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Abstract
We develop and mechanize compact proofs of the undecidability of various problems for dyadic
first-order logic over a small logical fragment. In this fragment, formulas are restricted to only a
single binary relation, and a minimal set of logical connectives. We show that validity, satisfiability,
and provability, along with finite satisfiability and finite validity are undecidable, by directly reducing
from a suitable binary variant of Diophantine constraints satisfiability. Our results improve upon
existing work in two ways: First, the reductions are direct and significantly more compact than
existing ones. Secondly, the undecidability of the small logic fragment of dyadic first-order logic
was not mechanized before. We contribute our mechanization to the Coq Library of Undecidability
Proofs, utilizing its synthetic approach to computability theory.
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1 Introduction

In 1928, Hilbert and Ackermann [18] mused whether there is a general decision procedure for
the Entscheidungsproblem, that is, the problem of whether or not a formula of first-order
logic is valid in all models. In the following years, several strategies were developed to
approach this problem. So-called reduction theory [20, 3, 31] tried to reduce the general
Entscheidungsproblem to simpler classes of first-order formulas. For formulas over a monadic
signature, that is, formulas where all function and relation symbols are unary, Löwenheim [26]
already established in 1915 that the Entscheidungsproblem is decidable.

Validity for first-order formulas was first shown undecidable for the general case of an
unrestricted signature in 1936 by both Church [4] and Turing [34]. Shortly afterwards, in
1937, Kalmár [20] finalized a validity-preserving reduction chain allowing to convert a general
first-order formula to one over a dyadic signature, that is, one with only a single binary
relation symbol (and no function symbols). The resulting (un)decidability classification
regarding the signature is as follows:

▶ Theorem ((Un-)decidability of validity). Validity for first-order formulas is, depending on
the arity of the function and relation symbols in the signature:
1. decidable, if all function and relation symbols are at most unary.
2. decidable, if all relation symbols are nullary.
3. undecidable, if there is an at least binary relation symbol.
4. undecidable, if there is an at least binary function, and a non-nullary relation symbol.
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11:2 Undecidability of Dyadic First-Order Logic in Coq

Proof summary.
1. By Löwenheim [26].
2. Quantifiers can be ignored, and thus formulas degenerate into trivial propositional logic.
3. By Kalmár [20], refining Church [4] and Turing [34].
4. By Gurevich [16]. ◀
Seminal works in reduction theory by Kalmár [21, 20] and Ackermann [1] in 1932-1939, which
minimized the signature and the quantifier prefix, as well as techniques developed by Gödel
in 1929 [14] and Gentzen in 1936 [13], which minimized the fragment of logical connectives,
soon established several axes along which formula classes could be determined decidable or
undecidable. These mentioned restrictions are all syntactic, i.e. they classify formulas by
restricting their syntactic formation rules. Complementary to this are semantic restrictions,
like the one emerging from finite model theory, where validity and satisfiability only involve
finite models.

The undecidability of finite satisfiability, which is the variant of the Entscheidungsproblem
restricted to finite models, was first shown in 1950 by Trakhtenbrot [33], who reduced from a
semantic problem on µ-recursive functions. Although Trakhtenbrot’s result holds for general
first-order formulas, it was already folklore in 1950 that this result can be reduced to the
undecidability of finite dyadic first-order logic (e.g. Kalmár [20] already claims that his
reduction applies here, albeit without proof). In general, the above theorem applies to finite
validity (and satisfiability) mutatis mutandis, as do the results for minimizing the fragment
of logical connectives.

In recent years, most of these results have been mechanized in proof assistants, mainly
Coq [32]. Notably, a classical mechanization of undecidability results would start by mecha-
nizing a model of computation as a reference point for undecidability, which is cumbersome
as it involves programming low-level entities of this model. Alternatively, one can use a
synthetic approach to computability theory, which uses the notion of computation implicit
in constructive foundations such as the type theory underlying Coq. This approach was
developed by Forster et al. [9, 8], building on ideas by Richman [30] and Bauer [2].

Using this framework, Forster et al. [9] mechanize the undecidability of the Entschei-
dungsproblem in Coq. As they work in a constructive setting logic, they need to separately
consider the undecidability of validity, satisfiability, and provability, as the various theorems
establishing their many-one equivalence only hold classically. Following this approach, Kirst
and Hermes [22] mechanize the undecidability of case (3) of the above theorem by transform-
ing formulas of first-order ZF set theory, shown undecidable as well, into a signature with
just a single binary relation ∈. Kirst and Larchey-Wendling [23] mechanize the general case
of Trakhtenbrot’s result, as well as a signature compression chain and further decidability
results to establish all cases of the above theorem for finite models. All of these results are
collected in the Coq Library of Undecidability Proofs [11].

This aforementioned library also contains a mechanization of the undecidability of
Diophantine constraints satisfiability, due to Larchey-Wendling and Forster [25]. This
problem was first shown undecidable in 1970 by Matiyasevich [27], building upon work by
Davis, Putnam, and Robinson [6] and provides the basis for reductions in this paper.

Contributions Complementing existing results, we develop novel compact reductions estab-
lishing the undecidability of dyadic first-order logic. We develop a compactly mechanizable
variant of Diophantine constraints satisfiability and directly reduce from it to show valid-
ity, satisfiability (for both Tarski and Kripke semantics), and intuitionistic and classical
provability undecidable. We develop a similar reduction for finite satisfiability and validity.
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Additionally, we strengthen our results over the existing mechanizations, namely by
reducing the logical fragment to a minimal one. For some problems, this includes eliminating
the falsity constant. In particular, we provide the first mechanization1 that first-order validity
and provability are undecidable for a dyadic signature and minimal logical fragment.

Outline In Section 2, we recall the basics of synthetic undecidability and the mechanization
of first-order logic we use. In Section 3, we introduce the binary variant UDPC of Diophantine
constraints satisfiability we base our reductions on and show that it is undecidable. Section 4
contains the reductions from UDPC to validity, satisfiability, and provability, as well as the
later minimization of the logical fragment. Section 5 does the same for finite satisfiability
and validity, again including a mechanization for the minimal fragment. Finally, Section 6
summarizes our results and compares them to prior work.

2 Preliminaries

2.1 Synthetic Undecidability
We work in the Calculus of Inductive Constructions, a constructive type theory [5, 28]. Our
type theory includes dependent functions (λ(x : A). (e : B)) : ∀(x : A). B, as well as inductive
types, which include the empty type ∅, the unit type containing ⋆ : 1, products (a, b) : A×B,
and sums A + B, as well as the natural numbers N := 0 |S n and booleans B := tt | ff.
Further, we have optionals O(X) := ∅ | ⌈x⌉ and lists L (X) := [] |x :: xs. A type is listable if
there is a list including all elements of that type.

Type universes form a cumulative hierarchy T0 : T1 : · · · , along with P : T1, the
computationally irrelevant type of propositions. By default, this implements an intuitionistic
logic, where the law of excluded middle LEM := ∀P : P. P ∨ ¬P is not asserted. Since the
hierarchy of types is cumulative, we omit indices wherever not necessary.

