
Saarland University
Faculty of Natural Sciences and Technology I

Department of Computer Science
Master’s Program in Computer Science

U
N

IV
E R S IT

A
S

S
A

R
A V I E

N

S
I
S

Semantics, WS 2005 – Assignment 1

Prof. Dr. Gert Smolka, Dipl.-Inform. Andreas Rossberg

http://www.ps.uni-sb.de/courses/sem-ws05/

Recommended reading: Types and Programming Languages, chapters 1–5, emphasis on 5

We consider variables, numbers, terms and values as follows:

x ∈ Var

n ∈ N

t ∈ Ter = x | t t | λx . t | n | S

v ∈ Val = λx . t | n | S

A term is pure if it doesn’t contain numbers or the successor operator S. The reduction

relation → ⊆ Ter2 is defined as follows:

Beta
(λx . t)v → t[x := v]

S
n′ = n+ 1

Sn→ n′

DAL
t1 → t′1

t1t2 → t′1t2
DAR

t → t′

vt → vt′

A procedure is a closed term of the form λx . t. Boolean values, pairs and the natural

numbers can be represented as pure values as follows:

true
def
= λxy . x

false
def
= λxy . y

(t1, t2)
def
= (λxyf . fxy)t1 t2

c0
def
= λfs . s

cn
def
= λfs . cn−1f(fs) (n ≥ 1)

Exercise 1.1: Numbers We say that a term t represents a number n if t is pure and

the term tS0 evalutes to n. Find a pure procedure

(a) add that given values representing m and n yields a value representing m+n.

(b) mul that given values representing m and n yields a value representing m ·n.

(c) exp that given values representing m and n yields a value representing mn.

2005–10–21 19:16

Master’s Thesis

Step-indexed Semantic Model of Types

for the Functional Object Calculus

submitted by

Cătălin Hriţcu

on May 16, 2007

Supervisor

Prof. Dr. Gert Smolka

Advisor

Dr. Jan Schwinghammer

Reviewers

Prof. Dr. Gert Smolka

Prof. Dr. Holger Hermanns

Statement

Hereby I confirm that this thesis is my own work and that I have documented
all sources used.

Cătălin Hriţcu
Saarbrücken, May 16, 2007

Declaration of Consent

Herewith I agree that my thesis will be made available through the library of
the Computer Science Department.

Cătălin Hriţcu
Saarbrücken, May 16, 2007

Abstract

Step-indexed semantic models of types were proposed as an alternative to the
purely syntactic proofs of type safety using subject-reduction. This thesis in-
troduces a step-indexed model for the functional object calculus, and uses it to
prove the soundness of an expressive type system with object types, subtyping,
recursive and bounded quantified types.

Acknowledgements

I am profoundly indebted to my advisor, Jan Schwinghammer, for his continuous
support during the last year. I thank Jan for his unlimited patience when
explaining the basic concepts I needed to know before I could get started with
this thesis. Not only did he share with me some of his knowledge and ideas, but
also some of his enthusiasm. Our discussions provided much motivation, and
radically changed the way I perceive theoretical computer science.

I am grateful to Gert Smolka for his valuable advice given on many occasions,
for his inspiring introductions to logic and semantics, and for offering me the
opportunity to work with Jan. I also thank Gert Smolka and Holger Hermanns
for reviewing this thesis.

Finally, I would like to thank the members of the Programming Systems
Lab and the International Max Planck Research School for Computer Science
for their friendship and support.

“Perfection is achieved, not when there is nothing left to add, but
when there is nothing left to remove.” – Antoine de Saint-Exupery

Contents

1 Introduction 3
1.1 Step-indexed Semantic Models 3

1.1.1 An Illustrative Example 4
1.2 The Functional Object Calculus 7
1.3 Outline . 7

2 The Untyped ς-calculus 9
2.1 Syntax . 9
2.2 Operational Semantics . 10
2.3 Encodings . 11

2.3.1 Call-by-name λ-calculus 11
2.3.2 Booleans . 12
2.3.3 Natural Numbers . 12
2.3.4 Fixpoint Operator . 12
2.3.5 Classes and Inheritance 13

3 Step-indexed Semantic Model of Types 15
3.1 The Semantic Model . 15
3.2 Method Types . 18
3.3 Object Types . 19

3.3.1 The Simplest Definition 19
3.3.2 Subtyping . 21

3.4 Object Types with Variance Annotations 25
3.4.1 Definition and Rules . 25
3.4.2 First-order Encoding of Procedure Types 27
3.4.3 Soundness of the Semantic Typing Rules 29

3.5 Recursive Types . 32
3.6 Bounded Quantified Types . 35

3.6.1 Vestigial Operators . 35
3.6.2 Definition and Rules . 35

3.7 Semantic Typing Rules . 38

4 Syntactic Types 41
4.1 Revised Syntax of Terms . 41
4.2 Syntactic Type System . 42
4.3 Semantic Soundness . 47

1

2 CONTENTS

5 Conclusion 55
5.1 Summary . 55
5.2 Related Work . 56
5.3 Future Work . 57

A Technical Definitions 61
A.1 Free Variables . 61
A.2 Capture-avoiding substitution . 61
A.3 Type erasure . 62
A.4 Free Type Variables . 63
A.5 Type Substitution . 63

Chapter 1

Introduction

In this thesis we prove the soundness of an expressive type system, i.e. the fact
that well-typed terms do not produce type errors when evaluated.

The most common way to prove a type system sound is by a purely syntactic
proof technique called subject-reduction, which was adapted from combinatory
logic by Wright and Felleisen [WF94]. In this syntactic setting the typing judge-
ment is a relation that is recursively defined by the typing rules. One shows that
reduction preserves the typability of terms (preservation) and that well-typed
terms that are not yet values can always be reduced (progress).

This is not the only way though. The soundness of a type system can also
be proved with respect to a semantic model. One defines a meaning function
relating the syntactic typing judgement to a semantic typing judgement. One
proves that whenever the syntactic judgement holds the corresponding semantic
judgement is also valid (semantic soundness). Then one shows in the model
that the semantic judgement enforces type soundness. Usually the model is
denotational using for instance ordered sets. Constructing such a model and
proving the desired properties tends to be involved.

This thesis shows that it is possible to use much simpler semantic models
constructed from the operational semantics by a technique called step-indexing.
Our long-term goal is to use this technique in proving the soundness of more
powerful deduction systems such as program logics, for which purely syntactic
arguments are not always applicable.

1.1 Step-indexed Semantic Models

Step-indexed semantic models were introduced by Appel and his collaborators
in the context of foundational proof-carrying code as an alternative to subject-
reduction. The goal was to construct more elementary and more modular type
soundness proofs which can be easier checked automatically [AF00, AM01].

Step-indexed models are based only on the small-step operational semantics
of an untyped calculus. Semantic types are defined just as sets of values indexed
by natural numbers. Intuitively, a term has a certain semantic type if it behaves
like an element of that type for any number of computation steps.

3

4 CHAPTER 1. INTRODUCTION

Syntax

a, b ::= x | λx. b | a b | µ(x) {fd=bd}d∈D | a.f | . . . (Terms)
v ::= λx. b | µ(x) {fd=bd}d∈D | true | false | 0 | 1 | 2 | . . . (Values)

Operational Semantics (Small-step)

(λx. b) v → [x 7→ v] (b) (β)

µ(x) {fd=bd}d∈D .fe →
[
x 7→ µ(x) {fd=bd}d∈D

]
(be), if e ∈ D (µ)

Figure 1.1: λ-calculus with booleans, numbers and recursive records

1.1.1 An Illustrative Example

In order to give more intuition about step-indexed semantic models we sketch
such a model for the call-by-value λ-calculus extended with booleans, natural
numbers and recursive records1. This model is a simplification of the one for
general recursive types by Appel and McAllester [AM01]. It is also the base
of our step-indexed model for the functional object calculus, which we present
more formally in Chapter 3.

The syntax and small-step operational semantics of the untyped lambda
calculus we consider in this example form the base of the step-indexed model.
The parts which are interesting here are given in Figure 1.1.

Semantic types are sets of indexed values. A pair 〈k, v〉 is in some type τ , if
one cannot distinguish v from a “real” value of type τ in less than k computation
steps. For example 〈1, λx. true〉 is in the type Bool → Nat since in one step we
can only apply the function, but then there are no steps left to observe that true
is not an integer. On the other hand 〈2, λx. true〉 is not in Bool → Nat because
two steps are already enough to distinguish λx. true from a real Bool → Nat
function: one step for applying the function to some argument, and the other
step for attempting to perform some integer operation on the boolean “true”
and failing. So we say that 〈k, v〉 ∈ τ , if every context of type τ (e.g. every
function of type τ → α) safely executes for at least k steps when applied to v.

A semantic type is therefore built as a sequence of increasingly accurate
approximations. In the end we are only interested in the limit of such a sequence
since it contains the real values of the type, while each of the approximations also
contains “false positives”. However, the usefulness of building types based on
such approximations becomes evident once any form of recursion is considered.

Based on the approximate types of values we can also express that a closed
term behaves like an element of a type for a number of computation steps. A
closed term a has a type τ for k steps (which we denote as a :k τ), if whenever
a reduces to an irreducible term b in j < k steps, then b is a value of type τ
for the remaining k − j computation steps. For example λx. true :1 Bool →
Nat since functions are values thus irreducible, and we have already seen that
〈1, λx. true〉 ∈ Bool → Nat. Similarly, (λx. x) (λx. true) :2 Bool → Nat since
(λx. x) (λx. true) reduces in one β step to λx. true. Also any closed term that
safely reduces for at least two steps has any type for two steps, for example

1Recursive records are closely related to object calculi without method updates [KR94,
BCP99].

1.1. STEP-INDEXED SEMANTIC MODELS 5

(λx. x) ((λx. x) true) :2 Bool → Nat. On the other hand, none of these state-
ments hold if we increase the approximation index by one, so these terms are
“false positives”.

With this setup in place we can define each of our semantic types. The base
types Bool and Nat are completely described by the set of their values. A value
is in a base type either for every index or not at all.

Bool , {〈k, v〉 | k ∈ N, v ∈ {true, false}}
Nat , {〈k, n〉 | k, n ∈ N}

In general, a function has type α → β if when invoked with an argument of
type α produces a result of type β. In the step-indexed model, a function has
type α → β for k computation steps if when applied to any well-typed argument
of type α it produces a result that has type β for another k − 1 steps. This
because the application itself takes one computation step, and the only way to
use a function is by applying it to some argument. We also have to take into
account that the function can be applied after some computation steps, so for
every j < k when applying the function to a value in type α for j steps, the
result must have type β for j steps.

α → β , {〈k, λx. b〉 | ∀j<k. ∀v. 〈j, v〉 ∈ α ⇒ [x 7→ v] (b) :j β}

Recursive records are collections of fields that can recursively reference the
record containing them. Selecting a field will substitute all occurrences of the
“self-reference” variable by the target record. Once a record is created its fields
can no longer be updated, since updates do not interact well with recursion.

The recursive record type {fd : Fd}d∈D associates to each field fd a function
Fd taking the type of the whole record as argument, and returning the type of the
field. This formulation can lead to direct circularity, since a recursive record can
directly contain itself and its type needs to reflect this. For example we expect
a record with a single field referencing the record containing it: µ(x) {f=x}, to
have type {f : (λα∈Type. α)}, that is the type of records with a single field f
that has the same type as the record containing it. This can only happen if the
type satisfies the following recursive equation:

{f : (λα∈Type. α)} = {f : {f : (λα∈Type. α)}}

Step-indexing is extremely useful here, since it can make the recursive def-
inition of record types well-founded. A recursive record µ(x) {fd=bd}d∈D has
type {fd : Fd}d∈D for k steps if the term obtained by selecting one of its fields
fd has type Fd({fd : Fd}d∈D) for any number of steps strictly smaller than k.

{fd : Fd}d∈D , {〈k, µ(x) {fd=bd}d∈D〉 | ∀d∈D. ∀j<k.[
x 7→ µ(x) {fd=bd}d∈D

]
(bd) :j Fd({fd : Fd}d∈D)}

Independent of the particular semantic types we define the semantic type
judgement: Σ |= a : τ holds for a possibly open term a, if after substituting any
well-typed values for the free variables of a we obtain a closed term that has
type τ for any number of computation steps. This definition directly enforces
that all terms that are typable using the semantic typing judgement do not
produce type errors when evaluated.

6 CHAPTER 1. INTRODUCTION

(Var) Σ |= x : Σ(x) (Add)
Σ |= a : Nat Σ |= b : Nat

Σ |= a + b : Nat

(Lam)
Σ[x 7→ α] |= b : β

Σ |= λx. b : α → β
(App)

Σ |= a : β → α Σ |= b : β

Σ |= a b : α

(Rec)
∀d∈D. Σ

[
x 7→ µ(x) {fd=bd}d∈D

]
|= bd : Fd({fd : Fd}d∈D)

Σ |= µ(x) {fd=bd}d∈D : {fd : Fd}d∈D

(Sel)
Σ |= a : {fd : Fd}d∈D

Σ |= a.fe : Fd({fd : Fd}d∈D)

Figure 1.2: Some of the semantic typing rules

Since the semantic judgement is defined independently of any typing rules,
we would have to prove individual typing judgements directly from the defi-
nitions of their corresponding types. For example we could prove that ∅ |=
λx. λy. x + y : Nat → Nat → Nat or that [x 7→ Nat] [y 7→ Nat] |= x + y : Nat.
However, this would be tedious and a lot of work would be duplicated between
similar derivations. In order to avoid this duplication, we can prove general
lemmas which we call semantic typing rules only once and then use them to
build type derivations in the usual way.

(Lam)

(Lam)

(Add)

(Var)
[x 7→ Nat] [y 7→ Nat] |= x : Nat [x 7→ Nat] [y 7→ Nat] |= y : Nat

(Var)

[x 7→ Nat] [y 7→ Nat] |= x + y : Nat
[x 7→ Nat] |= λy. x + y : Nat → Nat
∅ |= λx. λy. x + y : Nat → Nat → Nat

Figure 1.2 shows some of the semantic rules we can prove for our calculus.
The semantic typing judgements have a semantic truth value associated with

them, and the semantic typing rules allow us to derive true judgements using
other true judgements as premises. One proves that the semantic typing rules
are sound, that is if the premises of a rule are true then the conclusion is also
true. This is done either directly from the definitions or by induction on the
index (e.g. Rec).

Appel et. al. use the semantic typing rules directly for type-checking pro-
grams [AF00, AM01, ARS02, AAV03], as in the simple example above. However,
when one considers more complex type systems with subtyping, polymorphism
or recursive types the semantic typing rules no longer directly correspond to
their syntactic counterparts. This leads to more complex models (like the one
developed by Swadi to track type variables [Swa03]) and to undecidable type-
checking, which cannot be avoided in their particular setting.

In this thesis we take a different approach, and use the semantic typing rules
only to prove the semantic soundness of a syntactic type system, which can be
made decidable and is thus more suitable for type checking programs.

1.2. THE FUNCTIONAL OBJECT CALCULUS 7

1.2 The Functional Object Calculus

The language considered in this thesis is the functional object calculus, a very
expressive, yet extremely simple object-oriented programming language. It was
introduced by Abadi and Cardelli for investigating the theoretical properties of
objects, and in particular for studying their type systems [AC96a].

The functional object calculus models all the important aspects of widely-
used object-oriented programming languages, as well as the the often subtle
interactions between them. It can express objects, subtyping, classes, inheri-
tance, parametric polymorphism and other features of programming languages
such as Java and C#.

At the same time the functional object calculus is amazingly simple, and
captures the essence of object-oriented programming languages in pretty much
the same way the lambda calculus captures the essence of the functional ones.
This allows one to focus on relevant object-oriented concepts in their most
general form, by abstracting away from the design decisions, implementation
details, peculiarities and mistakes present in real object-oriented languages.

1.3 Outline

In Chapter 2 we present the untyped functional object calculus introduced by
Abadi and Cardelli under the name of ς-calculus [AC96b, AC96a]. This very
simple calculus has only objects, so we also present encodings for procedures,
booleans, natural numbers, a fixpoint operator, classes and inheritance.

In Chapter 3 we construct purely semantic types for the ς-calculus. The
safety of well-typed terms is immediate, and each of the typing rules is proved
sound with respect to the model. The step-indexed semantic model we present
extends the one for recursive types of Appel and McAllester [AM01] with object
types, subtyping and bounded quantified types.

We start with a simple definition of object types that we then extend to
accommodate subtyping. For a stronger notion of subtyping we restrict certain
method invocations and updates which leads to object types with variance an-
notations. We also study the interaction between subtyping and recursive and
quantified types in a step-indexed model.

The semantic type system from Chapter 3 is sound but undecidable. In
Chapter 4 we define the usual syntactic type expressions which also contain
type variables, we extend the ς-calculus with type annotations, we give a syntac-
tic type system for the modified calculus for which type checking can be made
decidable. We then prove the semantic soundness of the syntactic type system
with respect to the semantic model from Chapter 3, which immediately implies
that well-typed annotated terms are safe to evaluate after type erasure.

Finally, Chapter 5 draws conclusions, presents related work and and intro-
duces several interesting directions for future work.

8 CHAPTER 1. INTRODUCTION

Chapter 2

The Untyped ς-calculus

The functional object calculus (ς-calculus) is a very simple object-oriented cal-
culus introduced by Abadi and Cardelli in [AC96b], and then presented in their
book entitled A Theory of Objects [AC96a, Chapter 6]. It only has one primitive:
objects. Still, many other constructs can be conveniently encoded, including
procedures and classes.

The calculus presented in this chapter is untyped. However, in Chapter 3 we
introduce purely semantic types for it, and in Chapter 4 we extend the ς-calculus
with type annotations and present a syntactic type system for it.

