γ ⊢ ∃φ Γ[↑], φ ⊢ ψ[↑]
Γ ⊢ ψ

where we get the classical variant ⊢c by adding Peirce’s rule as an axiom:

Γ ⊢c ((φ → ψ) → φ) → φ

The deduction systems lift to possibly infinite contexts T : fm → P by writing T ⊢ φ if there
is a finite Γ ⊆ T with Γ ⊢ φ.
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