Since our type theory is constructive, functions defined in it are computable. In particular,
this type system is implemented by the Coq proof assistant [32], which witnesses the
computability and allows extraction to other programming languages.

Synthetic undecidability theory [8, 9] describes the approach for mechanizing undecid-
ability proofs underlying the Coq library of Undecidability Proofs [11]. Due to the implicit
computability of functions in this type theory, one can specify and verify computable functions
without reference to a particular model of computation. For instance, a problem (a unary
predicate) is decidable if there is a function computing its truth value. We refer the reader
to the mentioned literature [8, 9] for a more detailed justification of the synthetic method.

▶ Definition 1. Let P : X → P be a problem on X : T.
The problem P such that P x := ¬P x is the complement of P .
A function f : X → B is a decider for P iff ∀x : X.Px↔ fx = tt.
A function f : N→ O(X) is an enumerator for P iff ∀x : X.Px↔ ∃n.fn = ⌈x⌉.
P is decidable, written dec(P ), iff there is a decider for P .
P is enumerable, written enum(P ), iff there is an enumerator for P .

In particular, we are able to mechanize many-one reductions, verify them, and thereby
establish that a problem is (synthetically) undecidable if we can many-one reduce to it from
the halting problem of the λ-calculus, which is known to be undecidable [4]. We refer to

1 Accessible from the supplementary web page and hyperlinked with every highlighted statement.
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this halting problem as HALTλ. Note that while HALTλ is also defined on open terms,
it is many-one equivalent to a more canonical version of the halting problem on closed
λ-expressions [8].

▶ Definition 2. A problem P : X → P on X : T is undecidable iff dec(P )→ enum(HALTλ).

▶ Definition 3. A problem P : X → P on X : T many-one reduces to Q : Y → P, written
P ≼ Q, iff there is a function f : X → Y such that ∀x : X.Px↔ Q(fx).

When verifying a reduction, we typically call the →-step preservation and the ←-step
reflection.

▶ Fact 4. If HALTλ or HALTλ many-one reduces to P , then P is undecidable.

2.2 First-Order Logic
First-order logic (FOL) is a logic where quantifiers may only range over individuals of the
model, and not over functions or relations on these individuals.

We work within the mechanization of first-order logic already given in the Coq Library of
Undecidability Proofs [11], which was synthesized by Kirst and Hermes [22] from previous
work by Forster et al. [9, 10] and Kirst and Larchey-Wendling [23]. We recollect their
definition here for ease of access:

First, fix a signature Σ = (FΣ;PΣ) of function symbols f : FΣ and relation symbols
P : PΣ with arities |f | and |P |, which are then used to describe terms t : T and formulas
φ : F as inductive types:

t ::= xn | f t⃗ (n : N, t⃗ : T |f |) φ ::= P t⃗ | ⊥ | φ→ ψ | φ ∧ ψ | φ ∨ ψ | ∀φ | ∃φ (⃗t : T |P |)

While this definition and the mechanization uses de Bruijn indices to implement binding [7],
we will use named binders on paper to improve readability.

Next, define the usual Tarski semantics providing an interpretation of formulas:

▶ Definition 5. A modelM consists of a domain type D as well as functions fM : D|f | → D

and PM : D|P | → P interpreting the symbols in the signature Σ. Given a variable assignment
ρ : N→ D we define term evaluation ρ̂ : T → D and formula satisfaction ρ ⊨ φ by

ρ̂ xn := ρn ρ̂ (f t⃗ ) := fM (ρ̂ t⃗ ) ρ ⊨ P t⃗ := PM(ρ̂ t⃗ )

where the remaining cases of ρ ⊨ φ map each logical connective to its meta-level counterpart.

If a model M satisfies a formula φ for all variable assignments ρ, write M ⊨ φ.
We also follow Kirst and Hermes’ [22] mechanization of provability, which is based on an

inductive natural deduction system. We write A ⊢ φ for a list of formulas A and a formula
φ if φ can be deduced from A in the intuitionistic deduction system, and ⊢c for the classical
one. The full set of deduction rules can be found in [22].

In particular, these notions induce the following decision problems on formulas:

▶ Problem 6 (Variants of the Entscheidungsproblem).

VALφ := ∀M.∀ρ : N→ D. ρ |= φ

SATφ := ∃M.∃ρ : N→ D. ρ |= φ

PRVφ := [] ⊢ φ
PRVc φ := [] ⊢c φ

When mechanizing finite model theory, we closely follow the mechanization developed by
Kirst and Larchey-Wendling [23]. In particular, a finite model is not just listable, but also
has decidable relations.

https://www.ps.uni-saarland.de/extras/fol-dyadic/website/Undecidability.Synthetic.Undecidability.html#undecidable
https://www.ps.uni-saarland.de/extras/fol-dyadic/website/Undecidability.Synthetic.Definitions.html#reduces
https://www.ps.uni-saarland.de/extras/fol-dyadic/website/Undecidability.Synthetic.Undecidability.html#undecidability_from_reducibility
https://www.ps.uni-saarland.de/extras/fol-dyadic/website/Undecidability.FOL.Util.Syntax.html#term
https://www.ps.uni-saarland.de/extras/fol-dyadic/website/Undecidability.FOL.Util.Syntax.html#form
https://www.ps.uni-saarland.de/extras/fol-dyadic/website/Undecidability.FOL.Util.FullTarski.html#interp
https://www.ps.uni-saarland.de/extras/fol-dyadic/website/Undecidability.FOL.Util.FullTarski.html#eval
https://www.ps.uni-saarland.de/extras/fol-dyadic/website/Undecidability.FOL.Util.FullTarski.html#sat
https://www.ps.uni-saarland.de/extras/fol-dyadic/website/Undecidability.FOL.Util.Deduction.html#417d4f8793ef9552198c889adf95d0f2
https://www.ps.uni-saarland.de/extras/fol-dyadic/website/Undecidability.FOL.Util.Deduction.html#817ceca459237d9bb4f8668e062084ff
https://www.ps.uni-saarland.de/extras/fol-dyadic/website/Undecidability.FOL.Util.FullTarski.html#valid
https://www.ps.uni-saarland.de/extras/fol-dyadic/website/Undecidability.FOL.Util.FullTarski.html#satis
https://www.ps.uni-saarland.de/extras/fol-dyadic/website/Undecidability.FOL.minFOL_undec.html#int_provable
https://www.ps.uni-saarland.de/extras/fol-dyadic/website/Undecidability.FOL.minFOL_undec.html#class_provable
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▶ Definition 7. A model M is finite iff D is listable and for all relation symbols p, dec(pM)
holds.

▶ Problem 8 (Variants of the Entscheidungsproblem on finite models).
FVALφ := ∀M.M finite→ ∀ρ : N→ D. ρ |= φ

FSATφ := ∃M.M finite ∧ ∃ρ : N→ D. ρ |= φ

3 Uniform Diophantine Pair Constraints

In order to achieve compact reductions to first-order logic, we need to pick a source problem
which allows for easy formalization in first-order logic. Our particular problem is satisfiability
for a variant of Diophantine constraints, that is, for a collection of equations on N all having
a certain shape. The concrete shape is defined by the relation ∼.