2.1 Syntax

We start with the simplest possible calculus and pack up more features as we go,
mostly as encodings. The ς-calculus has only four syntactic forms: variables,
objects, method invocations and method updates. The abstract syntax of ς-
terms is formalized by the following grammar.

a, b ∈ Ter ::= x | [md=ς(xd)bd]d∈D | a.m | a.m := ς(x)b

The meta-variables a and b range over ς-terms, and x ranges over a countably
infinite set of variables.

Objects are collections of named methods. Each method ς(x)b has a self
argument x, a bound variable that represents the object containing the method,
and a method body b, an arbitrary term that will evaluate to the result of the
method. The self argument can be used inside a method body for invoking the
methods of the containing object1, including the calling method itself which
leads to direct recursion. We consider two terms to be syntactically equivalent
if they are identical up to the consistent renaming of bound variables.

An object is created by providing all methods it will contain. The order in
which these methods are considered does not matter. In the ς-calculus after an
object is created, its methods can be invoked or updated, but no new methods
can be added, and the existing methods cannot be deleted.

When the names and bodies of the methods are of no importance to our pre-
sentation, we will iterate over some finite set (for example D in [md=ς(xd)bd]d∈D)

1The self argument has a similar role to the keyword “this” in Java and C++.

9

10 CHAPTER 2. THE UNTYPED ς-CALCULUS

Let v ≡ [md=ς(xd)bd]d∈D

(Red-Inv) v.me → [xe 7→ v] (be), where e ∈ D

(Red-Upd) v.me := ς(x)b → [me=ς(x)b, md=ς(xd)bd]d∈D\{e}, where e ∈ D

(Red-Ctx)
a → b

C[a] → C[b]
, where C[•] ::= • | C.m | C.m := ς(x)b

Figure 2.1: Small-step operational semantics of the ς-calculus

to generate names for the methods (md), the self variables (xd) and the method
bodies (bd).

The syntax of the ς-calculus does not provide fields directly, but they can be
simulated by constant methods that do not use the self argument. Moreover,
we omit unused ς binders: whenever x does not appear in b we abbreviate ς(x)b
as just b. This basically allows fields as syntactic sugar, and since methods are
not terms and can only appear inside an object creation or a method update
this notation does not lead to ambiguities.

Also please note that in the syntax of terms, methods do not have arguments
other than self. However, there are straightforward ways to emulate methods
with arguments. The caller of a method can store the arguments in some fields
of the invoked object prior to the method call, and the invoked method can
access these arguments using self. As explained later, a more systematic way to
accommodate methods with arguments is to use procedures as method bodies.

The only values in the ς-calculus are the objects.

v ∈ Val ::= [md=ς(xd)bd]d∈D

In this thesis we often consider only values without free variables, which we
call closed values.

CVal , {v ∈ Val | FV(v) = ∅}

2.2 Operational Semantics

The small-step operational semantics of the ς-calculus is defined by the rules in
Figure 2.1.

Method invocation is defined as self substitution. If v is an object value
[md=ς(xd)bd]d∈D, then a method invocation v.me reduces to the body of the
method be, where all references to the self argument xe are substituted with
the host object v. By [x 7→ a] (b) we denote the result of the capture-avoiding
substitution of x with a in b. Capture-avoiding substitution is formally defined
in Appendix A.2.

Method updates have a functional semantics: a method update reduces to a
copy of the target object where the updated method is replaced by a new one.

The evaluation strategy is defined using a context rule and reduction con-
texts. These enforce an evaluation strategy, which corresponds to call-by-name

2.3. ENCODINGS 11

evaluation in the λ-calculus [Plo75]. No reduction can occur below a ς binder, so
that the body of a method is evaluated every time the method is invoked. But
since we encode fields as constant methods, fields are also evaluated every time
they are selected. While this is not very common, it does not cause significant
problems in this functional setting where the only side-effect is non-termination.

Example 2.2.1 (Non-termination). As previously mentioned, a method can
invoke itself recursively, and this can lead to non-termination. The following
term directly reduces to itself:

[m=ς(x)x.m].m → [x 7→ [m=ς(x)x.m]] (x.m) ≡ [m=ς(x)x.m].m → . . .

The reduction relation in Figure 2.1 is deterministic: for each term there
is at most one other term to which it can reduce. We call a term irreducible
(denoted by a 9), if none of the reduction rules can be applied to it. Values
are irreducible, but not all irreducible terms are values. We call a term that is
irreducible yet not a value stuck. For example [] .m is a stuck term since the
invoked method m does not exist in the empty object. We also define multi-step
reduction and evaluation in the usual way [BN98]: →0 , {(a, a) | a ∈ Ter},
→n+1 ,→n ◦ → and →∗ ,

⋃
n≥0 →n

2.3 Encodings

2.3.1 Call-by-name λ-calculus

The untyped call-by-name λ-calculus can be encoded into the ς-calculus by a
simple transformation [AC96a, Section 6.3.2]. Procedures (also called lambda
abstractions or functions) are transformed into objects having a field for the
argument (arg), and a method for the body of the procedure (eval). In the body
of the procedure all references to the argument are replaced by selections of the
field through the self object. The application of such an encoded procedure is
done by first updating the field to the actual argument, and then invoking the
method that accesses it through self.

〈〈x〉〉 , x

〈〈λx. b〉〉 , [arg=ς(x)x.arg, eval=ς(x) [x 7→ x.arg] (〈〈b〉〉)]

〈〈a b〉〉 , (〈〈a〉〉 .arg := 〈〈b〉〉).eval

Because of our lazy semantics of fields, the argument of an encoded procedure
is evaluated every time it is used, as in call-by-name. In this simple setting
without any strict constructs and without continuations [Plo75], the call-by-
value λ-calculus cannot be encoded. Furthermore, the encoding validates the
β but not the η rule in the λ-calculus [GR96], and accommodating the usual
typing rules for encoded procedures is not so easy in the presence of subtyping.
This is the price we pay for keeping the ς-calculus as simple as possible, thus
without primitive procedures or eager fields.

Even without having them as primitive, we will use procedures frequently
as syntactic sugar in the remainder of this chapter, for example for modelling
methods with arguments, as in [m=ς(x)λy. λz. b] where m is a method that has
two arguments (y and z) other than self (x).

12 CHAPTER 2. THE UNTYPED ς-CALCULUS

2.3.2 Booleans

Having encoded procedures also allows us to use the Church encoding for booleans.

true , λx. λy. x false , λx. λy. y

For readability we also define an if-then-else construct.

if b then a1 else a2 , b a1 a2

2.3.3 Natural Numbers

While we could also define natural numbers using their Church encoding, the
direct encoding into objects is more intuitive [AC96a, Section 6.5.3]. Numbers
are objects with an iszero boolean field and two methods yielding the preceding
(pred) and the succeeding number (succ). We only need to construct a term for
zero, as all the other numbers are its successors. Zero is defined to have itself
as the predecessor, and its iszero field is set to true. When the succ method is
invoked for zero a new object corresponding to the number one is created. For
this object the iszero field is set to false, pred returns the outer self argument
representing zero in this case, while the succ method is copied verbatim from
the predecessor.

0 , [iszero=true, pred=ς(x)x, succ=ς(x)[iszero=false, pred=x, succ=x.succ]]

n , 0 .succ.succ︸ ︷︷ ︸
n times

Having this as a start we can define recursive procedures for sum, difference
and product, which can then be used for defining other arithmetical operations.
Below we give the implementation of factorial and greatest common divisor.

Example 2.3.1 (Factorial).

[fac = ς(y)λn. if n.iszero then 1 else n× (y.fac (n.pred))].fac

Example 2.3.2 (Euclid GCD).

[gcd = ς(y)λx. λz. if x<z then y.gcd x (z−x)
else if z<x then y.gcd (x−z) z else x].gcd

2.3.4 Fixpoint Operator

The previous two examples used exactly the same pattern to obtain a recursive
procedure by direct recursion through self. We can capture this pattern into a
general fixpoint operator for procedures [FHM94]:

fix , λf. [rec=ς(x)f (x.rec)].rec

Using this fixpoint operator we can give a slightly simpler recursive definition
of the factorial, that matches exactly the one from the λ-calculus:

fac = fix λf. λn. if n.iszero then 1 else n× (f (n.pred))]

2.3. ENCODINGS 13

2.3.5 Classes and Inheritance

Procedures are also used for representing pre-methods: procedures that become
methods once they are embedded into objects. For us classes and traits are
collections of mutually dependent pre-methods, while inheritance means pre-
method reuse [AC96a, Section 6.6].

Traits are collections of pre-methods that are usually not self-contained,
so it might take more than one trait to construct useful objects2. Traits are
objects themselves where each pre-method is stored in a field, for example3:
[md=λxd. bd]d∈D.

The union of several disjoint traits is simply the trait containing the pre-
methods in all of them. For example given two disjoint sets D and E, and the
traits [md=λxd. bd]d∈D and [me=λxe. be]e∈E , we can construct the union trait
[md′=λxd′ . bd′]d′∈D∪E .

A trait is complete when all its pre-methods reference only pre-methods
existing in that trait. From a complete trait we can directly construct objects.
For example from [md=λxd. bd]d∈D we can construct [md=ς(xd)bd]d∈D.

A class is just a complete trait together with a new method. The new method
constructs objects corresponding to the class by applying each pre-method to
the self of the constructed object. For example [md=ς(xd)bd]d∈D could have
been generated by the new method of the following class:

[new=ς(y) [md=ς(xd)(y.md) xd]d∈D ,md=λxd. bd]d∈D

As mentioned earlier, in this setting inheritance means reusing pre-methods
from existing traits and classes. For example if t ≡ [md=λxd. bd]d∈D, then the
trait [md=t.md,me=λxe. be]d∈D,e∈E inherits all methods in t, and adds the new
methods denoted by me. In a similar way if D = D′]D′′ then the class

[new= . . . , md′=t.md′ ,md′′=λxd′′ . bd′′ ,me=λxe. be]d′∈D′,d′′∈D′′,e∈E

inherits from t the methods md′ , overrides the methods md′′ , and adds the new
methods me.

Multiple inheritance is possible by simultaneously inheriting pre-methods
from more traits or classes. Please note that partially inheriting a trait or a
class without overriding all the pre-methods that are not inherited is in general
unsafe because of the possible dependencies between the pre-methods in the
same trait or class.

Example 2.3.3 (Shapes). Below we define a class square that inherits the field
pos from the trait shape, adds a new field side and overrides the area method.

shape = [pos=[x=0, y=0], area=0]

square = [new=ς(z)[pos=z.pos, side=z.side, area=ς(x)(z.area) x],
pos=shape.pos, side=0, area=λx. (x.side× x.side)]

Using the square class is straightforward, for example

(square.new.side := 10).area

produces 100 as a result.
2Incomplete traits are similar to abstract classes in Java and C++.
3Please note that the binders in the trait are λ-binders, while the ς-binders have been

elided according to our notation of fields.

14 CHAPTER 2. THE UNTYPED ς-CALCULUS

While this encoding of classes, traits and inheritance is rather raw, many
of its details can be hidden behind a more traditional syntax [AC96a, Chapter
12].

Chapter 3

Step-indexed Semantic
Model of Types

3.1 The Semantic Model

Step-indexed semantic models were first developed by Appel and his collabora-
tors in the context of foundational proof-carrying code [AF00]. Their goal was
to construct proofs of type soundness for low-level languages, that are easier
to machine-check than the widely-used subject-reduction proofs [WF94]. Their
new technique proved to be general enough to be successfully applied to a pure
λ-calculus with recursive types [AM01], and was then extended to general ref-
erences, impredicative polymorphism [AAV03, Ahm04] and substructural state
[AFM05]. Here we extend the step-indexed model introduced by Appel and
McAllester [AM01] with object types, subtyping and bounded quantified types.

Step-indexed semantic models are based only on the small-step operational
semantics of an untyped calculus. They tend to be much simpler than the
corresponding denotational models based on complete partial orders, and the
proofs are usually just by direct induction on the index.

Our semantic types are sets of closed values indexed by a number of remain-
ing “safe” computation steps. Intuitively, a closed value v is in type α with
approximation k (which we denote as 〈k, v〉 ∈ α), if one cannot distinguish v
from a real value of type τ in less than k computation steps. As we will see,
this indexing makes the recursive definitions of types well-founded.

Additionally we require that types are closed under descending index, cor-
responding to the intuition that if a value cannot be distinguished from a real
value of a type in a certain number of steps, then it cannot be distinguished in
any smaller number of steps.

Definition 3.1.1 (Semantic Types). Types are sets of pairs formed of an in-
dex and a closed value, with the requirement that these sets are closed under
descending index.

Type = {τ ⊆ N× CVal | ∀k≥0. ∀j≤k. ∀v∈CVal. 〈k, v〉 ∈ τ ⇒ 〈j, v〉 ∈ τ}

We will use α, β and τ to denote sets of indexed values, and if that is the case,
we explicitly require them to be types. We call bτck the k-th approximation of

15

16 CHAPTER 3. STEP-INDEXED SEMANTIC MODEL OF TYPES

the set τ and define it as the subset containing all elements of τ that have an
index that is strictly less than k.

Definition 3.1.2 (Semantic Approximation).

bτck = {〈j, v〉 | j < k}

Definition 3.1.3 (Top and Bottom). The empty set (⊥) and the set of all value-
index pairs (>) trivially satisfy the closure under descending index condition,
so they are types.

⊥ , ∅
> , {〈k, v〉 | k ∈ N, v ∈ CVal}

We do not have other base types in the ς-calculus (they would be trivial to
represent, see introduction).

Typing a closed value corresponds to testing whether it belongs to a type for
all approximation indices. However, we want to type not only closed values, but
also closed terms. A closed term a has a type τ with approximation k (which
we denote as a :k τ), if a behaves like an element of τ for k computation steps.
More precisely, if a closed term a satisfies a :k τ and it reduces to an irreducible
term b in j < k steps, then it should be the case that b is a value in τ for the
remaining k − j computation steps.

Definition 3.1.4 (ClosedTerm:kType). If a such that FV(a) = ∅, then

a :k τ :⇔ ∀j<k. (a →j b ∧ b 9) ⇒ 〈k−j, b〉 ∈ τ

We state two simple properties that are often used in the proofs. First, if
a closed term has a type with approximation k then it also has this type with
any approximation smaller than k.

Property 3.1.5. If a :k τ and j ≤ k then a :j τ .

Proof. Immediate from Def. 3.1.1 and 3.1.4.

Second, a closed value v has a type τ with approximation k > 0, if and only
if the pair 〈k, v〉 belongs to the set τ .

Property 3.1.6. ∀k > 0. ∀v ∈ CVal. v :k τ ⇔ 〈k, v〉 ∈ τ

Proof. Immediate from Def. 3.1.4 since values are irreducible.

Even though the terms we evaluate are closed, when type checking we also
have to reason about open terms. Typing open terms is done with respect to a
semantic type environment which maps variables to semantic types. We reduce
typing open terms to typing closed terms by substituting all free variables with
appropriate closed values. This is done by a value environment (also called
closed value substitution) that agrees with the type environment.

Definition 3.1.7 (ValueEnv:kTypeEnv). A semantic type environment is a
finite map from variables to types. A value environment is a finite map from
variables to closed values. We say that a value environment σ agrees with a
semantic type environment Σ with approximation k (which we denote as σ :k Σ)
if for all variables x in the domain of Σ we have that σ(x) :k Σ(x).

σ :k Σ :⇔ ∀x ∈ Dom(Σ). σ(x) :k Σ(x)

3.1. THE SEMANTIC MODEL 17

The semantic typing judgement is then defined by quantifying over all ap-
proximation indices and all approximately well-typed value environments.

Definition 3.1.8 (Semantic Typing Judgement). A term a has type τ with
respect to a semantic type environment Σ, if all free variables in a are mapped
by Σ and for all approximation indices k, and all value environments σ that
agree with Σ with approximation k, we have that the closed term obtained by
applying the substitution σ to a has type τ with approximation k.

Σ |= a : τ :⇔ FV(a) ⊆ Dom(Σ) ∧ ∀k≥0. ∀σ :k Σ. σ(a) :k τ

The semantic typing judgements have a meaning, a semantic truth value
associated with them, and the semantic typing rules we will introduce and prove
will allow us to derive true judgements using other true judgements as premises.
But before we introduce any rules, we show that all terms that are typable
using the semantic typing judgement are also safe to execute. Together with
the soundness of all the rules this will ensure the type soundness of our semantic
type system.

Definition 3.1.9 (Safe for k Steps). We call a term safe for k steps, if it does
not get stuck in less than k steps.

Safek = {a | ∀j<k. a →j b ⇒ (b ∈ Val ∨ ∃b′. b → b′)}

Lemma 3.1.10. If a :k τ , then a ∈ Safek

Proof. Let a :k τ , j < k and a →j b. We have to show that b is a value or it is
reducible. Assume by contradiction that b is not a value and b is irreducible, so
b is stuck. But because b is irreducible, by Def. 3.1.4 we get that 〈k−j, b〉 ∈ τ ,
which implies that b is a value. This is a contradiction, so b cannot be stuck
and thus a ∈ Safek.

Definition 3.1.11 (Safety). We call a term safe, if it does not get stuck for
any number of steps.

Safe = {a | ∀k≥0. a ∈ Safek}

The purpose of a type system is to prevent terms that could get stuck from
being executed, or conversely to guarantee that well-typed terms do not get
stuck. In a step-indexed semantic model, the definition of the semantic typing
judgement directly enforces the safety of well-typed terms.

Theorem 3.1.12 (Type Soundness). If ∅ |= a : α, then a ∈ Safe

Proof. Assume that ∅ |= a : α. By Def. 3.1.8 a is closed and for all substitutions
σ we have that ∀k≥0. σ(a) :k α. But since a is closed it will not be affected by
σ and thus ∀k≥0. a :k α. By Lemma 3.1.10 we get that ∀k≥0. a∈Safek, which
by Def. 3.1.11 allows us to conclude that a is safe.