▶ Definition 9 ( ∼). ∼ is the following relation on N2 × N2:

(a, b) ∼(c, d) := a+ b+ 1 = c ∧ b2 + b = d+ d

This relation has several suitable features. First of all, it is total and functional. It further
allows encoding the successor operation, addition, and squaring, which suffices to express
all of natural arithmetic. As Definition 12 shows, it can easily be characterized inductively.
Intuitively, this relation encodes the Gaussian sum d = b2+b

2 =
∑b

i=1 i.
To define a constraints collection, we pick N as a concrete, countably infinite, discrete

type of variables V and define:

▶ Definition 10 (Uniform Diophantine Pair Constraints). A uniform Diophantine pair con-
straint is a tuple ((x, y), (z, w)), with x, y, z, w : V. An assignment ρ : V → N satisfies such a
constraint ((x, y), (z, w)) iff (ρ x, ρ y) ∼(ρ z, ρw).

▶ Problem 11 (UDPC). UDPC is the following problem:

UDPC (h : L
(
V2 × V2)

) := ∃ρ.∀((x, y), (z, w)) ∈ h. ρ satisfies ((x, y), (z, w))

As mentioned, the problem also admits an inductive characterization:

▶ Definition 12 (Inductive ∼). The relation ∼ can be equivalently characterized by:

Base (a, 0) ∼(a+ 1, 0)

(a, b′) ∼(c′, d′) (d′, b′) ∼(d, d′) (b′, 0) ∼(b, 0) (c′, 0) ∼(c, 0)
Step

(a, b) ∼(c, d)

This characterization already hints at an axiomatic definition of ∼, as the axioms implied
by the constructors are almost sufficient. The total axiomatization, consisting of the Base,
Step, and Tieback axioms, is given here:

▶ Lemma 13 (Basic properties of ∼).
Base: (a, 0) ∼(c, 0) iff c = a+ 1
Step: (a, b) ∼(c, d) ∧ b ̸= 0 iff there are b′, c′, d′ such that
(a, b′) ∼(c′, d′) ∧ (d′, b′) ∼(d, d′) ∧ (b′, 0) ∼(b, 0) ∧ (c′, 0) ∼(c, 0)
Tieback: (a, 0) ∼(c, d)→ d = 0

weak Step: (a, b′) ∼(c′, d′)→ (d′, b′) ∼(d, d′)→ (b′, 0) ∼(b, 0)→ (c′, 0) ∼(c, 0)→ (a, b) ∼(c, d)

ITP 2022
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Base and Step are stronger than the corresponding constructors of Definition 12, as they
also capture elimination principles. The intuition behind the Step rule is that it encodes a
Gaussian sum as we go from b′ to b′ + 1 = b: We must change d′ =

∑b′

i=1 i to d =
∑b′+1

i=1 i,
so d′ + b′ + 1 = d must hold, which is ensured by (d′, b′) ∼(d, d′).

▶ Theorem 14 (Soundness and Completeness). Any relation R on N2 × N2 satisfying Base,
Step, and Tieback is equivalent to ∼. If R only satisfies Base and weak Step then completeness
holds, while soundness does not necessarily do so anymore: only (a, b) ∼(c, d)→ (a, b) R (c, d)
can be proven.

▶ Corollary 15. ∼ is the smallest relation satisfying the Base and weak Step axiom.

▶ Proposition 16 (Irreflexivity of ∼). ∀(a, b) : N2.¬((a, b) ∼(a, b))

To show UDPC undecidable, we reduce from a very similar problem called UDC, defined
on uniform Diophantine constraints. An undecidability proof for this problem is already
mechanized in the Coq Library of Undecidability Proofs.

▶ Definition 17 (Uniform Diophantine Constraints). A uniform Diophantine constraint is a
triple (x, y, z), with x, y, z : V. An assignment ρ : V → N satisfies a uniform Diophantine
constraint (x, y, z) iff

1 + ρ x+ (ρ y)2 = ρ z

▶ Problem 18 (UDC). UDC is the following problem:

UDC (l : L
(
V3)

) := ∃ρ. ∀(x, y, z) ∈ l. ρ satisfies (x, y, z)

▶ Fact 19. UDC is undecidable.

Fact 19 is mechanized by reducing from the general undecidability result for Diophantine con-
straints satisfiability by Larchey-Wendling and Forster [25]. Hence, our undecidability proof
fundamentally relies on the general undecidability of Diophantine constraints satisfiability.

We can reduce from UDC to show UDPC undecidable. We only sketch the reduction.

▶ Theorem 20. UDC ≼ UDPC

Proof sketch. For each variable v appearing in the instance of UDC, have five new variables
vi, 0 ≤ i ≤ 4. Then, for each constraint 1 + x+ y2 = z, encode it using these new constraints:

(y1, y1) ∼(y2, y4), (y3, y0) ∼(y2, y1), (y3, x0) ∼(z0, x1)

The new variables vi are thereby assigned the following values based on the old value of v:

i 0 1 2 3 4
vi v v2+v

2 v2 + v + 1 v2 v2
1+v1

2
◀

▶ Theorem 21. UDPC is undecidable.

Proof. By Theorem 20 and Fact 19. ◀

4 Undecidability of Validity

We now fix the concrete dyadic signature Σ ≈, where the binary relation ≈ is the only symbol,
and proceed to work within this signature unless explicitly mentioned.

https://www.ps.uni-saarland.de/extras/fol-dyadic/website/Undecidability.DiophantineConstraints.Util.H10UPC_facts.html#satCongr
https://www.ps.uni-saarland.de/extras/fol-dyadic/website/Undecidability.DiophantineConstraints.Util.H10UPC_facts.html#satEquiv
https://www.ps.uni-saarland.de/extras/fol-dyadic/website/Undecidability.DiophantineConstraints.Util.H10UPC_facts.html#h10_rel_irref
https://www.ps.uni-saarland.de/extras/fol-dyadic/website/Undecidability.DiophantineConstraints.H10C.html#h10uc
https://www.ps.uni-saarland.de/extras/fol-dyadic/website/Undecidability.DiophantineConstraints.H10C.html#H10UC_SAT
https://www.ps.uni-saarland.de/extras/fol-dyadic/website/Undecidability.DiophantineConstraints.H10C_undec.html#H10UC_SAT_undec
https://www.ps.uni-saarland.de/extras/fol-dyadic/website/Undecidability.DiophantineConstraints.Reductions.H10UC_SAT_to_H10UPC_SAT.html#reduction
https://www.ps.uni-saarland.de/extras/fol-dyadic/website/Undecidability.DiophantineConstraints.H10C_undec.html#H10UPC_SAT_undec
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4.1 Reducing from UDPC
For our reduction, we are given a constraints set h : L (V2 × V2), and have to construct
a formula FVAL h such that FVAL h is valid in all models if and only if h had a solution –
formally, UDPCh ↔ VAL (FVAL h). For this, we construct a first-order formalization of ∼,
which later allows us to translate concrete constraints into FOL.