This result is much more direct than in a subject-reduction proof [WF94].
On the other hand, unlike with subject-reduction, the validity of the typing rules
needs to be proved with respect to the model before they can be used for con-
structing valid type derivations. As previously showed by Amal Ahmed [Ahm04]
this directly corresponds to the logical relations1 proof technique [Tai67, Gir72].

1In a setting with dynamically allocated state it corresponds to Kripke logical relations
[JT93, OR95, Mit96].

18 CHAPTER 3. STEP-INDEXED SEMANTIC MODEL OF TYPES

3.2 Method Types

Even though methods are similar to procedures, unlike procedures methods are
not self-contained. There is a tight coupling between the methods of the same
object, and features such as method extraction would be unsound in the presence
of subtyping [AC96a]. For this reason in the ς-calculus methods are not values
or terms, and thus the method types we define in this section are not semantic
types in the strict interpretation of Def. 3.1.1. Nevertheless, we call them
method types since they are closed under descending index. Treating method
types separately simplifies to some extent the inherently complex definitions of
object types.

Intuitively, a method has a method type α τ if when invoked with a self
argument of type α it produces a result of type τ . Then object types are just
collections of methods of appropriate method types. Such a direct definition of
method and object types is circular: in order to define the type of an object we
need the type of all its methods, and in order to define the type of a method we
need the type of the whole object.

This inherent recursion can be made well-founded by approximating types
using step-indexing. In order to show that a method has a method type α
τ for k steps, we only need to know that the method works correctly when
invoked with self arguments that have type α for k−1 steps. This holds because
invoking the method takes one computation step. Additionally the method can
be invoked after some computation steps, so the result of invoking the method
with an appropriate argument must be in τ for every j < k steps.

More precisely, α τ is the set of all pairs of the form 〈k, ς(x)b〉 such that
for all j < k and for all values v that have type α with approximation j, the
term obtained from substituting x with v in b has type τ with approximation j.
This substitution directly corresponds to the operational semantics of method
invocation (rule Red-Inv in Figure 2.1).

Definition 3.2.1 (Method Types). If α and τ are semantic types, then

α τ , {〈k, ς(x)b〉 | ∀j<k. ∀v∈CVal. 〈j, v〉 ∈ α ⇒ [x 7→ v] (b) :j τ}

Even if they are not semantic types, method types are closed under descend-
ing index.

Property 3.2.2. If α and τ are semantic types, j ≤ k and 〈k, ς(x)b〉 ∈ α τ ,
then also 〈j, ς(x)b〉 ∈ α τ .

Proof. Immediate from Def. 3.2.1.

Method creation satisfies a property analogous to the typing rule for ab-
stractions in the λ-calculus [Bar92] (rule Lam in Figure 1.2), which we later use
to prove the object construction rule sound.

Lemma 3.2.3 (Method Creation). If Σ[x 7→ α] |= b : τ , then for all k ≥ 0 and
for all σ :k Σ we have that 〈k, ς(x)(σ [x↑] (b))〉 ∈ α τ .

Proof. Let k ≥ 0, σ :k Σ, j < k and v ∈ CVal such that 〈j, v〉 ∈ α. By Def
3.2.1 it remains to be shown that [x 7→ v] (σ [x↑] (b)) :j τ , or alternatively that
σ[x 7→ v](b) :j τ . From σ :k Σ and j < k we obtain that σ :j Σ, which together
with v :j α gives us that σ[x 7→ v] :k Σ[x 7→ α]. From Σ[x 7→ α] |= b : τ we now
obtain that σ[x 7→ v](b) :j τ , thus by Def 3.2.1 〈k, ς(x)(σ [x↑] (b))〉 ∈ α τ .

3.3. OBJECT TYPES 19

3.3 Object Types

Objects are collections of methods that return results but do not have arguments
other than self, so accordingly the type of an object associates to each method
its return type. The type of an object [md=ς(xd)bd]d∈D can be written as
[md : τd]d∈D, where each method md has type τd.

Example 3.3.1 (Shape Type). For example the shape object in example 2.3.3
has the type: [pos : [x : Nat, y : Nat], area : Nat]. We can say that pos is a field of
a nested object type with two fields x and y storing natural numbers, and area
is a method returning a natural number as a result. However, the type of an
object does not actually make a distinction between fields and methods, which
corresponds with the fact that syntactically and operationally in the ς-calculus
fields are just special kinds of methods.

3.3.1 The Simplest Definition

We start with a simple and intuitive definition of object types. If τd are types,
then the object type α = [md : τd]d∈D is the set of all pairs formed from an
index k and an object value [md=ς(xd)bd]d∈D, where each method ς(xd)bd has
method type α τd with approximation k. This definition of objects is well-
founded since the definition of method types depends on values having type α
only with approximation strictly smaller than k (Def. 3.2.1).

Definition 3.3.2 (Simple Object Types).

[md : τd]d∈D , {〈k, [md=ς(xd)bd]d∈D〉 | ∀d∈D, 〈k, ς(xd)bd〉∈ [md : τd]d∈D τd}

It turns out that this definition validates the usual typing rules for object
types given in Figure 3.1.

According to rule Obj an object has an object type if the methods in the
object are exactly the ones specified by the type and if we can independently give
each of these methods their appropriate type, under the additional assumption
that the self argument has the type of the whole object. As we will see in an
example this turns out to be quite powerful.

A method invocation type checks when the target has an object type con-
taining the invoked method. The type of the invocation is then the type of the
invoked method (Inv).

The rule for method update (Upd) is similar, the method needs to already
exist and have the same type as the updating one. Therefore method update
preserves the type of the target object.

In the following we give some example type derivations using the rules.

Example 3.3.3 (Invocation). Consider the term [f=[],m=ς(x)x.f].m, which
constructs an object with a field f storing the empty object and a method m
returning the content of f , and then invokes m on this object. The type of this
term is the empty object type2 as illustrated by the following derivation. For

2By [] we denote both the empty object and the empty object type, however it should be
clear from the context which one to consider.

20 CHAPTER 3. STEP-INDEXED SEMANTIC MODEL OF TYPES

Let α ≡ [md : τd]d∈D

(Obj)
∀d ∈ D. Σ[xd 7→ α] |= bd : τd

Σ |= [md=ς(xd)bd]d∈D : α
(Var) Σ |= x : Σ(x)

(Inv)
Σ |= a : α e ∈ D

Σ |= a.me : τe

(Upd)
Σ |= a : α e ∈ D Σ[x 7→ α] |= b : τe

Σ |= a.me := ς(x)b : α

Figure 3.1: Typing rules for object creation, method invocation and update

brevity we denote Σ ≡ [x 7→ [f : [],m : []]]

(Inv)

(Obj)
(Obj) Σ |= [] : []

Σ |= x : [f : [],m : []] (Var)

Σ |= x.f : []
(Obj)

∅ |= [f=[],m=ς(x)x.f] : [f : [],m : []]
∅ |= [f=[],m=ς(x)x.f].m : []

Example 3.3.4 (Showing Non-termination). Only with object types we can
already type the non-terminating program from Example 2.2.1. This illustrates
the power of the object creation rule Obj, which allows us to add the premise
that the self variable x has type [m : α] when checking that x.m has type α.

(Inv)

(Obj)

(Inv)
(Var) [x 7→ [m : α]] |= x : [m : α]

[x 7→ [m : α]] |= x.m : α

∅ |= [m=ς(x)x.m] : [m : α]
∅ |= [m=ς(x)x.m].m : α

Please note that in the derivation above α can be any type including ⊥. Since
there are no values of the empty type ⊥, and since well-typed terms do not get
stuck, we can conclude that the term is non-terminating. This example clearly
illustrates that all types including ⊥ are inhabited, and also that terms do not
have unique types.

Example 3.3.5 (Update). The following derivation illustrates that it is possible
to update a method to a field in a type-safe way. The method is initialized to
the diverging computation, so it has any type including the empty object type
which we consider for this derivation.

(Inv)

(Obj)

(Inv)
(Var) [x 7→ [m : []]] |= x : [m : []]

[x 7→ [m : []]] |= x.m : [] . . . |= [] : [] (Obj)

∅ |= [m=ς(x)x.m] : [m : []]
∅ |= [m=ς(x)x.m].m := [] : [m : []]

Converting fields into methods is also possible.

3.3. OBJECT TYPES 21

3.3.2 Subtyping

“No object calculus can fully justify its existence without some no-
tion of subsumption” – Luca Cardelli [AC96a]

The usual way to formalize subsumption is by defining a subtyping relation
on types. A type α is a subtype of another type β (which for reasons that will
become evident we write as α ⊆ β), if all terms having type α also have type
β. We express this as the following subsumption rule which allows us to use a
term of a more specific3 type than the context requires:

(Sub)
Σ |= a : α α ⊆ β

Σ |= a : β

Since in a step-indexed model types are just sets, the natural subtyping
relation is set inclusion. This subtyping relation forms a complete lattice on
types. The least upper bound is given by the union and the greatest lower
bound by the intersection. The least element is ⊥ and the greatest is >. The
properties commonly used when type checking are given below as rules:

(SubRefl) α ⊆ α (SubTrans)
α ⊆ τ τ ⊆ β

α ⊆ β

(SubTop) α ⊆ > (SubBot) ⊥ ⊆ α

The least we can expect from an object calculus in terms of subsumption
is that an object with more methods is able to subsume any object with fewer
methods of the same types. The intuition is that the object with more methods
can emulate the one with fewer ones in every context, since the extra methods
do not cause any harm. An object type should thus be a subtype of every object
type containing only some of its methods. We call this subtyping in width and
formalize it as the following rule:

(SubObj)
E ⊆ D

[md : τd]d∈D ⊆ [me : τe]e∈E

Unfortunately the simple definition of object types we considered so far does
not validate this subtyping rule. There are two reasons for this, the first one is
easy to understand and fix, while the second is more subtle.

The first reason subtyping for objects fails is that in Def. 3.3.2 we require an
object type to contain only the objects which have exactly the methods defined
by it. This clearly rules out all objects which have not only the methods of the
type but also additional ones. An easy way to repair this is to allow objects with

3We commonly say that α is more specific than β, or β is more general than α, when α is
a subtype of β.

22 CHAPTER 3. STEP-INDEXED SEMANTIC MODEL OF TYPES

any additional methods to appear in the object type. The candidate definition
would be:

[md : τd]d∈D , {〈k, [me=ς(xe)be]e∈E〉 | D ⊆ E,

∀d∈D, 〈k, ς(xd)bd〉 ∈ [md : τd]d∈D τd}

Please notice the extra condition D ⊆ E, which allows the methods of the object
to be a superset of the methods listed by its type.

While this is a good start, this definition still does not validate SubObj. In
order to understand why we need to look at subtyping (i.e. set inclusion) between
method types. The rule corresponds to the usual subtyping for function types
in the λ-calculus [Bar92]. Intuitively a method of type α β will also work for
any self argument of a type more specific than α, and the result it produces can
be viewed as having a more general type than β.

(MethSub)
α′ ⊆ α β ⊆ β′

α β ⊆ α′ β′

We say that the method type constructor is contravariant in the type of the
self argument and covariant in the result type. More formally in our model
covariance corresponds to monotonicity, while contravariance corresponds to
anti-monotonicity.

Definition 3.3.6 (Covariance). A type constructor4 F is covariant if

∀α, β∈Type. α ⊆ β ⇒ F (α) ⊆ F (β)

Definition 3.3.7 (Contravariance). A type constructor F is contravariant if

∀α, β∈Type. α ⊆ β ⇒ F (β) ⊆ F (α)

Definition 3.3.8 (Invariance). A type constructor is (strictly) invariant if it is
neither covariant, nor contravariant.

The contravariance of method types in their argument type causes the fol-
lowing attempt to prove SubObj to fail.
Proof Attempt. Let E ⊆ D. We would like to show that [md : τd]d∈D ⊆
[me : τe]e∈E , or equivalently that for all k ≥ 0 if 〈k, v〉 ∈ [md : τd]d∈D then also
〈k, v〉 ∈ [me : τe]e∈E . We attempt to prove this by a course-of-values induction
on k.

Let k ≥ 0 and 〈k, v〉 ∈ [md : τd]d∈D. By the definition above we have that
v = [md′=ς(xd′)bd′]d′∈D′ where D ⊆ D′ and for all d ∈ D we have 〈k, ς(xd)bd〉 ∈
[md : τd]d∈D τd. By transitivity we have that E ⊆ D′. Let e ∈ E, since
E ⊆ D we have that 〈k, ς(xe)be〉 ∈ [md : τd]d∈D τe. From this we would need
to show that 〈k, ς(xe)be〉 ∈ [me : τe]e∈E τe.

The induction hypothesis is that for all j < k if 〈k, v〉 ∈ [md : τd]d∈D then
also 〈k, v〉 ∈ [me : τe]e∈E . By Lemma 3.4.12, which is just a more precise version
of MethSub we give later, we obtain that if 〈k, ς(x)b〉 ∈ [me : τe]e∈E τe then
also 〈k, ς(x)b〉 ∈ [md : τd]d∈D τe. Please notice that this is the opposite of
what we want to show, and the two statements are the same only for E = D,
but in that case the conclusion is trivially true anyway.

4A type constructor is just a function from types to types.

3.3. OBJECT TYPES 23

So the contravariance of method types in their self argument causes SubObj
to fail. The only solution we found to overcome this is to “unroll” the definition
of method types and only require methods to work with the current object as
the self argument.

[md : τd]d∈D , {〈k, [me=ς(xe)be]e∈E〉 | D ⊆ E,

∀d∈D,∀j<k. ([xd 7→ v] (bd) :j τd}

This definition turns objects into records of methods with proper subtyping,
similar to the ones from the introduction. The method update rule Upd is
clearly invalidated, however adding an extra condition finally solves this. We
require that the object obtained by replacing a method with one of a proper type
stays in the original object type, but only with a strictly smaller approximation
index. Decreasing the index is once again crucial to ensure the well-foundedness
of the definition.

Definition 3.3.9 (Object Types with Subtyping). Let α ≡ [md : τd]d∈D in

α , {〈k, v〉 | v ≡ [me=ς(xe)be]e∈E , D ⊆ E,

∀d∈D. ∀j<k. ([xd 7→ v] (bd) :j τd

∧ ∀ς(x)b. 〈j, ς(x)b〉 ∈ α τd

⇒ 〈j, [md=ς(x)b, me=ς(xe)be]e∈E\{d}〉 ∈ α)}

With this definition we can prove the soundness of the semantic rules from
Fig. 3.1 as well as the soundness of the rule for subtyping in width (SubObj).

Example 3.3.10 (Minimal Types). Unlike in a syntactic setting, the absence
of type annotations does not cause the ς-calculus to lose the minimal types
property. Consider for example the term [m=ς(x)[m=ς(y)[]]] used by Abadi and
Cardelli to show that the minimal types property breaks if type annotations are
removed from their calculus [AC96a, Section 8.3.1]. As the following derivations
show this term has both type [m : [m : []]] and type [m : []]:

(Obj)

(Obj)
(Obj) . . . |= [] : []

. . . |= [m=ς(y)[]] : [m : []]
∅ |= [m=ς(x)[m=ς(y)[]]] : [m : [m : []]]

(Obj)

(Sub)

(Obj)
(Obj) . . . |= [] : []

. . . |= [m=ς(y)[]] : [m : []]
∅ ⊆ {m}

[m : []] ⊆ []
(SubObj)

. . . |= [m=ς(y)[]] : []
∅ |= [m=ς(x)[m=ς(y)[]]] : [m : []]

In the type system of Abadi and Cardelli these types would have no common
subtype. However, in our semantic model every collection of types has a common
subtype given by their intersection. In particular [m : [m : []]] and [m : []] have
[m : [m : []]]∩ [m : []] as their most general common subtype (i.e. greatest lower
bound), and our term can also be given this intersection type [Pie92, BDCd95].

∅ |= [m=ς(x)[m=ς(y)[]]] : [m : [m : []]] ∅ |= [m=ς(x)[m=ς(y)[]]] : [m : []]
∅ |= [m=ς(x)[m=ς(y)[]]] : [m : [m : []]] ∩ [m : []]

24 CHAPTER 3. STEP-INDEXED SEMANTIC MODEL OF TYPES

Subtyping in width considers objects types with more methods to be subtypes of
objects with less methods, as long as the type of the common methods is exactly
the same. Under this assumption we say that object types are invariant in their
components. We may wonder if we can relax this to allow the components to
be subtyped as well. For example records satisfy the following rule for covariant
subtyping in depth5:

∀d∈D. αd ⊆ βd

{fd : αd}d∈D ⊆ {fd : βd}d∈D

This rule holds for records only because they are immutable. However method
update changes the state of objects, so subtyping in depth would be unsound
in any model as the following counterexample shows.

Counterexample 3.3.11 (Subtyping in Depth). Please consider the following
term ([f=[g=[]],m=ς(x)x.f.g].f := []).m. It creates an object with a field f and
a method m, it updates the field f to the empty object and then it invokes the
method m. The field f initially stores an object with one field g containing the
empty object, and the method selects the content of this inner field, so the type
of the initially constructed object is [f : [g : []],m : []] as shown by the derivation
t below (we denote Σ ≡ [x 7→ [f : [g : []],m : []]] and Σ′ ≡ Σ[7→ [g : []]]).

t =
(Obj)

(Obj)
(Obj) Σ′ |= [] : []

Σ |= [g=[]] : [g : []]

(Var) Σ |= x : [f : [g : []],m : []]
Σ |= x.f : [g : []]

(Inv)

Σ |= x.f.g : []
(Inv)

∅ |= [f=[g=[]],m=ς(x)x.f.g] : [f : [g : []],m : []]

We cannot directly apply the Upd rule since the update of f is not type pre-
serving. However, if we had a rule for covariant subtyping in depth we could
derive that [f : [g : []],m : []] ⊆ [f : [],m : []], so by subsumption the object that
we initially constructed also has type [f : [],m : []]. Now the update would be
permitted and the whole term would be considered well-typed.

(Obj)

(Upd)

(Sub)
t

[g : []] ⊆ []
[f : [g : []],m : []] ⊆ [f : [],m : []]

(Wrong!)

∅ |= [f=[g=[]],m=ς(x)x.f.g] : [f : [],m : []]
∅ |= [f=[g=[]],m=ς(x)x.f.g].f := [] : [f : [],m : []]

∅ |= ([f=[g=[]],m=ς(x)x.f.g].f := []).m : []

However, it is easy to see that this term gets stuck in three steps because the
method m tries to access the inner field g which no longer exists after the update.

([f=[g=[]],m=ς(x)x.f.g].f := []).m → [f=[],m=ς(x)x.f.g].m
→ [f=[],m=ς(x)x.f.g].f.g → [].g 9

If contravariant subtyping in depth is allowed then we can construct a similar
counterexample. Intuitively, methods can be both invoked (read) and updated
(written) so like the references in ML [MTM96] they need to be invariant when

5For simplicity we did not also consider subtyping in width in the rule.

3.4. OBJECT TYPES WITH VARIANCE ANNOTATIONS 25

subtyping6. However, subtyping in depth is important because it would increase
the expressive power of the type system. For example with the encoding of
procedures from Section 2.3.1, the type of procedures α → β can be encoded
as [arg : α, eval : β]. However, with object types that are invariant in their
components such an encoding clearly does not validate the usual subtyping rule
for procedures:

α′ ⊆ α β ⊆ β′

α → β ⊆ α′ → β′
⇔

α′ ⊆ α β ⊆ β′

[arg : α, eval : β] ⊆ [arg : α′, eval : β′]
(Wrong!)

In the next section we show that by tracking the variance of the methods
and restricting certain invocations or updates we can still soundly allow con-
travariant respectively covariant subtyping in depth for object types.

Subtyping in a step-indexed semantic model was previously considered by
Swadi [Swa03, Section 3.4]. However, his typed machine language is much
different than the ς-calculus. In particular it does not have object types, so
many of the subtle issues discussed in this section do not appear there.

3.4 Object Types with Variance Annotations

3.4.1 Definition and Rules

Abadi and Cardelli discovered that, by restricting certain updates and invoca-
tions, covariant respectively contravariant subtyping in depth for object types
can be soundly allowed [AC96a, Section 8.7]. Each method of an object type
[md :νd

τd]d∈D is assigned a variance annotation ν ∈ {0,+,−}.
Methods annotated with “0” correspond to the ones we have considered so

far. They can be both invoked and updated, but as before they need to be
considered invariant when subtyping. Methods annotated with “+” can only
be invoked but not updated, so they are treated as covariant when subtyp-
ing. Similarly, methods marked with “−” can only be updated, and are thus
contravariant.

The semantic typing rules for objects are slightly changed (Figure 3.2). The
rule for object creation is the same as before, just that we can also chose the
variance annotations in the type of the created object (VarObj). A method
invocation is well-typed only if the method is marked as covariant or invariant
(VarInv). On the other hand, a method update is allowed only if the method
is contravariant or invariant (VarUpd). The new rule for subtyping allows not
only subtyping in width, but also in depth (VarSubObj1). As expected an
object type is covariant in its methods annotated with +, contravariant in the
ones annotated with −, and invariant in the ones annotated with 0 (if νe is 0
then we assume both αe ⊆ βe and βe ⊆ αe, which is just αe = βe).

If we consider only these typing rules the type system is not more flexible
than the one we had before. Methods marked as covariant are effectively read-
only, like the fields of a record. Contravariant methods are write-only “black
holes”, which can never be read so they hardly have any use. VarSubObj2 is
the typing rule that adds the missing flexibility.

6For the same reason Java arrays should have been invariant, but due to a poor design
choice they are covariant. This is unsound and is rectified by doing costly dynamic checks on
each array write operation.

26 CHAPTER 3. STEP-INDEXED SEMANTIC MODEL OF TYPES

Let α ≡ [md :νd
τd]d∈D

(VarObj)
∀d ∈ D. Σ[x 7→ α] |= bd : τd

Σ |= [md=ς(xd)bd]d∈D : α

(VarInv)
Σ |= a : α e ∈ D νe ∈ {+, 0}

Σ |= a.me : τe

(VarUpd)
Σ |= a : α e ∈ D νe ∈ {−, 0} Σ[x 7→ α] |= b : τe

Σ |= a.me := ς(x)b : α

(VarSubObj1)

E ⊆ D ∀e ∈ E. (νe ∈ {+, 0} ⇒ αe ⊆ βe)
∧ (νe ∈ {−, 0} ⇒ βe ⊆ αe)

[md :νd
αd]d∈D ⊆ [me :νe

βe]e∈E

(VarSubObj2)
∀d ∈ D. νd = 0 ∨ νd = ν′d

[md :νd
τd]d∈D ⊆ [md :ν′d τd]d∈D

Figure 3.2: Typing rules for the object types with variance annotations

VarSubObj2 allows invariant methods to be regarded by subtyping as either
covariant or contravariant. Intuitively, this is sound since a method that can
be both invoked and updated can be safely used in a context where it is only
invoked, or in one where it is only updated. VarSubObj2 gives us for example
that [m :0 α] is a subtype of both [m :+ α] and [m :− α], while [m :+ α] and
[m :− α] are not comparable to each other. This allows us to distinguish between
the invocations and updates done through the self argument (internal), and the
ones done from the outside (external).

The main idea is to type an object creation with an object type where all
methods are considered invariant, so that all invocations and updates through
the self argument (internal) are allowed, but have to be type preserving. Then
the subsumption rule is applied and some of the methods can become covariant,
some of them contravariant. Any external update to a covariant method and
any external invocation of a contravariant one are prohibited. However, the
internal invocation and update remain unrestricted. This is later illustrated in
Section 3.4.2.

The new definition of object types follows naturally from the previous one
(Def. 3.3.9), which has a part about invocations, and a separate part about up-
dates. As before invariant methods have to allow both invocations and updates.
Covariant methods have to allow invocations, but not necessarily updates, while
contravariant ones have to allow updates, but not necessarily invocations.

Definition 3.4.1 (Object Types with Variance Annotations). α ≡ [md :νd
τd]d∈D

3.4. OBJECT TYPES WITH VARIANCE ANNOTATIONS 27

α , {〈k, v〉 | v ≡ [me=ς(xe)be]e∈E , D ⊆ E,

∀d∈D. ∀j<k. ((νd ∈ {+, 0} ⇒ [xd 7→ v] (bd) :j τd)
∧ (νd ∈ {−, 0} ⇒ ∀ς(x)b. 〈j, ς(x)b〉 ∈ α τd

⇒ 〈j, [md=ς(x)b, me=ς(xe)be]e∈E\{d}〉 ∈ α))}

The simple object types considered in the previous section can be seen as
a special case of object types with variance annotations where all methods are
invariant.

3.4.2 First-order Encoding of Procedure Types

Object types with variance annotations are more expressive than the simpler
ones without. With the encoding of procedures from Section 2.3.1 we can give
an encoding of procedure types that validates the usual subtyping rule, since
〈〈α → β〉〉 can be defined as [arg :− 〈〈α〉〉 , eval :+ 〈〈β〉〉]:

(VarSubObj1)
〈〈α′〉〉 ⊆ 〈〈α〉〉 〈〈β〉〉 ⊆ 〈〈β′〉〉

[arg :− 〈〈α〉〉 , eval :+ 〈〈β〉〉] ⊆ [arg :− 〈〈α′〉〉 , eval :+ 〈〈β′〉〉]

⇓

(SubProc)
〈〈α′〉〉 ⊆ 〈〈α〉〉 〈〈β〉〉 ⊆ 〈〈β′〉〉
〈〈α → β〉〉 ⊆ 〈〈α′ → β′〉〉

We first give any encoded procedure the type [arg :0 〈〈α〉〉 , eval :0 〈〈β〉〉], so
that the argument field can be selected and used through the self reference. Then
the subsumption rule is applied and the object is given type [arg :− 〈〈α〉〉 , eval :+
〈〈β〉〉], which by VarSubObj2 is a supertype of [arg :0 〈〈α〉〉 , eval :0 〈〈β〉〉]. Ex-
ternal selections of the arg field and external updates of eval are not allowed by
any sound typing rules. However this does not impede internal access, and is
in concordance with the intended usage pattern of an encoded procedure. An
encoded application first updates the field to the actual argument, and then
invokes the eval method that accesses it through self.

Example 3.4.2 (Eta). As an example we show that:

[f 7→ 〈〈α → β〉〉] |= 〈〈λx. f x〉〉 : 〈〈α → β〉〉

We use the following notations:

a ≡ 〈〈λx. f x〉〉 = [arg=ς(x)x.arg, eval=ς(x)(f.arg := x.arg).eval]
τ ≡ 〈〈α → β〉〉 = [arg :− 〈〈α〉〉 , eval :+ 〈〈β〉〉]

τ0 ≡ [arg :0 〈〈α〉〉 , eval :0 〈〈β〉〉]
Σ ≡ [f 7→ τ] Σ′ ≡ Σ[x 7→ τ0]

Please note that a cannot be given type τ directly, since it selects the field arg
which is contravariant in τ . However, it can be given type τ0 that is the same
as τ just that all methods are invariant, and thus by subsumption a can still be

28 CHAPTER 3. STEP-INDEXED SEMANTIC MODEL OF TYPES

given type τ . The complete typing derivation is given below.

(Sub)

(VarObj)

(VarInv)
(Var) Σ′ |= x : τ0

Σ′ |= x.arg : 〈〈α〉〉

(Var) Σ′ |= f : τ

Σ′ |= x : τ0 (Var)

Σ′ |= x.arg : 〈〈α〉〉
(VarInv)

Σ′ |= f.arg := x.arg : τ
(VarUpd)

Σ′ |= (f.arg := x.arg).eval : 〈〈β〉〉
(VarInv)

Σ |= a : τ0 (VarSubObj2) τ0 ⊆ τ

Σ |= a : τ

The semantic typing rules for application and abstraction can be proved
from the rules for objects. We start with a simple result about substitution.

Lemma 3.4.3 (Substitution). If Σ[x 7→ α] |= b : β and Σ |= a : α, then
Σ |= [x 7→ a] (b) : β

Proof. Let k ≥ 0, σ :k Σ. From Σ |= a : α by Def. 3.1.8 we have that σ(a) :k α,
so also σ[x 7→ a] :k Σ[x 7→ α]. From Σ |= a : α we have that σ[x 7→ a](b) :k β, so
finally by Def. 3.1.8 we can conclude that Σ |= [x 7→ a] (b) : β.

Lemma 3.4.4 (Lam: Abstraction).
If Σ[x 7→ 〈〈α〉〉] |= 〈〈b〉〉 : 〈〈β〉〉 then Σ |= 〈〈λx. b〉〉 : 〈〈α → β〉〉.

Proof. We make the following notations:
a ≡ 〈〈λx. b〉〉 = [arg=ς(x)x.arg, eval=ς(x) [x 7→ x.arg] (〈〈b〉〉)]
τ ≡ 〈〈α → β〉〉 = [arg :− 〈〈α〉〉 , eval :+ 〈〈β〉〉]

τ0 ≡ [arg :0 〈〈α〉〉 , eval :0 〈〈β〉〉]
Σ′ ≡ Σ[x 7→ τ0]

The derivation is similar to the one in example 3.4.2.

(Sub)

(VarObj)

(VarInv)
(Var) Σ′ |= x : τ0

Σ′ |= x.arg : 〈〈α〉〉 t

Σ |= a : τ0 τ0 ⊆ τ (VarSubObj2)

Σ |= a : τ

where t =
(VarInv)

(Var) Σ′ |= x : τ0

Σ′ |= x.arg : 〈〈α〉〉 Σ′[x 7→ 〈〈α〉〉] |= 〈〈b〉〉 : 〈〈β〉〉
Σ′ |= [x 7→ x.arg] (〈〈b〉〉) : 〈〈β〉〉

(Subst)

Lemma 3.4.5 (App: Application). If Σ |= 〈〈a〉〉 : 〈〈β → α〉〉 and Σ |= 〈〈b〉〉 : 〈〈β〉〉,
then Σ |= 〈〈a b〉〉 : 〈〈α〉〉.

Proof. Let τ ≡ 〈〈β → α〉〉 = [arg :− 〈〈α〉〉 , eval :+ 〈〈β〉〉], then we have:

(Inv)

(Upd)
Σ |= 〈〈a〉〉 : τ Σ |= 〈〈b〉〉 : 〈〈β〉〉

Σ |= 〈〈a〉〉 .arg := 〈〈b〉〉 : τ

Σ |= (〈〈a〉〉 .arg := 〈〈b〉〉).eval : 〈〈α〉〉

3.4. OBJECT TYPES WITH VARIANCE ANNOTATIONS 29

In the following we omit the notation for encoded procedures and procedure
types, and use procedures and procedure types as if they were primitive.

Procedure types with proper subtyping can also be properly encoded using
the quantified types introduced in Section 3.6.

3.4.3 Soundness of the Semantic Typing Rules

We have delayed proving any of the semantic typing rules for objects so that
we can give the proofs only in the more general setting of object types with
variance annotations. The semantic typing rules for the object types without
variance annotations from Section 3.3.2 are just corollaries.

Lemma 3.4.6. If all τd are types, then [md :νd
τd]d∈D is also a type.

Proof. The closure under descending index is immediate from Def. 3.4.1.

Lemma 3.4.7 (Object Construction). For all k ≥ 0, for all sets D, for all object
types α = [md :νd

τd]d∈D, for all objects [md=ς(xd)bd]d∈D, if for all d ∈ D we
have 〈k, ς(xd)bd〉 ∈ α τd, then we can conclude that 〈k, [md=ς(xd)bd]d∈D〉 ∈
α.

Proof. By induction on k. Since the base case k = 0 is immediate from Def.
3.4.1 we only consider k > 0. Let D be an arbitrary set, let α = [md :νd

τd]d∈D

be an object type, and let [md=ς(xd)bd]d∈D be an object such that ∀d ∈
D. 〈k, ς(xd)bd〉 ∈ α τd, we need to show that 〈k, [md=ς(xd)bd]d∈D〉 ∈ α.

Let j < k. By closure under descending index (Property 3.2.2) we get that
∀d ∈ D. 〈j, ς(xd)bd〉 ∈ α τd, so by the induction hypothesis we have that
〈j, [md=ς(xd)bd]d∈D〉 ∈ α. Let d ∈ D. We already have that 〈j, ς(xd)bd〉 ∈
α τd, thus by Def. 3.2.1 we obtain that

[
xd 7→ [md=ς(xd)bd]d∈D

]
(bd) :j τd,

so [md=ς(xd)bd]d∈D satisfies the method invocation condition in Def. 3.4.1
indifferent to the variance annotations νd.

Let ς(x)b be a method such that 〈j, ς(x)b〉 ∈ α τd. The updated object
[md=ς(x)b, md′=ς(xd′)bd′]d′∈D\{d} satisfies the premises of the lemma, so by
induction hypothesis we get that 〈j, [md=ς(x)b, md′=ς(xd′)bd′]d′∈D\{d}〉 ∈ α,
once again for any value of νd. Finally, by applying Def. 3.4.1 for E=D we
conclude that 〈k, [md=ς(xd)bd]d∈D〉 ∈ α.

Lemma 3.4.8 (VarObj: Object Construction). For all object types with vari-
ance annotations α = [md :νd

τd]d∈D, if for all d ∈ D we have Σ[xd 7→ α] |= bd :
τd, then Σ |= [md=ς(xd)bd]d∈D : α.

Proof. Let k ≥ 0 and σ :k Σ. If we denote v ≡ [md=ς(xd)(σ [xd↑] (bd))]d∈D,
then we must prove that v :k α. From the premises, by applying Lemma 3.2.3
for all d ∈ D we obtain that 〈k, ς(xd)(σ [xd↑] (bd))〉 ∈ α τ . Then by Lemma
3.4.7 we obtain that 〈k, v〉 ∈ α, and by Property 3.1.6 it follows that v :k α.
Finally, by Def. 3.1.8 we conclude that Σ |= [md=ς(xd)bd]d∈D : α.

Note. The induction would fail unless we strengthen the hypothesis to the one
in Lemma 3.4.7. The universal quantification over all objects with well-typed
methods is crucial for proving that method update preserves the type α.

30 CHAPTER 3. STEP-INDEXED SEMANTIC MODEL OF TYPES

Lemma 3.4.9 (VarInv: Method Invocation). For all object types with variance
annotations α ≡ [md :νd

τd]d∈D and for all e ∈ D, if Σ |= a : α and νe ∈ {+, 0},
then Σ |= a.me : τe.

Proof. Let k > 0 and σ :k Σ. From the hypothesis by Def. 3.1.8 we get that
σ(a) :k α. Also by Def. 3.1.8 it suffices to show that σ(a).me :k τe.

Let j < k such that σ(a).me →j b and b 9. Since σ(a) :k α by Lemma
3.1.10 we get that σ(a) is safe for k steps, so by the operational semantics we
can infer that ∃i < j such that σ(a) →i v and v is a value thus irreducible. Since
σ(a) :k α by Def. 3.1.4 we get that 〈k − i, v〉 ∈ α. By the definition of object
types (Def. 3.4.1) it follows that v = [me=ς(xe)be]e∈E where D ⊆ E, and since
νe ∈ {+, 0} also that [xe 7→ v] (be) :k−i−1 τe. From σ(a) →i v by the rules Red-
Ctx and Red-Inv it follows that σ(a).me →i v.me → [xe 7→ v] (be) →j−i−1 b.
Therefore by Def. 3.1.4 we have that 〈k − j, b〉 ∈ τe, so again by Def. 3.1.4 we
can conclude that σ(a).me :k τe.