During the reflection step, we need to instantiate the proof that FVAL h is valid with a
specific model M ∼, which we develop now. Fix D := N + N2 as the type of objects in M ∼.
We can then define the interpretation.

▶ Definition 22 (Interpretation of ≈ for M ∼).

l
r y : N (c, d) : N2

x : N x = y x = c

(a, b) : N2 y = b (a, b) ∼(c, d)

Since we develop our axioms based on this model, we consider it the standard model
of the following theory. We understand ∼ as a binary relation on pairs, and also add the
numbers these pairs are made up from as individuals. Our interpretation of ≈ then also allows
describing the pair’s components. The definition for x ≈ y with x, y : N allows discriminating
pairs and numbers, since ∼ (on pairs) is irreflexive (Proposition 16).

We can then begin axiomatizing ∼, starting with a few shorthands:

N k := k ≈ k P p l r := ¬N p ∧N l ∧N r ∧ l ≈ p ∧ p ≈ r
R a b c d := ∃pq.P p a b ∧ P q c d ∧ p ≈ q

In the standard model, N k iff k is a number, and P k l r iff k is the pair (l, r). R a b c d is
satisfied iff (a, b) ∼(c, d).

We can now formalize our axioms in first-order logic. Due to Theorem 14, the Base and
weak Step axioms are sufficient for the purpose of mechanizing this reduction.

Additionally, since our original relation is built on the linear order of natural numbers,
we need to mechanize enough properties of natural numbers to re-establish this linear order
in our relation. Thus, we first add axioms characterizing the natural numbers.

AVAL
1 := ∀k.N k → ∃k′.R k 0̇ k′ 0̇ AVAL

2 := N 0̇

Axioms AVAL
1 and AVAL

2 postulate that 0̇ is a natural number, and that there are successors.
The encoding of S x = y is (x, 0̇) ≈(y, 0̇), implicitly encoding the Base axiom.

AVAL
3 := ∀abcdb′c′d′.R a b′ c′ d′ ∧ R d′ b′ d d′ ∧ R b′ 0̇ b 0̇ ∧ R c′ 0̇ c 0̇→ R a b c d

Axiom AVAL
3 formalizes the weak Step axiom.

Throughout these axioms, we have used 0̇ as if it was a nullary function symbol (i.e. a
constant). In order to keep our signature minimal, we add this as an outermostly quantified
variable to our formula. We call such a construction a mock constant.

We can now construct our reduction function:

FVAL, code : L
(
V2 × V2)

→ F

FVAL h := ∀0̇.AVAL
1 → AVAL

2 → AVAL
3 → ∃

v∈V(h)

code h

code [] := ⊤
code (((a, b), (c, d)) :: h) := R a b c d ∧ code h
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Besides ensuring the axioms hold, the reduction function encodes the satisfaction condition
using one ∃-quantifier per variable in the constraint set h, thereby requiring that the model
has a solution satisfying the first-order-encoded constraints.

▶ Lemma 23 (Reflection). VAL (FVAL(h))→ UDPCh

Proof. We have that FVAL(h) is valid in all models, so it in particular is satisfied by M ∼,
which satisfies AVAL

1−3. The satisfaction condition ensures the model “knows” a solution, which
we can extract since the interpretation of ≈ in M ∼ is faithful. ◀

For preservation, we are given a solution ρ satisfying h, and have to reason in an abstract
model. By construction of FVAL, we can assume the axioms AVAL

1−3 and must now instantiate
a solution for the satisfaction condition. To do so, we first need to find the elements in our
model corresponding to natural numbers. For this, we define a data structure called “chain”:

▶ Definition 24 (Chain). A chain up to m : N is a function f : N→ D such that all of
1. f 0 = 0̇
2. for all n < m, we have R (f n) 0̇ (f (n+ 1)) 0̇
If fn = d, then d represents n.

Such a chain is just a partial function that maps elements of N to their representatives in
the model.

Starting in Definition 24, we abuse notation by using first-order formulas and terms to
denote properties in and elements of the model.

▶ Proposition 25. Given a chain f up to m and an n ≤ m, we have N (fn).

Proof. For 0, use AVAL
2 . Otherwise, by definition of R. ◀

In order to give a proof of M ⊨ ∃v∈V(h) code h, we need to first construct a chain:

▶ Proposition 26 (Chain construction). Given m, there exists a chain f up to m.

Proof. Induction on m:
m = 0: The chain is given by f n := 0̇. This satisfies both properties, using Proposition 25.
m = m′ + 1, where f ′ is a chain up to m′ by induction. We apply AVAL

1 to f ′ m′ and get
d such that R (f ′ m′) 0 d 0. Our chain f up to m is chosen as f ′[m 7→ d]. Chain property
1 is shown by induction, and property 2 also is using Proposition 25, except for n = m′,
where it is satisfied because AVAL

1 gave us d already fulfilling this required property. ◀
We now use Proposition 26 to build a chain f up to maxv∈V(h) ρ v. Then, we can proceed
to prove the satisfaction condition by instantiating as follows: For a variable v, chose
f (ρ v). The remaining goals are now of shape R (f (ρx)) (f (ρy)) (f (ρz)) (f (ρw)), for all
((x, y), (z, w)) ∈ h. Finally, this can be shown using another lemma:

▶ Proposition 27 (Chain steps). If (a, b) ∼(c, d), a, b, c, d < m and f is a chain up to m, then
M ⊨ R (f a) (f b) (f c) (f d).

Proof. Induction on the inductive characterization of (a, b) ∼(c, d):
a+ 1 = c, b = d = 0: Since a < m and f is a chain, we are done by the chain properties.
We have R (f a) (f b′) (f c′) (f d′), R (f d′) (f b′) (f d) (f d′), R (f b′) (f 0̇) (f b) (f 0̇), and
R (f c′) (f 0̇) (f c) (f 0̇) by induction as a, b, c, d, b′, c′, d′ < n holds. We can apply AVAL

3
and are done. ◀

With this lemma, we can conclude the complete proof of M ⊨ FVAL h for an arbitrary M .
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▶ Lemma 28 (Preservation). UDPCh→ VAL (FVAL(h))

Proof. We have ρ, a solution to h, and the fact that our model fulfills the axioms AVAL
1−3.

Thus, we can build a chain f up to maxv∈V(h) ρ v by Proposition 26. This chain allows us to
instantiate the satisfaction condition, concretely using f(ρ v) for given v : V . We conclude by
Proposition 27 for the remaining goals created by code. ◀

▶ Theorem 29. UDPC ≼ VAL restricted to dyadic formulas.

Proof. FVAL is a reduction function by Lemma 23 and Lemma 28. ◀

▶ Theorem 30. UDPC ≼ SAT restricted to dyadic formulas.

Proof. Using F ′ φ := ¬(FVAL φ) as reduction function. ◀

4.2 Minimizing the Logical Fragment
Next, we adapt the just outlined reduction to not only witness the undecidability of validity
over the minimal signature, but to also establish the undecidability over a2 minimal set of
logical operators, namely the forall-implicative fragment.

▶ Definition 31 (Forall-implicative fragment). A formula using only ⊥, the logical connective
→, and the ∀-quantifier is within the (∀,→,⊥)-fragment.