Lemma 3.4.10 (Closed Method Update). For all object types with variance
annotations α = [md :νd

τd]d∈D, for all d ∈ D, for all closed terms a′, and for
all closed methods ς(x)b′, if a′ :k α and 〈k, ς(x)b′〉 ∈ α τd and νd ∈ {−, 0},
then a′.md := ς(x)b′ :k α.

Proof. Let j < k such that a′.md := ς(x)b′ →j b′′ and b′′ 9. From a′ :k α
by Lemma 3.1.10 we get that a′ ∈ Safek, so by the operational semantics
we have that a′.md := ς(x)b′ →j−1 v.md := ς(x)b′. From Red-Ctx by in-
version we get that a′ →j−1 v. From a′ :k α, by Def. 3.1.4 we obtain
that 〈k−j+1, v〉 ∈ α. From the definition of α (Def. 3.4.1) we infer that
v = [me=ς(xe)be]e∈E where D ⊆ E. From the rule Red-Upd we derive that
b′′ = [md=ς(x)b′,me=ς(xe)be]e∈E\{d} and also a′.md := ς(x)b′ →j−1 v.md :=
ς(x)b′ → b′′.

We have that k−j < k−j−1, and from the hypothesis that νd ∈ {−, 0}
and 〈k, ς(x)b′〉 ∈ α τd so by Prop. 3.2.2 also 〈k−j, ς(x)b′〉 ∈ α τd.
From all these by Def. 3.4.1 we obtain that 〈k−j, b′′〉 ∈ α. This together with
a′.md := ς(x)b′ →j b′′ and b′′ 9 allows us to conclude by Def. 3.1.4 that
a′.md := ς(x)b′ :k α.

Lemma 3.4.11 (VarUpd: Method Update). For all object types with variance
annotations α = [md :νd

τd]d∈D and for all e ∈ D, if Σ |= a : α and Σ[x 7→ α] |=
b : τe and νe ∈ {−, 0}, then Σ |= a.me := ς(x)b : α.

Proof. Under the premises of the lemma we need to show that Σ |= a.me :=
ς(x)b : α. Let k ≥ 0 and σ :k Σ, by Def. 3.1.8 it remains to be showed that
σ(a).me := ς(x)σ(b) :k α. From the hypothesis Σ |= a : α by Def. 3.1.8 we
obtain that σ(a) :k α. From the hypothesis Σ[x 7→ α] |= b : τe by Lemma 3.2.3
we also obtain that 〈k, ς(x)σ [x↑] (b)〉 ∈ α τe. By putting them all together
and applying Lemma 3.4.10, we conclude that σ(a).me := ς(x)σ(b) :k α.

Lemma 3.4.12 (Subtyping Method Types). If 〈k, ς(x)b〉 ∈ α τ , bα′ck ⊆
bαck and bτck ⊆ bτ ′ck, then 〈k, ς(x)b〉 ∈ α′ τ ′.

Proof. Assume that 〈k, ς(x)b〉 ∈ α τ , bα′ck ⊆ bαck and bτck ⊆ bτ ′ck. We
need to show that 〈k, ς(x)b〉 ∈ α′ τ ′. Let j < k and let v be a value
such that 〈j, v〉 ∈ α′, or equivalently (by Def. 3.1.2) 〈j, v〉 ∈ bα′ck. But by

3.4. OBJECT TYPES WITH VARIANCE ANNOTATIONS 31

our assumption bα′ck ⊆ bαck so 〈j, v〉 ∈ bαck, and equivalently 〈j, v〉 ∈ α.
From the assumption that 〈k, ς(x)b〉 ∈ α τ by Def. 3.2.1 we infer that
[x 7→ v] (b) :j τ , so [x 7→ v] (b) :j bτck. By our third assumption bτck ⊆ bτ ′ck,
thus by Def. 3.1.4 we have that [x 7→ v] (b) :j bτ ′ck, which is again equivalent
to [x 7→ v] (b) :j τ ′. Finally, by the definition of method types (Def. 3.2.1) we
conclude that 〈k, ς(x)b〉 ∈ α′ τ ′.

Corollary 3.4.13 (MethSub: Subtyping Method Types). If α′ ⊆ α and τ ⊆
τ ′, then α τ ⊆ α′ τ ′.

Proof. Immediate from Lemma 3.4.12.

Lemma 3.4.14 (VarSubObj1: Subtyping Object Types). E ⊆ D and for all
e ∈ E if νe ∈ {+, 0} then αe ⊆ βe and if νe ∈ {−, 0} then βe ⊆ αe imply that
[md :νd

αd]d∈D ⊆ [me :νe βe]e∈E.

Proof. Assume that E ⊆ D and that if νe ∈ {+, 0} then αe ⊆ βe and if
νe ∈ {−, 0} then βe ⊆ αe (H). Let us denote α ≡ [md :νd

αd]d∈D and β ≡
[me :νe βe]e∈E . We prove that for all k ≥ 0 and for all values v, if 〈k, v〉 ∈ α
then 〈k, v〉 ∈ β, by course-of-values induction on k. The induction hypothesis is
thus that for all j < k if 〈j, v〉 ∈ α then 〈j, v〉 ∈ β, or equivalently bαck ⊆ bβck.

Assume that 〈k, v〉 ∈ α, then by the definition of α (Def. 3.4.1) we have that
v = [mc=ς(xc)bc]c∈C , D ⊆ C and for all d ∈ D and j < k we have

νd ∈ {+, 0} ⇒ [xd 7→ v] (bd) :j αd (H1)

νd ∈ {−, 0} ⇒ ∀ς(x)b. 〈j, ς(x)b〉 ∈ α αd ⇒
〈j, [md=ς(x)b, mc=ς(xc)bc]c∈C\{d}〉 ∈ α (H2)

Since E ⊆ D and D ⊆ C then by transitivity E ⊆ C. Let e ∈ E and
j < k. We first show that if ν′e ∈ {+, 0} then [xe 7→ v] (be) :j βe. Assume
that ν′e ∈ {+, 0}, so by the hypothesis (H) we have αe ⊆ βe. By E ⊆ D
and (H1) it follows that [xe 7→ v] (be) :j αe, so by Def. 3.1.4 it follows that
[xe 7→ v] (be) :j βe.

Second, we show that if νe ∈ {−, 0} then for all methods ς(x)b such that
〈j, ς(x)b〉 ∈ β βe we have 〈j, [me=ς(x)b, mc=ς(xc)bc]c∈C\{e}〉 ∈ β. As-
sume that νe ∈ {−, 0}, then by the hypothesis (H) we have that βe ⊆ αe,
which implies bβeck ⊆ bαeck. Let 〈j, ς(x)b〉 ∈ β βe, then since by the in-
duction hypothesis bαck ⊆ bβck we can apply Lemma 3.4.12 and infer that
〈j, ς(x)b〉 ∈ α αe. Since e ∈ D we can apply (H2) which gives us that
〈j, [me=ς(x)b, mc=ς(xc)bc]c∈C\{e}〉 ∈ α, which by the induction hypothesis al-
lows us to conclude that 〈j, [me=ς(x)b, mc=ς(xc)bc]c∈C\{e}〉 ∈ β.

Lemma 3.4.15 (VarSubObj2). If for all d ∈ D we have νd = 0 or νd = ν′d
then [md :νd

τd]d∈D ⊆ [md :ν′d τd]d∈D.

Proof. Let us denote α ≡ [md :νd
τd]d∈D and α′ ≡ [md :ν′d τd]d∈D. We prove

that for all k ≥ 0 and for all values v if 〈k, v〉 ∈ α then 〈k, v〉 ∈ α′, by course-
of-values induction on k. The induction hypothesis is thus that for all j < k if
〈j, v〉 ∈ α then 〈j, v〉 ∈ α′, or equivalently bαck ⊆ bα′ck.

32 CHAPTER 3. STEP-INDEXED SEMANTIC MODEL OF TYPES

Assuming that 〈k, v〉 ∈ α we have to prove that 〈k, v〉 ∈ α′. By Def. 3.4.1
we have that v = [me=ς(xe)be]e∈E , D ⊆ E and for all d ∈ D and j < k we have

νd ∈ {+, 0} ⇒ [xd 7→ v] (bd) :j τd (H1)

νd ∈ {−, 0} ⇒ ∀ς(x)b. 〈j, ς(x)b〉 ∈ α τd ⇒
〈j, [md=ς(x)b, me=ς(xe)be]e∈E\{d}〉 ∈ α (H2)

Let d ∈ D and j < k. We first show that if ν′d ∈ {+, 0} then [xd 7→ v] (bd) :j
τd. From the hypothesis we have that ν′d ∈ {+, 0} implies νd ∈ {+, 0}, which
from (H1) implies [xd 7→ v] (bd) :j τd.

Second, we show that if ν′d ∈ {−, 0} then for all methods ς(x)b such that
〈j, ς(x)b〉 ∈ α′ τd we have 〈j, [md=ς(x)b, me=ς(xe)be]e∈E\{d}〉 ∈ α′. Assume
that ν′d ∈ {−, 0}, then using the hypothesis we can infer that νd ∈ {−, 0}. Let
〈j, ς(x)b〉 ∈ α′ τd, but by the induction hypothesis bαck ⊆ bα′ck so we can
apply Lemma 3.4.12 which gives us that 〈j, ς(x)b〉 ∈ α τd. From this by
(H2) we get that 〈j, [md=ς(x)b, me=ς(xe)be]e∈E\{d}〉 ∈ α, and by the induction
hypothesis also 〈j, [md=ς(x)b, me=ς(xe)be]e∈E\{d}〉 ∈ α′.

3.5 Recursive Types

The introduction already presented a recursive type: recursive records. Here we
deal with a more general instance of the same idea. Recursive types were the
main motivation behind the model of Appel and McAllester [AM01], and their
results directly apply here, therefore we do not go into much detail.

Example 3.5.1 (Natural Numbers). Let us return to the encoding of natural
numbers given in Section 2.3.3. Numbers were defined as objects with an iszero
boolean field and two methods yielding the preceding and the succeeding num-
ber. Let us examine this more closely: numbers are objects having two methods
returning other numbers. This means that the type of numbers contains two
methods of number type. The type of numbers is thus a recursive type, which
we can write as:

Nat , µ(λα. [iszero : Bool, pred : α, succ : α])

The type of pred and succ is the same as the type of the whole object.

The recursion type operator µ computes a candidate fixpoint of a function
from types to types by repeatedly applying the function to ⊥.

Definition 3.5.2 (Recursion Operator).

µF = {〈k, v〉 | 〈k, v〉 ∈ F k+1(⊥)}

A type constructor F is contractive if in order to determine whether a term
has type F (τ) with approximation k + 1, it suffices to know the type τ only to
approximation k.

Definition 3.5.3 (Contractiveness). A type constructor F is contractive if for
all types τ and for all k ≥ 0 we have:

bF (τ)ck+1 = bF (bτck)ck+1

3.5. RECURSIVE TYPES 33

When additionally F is contractive µ computes a fixpoint of F , that is
µF = F (µF). Recursive types satisfying this condition with equality are called
equi-recursive types, in contrast to the iso-recursive types for which µF is only
isomorphic to F (µF) via two constructs on terms named fold and unfold [Pie02,
Chapters 20 and 21].

Lemma 3.5.4 (Fixpoint). If F is contractive then µF = F (µF).

Proof. Given in [AM01, Theorem 20.]

The condition µF = F (µF) immediately gives raise to two semantic typing
rules which can only be applied when F is contractive:

(Unfold)
Σ |= a : µF

Σ |= a : F (µF)
(Fold)

Σ |= a : F (µF)
Σ |= a : µF

Example 3.5.5 (Natural Numbers: Derivation). Returning to the natural num-
bers we can now show that 0 has type Nat. In Section 2.3.3 we defined 0 as:

0 , [iszero=true, pred=ς(x)x, succ=ς(x)[iszero=false, pred=x, succ=x.succ]]

We use the following notations in the derivation below:

τ ≡ [iszero : Bool, pred : Nat, succ : Nat]
Σ ≡ [x 7→ τ] Σ′ ≡ Σ[7→ τ]

(Fold)

(Obj)
(True) Σ |= true : Bool (Var) Σ |= x : Nat t

∅ |= 0 : [iszero : Bool, pred : Nat, succ : Nat]
∅ |= 0 : µ(λα. [iszero : Bool, pred : α, succ : α])

t =
(Fold)

(Obj)
Σ′ |= false : Bool Σ′ |= x : Nat

Σ′ |= x : τ (Var)

Σ′ |= x.succ : Nat
(Inv)

Σ |= [iszero=false, pred=x, succ=x.succ] : τ

Σ |= [iszero=false, pred=x, succ=x.succ] : Nat

Compared to the setting of Appel and McAllester [AM01] we also have a
subtyping rule for recursive types, which is known as the Amber rule [Car85].
In order to show that µF is a subtype of µG, it suffices to show that F (α) ⊆ G(β)
holds for all α ⊆ β.

(SubRec)
∀α, β ∈ Type. α ⊆ β ⇒ F (α) ⊆ G(β)

µF ⊆ µG

Lemma 3.5.6 (SubRec: Amber Rule). Given F,G : Type → Type, if for all
α and β such that α ⊆ β we have that F (α) ⊆ G(β) , then µF ⊆ µG.

Proof. Under the assumptions of the lemma, we have to show that µF ⊆ µG.
By the definition of the recursion operator (Def. 3.5.2) we can equivalently show
that F k+1(⊥) ⊆ Gk+1(⊥). We do this by induction on k.

34 CHAPTER 3. STEP-INDEXED SEMANTIC MODEL OF TYPES

Case k = 0, since ⊥ ⊆ ⊥ by the hypothesis F (⊥) ⊆ G(⊥).

Case k > 0, then by the induction hypothesis we have that F k(⊥) ⊆ Gk(⊥), so
by the hypothesis we infer that F k+1(⊥) ⊆ Gk+1(⊥).

Not all type constructors are contractive, still all the ones we consider in this
thesis satisfy a weaker condition called non-expansiveness. A type constructor
F is non-expansive if in order to determine whether a term has type F (τ) to
approximation k, it suffices to know the type τ only to approximation k.

Definition 3.5.7 (Non-expansiveness). A type constructor F : Type → Type is
non-expansive if for all types τ and for all k ≥ 0 we have:

bF (τ)ck = bF (bτck)ck

Lemma 3.5.8. The object type constructor is contractive.⌊
[md :νd

τd]d∈D

⌋
k+1

=
⌊
[md :νd

bτdck]d∈D

⌋
k+1

Proof. It can be shown from the definition of object types (Def. 3.4.1).

Lemma 3.5.9. The procedure type constructor is contractive.

bα → βck+1 = bbαck → bβckck+1

Proof. This is immediate by Lemma 3.5.8 since procedure types are encoded
using object types as described in Section 3.4.2.

Counterexample 3.5.10. The recursion operator µ is not contractive. More
precisely, there exists F contractive such that bµF ck+1 6= bµ bF ckck+1. Let
k = 0 and F = λα. [m : []]. We have that bµF ck+1 = bµ(λα. [m : [])c1 =
b(λα. [m : [])(⊥)c1 = b[m : []c1 6= ⊥ = b⊥c1 = b(λα.⊥)(⊥)c1 = bµ(λα.⊥)c1 =
bµ(λα. b[m : []]c0)c1 = bµ bλα. [m : []]c0c1 = bµ bF ckck+1

Lemma 3.5.11. The recursion operator µ is non-expansive, more precisely if
F is contractive then:

bµF ck = bµ bF ckck

Proof. We use the fact that bµF ck =
⌊
F k(⊥)

⌋
k

[AM01, Lemma 18.(a)] to derive:

bµF ck =
⌊
F k(⊥)

⌋
k

=
⌊
bF ckk (⊥)

⌋
k

= bµ bF ckck

3.6. BOUNDED QUANTIFIED TYPES 35

3.6 Bounded Quantified Types

3.6.1 Vestigial Operators

Example 3.6.1 (Booleans). In Section 2.3.2 we gave the Church encoding for
booleans. True was encoded as λx. λy. x and false as λx. λy. y. Both true and
false are procedures taking two arguments, and returning one of them. For every
type α true and false can be given the type α → α → α, however we want to
capture this into just one type for booleans. We can do this using a universal
type (also known as polymorphic type) [Pie02, Chapter 23]:

Bool , ∀(λα. α → α → α)

We would expect that in an untyped setting λx. λy. x and λx. λy. y are the
values of type Bool. However, this is unfortunately not the case. Our model
requires us to have introduction and elimination forms for quantified types, just
like in a typed setting. In a typed setting type abstraction would be written as
ΛX.a where X is a type variable, and type application as (a A) where A is a
type expression. Applying a type abstraction to a type expression causes the
expression to be substituted for the type variable in the body of the abstraction
(ΛX.a) A → a[X:=A]. Our type abstraction and application operators can
be viewed as reminiscents of the real operators after all types were removed,
therefore we call them vestigial operators. Polymorphic values are introduced
by a type abstraction construct “Λ. a” and eliminated by a type application
construct “a []”. The boolean terms are redefined as follows:

true , Λ. λx. λy. x false , Λ. λx. λy. y

if b then a1 else a2 , b [] a1 a2

Our syntax of terms has to accommodate four new forms, the two for poly-
morphism (universal types) discussed above, and pack and open for type ab-
straction (existential types).

a, b ::= . . . | Λ. a | a [] | pack a | open a as x in b

There are also new kinds of values, new reduction rules and contexts:

v ∈ Val ::= . . . | Λ. a | pack v

(Red-TApp) (Λ. a) [] → a

(Red-Open) open (pack v) as x in b → [x 7→ v] (b)

C[•] ::= • | . . . | C [] | pack C | open C as x in b

3.6.2 Definition and Rules

We consider both universal and existential impredicative quantified types. This
is the most powerful kind of quantified types, since the quantification is over
all types, including the quantified types themselves. In particular this is more
expressive then the let-polymorphism in ML where the quantifiers only range
over monotypes, which do not contain quantifiers. Impredicative quantified

36 CHAPTER 3. STEP-INDEXED SEMANTIC MODEL OF TYPES

(TAbs)
∀τ∈Type. τ ⊆ α ⇒ Σ |= a : F (τ)

Σ |= Λ. a : ∀αF

(TApp)
Σ |= a : ∀αF τ∈Type τ ⊆ α

Σ |= a [] : F (τ)

(Pack)
∃τ∈Type. τ ⊆ α ∧ Σ |= a : F (τ)

Σ |= pack a : ∃αF

(Open)
Σ |= a : ∃αF ∀τ∈Type. τ ⊆ α ⇒ Σ[x 7→ F (τ)] |= b : β

Σ |= open a as x in b : β

(SubUniv)
β ⊆ α ∀τ ∈ Type. τ ⊆ β ⇒ F (τ) ⊆ G(τ)

∀αF ⊆ ∀βG

(SubExist)
α ⊆ β ∀τ ∈ Type. τ ⊆ α ⇒ F (τ) ⊆ G(τ)

∃αF ⊆ ∃βG

Figure 3.3: Semantic typing rules for bounded quantified types

types were previously studied by Ahmed [Ahm04] for a λ-calculus with gen-
eral references, so we follow her presentation and simplify whenever possible.
However, unlike in the work of Ahmed our quantifiers have bounds (bounded
quantification) and we are also studying subtyping.