▶ Definition 32 (Negation). A formula in the (∀,→,⊥)-fragment not containing ⊥ is within
the (∀,→)-fragment. In general, a formula without ⊥ is in a fragment without negation.

We do so employing a mostly standard translation process, which combines ideas of both
Gödel-Gentzen double negation translation [14, 13] and Friedman’s A-translation [12], as
outlined by Forster et al. [9]. Put simply, we apply a double-negation translation, and replace
all uses of ⊥ by another formula. The resulting formula then is within the (∀,→)-fragment.

This transformation has not yet been mechanized to hold in general, so we manually
apply it to our concrete formula, and construct a new reduction with this reduced formula.

Further, the transformation usually introduces a new relation symbol for ⊥, which is not
an option here, as we want to keep the signature minimal. Instead, we slightly change our
standard model, exploiting as-of-yet unused space. To adapt our reduction, we define new
syntactic sugar, subsuming the previous definitions.

⊥w := c1 ≈ c2 ⊥s := ∀ab.a ≈ b ¬wφ := φ→ ⊥w

N k := k ≈ k P p l r ψ := (N p→ ⊥s)→ N l→ N r → l ≈ p→ p ≈ r → ψ

R p q a b c dψ := P p a b (P q c d (p ≈ q → ψ))

There are two versions of ⊥: ⊥s and ⊥w, where ⊥w is the canonical replacement of falsity.
⊥s is actually false in our standard model, whereas ⊥w will not be, and this allows us to
simplify verifying the reduction:

A canonical Friedman A-translation would just replace all occurrences of ⊥ by ⊥w

and insert sufficient double negations. Since working in doubly negated contexts is often
cumbersome, our reduction aims to avoid this as much as possible. Using ⊥s, which is
actually equivalent to falsity in the standard model, helps, since it makes the elimination

2 There is no canonical unique minimal set of logical operators. We use (∀, →), following Forster et al. [9],
while Gentzen [13] used (∀, ∧). In either case, a quantifier and a binary connective is necessary.
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lemmas not be doubly negated, thereby eliding a significant amount of double negations. For
instance, we can show that in M, (N p → ⊥s) implies that p is a pair, and not just that
¬w¬w(p is a pair).

Along with this, we also translate our axioms:

A⊥
2 :=N 0 A⊥

3 :=∀abcdb′c′d′p1 . . . p8.

A⊥
1 :=∀k.N k → ¬w∀pqk′.R p q k 0̇ k′ 0̇⊥w R p1 p2 a b

′ c′ d′ (R p3 p4 d
′ b′ d d′

(R p5 p6 b
′ 0 b 0 (R p7 p8 c

′ 0 c 0
(¬w∀p9p10.R p9 p10 a b c d⊥w))))

Axiom 3 becomes larger as we have changed the definition of R. Previously, this hid away
two pairs each, which are now explicitly universally quantified. This again serves to make
our reduction easier to verify. The full reduction function is as follows:

F⊥, code : L
(
V2 × V2)

→ F

F⊥ h := ∀0̇ c1 c2. A
⊥
1 → A⊥

2 → A⊥
3 → ¬w ∀

v∈V(h)

code h

code [] := ⊥w

code (((a, b), (c, d)) :: h) := ¬w(∀p1p2.R p1 p2 a b c d⊥w)→ code h

We need to slightly adjust our interpretation to make the Friedman translation work.

▶ Definition 33 (Interpretation of ≈ for Friedman-translation).

l
r y ∈ N (c, d) ∈ N2

x ∈ N x = y ∨ (x = 0 ∧ y = 1 ∧ UDPCh) x = c

(a, b) ∈ N2 y = b (a, b) ∼(c, d)

Here, the aforementioned encoding of reified falsity is underlined. The encoding stipulates
that 0 ≈ 1⇔ UDPCh. This becomes relevant during reduction reflection, as it allows us to
“break out” of the double-negated context by instantiating the mock constants c1, c2 with
c1 := 0, c2 := 1. Intuitively3, when replacing ⊥ with A when Friedman-translating φ, the
resulting formula is equivalent to φ ∨A. Thus, by choosing 0 ∼ 1 as A, we are able to extract
a solution as we did before, and if we are not, we still have our result.

▶ Proposition 34 (Proposition 26 for the minimal fragment). Let m : N. To show ⊥w, it
suffices to show ∀f.(f is a chain up to m)→ ⊥w.

▶ Proposition 35 (Proposition 27 for the minimal fragment).
If (a, b) ∼(c, d), a, b, c, d < m and f is a chain up to m, then showing M ⊨ ⊥w requires

showing M ⊨ ∀pq.R p q (f a) (f b) (f c) (f d)⊥w.

Proposition 34 is the double-negated version of Proposition 26. Instead of posing the
existence of a chain f , we allow adding hypotheses when aiming to prove ⊥w, which is
equivalent under double negation. Proposition 35 is translated similarly.

Proving these propositions is very technical, as one has to work in a doubly-negated
context most of the time. As mentioned, the axioms and the syntactic sugar we defined before
aim to minimize double negations, which explains most of the unorthodox constructions (e.g.
having both ⊥w and ⊥s). With these two lemmas, our reduction is complete.

3 This intuition only holds in classical logic, but is still useful for conceptualizing the translation
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▶ Theorem 36. UDPC ≼ VAL restricted to dyadic formulas over the (∀,→)-fragment.

Proof. Similar to Theorem 29, except for the changes outlined in this chapter. ◀

▶ Theorem 37. UDPC ≼ SAT restricted to dyadic formulas over (∀,→,⊥)-fragment.

Proof. Using F ′ φ := ¬(F φ) as reduction function. ◀

SAT is trivially decidable over the (∀,→)-fragment, since one can construct a model where
everything is true. It thus becomes undecidable as soon as there is a single use of ⊥.

4.3 Undecidability of Provability
We now turn towards the undecidability of the provability predicate PRV.

In a classical meta-theory, this would directly follow from completeness [15]. In our
intuitionistic meta-theory, however, this does not trivially hold [10, 24], and we instead have
to manually mechanize our reduction for the deduction system. The reduction function
stays the same, but instead of reasoning in an abstract model, we prove that the formula is
deducible in our deduction system. This mainly impacts the preservation step, as we can use
soundness for the reflection step:

▶ Lemma 38 (Reflection). PRV (F⊥(h))→ UDPCh.

Proof. Immediate using Theorem 36 and soundness of the deduction system. ◀

For preservation, the proof structure follows the previous proofs, while the low-level
goals change to accommodate the object-level deduction. For brevity, we only show the new
definition of a chain, as it demonstrates changes necessary to construct a syntactic proof in
the first-order deduction system.