Definition 3.6.2 (Bounded Quantified Types). Let F non-expansive

∀αF , {〈k, Λ. a〉 | ∀τ. bτck ∈Type ∧ bτck ⊆ bαck ⇒ ∀j<k. a :j F (τ)}

∃αF , {〈k, pack v〉 | ∃τ. bτck ∈Type ∧ bτck ⊆ bαck ∧ ∀j<k. 〈j, k〉 ∈ F (τ)}

Lemma 3.6.3. If α is a type and F is a non-expansive function from types to
types, then ∀αF and ∃αF are also types.

Proof. Immediate from Def. 3.6.2.

The typing rules in Figure 3.3 are resembling the second-order type system
for the functional object calculus of Abadi and Cardelli [AC95b].

Lemma 3.6.4 (TAbs). Let F be a non-expansive function from types to types.
If for all types τ such that τ ⊆ α we have Σ |= a : F (τ) then Σ |= Λ. a : ∀αF .

Proof. Let k ≥ 0 and σ :k Σ. We want to show that Λ. σ(a) :k ∀αF , so let τ be
a set such that bτck ∈ Type and bτck ⊆ bαck. Since bαck ⊆ α by transitivity
bτck ⊆ α. From the hypothesis we thus get that a(σ) :k F (bτck), so by the
non-expansiveness of F it follows that for all j < k we have σ(a) :j F (τ). By
Def. 3.6.2 we conclude that Λ. σ(a) :k ∀αF .

3.6. BOUNDED QUANTIFIED TYPES 37

Lemma 3.6.5 (TAbs). Let F be a non-expansive function from types to types,
α and τ two types such that τ ⊆ α. If Σ |= a : ∀αF then Σ |= a [] : F (τ).

Proof. Let k ≥ 0 and σ :k Σ. By Def. 3.1.8 it suffices to show that σ(a) [] :k
F (τ). Let j < k such that σ(a) [] → b and b 9. Since from the hypothesis
by Def. 3.1.8 it follows that σ(a) :k ∀αF , we can apply Lemma 3.1.10 and
get that σ(a) is safe for k steps. Thus by the operational semantics we infer
that ∃i < j such that σ(a) →i v and v is a value thus irreducible. Since
σ(a) :k ∀αF by Def. 3.1.4 we get that 〈k − i, v〉 ∈ ∀αF . From the hypothesis
τ is a type and τ ⊆ α, so bτck is also a type and also bτck ⊆ bαck. We can
thus apply the definition of the boundend universal type (Def. 3.6.2) to get
that v = Λ. b′ and b′ :k−i−1 F (bτck), which is equivalent to b′ :k−i−1 F (τ) since
F is non-expansive. By the rules Red-Ctx and Red-TApp we also get that
σ(a) [] →i Λ. b′ [] → b′ →j−i−1 b, so by applying Def. 3.1.4 we first get that
〈k − j, b〉 ∈ F (τ) and from this we conclude that σ(a) [] :k F (τ).

Lemma 3.6.6 (Pack). Let F be a non-expansive function from types to types
and α a type. If there exists a type τ such that τ ⊆ α and Σ |= a : F (τ) then
Σ |= pack a : ∃αF .

Proof. Similar to the proof of Lemma 3.6.4 (type abstraction).

Lemma 3.6.7 (Open). Let F be a non-expansive function from types to types.
If Σ |= a : ∃αF and for all types tau such that τ ⊆ α we have Σ[x 7→ F (τ)] |=
b : β then Σ |= open a as x in b : β.

Proof. Similar to the proof of Lemma 3.6.5 (type application).

Lemma 3.6.8 (SubUniv). Let F and G be two non-expansive functions from
types to types, and α and β two types such that β ⊆ α. If for all types τ ⊆ β
we have that F (τ) ⊆ G(τ) then ∀αF ⊆ ∀βG.

Proof. We assume that 〈k, Λ. a〉 ∈ ∀αF and show that 〈k, Λ. a〉 ∈ ∀βG. Let τ be
a set such that bτck ∈ Type and bτck ⊆ bβck. From the hypothesis β ⊆ α so also
bβck ⊆ bαck, and thus by transitivity bτck ⊆ bαck. Let j < k, since 〈k, Λ. a〉 ∈
∀αF by the definition of the universal type (Def. 3.6.2) we get that a :j F (τ).
Since F is non-expansive this is equivalent to a :j F (bτck). But bτck ∈ Type
and bτck ⊆ bβck ⊆ β, so by the hypothesis we infer that F (bτck) ⊆ G(bτck).
This means that a :j G(bτck) and equivalently that a :j G(τ). By Def. 3.6.2 it
follows that 〈k, Λ. a〉 ∈ ∀βG.

Lemma 3.6.9 (SubExist). Let F and G be two non-expansive functions from
types to types, and α and β two types such that α ⊆ β. If for all types τ ⊆ α
we have that F (τ) ⊆ G(τ) then ∃αF ⊆ ∃βG.

Proof. We assume that 〈k, pack v〉 ∈ ∃αF and show that 〈k, pack v〉 ∈ ∃βG.
From this assumption by Def. 3.6.2 there exists a set τ such that bτck ∈ Type
and bτck ⊆ bαck and for all j < k we have 〈j, v〉 ∈ F (τ), or equivalently since
F is contractive 〈j, v〉 ∈ F (bτck). Since by the hypothesis α ⊆ β we also have
that bαck ⊆ bβck, so by transitivity also bτck ⊆ bβck.

Let j < k, as shown above 〈j, v〉 ∈ F (bτck). Additionally we have that
bτck ⊆ bαck ⊆ α so by the hypothesis F (bτck) ⊆ G(bτck). Thus 〈j, v〉 ∈
G(bτck), and since G is non-expansive also 〈j, v〉 ∈ G(τ). This together with
bτck ∈ Type and bτck ⊆ bβck allow us to conclude that 〈k, pack v〉 ∈ ∃βG.

38 CHAPTER 3. STEP-INDEXED SEMANTIC MODEL OF TYPES

From the definitions we can also easily show that the universal and existential
type constructors are contractive.

Lemma 3.6.10. The boundend universal and existential type constructors are
contractive.

b∀αF ck+1 =
⌊
∀bαck

bF ck
⌋

k+1

b∃αF ck+1 =
⌊
∃bαck

bF ck
⌋

k+1

3.7 Semantic Typing Rules

In this section we repeat the semantic typing rules that we will use in the
remainder of this thesis. They define an interface that hides the internals of the
model, and in fact our model for the imperative object calculus also satisfies
this interface [HS07].

Subtyping α ⊆ β

(SubRefl) α ⊆ α (SubTrans)
α ⊆ τ τ ⊆ β

α ⊆ β

(SubTop) α ⊆ > (SubBot) ⊥ ⊆ α

(SubProc)
α′ ⊆ α′ β ⊆ β′

α → β ⊆ α′ → β′

(VarSubObj1)

E ⊆ D ∀e ∈ E. (νe ∈ {+, 0} ⇒ αe ⊆ βe)
∧ (νe ∈ {−, 0} ⇒ βe ⊆ αe)

[md :νd
αd]d∈D ⊆ [me :νe

βe]e∈E

(VarSubObj2)
∀d ∈ D. νd = 0 ∨ νd = ν′d

[md :νd
τd]d∈D ⊆ [md :ν′d τd]d∈D

(SubRec)
∀α, β ∈ Type. α ⊆ β ⇒ F (α) ⊆ G(β)

µF ⊆ µG

(SubUniv)
β ⊆ α ∀τ ∈ Type. τ ⊆ β ⇒ F (τ) ⊆ G(τ)

∀αF ⊆ ∀βG

(SubExist)
α ⊆ β ∀τ ∈ Type. τ ⊆ α ⇒ F (τ) ⊆ G(τ)

∃αF ⊆ ∃βG

Figure 3.4: Semantic typing rules for subtyping

3.7. SEMANTIC TYPING RULES 39

Σ |= a : α

(Var) Σ |= x : Σ(x) (Sub)
Σ |= a : α α ⊆ β

Σ |= a : β

Procedure Types

(Lam)
Σ[x 7→ α] |= b : β

Σ |= λx. b : α → β
(App)

Σ |= a : β → α Σ |= b : β

Σ |= a b : α

Object Types Let α ≡ [md :νd
τd]d∈D

(VarObj)
∀d ∈ D. Σ[x 7→ α] |= bd : τd

Σ |= [md=ς(xd)bd]d∈D : α

(VarInv)
Σ |= a : α e ∈ D νe ∈ {+, 0}

Σ |= a.me : τe

(VarUpd)
Σ |= a : α e ∈ D νe ∈ {−, 0} Σ[x 7→ α] |= b : τe

Σ |= a.me := ς(x)b : α

Recursive Types If F contractive then

(Unfold)
Σ |= a : µF

Σ |= a : F (µF)
(Fold)

Σ |= a : F (µF)
Σ |= a : µF

Bounded Quantified Types

(TAbs)
∀τ∈Type. τ ⊆ α ⇒ Σ |= a : F (τ)

Σ |= Λ. a : ∀αF

(TApp)
Σ |= a : ∀αF τ∈Type τ ⊆ α

Σ |= a [] : F (τ)

(Pack)
∃τ∈Type. τ ⊆ α ∧ Σ |= a : F (τ)

Σ |= pack a : ∃αF

(Open)
Σ |= a : ∃αF ∀τ∈Type. τ ⊆ α ⇒ Σ[x 7→ F (τ)] |= b : β

Σ |= open a as x in b : β

Figure 3.5: Semantic typing rules for object, procedure, recursive and bounded
quantified types

40 CHAPTER 3. STEP-INDEXED SEMANTIC MODEL OF TYPES

Chapter 4

Syntactic Types

The semantic type system from Chapter 3 is sound, but type checking ς-terms
with respect to it is clearly undecidable. One important reason for the undecid-
ability is that type variables are not explicitly considered in the semantic typing
rules for recursive and quantified types. The preconditions of these rules are
therefore expressed by quantifying over the infinite set of all types.

One possible solution was given by Swadi, who added type variables to a
step-indexed semantic model and used a semantic kind system to track the
contractiveness and non-expansiveness of types with free type variables [ARS02,
Swa03].

We take a different approach that allows us to keep the semantic model
simple, and still get decidable type checking. We introduce a syntactic type
system for the functional object calculus that tracks type variables and syntac-
tically enforces the contractiveness of the type expressions used with recursive
types. We prove the soundness of the syntactic type system with respect to the
semantic model presented in Chapter 3.

The syntactic type system works on terms with type annotations, and it has
the minimal type property, but it does not have intersection types since they
are not required by our high-level calculus. It has iso-recursive types which are
straightforward to implement compared to the equi-recursive types we consid-
ered in the semantic model. Finally, the syntactic type system also has bounded
quantification. Pierce has shown that even in a syntactic setting with fully an-
notated terms bounded quantification is undecidable, but also that it can be
easily made decidable by adding a simple syntactic restriction on the subtyping
rule for bounded universal types [Pie94].

4.1 Revised Syntax of Terms

The operational and step-indexed semantics of the ς-calculus were defined with
respect to an untyped syntax of terms. However, type annotations are very
useful for guiding type checking, rendering it tractable in practice. For this
reason we only type-check fully annotated programs according to the syntax
given in Figure 4.1. Note that in order to avoid considering encodings again we
added first-class procedures to the language.

As in many compilers for practical programming languages, type annotations

41

42 CHAPTER 4. SYNTACTIC TYPES

a, b ::= x (variable)
| [md=ς(xd:A)bd]d∈D (object creation)
| a.m (method invocation)
| a.m := ς(x:A)b (method update)
| λx:A. b (procedure)
| a b (procedure application)
| unfoldµX.A a (recursive type unfold)
| foldµX.A a (recursive type fold)
| ΛX6A. b (type abstraction)
| a A (type application)
| pack X6A = C in a :B (creating existential package)
| open a as X6A, x:B in b :D (opening package)

Figure 4.1: Syntax of terms with type annotations

are discarded after type-checking, and do not have any computational effect
[Pie02]. Type erased programs are evaluated under the operational semantics
given in Chapter 2. The main technical result of this chapter is that well-typed
programs are guaranteed to evaluate safely once type-erased.

4.2 Syntactic Type System

In order to have a sound type system, we need to reject meaningless recursive
types like µX.X, and to enforce that the meaning of recursive types is really
that of a fixpoint operator on types. Our semantic rules for recursive types
state that µF is a fixpoint of F , only under the condition that F is contractive
(Figure 3.5). As we have previously shown the type constructors we use here are
contractive (Lemmas 3.5.8, 3.5.9 and 3.6.10), with the exception of the identity
and the recursion operator itself (Counterexample 3.5.10), which are however
still non-expansive (Lemma 3.5.11). Therefore, we enforce contractiveness by
grouping type constructors into two syntactical categories.

Definition 4.2.1 (Syntactic Types).

A,B ∈ SynTypes ::= A | X | µX.A

A,B ::= Top | Bot | A→B | [md :νd
Ad]d∈D | ∀X6A.B | ∃X6A.B

where ν ::= 0 | + | −

The types denoted by underlined letters (A,B) are guaranteed to be con-
tractive, and therefore can be used in expressions of the form µX.A.

Definition 4.2.2 (Type Environments).

Γ = · | Γ, x:A | Γ, X6A

The features of our semantic type system closely mirror all the ones we had
in the semantic setting. We consider object types with variance annotations,
procedure types, recursive types, bounded quantified types and subtyping.

4.2. SYNTACTIC TYPE SYSTEM 43

The type system consists of four typing judgements:

Γ ` � Well-formed Environment (Figure 4.2)
Γ ` A Well-formed Type (Figure 4.2)
Γ ` A 6 B Subtyping (Figure 4.3)
Γ ` a : A Term Typing (Figure 4.4)

The inference rules defining our judgements are entirely standard [AC96a,
Car97, Pie02]. A type environment is well-formed, if it does not contain any
duplicate bindings for variables and type variables (Figure 4.2). A type is well-
formed with respect to an environment Γ, if all its type variables are bound by
Γ (Figure 4.2).

The subtyping relation is defined by the rules in Figure 4.3, which directly
correspond to the semantic typing rules in Figure 3.5. In particular SynSub-
Obj1 and SynSubObj2 allow subtyping object types in width and in depth.

One surprising fact about the subtyping rule for bounded universals (Syn-
SubUniv) is that it causes type checking to be undecidable in general. As shown
by Pierce restricting this rule to universals with equal bounds (as in SynSub-
Univ’ below) makes type checking decidable, at the cost of rejecting some safe
programs [Pie94].

(SynSubUniv’)
Γ ` A Γ, X6A ` B 6 B′

Γ ` ∀X6A.B 6 ∀X6A.B′

Actually, even without this restriction the type checking semi-algorithms used
for similar type systems are efficient in practice on all interesting programs, and
are guaranteed to terminate on all well-typed ones [CW85, Pie94].

The rules defining the syntactic typing relation for terms are given in Fig-
ure 4.4. The type annotations of the terms can be used to effectively guide
type checking, and they guarantee the existence of a minimal type for each ty-
pable term (although in this setting we do not have intersection types). The
unannotated term from Example 3.3.10, needs to be written now either as
[m=ς(x:[m : [m : []]])[m=ς(y:[m : []])[]]] in which case it has [m : [m : []]]
as a minimal type, or as [m=ς(x:[m : []])[m=ς(y:m : [])[]]] in which case it has
[m : []] as a minimal type.

One other important difference to the semantic type system is that here
we are considering iso-recursive rather than equi-recursive types, so folds and
unfolds are tagged accordingly in the syntax of terms (Figure 4.1). In the sound-
ness proof the syntactic iso-recursive types can be reduced to the semantic equi-
recursive ones, since type erasure also removes folds and unfolds (Appendix A.3).
However, iso-recursive types are more straightforward to implement, especially
in the presence of subtyping [Pie02, Chapter 21].