▶ Definition 39 (Chain for provability). A proto-chain up to n is a list on V3 of length n,
containing triples (m, l, r). Every proto-chain c has a head number head c, which is 0̇ for []
and m for [(m, l, r), . . .]. The chain hypotheses hyp n c : L (F) for a proto-chain c up to n
are defined inductively:

hyp 0 [] :=[N 0̇]
hyp (n′ + 1) ((m, l, r) :: cr) :=N m :: (N l→ ⊥s) :: (N r → ⊥s)

:: l ≈(head cr) :: 0̇ ≈ l :: r ≈m :: 0̇ ≈ r :: l ≈ r :: hyp n′ cr

The definition now strongly separates data (the objects in our chain) and hypotheses this
data must satisfy. Compared to this, Definition 24 kept the data implicit: for a number
n : N, we had m = f n, and the proof that f is a chain at n. That property (being a
chain) is defined by an existential quantifier, and so a proof of it contained two pairs l, r
as witnesses. This was possible since Tarski models directly embed into the meta-logic, so
first-order existentials are represented as meta-level existentials, which just are dependent
pairs (truncated into P). For provability, these objects are now explicitly stored as the chain
entry (m, l, r), as working within the deduction system prevents us from building a data
structure (like dependent pairs) containing both these objects and the proofs about them.

Proposition 34 now looks like this, for instance:

▶ Proposition 40 (Proposition 34 for PRV).
Let m : N and A : L (F) be a list of hypotheses including AVAL⊥

1−3 . To construct a proof
A ⊢ ⊥w, it suffices to construct a proof (hypmc) +A ⊢ ⊥w for all proto-chains c up to m.
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This theorem builds a proof for ⊥w from another proof for ⊥w with more assumptions.
Specifically, it allows us to assume that there is some proto-chain, and to also assume that it
actually fulfills the chain hypotheses. As mentioned, data (the variables defining the chain)
and the hypotheses about this data are maintained separately, since the hypotheses are part
of the object-level deduction, while the data is not. Proposition 35 and the other lemmas
from before undergo similar changes, which we omit for brevity.

▶ Lemma 41 (Preservation). UDPCh→ PRV (F⊥(h)).

Proof. Using the reformulated variants of Proposition 34 and Proposition 35, as outlined
above, following the approach of Lemma 28. ◀

With this, we have shown that validity, satisfiability, and provability are undecidable for
the minimal signature and minimal logical fragment.

▶ Theorem 42. UDPC ≼ PRV restricted to dyadic formulas over the (∀,→)-fragment.
Assuming LEM, this holds for PRVc.

Proof. F⊥ is a reduction function by Lemmas 38 and 41. For PRVc, we need LEM to
establish soundness in Lemma 38. ◀

Related Decision Problems From the undecidability of provability, we additionally get the
undecidability of Kripke validity (KVAL) and Kripke satisfiability (KSAT). Since we do not
work in Kripke models, we refrain from formally introducing them here, and refer to Forster
et al. [9] and Herbelin and Lee [17].

▶ Theorem 43. UDPC ≼ KVAL restricted to dyadic formulas over the (∀,→)-fragment.

▶ Theorem 44. UDPC ≼ KSAT restricted to dyadic formulas over the (∀,→,⊥)-fragment.

5 Undecidability of Finite Satisfiability

For finite satisfiability (FSAT), we need to construct a new reduction function. The axioms
used so far allow us to construct infinitely many numbers, while the reduction requires
us to transport arbitrary large solution assignments. Both of these become impossible
when working with finite models, potentially requiring fragile upper bounds on model size.
Additionally, only UDPC many-one reduces to FVAL, as both are co-recursively enumerable.
Thus, a more straightforward approach is a reduction from UDPC towards FSAT. Such
reductions work “inversely” in that the axioms typically resemble elimination schemes,
instead of constructors.4 Our axioms then merely deconstruct larger values into smaller
ones, thus side-stepping the issue of making the axioms work without conflicting with the
finiteness of the model.

The following reduction often needs to decide whether an arbitrary first-order formula is
satisfied in some finite model. Since we required decidable relation interpretations, we can
construct a general decider, as noted in [23]:

4 Explicitly noted and discussed in [23]
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▶ Proposition 45 (Decidability of finite satisfaction). Given a fixed finite model M and a
fixed environment ρ : V →M, the predicate M ⊨ρ φ on φ : F is decidable.

Proof. All relation symbol interpretations of M are decidable. Quantified formulas are
decidable since finite quantification is decidable and M is finite. ◀

For the axioms, we need first-order indistinguishably ≡ in order to guard our elimination
axioms against constructing a predecessor of 0̇, since such a predecessor does not exist in our
standard model. We can encode it as a ≡ b := ∀k.a ≈ k ↔ b ≈ k ∧ k ≈ a↔ k ≈ b. The axioms
of Lemma 13 are formalized as follows:

AFSAT
1 :=∀k′. N k′ → k′ ̸≡ 0̇→ ∃k. (k, 0̇) ≈ (k′, 0̇)

AFSAT
2 :=∀abcd. (a, b) ≈ (c, d)→ b ̸≡ 0̇→

∃b′c′d′. (b′, 0̇) ≈ (b, 0̇) ∧ (c′, 0̇) ≈ (c, 0̇) ∧ (a, b′) ≈ (c′, d′) ∧ (d′, b′) ≈ (d, d′) ∧ d′ < d

AFSAT
3 :=∀aa′d. (a, 0̇) ≈ (a′, d)→ d ≡ 0̇

These axioms are based on the Base, strong Step, and Tieback laws respectively. We only
need the “backwards” direction since we will only deconstruct a given relation.

These axioms alone are not sufficient to extract constraints solutions from a model. While
these allow us to unpack a constraint into smaller constraints, the model might be cyclic,
such that smaller constraints eventually unpack into themselves. To prevent this, we need
to make the predecessor relation (k, 0) ∼(k′, 0) well-founded. While well-foundedness is not
first-order expressible in general, it is possible to ensure that a relation on a finite model is
well-founded:

▶ Fact 46 (Well-founded relations for finite types). Let D be a listable type and ≺ be a
transitive, irreflexive relation on D. Then ≺ is well-founded.

To make our predecessor relation well-founded, we need to construct its transitive closure.
This is again not first-order expressible without adding a new relation symbol, which we can
not do. Our solution is to exploit encoding space in the standard model in order to fit a new
binary relation on numbers into the standard model. We define the following syntactic sugar,
and add more axioms:

AFSAT
4 := ∀lr. (l, 0̇) ≈ (r, 0̇)→ l < r ∧ ∀k. k < r → k ≤ l a < b := a ≤ b ∧ a ̸≡ b

AFSAT
5 := ∀abc. a < b→ b < c→ a < c a ≤ b := N a ∧N b ∧ a ≈ b

So < becomes our transitive, irreflexive relation encompassing the predecessor relation.
The actual reduction function can now be given. It also features an upper bound to ensure
that we can build a sufficiently large anti-chain.

F FSAT, code : L (V2 × V2)→ F

F FSAT h := ∃0̇m.AFSAT
1 ∧AFSAT

2 ∧AFSAT
3 ∧AFSAT

4 ∧AFSAT
5 ∧ ∃

v∈V(h)

code h
code [] := ⊤
code (((a, b), (c, d)) :: hs) := (a, b) ≈ (c, d) ∧ code hs ∧ a, b, c, d ≤ m

Another mock constant is needed: m is an upper bound on the model size. Since we are
reducing from satisfiability, mock constants must be existentially quantified. Reducing from
FSAT also “flips” the reduction and preservation steps. We now start with preservation,
which now features our standard model.
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▶ Lemma 47 (Preservation). UDPCh→ FSAT (F FSAT(h))

Proof. Given a solution ρ to a constraints set h, let m := 1 + maxv∈V(h) ρ v. We denote
by N≤m the type of natural numbers up to (and including) m. We set our finite domain
D := N≤m + N2

≤m, so that each element of the domain is either a natural number not
larger than m, or the pair of two such numbers. To finalize our model M≤m, we define the
interpretation of ≈.

▶ Definition 48 (Interpretation of ≈ for FSAT).

l
r y ∈ N≤m (c, d) ∈ N2

≤m

x ∈ N≤m x ≤ y x = c

(a, b) ∈ N2
≤m y = b (a, b) ∼(c, d)

The model interpretation remains unchanged from the previous chapters, except for the top-
left cell, which changes to x ≤ y from x = y. This is where we exploit the additional encoding
space given to us by the fact last chapter (almost) only used the diagonal, where x = y. The
interpretation of ≈ is also decidable, as is required for finite models.

Showing that the satisfaction condition holds also is straightforward: Choose ρ v for each
v, using that ≈ is faithfully interpreted. Each ρ v is in N≤m, since it is smaller than m by
construction. Thus we have shown that F FSAT(h) is finitely satisfied. ◀

For reflection, we need to extract a constraints collection solution from an arbitrary finite
model M = (D, I) satisfying the axioms and the satisfaction condition. For this, we will
construct an inverse notion of a chain, which now transports individuals of a model to natural
numbers.

▶ Definition 49 (Anti-chain). A function f : D → O(N) is called a anti-chain up to m : D
representing n : N iff all of
1. ∀d : D. d ≤ m⇔ f m ̸= ∅
2. ∀k : N. (∃d : D.d ≤ m ∧ f d = ⌈n⌉)⇒ k ≤ n
3. f m = [n] ∧ f

(
0̇
)

= ⌈0⌉
4. ∀(dl dr : D)(kl kr : N). f dl = ⌈kl⌉ ∧ f dr = ⌈kr⌉ ⇒

(
S kl = kr ⇔ (dl, 0̇) ≈ (dr, 0̇)

)
5. ∀dd′ f. d ̸= ∅ ⇒ (f d = f d′ ⇔ d ≡ d′)

We call m and n the upper bound of f , and say that some m′ represents some n′ iff
f m′ = ⌈n′⌉.

▶ Proposition 50 (Anti-chain construction). Given m : D such that N m, there are n, f such
that f is an anti-chain up to m representing n.

Proof. Well-founded induction using < on m, due to Fact 46. We decide whether m ≡ 0̇ by
Proposition 45:

m ≡ 0̇. We choose as our anti-chain the function defined by f 0̇ = ⌈0⌉ and f k = ∅
otherwise. The chain properties are easily shown using decidability of (≡).
m ̸≡ 0̇. We know m has a predecessor m′ by AFSAT

1 . Applying the induction hypothesis
to m′ yields f ′, an anti-chain representing m′ up to n′. We choose f ′[k 7→ ⌈n′ + 1⌉] (i.e.
pointwise updating f ′ at k) as our anti-chain. It is up to m representing n′ + 1 by case
distinctions, using the induction hypothesis and decidability of (≡). ◀

https://www.ps.uni-saarland.de/extras/fol-dyadic/website/Undecidability.FOL.Reductions.H10UPC_to_FSAT.html#valid
https://www.ps.uni-saarland.de/extras/fol-dyadic/website/Undecidability.FOL.Reductions.H10UPC_to_FSAT.html#finNum
https://www.ps.uni-saarland.de/extras/fol-dyadic/website/Undecidability.FOL.Reductions.H10UPC_to_FSAT.html#model
https://www.ps.uni-saarland.de/extras/fol-dyadic/website/Undecidability.FOL.Reductions.H10UPC_to_FSAT.html#model_rel
https://www.ps.uni-saarland.de/extras/fol-dyadic/website/Undecidability.FOL.Reductions.H10UPC_to_FSAT.html#chain
https://www.ps.uni-saarland.de/extras/fol-dyadic/website/Undecidability.FOL.Reductions.H10UPC_to_FSAT.html#mkchain
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Once we are able to construct an anti-chain, we are able to use it to extract solutions to
the constraints encoded in h. For this, we show that ≈ on D transports to ∼ on N for the
represented numbers.

▶ Proposition 51 (Solution recovery). If f is an anti-chain up to m representing n, and
if (a, b) ≈ (c, d) where a, b, c, d are all ≤ m, then we find ar, br, cr, dr such that f a = ⌈ar⌉,
f b = ⌈br⌉, f c = ⌈cr⌉, f d = ⌈dr⌉, and (ar, br) ∼(cr, dr).

Proof. Well-founded induction using < on b with a, c, d quantified, using Fact 46.
We have f a, . . . f d ̸= ∅ by anti-chain property 1. Again decide whether b ≡ 0̇:

b ≡ 0. In this case, by AFSAT
3 , we find d ≡ 0. So we are given (a, 0) ≈ (c, 0), which fits

anti-chain property 4 of f . Since (x, 0) ∼(x + 1, 0), we can conclude using properties 3
and 5.
b ̸≡ 0. We can apply AFSAT

2 . We further apply the induction hypothesis to (d′, b′) ≈ (d, d′)
and (a, b′) ≈ (c′, d′), which is possible especially since d < d′, which we needed to explicitly
add to AFSAT

2 . The remainder is straightforward by the defining properties of ∼ and
anti-chain property 4, similar to case 1. ◀

With this, our reduction is complete.

▶ Lemma 52 (Reflection). FSAT(F FSAT(h))→ UDPCh

Proof. We need to first build an anti-chain f up to m using Proposition 50, where m is
existentially quantified in F . After this, we are able to extract the numbers making up the
solution to h by looking at the elements encoded in the satisfaction condition, and looking up
the represented numbers in f . Afterwards, it remains to show that these numbers actually
are solutions to h, which follows from Proposition 51 and some minor auxiliary lemmas. ◀

▶ Theorem 53. UDPC ≼ FSAT restricted to dyadic formulas.

To reduce towards finite validity, simply negate the reduction function used for FSAT.

▶ Theorem 54. UDPC ≼ FVAL restricted to dyadic formulas.

5.1 Minimizing the Logical Fragment for FSAT
We now reduce the logical fragment for FSAT. Using Proposition 45, we can construct and
verify a translation converting our formulas into the (∀,→,⊥)-fragment:

▶ Definition 55 (Double negation translation). (·)N translates formulas φ : F to their double-
negated counterpart in the (∀,→,⊥)-fragment. For instance, (φ ∨ ψ)N = ¬φN → ¬¬ψN and
(∃x. φ)N = ¬(∀x.¬φ). The other cases are defined similarly.

▶ Proposition 56. Given a finite model M, an environment ρ : V →M, and a formula φ,
(M ⊨ρ φ)⇔ (M ⊨ρ (φ)N ).