44 CHAPTER 4. SYNTACTIC TYPES

Well-formed Environment Γ ` �

(EnvEmpty) · ` � (EnvVar)
Γ ` A x 6∈ Vars(Γ)

Γ, x:A ` �

(EnvTypeVar)
Γ ` A X 6∈ TypeVars(Γ)

Γ, X6A ` �

Well-formed Type Γ ` A

(TypeTop)
Γ ` �

Γ ` Top
(TypeBot)

Γ ` �
Γ ` Bot

(TypeVar)
Γ1, X6A,Γ2 ` �
Γ1, X6A,Γ2 ` X

(TypeProc)
Γ ` A Γ ` B

Γ ` A→B

(TypeObj)
∀d∈D. Γ ` Ad

Γ ` [md:Ad]d∈D

(TypeRec)
Γ, X6Top ` A

Γ ` µX.A

(TypeUniv)
Γ, X6A ` B

Γ ` ∀X6A.B
(TypeExist)

Γ, X6A ` B

Γ ` ∃X6A.B

Figure 4.2: Well-formed syntactic types and type environments

4.2. SYNTACTIC TYPE SYSTEM 45

Subtyping Γ ` A 6 B

(SynSubRefl)
Γ ` A

Γ ` A 6 A
(SynSubTrans)

Γ ` A 6 A′ Γ ` A′ 6 B

Γ ` A 6 B

(SynSubTop)
Γ ` A

Γ ` A 6 Top
(SynSubBot)

Γ ` A

Γ ` Bot 6 A

(SynSubVar)
Γ1, X6A,Γ2 ` �

Γ1, X6A,Γ2 ` X 6 A

(SynSubProc)
Γ ` A′ 6 A Γ ` B 6 B′

Γ ` A→B 6 A′→B′

(SynSubObj1)

E ⊆ D ∀e∈E. (νe ∈ {+, 0} ⇒ Γ ` Ae 6 Be)
∧ (νe ∈ {−, 0} ⇒ Γ ` Be 6 Ae)

Γ ` [md :νd
Ad]d∈D 6 [me :νe

Be]e∈E

(SynSubObj2)
∀d ∈ D. νd = 0 ∨ νd = ν′d

Γ ` [md :νd
Ad]d∈D 6 [md :ν′d Ad]d∈D

(SynSubRec)
Γ ` µX.A Γ ` µY.B Γ, Y6Top, X6Y ` A 6 B

Γ ` µX.A 6 µY.B

(SynSubUniv)
Γ ` A′ 6 A Γ, X6A′ ` B 6 B′

Γ ` ∀X6A.B 6 ∀X6A′.B′

(SynSubExist)
Γ ` A 6 A′ Γ, X6A ` B 6 B′

Γ ` ∃X6A.B 6 ∃X6A′.B′

Figure 4.3: Syntactic subtyping

46 CHAPTER 4. SYNTACTIC TYPES

Γ ` a : A

(SynSub)
Γ ` a : A Γ ` A 6 B

Γ ` a : B
(SynVar)

Γ1, x:A,Γ2 ` �
Γ1, x:A,Γ2 ` x : A

Procedure Types

(SynLam)
Γ, x:A ` b : B

Γ ` λx:A. b : A→B
(SynApp)

Γ ` a : B→A Γ ` b : B

Γ ` a b : A

Object Types Let A ≡ [md :νd
Ad]d∈D

(SynObj)
∀d∈D. Γ, x:A ` bd : Ad

Γ ` [md=ς(xd:A)bd]d∈D : A

(SynInv)
Γ ` a : A e ∈ D νe ∈ {+, 0}

Γ ` a.me : Ae

(SynUpd)
Γ ` a : A e ∈ D Γ, x:A ` b : Ae νe ∈ {−, 0}

Γ ` a.me := ς(x:A)b : A

Recursive Types

(SynUnfold)
Γ ` a : µX.A

Γ ` unfoldµX.A a : A[X:=µX.A]

(SynFold)
Γ ` a : A[X:=µX.A]
Γ ` foldµX.A a : µX.A

Bounded Quantified Types

(SynTAbs)
Γ, X6A ` b : B

Γ ` ΛX6A. b : ∀X6A.B

(SynTApp)
Γ ` a : ∀X6A.B Γ ` A′ 6 A

Γ ` a A′ : B[X:=A′]

(SynPack)
Γ ` C 6 A Γ ` a[X:=C] : B[X:=C]
Γ ` pack X6A = C in a :B : ∃X6A.B

(SynOpen)
Γ ` a : ∃X6A.B Γ ` D Γ, X6A, x:B ` b : D

Γ ` open a as X6A, x:B in b :D : D

Figure 4.4: Syntactic typing of terms

4.3. SEMANTIC SOUNDNESS 47

4.3 Semantic Soundness

In order to prove our syntactic type system sound, we relate our syntactic types
to their semantic counterparts, for which we have already proved soundness in
Theorem 3.1.12. This approach is standard in denotational semantics [Mil78,
Win93, Mit96, AC96a]; what is maybe surprising is the expressive power of the
step-indexed semantic model.

Definition 4.3.1 (The Meaning of Types). Let η be a finite map from type
variables to semantic types. If A is a syntactic type that only references type
variables in the domain of η, then its meaning with respect to η is a semantic
type given by the following meaning function, which is recursively defined on
the structure of A.

JTopKη = >

JBotKη = ⊥

JXKη = η(X)

JA→BKη = JAKη → JBKη

q
[md :νd

Ad]d∈D

y
η

=
[
md :νd

JAdKη

]
d∈D

JµX.AKη = µ(λα∈Type. JAKη[X 7→α])

J∀X6A.BKη = ∀JAKη
(λα∈Type. Jη[X 7→ α]K)

J∃X6A.BKη = ∃JAKη
(λα∈Type. JBKη[X 7→α])

Property 4.3.2. If X 6∈FV(A), then JAKη[X 7→α] = JAKη.

Definition 4.3.3 (η |= Γ). If Γ is a well-formed type environment that only
contains type variables in η, then we say that η satisfies Γ if and only if the
following relation defined on the structure of Γ holds.

∅ |= ·
η |= Γ

η |= Γ, x:A

η |= Γ η(X) ⊆ JAKη

η |= Γ, X6A

Property 4.3.4 (Prefix). If η |= Γ1,Γ2, then η |= Γ1

Definition 4.3.5 (Meaning of Type Environments). Given a map η and a
well-formed syntactic type environment Γ that only contains type variables in
η, then the meaning of Γ with respect to η is the semantic type environment
given by the following function defined on the structure of Γ.

J·Kη = ∅

JΓ, X6AKη = JΓKη

JΓ, x:AKη = JΓKη

[
x 7→ JAKη

]

48 CHAPTER 4. SYNTACTIC TYPES

We start by showing that the two syntactic categories of type expressions
correspond in fact to contractive and non-expansive functions in the model.
Then we prove a substitution lemma capturing the interaction between syntactic
type substitution and the meaning function. Those auxiliary results allow us
to prove the soundness of the subtyping relation, and ultimately the semantic
soundness of the syntactic type system with respect to the semantic model,
which immediately implies its type safety.

Lemma 4.3.6 (Contractiveness and Non-expansiveness).
For all A and A such that FV(A) ⊆ Dom(η) and FV(A) ⊆ Dom(η) we have:

1. JAK is contractive in η.

2. JAK is non-expansive in η

Proof. By mutual induction on the structure of A and A.
1. We first show that

⌊
JAKη

⌋
k+1

=
⌊
JAKbηck

⌋
k+1

by case analysis on the

structure of A.

Case A = Top or A = Bot. Immediate.

Case A = A→B.⌊
JAKη

⌋
k+1

=
⌊
JAKη → JBKη

⌋
k+1

(by Def. 4.3.1)

=
⌊⌊

JAKη

⌋
k
→

⌊
JBKη

⌋
k

⌋
k+1

(by Lemma 3.5.9)

=
⌊⌊

JAKbηck

⌋
k
→

⌊
JBKbηck

⌋
k

⌋
k+1

(induction hyp.)

=
⌊
JAKbηck

→ JBKbηck

⌋
k+1

(by Lemma 3.5.9)

=
⌊
JAKbηck

⌋
k+1

(by Def. 4.3.1)

Case A = [md :νd
Ad]d∈D. Similarly, from Lemma 3.5.8 and the induction

hypothesis.

Case A = ∀X6A.B.⌊
JAKη

⌋
k+1

=
⌊
∀JAKη

(λα. JBKη[X 7→α])
⌋

k+1
(by Def. 4.3.1)

=
⌊
∀bJAKηck

(λα.
⌊
JBKη[X 7→α]

⌋
k
)
⌋

k+1
(by Lemma 3.6.10)

=
⌊
∀j

JAKbηck

k
k

(λα.
⌊
JBKbη[X 7→α]ck

⌋
k
)
⌋

k+1

(induction hyp.)

=
⌊
∀JAKbηck

(λα. JBKbη[X 7→α]ck
)
⌋

k+1
(by Lemma 3.6.10)

=
⌊
JAKbηck

⌋
k+1

(by Def. 4.3.1)

Case A = ∃X6A.B. Similarly, from Lemma 3.6.10 and the induction hypoth-
esis.

4.3. SEMANTIC SOUNDNESS 49

2. We use case analysis on A in order to show
⌊
JAKη

⌋
k

=
⌊
JAKbηck

⌋
k
.

Case A = A. Direct from 1. since contractiveness implies non-expansiveness.

Case A = X.
⌊
JXKη

⌋
k+1

= bη(X)ck = bbη(X)ckck =
⌊
JXKbηck

⌋
k

Case A = µX.A. By Def. 4.3.1 we have JµX.AKη = µ(λα. JAKη[X 7→α]). Also by
the induction hypothesis JAKη[X 7→α] is contractive, so we can apply Lemma 3.5.11.⌊

JµX.AKη

⌋
k

=
⌊
µ(λα. JAKη[X 7→α])

⌋
k

(by Def. 4.3.1)

=
⌊
µ(λα.

⌊
JAKη[X 7→α]

⌋
k
)
⌋

k
(by Lemma 3.5.11)

=
⌊
µ(λα.

⌊
JAKbη[X 7→α]ck

⌋
k
)
⌋

k
(induction hyp.)

=
⌊
µ(λα. JAKbη[X 7→α]ck

)
⌋

k
(by Lemma 3.5.11)

=
⌊
JµX.AKbηck

⌋
k

(by Def. 4.3.1)

Lemma 4.3.7 (Substitution).
If X 6∈FV(B) and (FV(A) \ {X}) ∪ FV(B) ⊆ Dom(η) then

JA[X:=B]Kη = JAKη[X 7→JBKη]

Proof. By induction on the structure of A.

Case A = Top or A = Bot. Trivial.

Case A = X. JX[X:=B]Kη = JBKη = JXKη[X 7→JBKη].

Case A = Y 6= X. JY [X:=B]Kη = JY Kη = η(Y) = JY Kη[X 7→JBKη].

Case A = [md :νd
Ad]d∈D.

q
[md :νd

Ad]d∈D [X:=B]
y

η
=

=
q
[md :νd

Ad[X:=B]]d∈D

y
η

(by substitution)

=
[
md :νd

JAd[X:=B]Kη

]
d∈D

(by Def. 4.3.1)

=
[
md :νd

JAdKη[X 7→JBKη]
]

d∈D
(by induction hyp.)

=
q
[md :νd

Ad]d∈D

y
η[X 7→JBKη]

(by Def. 4.3.1)

Case A = B→B′. Analogous to the previous case.

50 CHAPTER 4. SYNTACTIC TYPES

Case A = µY.A where Y 6=X and Y 6∈FV(B) (otherwise we α-rename Y).

J(µY.A)[X:=B]Kη =

= JµY.(A[X:=B])Kη (by substitution)

= µ(λα. JA[X:=B]Kη[Y 7→α]) (by Def. 4.3.1)

= µ(λα. JAKη[Y 7→α][X 7→JBKη[Y 7→α]]) (by induction hyp.)

= µ(λα. JAKη[X 7→JBKη][Y 7→α]) (by Property 4.3.2)

= JµY.AKη[X 7→JBKη] (by Def. 4.3.1)

Case A = ∀Y6A′.B′ where Y 6=X and Y 6∈FV(B) (otherwise we α-rename Y).

J(∀Y6A′.B′)[X:=B]Kη =

= J∀Y6(A′[X:=B]).(B′[X:=B])Kη (by substitution)

= ∀JA′[X:=B]Kη
λα. JB′[X:=B]Kη[Y 7→α] (by Def. 4.3.1)

= ∀JA′K
η[X 7→JBKη]

λα. JB′Kη[Y 7→α][X 7→JBKη[Y 7→α]] (by induction hyp.)

= ∀JA′K
η[X 7→JBKη]

λα. JB′Kη[X 7→JBKη][Y 7→α] (by Property 4.3.2)

= J∀Y6A′.B′Kη[X 7→JBKη] (by Def. 4.3.1)

Case A = ∃Y6A′.B′. Analogous to the previous case.

Lemma 4.3.8 (Soundness of Subtyping).
If Γ ` A 6 B and η |= Γ, then JAKη ⊆ JBKη

Proof. By induction on the derivation of Γ ` A 6 B. Case analysis on the last
applied rule.

Case (SynSubRefl)
Γ ` A

Γ ` A 6 A
. JAKη ⊆ JAKη immediate by SubRefl.

Case (SynSubTrans)
Γ ` A 6 A′ Γ ` A′ 6 B

Γ ` A 6 B

By the induction hypothesis we have that JAKη ⊆ JA′Kη and JA′Kη ⊆ JBKη.
Then by SubTrans JAKη ⊆ JBKη.

Case (SynSubTop)
Γ ` A

Γ ` A 6 Top
. JAKη ⊆ > directly by SubTop.

Case (SynSubBot)
Γ ` A

Γ ` Bot 6 A
. ⊥ ⊆ JAKη directly by SubBot.

4.3. SEMANTIC SOUNDNESS 51

Case (SynSubVar)
Γ1, X6A,Γ2 ` �

Γ1, X6A,Γ2 ` X 6 A

From η |= Γ1, X6A,Γ2 by Property 4.3.4 we also have η |= Γ1, X6A. Def-
inition 4.3.3 gives us then η(X) ⊆ JAKη, by Def. 4.3.1 η(X) = JXKη, so
JXKη ⊆ JAKη.

Case (SynSubProc)
Γ ` A′ 6 A Γ ` B 6 B′

Γ ` A→B 6 A′→B′

Applying the induction hypothesis to Γ ` A′ 6 A and Γ ` B 6 B′ yields
JA′Kη ⊆ JAKη and JBKη ⊆ JB′Kη respectively. By SubProc JAKη → JBKη ⊆
JA′Kη → JB′Kη, and thus by Def. 4.3.1 we get JA→BKη ⊆ JA′→B′Kη.

Case (SynSubObj1)

E ⊆ D ∀e∈E. (νe ∈ {+, 0} ⇒ Γ ` Ae 6 Be)
∧ (νe ∈ {−, 0} ⇒ Γ ` Be 6 Ae)

Γ ` [md :νd
Ad]d∈D 6 [me :νe Be]e∈E

By induction hypothesis for all e ∈ E we get that if νe ∈ {+, 0} then JAeKη ⊆
JBeKη, and if νe ∈ {−, 0} then JBeKη ⊆ JAeKη. Since also E ⊆ D, then by

VarSubObj1 we get that
[
md :νd

JAdKη

]
d∈D

⊆
[
me :νe JAeKη

]
e∈E

, which by

Def. 4.3.1 allows us to conclude that
q
[md :νd

Ad]d∈D

y
η
⊆

q
[me :νe Ae]e∈E

y
η
.

Case (SynSubObj2)
∀d ∈ D. νd = 0 ∨ νd = ν′d

Γ ` [md :νd
Ad]d∈D 6 [md :ν′d Ad]d∈D

By VarSubObj2 we obtain that [md :νd
JAdKηd

]d∈D ⊆ [md :ν′d JAdKηd
]d∈D, so

Def. 4.3.1 gives us J[md :νd
Ad]d∈DKη ⊆

r
[md :ν′d Ad]d∈D

z

η
.

Case (SynSubRec)
Γ ` µX.A Γ ` µY.B Γ, Y6Top, X6Y ` A 6 B

Γ ` µX.A 6 µY.B

Assume η |= Γ, α and β such that α ⊆ β, η′ ≡ η[Y 7→ β][X 7→ α], Γ′ ≡
Γ, Y6Top, X6Y . It is immediate from SubTop that β ⊆ > = JTopKη, so
η[Y 7→ β] |= Γ, Y6Top. From this, because α ⊆ β and JY Kη[Y 7→β] = β by
Def. 4.3.3 we get that Γ′ |= η′.

Now we can apply the induction hypothesis for Γ′ ` A 6 B, therefore JAKη′ ⊆
JBKη′ . Γ ` µX.A implies that Y 6∈FV(A), and analogously Γ ` µX.B implies
X 6∈FV(B), so we can reformulate JAKη′ ⊆ JBKη′ to JAKη[X 7→α] ⊆ JBKη[Y 7→β]. If
we denote F ≡ λα. JAKη[X 7→α] and G ≡ λβ. JBKη[Y 7→β], then the last relation
becomes F (α) ⊆ G(β). By SubRec µF = µG, so finally by Def. 4.3.1 we
conclude that JµX.AKη ⊆ JµY.BKη

Case (SynSubUniv)
Γ ` A′ 6 A Γ, X6A′ ` B 6 B′

Γ ` ∀X6A.B 6 ∀X6A′.B′

We first apply the induction hypothesis to Γ ` A′ 6 A and get that JA′Kη ⊆
JAKη, or if we denote α ≡ JAKη and β ≡ JA′Kη, then β ⊆ α. Let τ be a

52 CHAPTER 4. SYNTACTIC TYPES

type so that τ ⊆ β. Def. 4.3.3 gives us that η[X 7→ τ] |= Γ, X6A′ so by
applying the induction hypothesis again, this time for Γ, X6A′ ` B 6 B′

we obtain that JBKη[X 7→τ] ⊆ JB′Kη[X 7→τ]. If we denote F (τ) ≡ JBKη[X 7→τ]

and G(τ) ≡ JB′Kη[X 7→τ], then applying the rule SubUniv yields ∀αF ⊆ ∀βG.
Finally, by applying Def. 4.3.1 to both sides of the inclusion we can conclude
that J∀X6A.BKη ⊆ J∀X6A′.B′Kη.