Proof. By induction on φ, using Proposition 45 for ∧,∨,∃. ◀

This now strengthens our previous undecidability result to a small logical fragment.

▶ Theorem 57. FSAT reduces to FSAT over the (∀,→,⊥)-fragment, and FVAL similarly.

Proof. The function (·)N fulfills the reduction properties by Proposition 56. ◀
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6 Conclusion

6.1 Summary of Results
We have shown that many common decision problems of FOL are undecidable in their
minimal case by constructing many-one reductions from UDPC or UDPC.

▶ Theorem 58 (Undecidability of FOL problems). The following problems are undecidable for
first-order formulas with a single binary relation:

Problem Fragment By reduction
VAL (∀,→) Theorem 36
SAT (∀,→,⊥) Theorem 37
PRV (∀,→) Theorem 42
PRVc (∀,→) Theorem 42 assuming LEM
KVAL (∀,→) Theorem 43
KSAT (∀,→,⊥) Theorem 44
FSAT (∀,→,⊥) Theorems 53 and 57
FVAL (∀,→,⊥) Theorems 54 and 57

FOL

KFOL

FFOL

These results are minimal, except for finite validity (FVAL), where eliminating ⊥ might be
possible. However, we have not mechanized this, because our current reduction for FVAL
occupies a local optimum where there is no space remaining in the interpretation of the
standard model. Such space is however necessary for a Friedman-like falsity elimination, as
done in Section 4.2. KFOL denotes Kripke variants, see [17] for an overview.

▶ Conjecture 59. FVAL restricted to dyadic formulas over the (∀,→)-fragment is undecidable.

The dependence on LEM in Theorem 42 could potentially be eliminated by performing
yet another double negation translation. Apart from this, no axioms are assumed.

Reducing to the particular minimal variants becomes feasible because the source problem
UDPC is very easy to axiomatize in first-order logic. We consider UDPC a contribution, since
it seems to be a useful source problem for compact undecidability reductions in general.

6.2 Comparison to Existing Work
Our results describe minimal undecidable fragments for formulas along two axes: by mini-
mizing the signature, and by minimizing the logical fragment.

A third axis often considered in classical literature is the quantifier prefix. Already in
his 1937 work [20], Kalmár not only proves the result about the minimal signature, but also
minimizes the quantifier prefix of a formula in prenex normal form to Σ4. Later work, e.g.
by Kalmár [21] and others, strengthened this result. We do not consider minimizing the
quantifier prefix, it remains open for future work one might consider.

Results not using Coq work in a classical meta-theory (denoted by FOLc, which notably
does not include intuitionistic PRV), where PRVc, VAL, and SAT coincide. Further, some
historical papers mentioned below presuppose the general undecidability of FOL or otherwise
construct a reduction without explicitly aiming to prove any undecidability results.

All cited mechanized results are in Coq. As far as we are aware, there are no mechanizations
of first-order undecidability in other proof assistants.

The main difference between our approach and other mechanized results in the literature
is that we directly and compactly reduce into dyadic first-order logic, whereas others either
need signature compression steps, or otherwise achieve this result in a less direct way (e.g.

https://www.ps.uni-saarland.de/extras/fol-dyadic/website/Undecidability.FOL.minFOL_undec.html
https://www.ps.uni-saarland.de/extras/fol-dyadic/website/Undecidability.FOL.minFOL_undec.html#minFiniteValidityConjecture
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Kirst and Hermes [22], who first mechanize meta-theory of ZF set theory). The price for this
compactness is paid by starting at a Diophantine constraints-related problem. The undecid-
ability of Diophantine constraints satisfiability was only shown in 1970 by Matiyasevich [27],
building on work by Davis, Putnam, and Robinson [6]. Other mechanizations usually start
at the Post correspondence problem (PCP) [29], whose undecidability is easier to prove.

Paper Problems Dyadic Small
Fragment In Coq

Church 1936 [4], Turing 1936 [34] FOLc × × ×
Kalmár 1937 [20] FOLc ✓ × ×

Gentzen 1936, Gödel 1929 [13, 14] FOL × (∀,∧,¬) ×
Forster et al. 2019 [9] FOL,KFOL × (∀,→) ✓

Kirst and Hermes 2021 [22] FOL ✓ × ✓
The present work FOL,KFOL ✓ (∀,→) ✓

Trakhtenbrot 1950 [33] FSAT × × ×
Kirst and Larchey-Wendling 2020 [23] FSAT ✓ × ✓

The present work FFOL ✓ (∀,→,⊥) ✓

6.3 Remarks on the Coq Mechanization
For the mechanization, we start with the PRV reduction outlined in Section 4.3. This
is because showing PRV undecidable mostly suffices to show VAL, SAT, and the Kripke
variants undecidable, as using soundness subsumes an explicit proof in an abstract model.
Thus, Proposition 26 and Proposition 27 are mechanized for provability and not for validity,
although the proof is similar. Also, we immediately start in the (∀,→)-fragment, since
the undecidability results for this small fragment subsume those for the large fragment. A
separate mechanization of Theorem 29 is included for comprehensibility.

Note that the notation used in Coq differs from the one presented in this paper. In
particular, the problem UDPC is H10UPC, UDC is H10UC similarly. The defining relation ∼
of UDPC is called h10upc_sem_direct. For ≈, we used Pr and sometimes # or ##. For a
complete symbol mapping, see the notation mappings at the start of each Coq file.

Following previous projects, we use de Brujin indices [7] to represent binding, which make
formulas hard to read and write, especially when there are many nested quantifiers involved.
Yet, this made it possible to encode the constraints of an UDPC instance into a first-order
formula without having to worry about variable shadowing, as UDPC is also defined with
natural numbers as variables in Coq. Thus, our reduction works by ensuring that there are
as many free variables as the highest used index in the UDPC source instance.

Hostert et al. [19] developed tools aimed at simplifying reasoning with both de Bruijn
indices and the abstract provability predicate. However, we found these to not be applicable,
most importantly because our formulas and syntactic proofs feature unboundedly nested
quantifiers and an unbound number of hypotheses.

On paper, we have different definitions of ∼, and switch between them freely. In Coq,
we mostly use Definition 9, as it allows using lia, a tactic which automatically solves
simple linear integer arithmetic goals. Use of lia could be avoided by using the inductive
characterization more often. The only place where this characterization makes the proof
simpler is Proposition 27.

Our mechanization of the undecidability of PRV and corollaries for the minimal case
requires 1000 LoC, which improves upon the approx. 4000 LoC used by Kirst and Hermes [22]
for a similar result. Our mechanization for FSAT takes 1200 lines. This also improves upon
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the results of Kirst and Larchey-Wendling [23], who required about 5000 LoC. In general,
this makes the mechanization of these results in the library much more approachable, as
they can be read without following a long reduction chain. The less complicated reduction
of Theorem 29, which just minimizes the signature while working within the large logical
fragment, takes less than 300 LoC.

We already mentioned Diophantine constraints satisfiability as a large dependency of
our mechanization. For comparison, the mechanization used in the library, due to Larchey-
Wendling and Forster [25], is 12,000 lines long, and relies on the undecidability of PCP.
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