Case (SynSubExist)
Γ ` A 6 A′ Γ, X6A ` B 6 B′

Γ ` ∃X6A.B 6 ∃X6A′.B′

Analogous to the SynSubUniv case.

Theorem 4.3.9 (Semantic Soundness).
If Γ ` a : A and η |= Γ, then JΓKη |= E(a) : JAKη.

Proof. By induction on the derivation of Γ ` a : A and case analysis on the last
applied rule.

Case (SynSub)
Γ ` a : A Γ ` A 6 B

Γ ` a : B

From Γ ` a : A by the induction hypothesis we get JΓKη |= E(a) : JAKη.
Since Γ ` A 6 B by the soundness of the subtyping relation (Lemma 4.3.8)
JAKη ⊆ JBKη. By Sub we conclude that JΓKη |= E(a) : JBKη.

Case (SynVar)
Γ1, x:A,Γ2 ` �

Γ1, x:A,Γ2 ` x : A

By Var JΓ1, x:A,Γ2Kη |= x : JΓ1, x:A,Γ2Kη (x), so it suffices to show that
JΓ1, x:A,Γ2Kη (x) = JAKη. Since Γ1, x:A,Γ2 ` � we have that x 6∈ Vars(Γ2), so
by Def. 4.3.5 JΓ1, x:A,Γ2Kη (x) = JΓ1, x:XKη (x) = JAKη.

Case (SynLam)
Γ, x:A ` b : B

Γ ` λx:A. b : A→B

Since by the premises of the theorem η |= Γ, by Def. 4.3.3 we also have
η |= Γ, x:A. So from Γ, x:A ` b : B by the induction hypothesis JΓ, x:AKη |=
E(b) : JBKη. By Def. 4.3.5 JΓ, x:AKη = JΓKη

[
x 7→ JAKη

]
. Thus by Lam

JΓKη |= λx.E(b) : JAKη → JBKη, and finally by the meaning of procedure
types (Def. 4.3.1) we can conclude that JΓKη |= λx.E(b) : JA→BKη.

Case (SynApp)
Γ ` a : B→A Γ ` b : B

Γ ` a b : A

From Γ ` a : B→A, by the induction hypothesis JΓKη |= E(a) : JB→AKη,
and thus by Def. 4.3.1 JΓKη |= E(a) : JBKη → JAKη. Also by the induction
hypothesis, from Γ ` b : B we get that JΓKη |= E(b) : JBKη. So by App we can
conclude that JΓKη |= E(a) E(b) : JAKη

4.3. SEMANTIC SOUNDNESS 53

Case (SynObj)
∀d∈D. Γ, x:A ` bd : Ad

Γ ` [md=ς(xd:A)bd]d∈D : A
where A = [md :νd

Ad]d∈D

By Def. 4.3.3 from η |= Γ we get η |= Γ, x:A. We chose an arbitrary d from
D and we apply the induction hypothesis to Γ, x:A ` bd : Ad and get that
JΓ, x:AKη |= E(bd) : JAdKη, or equivalently (Def. 4.3.5) that JΓKη

[
x 7→ JAKη

]
|=

E(bd) : JAdKη. Now by VarObj we get that JΓKη |= [md=ς(xd)E(bd)]d∈D :[
md :νd

JAdKη

]
d∈D

, so by the meaning of object types (Def. 4.3.1) it follows

that JΓKη |= [md=ς(xd)E(bd)]d∈D :
q
[md :νd

Ad]d∈D

y
η
.

Case (SynInv)
Γ ` a : A e ∈ D νe ∈ {+, 0}

Γ ` a.me : Ae

where A = [md :νd
Ad]d∈D

Similar to the previous cases.

Case (SynUpd)
Γ ` a : A e ∈ D Γ, x:A ` b : Ae νe ∈ {−, 0}

Γ ` a.me := ς(x:A)b : A
,

where A = [md :νd
Ad]d∈D. Similar to the previous cases.

Case (SynUnfold)
Γ ` a : µX.A

Γ ` unfoldµX.A a : A[X:=µX.A]

From Γ ` a : µX.A by the induction hypothesis we have that JΓKη |= E(a) :
JµX.AKη. If we plug in the definition of JµX.AKη, and denote F (α) ≡ JAKη[X 7→α],
then we equivalently get JΓKη |= E(a) : µF . By Lemma 4.3.6 we can derive
that F is contractive, so by Unfold JΓKη |= E(a) : F (µF). We have that
F (µF) ≡ JAKη[X 7→µ(λα. JAKη[X 7→α])] = JAKη[X 7→JµX.AKη], and by the substitu-

tion lemma (Lemma 4.3.7) that JAKη[X 7→JµX.AKη] = JA[X:=µX.A]Kη, so finally
JΓKη |= E(a) : JA[X:=µX.A]Kη as required.

Case (SynFold)
Γ ` a : A[X:=µX.A]
Γ ` foldµX.A a : µX.A

The proof for this case is a reversed version of the proof for the Unfold case.
We apply the induction hypothesis to Γ ` a : A[X:=µX.A] and obtain that
JΓKη |= E(a) : JA[X:=µX.A]Kη, which by Lemma 4.3.7 (substitution) gives us
JΓKη |= E(a) : JAKη[X 7→µ(λα. JAKη[X 7→α])]. If we denote again F (α) ≡ JAKη[X 7→α],

then JΓKη |= E(a) : F (µF). By Lemma 4.3.6 F is contractive, so we can
apply Fold to obtain JΓKη |= E(a) : µF , which finally by Def. 4.3.1 gives us
JΓKη |= E(a) : JµX.AKη.

Case (SynTAbs)
Γ, X6A ` b : B

Γ ` ΛX6A. b : ∀X6A.B

We need to show that JΓKη |= Λ. E(b) : J∀X6A.BKη, or equivalently by
Def. 4.3.1 that JΓKη |= Λ. E(b) : ∀JAKη

(λα. JBKη[X 7→α]). Let us denote α ≡ JAKη

and F ≡ λα. JBKη[X 7→α], so that JΓKη |= Λ. E(b) : ∀αF remains to be shown.

54 CHAPTER 4. SYNTACTIC TYPES

Let τ ⊆ α. By Def. 4.3.3 η[X 7→ τ] |= Γ, X6A, so we can apply the in-
duction hypothesis for Γ, X6A ` b : B, and get that JΓ, X6AKη[X 7→τ] |=
E(b) : JBKη[X 7→τ] ≡ F (τ). By Def. 4.3.5 and the fact that X 6∈TypeVars(Γ) we
have JΓ, X6AKη[X 7→τ] , JΓKη[X 7→τ] = JΓKη. Putting them together, we obtain
JΓKη |= E(b) : F (τ), which by TAbs gives us JΓKη |= E(b) : ∀αF .

Case (SynTApp)
Γ ` a : ∀X6A.B Γ ` A′ 6 A

Γ ` a A′ : B[X:=A′]

We apply the induction hypothesis to Γ ` a : ∀X6A.B and obtain that JΓKη |=
E(a) : J∀X6A.BKη. If we denote α ≡ JAKη and F (α) ≡ JBKη[X 7→α], then by
the meaning of universal types JΓKη |= E(a) : ∀αF . From Γ ` A′ 6 A by the
soundness of subtyping (Lemma 4.3.8) we have that JA′Kη ⊆ JAKη ≡ α. By
TApp JΓKη |= E(a) : F (JA′Kη), and from this by Lemma 4.3.7 (substitution)
we finally obtain that JΓKη |= E(a) : JB[X:=A′]Kη.

Case (SynPack)
Γ ` C 6 A Γ ` a[X:=C] : B[X:=C]
Γ ` pack X6A = C in a :B : ∃X6A.B

We need to show that JΓKη |= Λ. E(b) : J∃X6A.BKη, or equivalently by
Def. 4.3.1 that JΓKη |= Λ. E(b) : ∃JAKη

(λα. JBKη[X 7→α]). As in the previous
cases, we denote α ≡ JAKη and F ≡ λα. JBKη[X 7→α]. Thus it remains to be
shown that JΓKη |= Λ. E(b) : ∃αF .

By Lemma 4.3.8 (soundness of subtyping) applied to Γ ` C 6 A we get that
JCKη ⊆ JAKη ≡ α. From Γ ` a[X:=C] : B[X:=C] by the induction hypothesis
we get that JΓKη |= Λ. E(b) : JB[X:=C]Kη. By the substitution lemma (Lemma
4.3.7) we have JB[X:=C]Kη = JBKη[X 7→JCKη] ≡ F (JCKη). Finally, by Pack we
have that JΓKη |= Λ. E(b) : ∃αF .

Case (SynOpen)
Γ ` a : ∃X6A.B Γ ` D Γ, X6A, x:B ` b : D

Γ ` open a as X6A, x:B in b :D : D

From Γ ` a : ∃X6A.B by the induction hypothesis we get JΓKη |= E(a) :
J∃X6A.BKη. If we denote α ≡ JAKη and F (α) ≡ JBKη[X 7→α], then by Def. 4.3.1
JΓKη |= E(a) : ∃αF .

Let τ be a type such that τ ⊆ α. By Def. 4.3.3 η[X 7→ τ] |= Γ, X6A, x:B, so
we can apply the induction hypothesis to Γ, X6A, x:B ` b : D and get that
JΓ, X6A, x:BKη[X 7→τ] |= E(b) : JDKη[X 7→τ]. By Def. 4.3.5 and the fact that

X 6∈TypeVars(Γ) we get JΓ, X6A, x:BKη[X 7→τ] , JΓ, X6AKη[X 7→τ]

[
x 7→ JBKη[X 7→τ]

]
=

JΓKη [x 7→ F (τ)], thus JΓKη [x 7→ F (τ)] |= E(b) : JDKη.

Finally, by Open since JΓKη |= E(a) : ∃αF and since for all τ ⊆ α we have
JΓKη [x 7→ F (τ)] |= E(b) : JDKη, we conclude that JΓKη |= open E(a) as x in E(b) :
JAKη.

Corollary 4.3.10 (Type Safety). Well-typed terms evaluate safely once erased.

Proof. Immediate from Theorems 4.3.9 and 3.1.12.

Chapter 5

Conclusion

5.1 Summary

In this thesis we introduced a step-indexed semantic model for the functional
object calculus, and used it to prove the soundness of an expressive type system
with object types, subtyping, recursive and bounded quantified types.

We started by presenting the functional object calculus, a very simple object-
oriented language. Its only primitives are the objects, collections of methods
that can be invoked and updated. The methods of an object can call each other
through a self argument, and this permits direct recursion. We showed how
other important constructs including procedures and classes can be encoded
using objects.

Using only the small-step operational semantics of an untyped calculus we
constructed purely semantic types as sets of values indexed by computation
steps. Intuitively, a term has a certain semantic type if it behaves like an
element of that type for any number of computation steps. The semantic types
were built as sequences of increasingly accurate semantic approximations, and
this was crucial when considering the term-level recursion inherent to objects,
but also when considering recursive types. The semantic type judgement was
defined independently of any typing rules and immediately guarantees the safety
of typable terms. The semantic typing rules are just lemmas that we proved
sound with respect to the model.

An important aspect of this work is the study of subtyping in a step-indexed
model, and its interaction with object types, recursive and quantified types. The
most natural definition of object types as collections of well-typed methods does
not validate any notion of subtyping because of the contravariance of method
types. So we first refined the definition of object types to validate subtyping
in width, then by restricting certain invocations and updates we could soundly
allow subtyping in depth for object types extended with variance annotations.

Type checking terms using the semantic typing rules is undecidable, so we
introduced a syntactic type system for which type checking can be made decid-
able. Finally, we proved the soundness of the syntactic type system with respect
to the semantic model, which immediately implies that well-typed terms are safe
to evaluate after type erasure.

55

56 CHAPTER 5. CONCLUSION

5.2 Related Work

The functional object calculus was introduced by Abadi and Cardelli for inves-
tigating the theoretical properties of objects [AC96a]. The untyped ς-calculus
and the syntactic type system we presented here are their work [AC96b, AC95b].
Abadi and Cardelli prove the soundness of their second-order equational theories
by constructing a fairly intricate denotational semantic model based on metric
spaces [MPS86]. The soundness of their second-order type system is an immedi-
ate consequence of the soundness of the equational theory [AC96a, Chapter 14].
If one was only concerned with types and not with equations, then a subject-
reduction proof would suffice. Abadi and Cardelli give subject-reduction proofs
for all the other type systems in their book.

Step-indexed semantic models were introduced by Appel and his collabora-
tors in the context of foundational proof-carrying code [AF00]. Their goal was
to construct more elementary and more modular proofs of type soundness that
can be easier checked automatically. They were primarily interested in low-level
languages, however they also applied their technique to a pure λ-calculus with
recursive types [AM01]. Later they successfully extended it to general refer-
ences, impredicative polymorphism [AAV03, Ahm04] and substructural state
[AFM05]. The step-indexed semantic model we presented extends the one for
recursive types of Appel and McAllester [AM01] with method and object types,
subtyping and bounded quantified types.

Subtyping in a step-indexed semantic model was previously considered by
Swadi who studied a typed machine language [Swa03, Section 3.4]. Our setup
is however much different than the one of Swadi, so the subtle issues concerning
object types are original to our work. Swadi was also the first to explicitly
consider type variables in a step-indexed semantic model and used a semantic
kind system to track the contractiveness and non-expansiveness of types with
free type variables [ARS02, Swa03]. We avoid having a more complex model
with type variables by additionally considering a syntactic type system which
we prove sound with respect to the semantic model.

Proving soundness with respect to denotational semantic models dates back
to the 70’s and was quite popular until it was replaced by subject-reduction.
The paper on subject-reduction of Wright and Felleisen gives a survey on the
type safety proofs based on denotational semantics and discusses some of their
problems [WF94, Section 2]. Most important, such proofs rely on different
and often unrelated proof techniques, and even a minor extension to a language
may require a complete restructuring of its denotational semantics and so a com-
pletely new approach to re-establish soundness. The monadic λ-calculi [Mog91]
or the call-by-push-value calculus [Lev04] aim at structuring the denotational
semantics in such a way that at least some extensions can be done easier, still
they give no complete solution to such problems. Soundness proofs based on
step-indexed semantic models tend to be less affected by extensions to the un-
derlying calculus than proofs based on denotational models, and it seems that
at least in some cases they are more modular than subject-reduction proofs.

5.3. FUTURE WORK 57

5.3 Future Work

Step-indexed Model for the Imperative Object Calculus

The results of this thesis can be extended to the imperative object calculus of
Abadi and Cardelli [AC95a] [HS07]. Syntactically the imperative object calculus
is very similar to the functional calculus considered in this thesis. However, its
semantics is defined with respect to a store: method invocations read from the
store and method updates modify the store. Executable code is also stored (i.e.
the store is higher-order) and aliasing is possible.

The semantic model for the imperative object calculus is an extension of the
step-indexed model for general references of Ahmed et. al. [AAV03, Ahm04].
We refine the general references from Ahmed’s model to also encompass read-
only and write-only references, in a similar way to the references in the Forsythe
programming language [Rey88, Rey96] [Pie02, Section 15.5]. We also add object
types with variance annotations, subtyping and bounded quantifiers to Ahmed’s
model. And although in the resulting model the semantic types are more com-
plex than the ones from this thesis, the model satisfies exactly the same semantic
typing rules (i.e. the interface given by Figures 3.5 and 3.4).

Even more, the syntactic type system for the imperative calculus is exactly
the same as the one in this thesis, so all the results in Chapter 4, in particular
the semantic soundness theorem (Theorem 4.3.9) and the type safety corollary
(Corollary 4.3.10), directly apply to the imperative object calculus. Well-typed
terms do not get stuck no matter whether they are evaluated in a functional
or an imperative way1. It would not be possible to prove such a result using
subject-reduction, since the typing judgement for the imperative calculus would
also depend on a “store typing” that maps store locations to types, and thus be
different from the judgement for the functional calculus. However, since we are
not using subject-reduction, we do not need to type-check partially evaluated
terms which contain locations.

Very Modal Models of Types for Imperative Objects

The step-indexed model of Appel and McAllester [AM01] used in this thesis,
as well as the model for general references of Ahmed et. al. [AAV03, Ahm04]
which we extended and used for the imperative object calculus share a common
problem. The operations on values of quantified types require taking steps in
the operational semantics which are essentially no-ops. Ideally in an untyped
setting we expect to have no introduction and elimination forms for quantified
types such as pack and unpack (see Section 3.6.1). More severely, in the case of
the imperative object calculus the operational semantics of method invocation
had to be modified to take two computation steps, in order for it to match the
two different operations happening in the model: dereferencing a cell to get a
procedure and then applying the procedure to the self argument.

Appel et. al. recently proposed a new semantic model which among other
improvements also addresses this problem [AMRV07]. In this new model op-

1This supports the claim of Abadi and Cardelli that the evaluation model is not important
when typing object calculi [AC96a]. It also shows that a very important feature such as state
can be added to a language without causing major problems for its type soundness proofs
based on step-indexed models.

58 CHAPTER 5. CONCLUSION

erations such as type abstraction and application are just coercions without
operational significance, and there are no explicit introduction and elimination
forms for quantified types. It would be thus interesting to see whether we can
more naturally accommodate imperative objects in this more general model.

Binary Logical Relations for Functional Objects

Proving the equivalence of programs is needed for verifying the correctness of
program transformations, for showing that the behavior of programs does not
depend on the implementation of abstract data types, for assuring that secret
information is not leaked by a program and more. In most settings we are
interested in proving that two programs are contextually equivalent, i.e. they
have the same observable behaviour in any context. However, this involves
quantification over all contexts so it is difficult to show directly, and one usually
employs a method known as logical relations [Tai67, Gir72, Plo73, Pit98, Pit00].

Appel and McAllester gave not only a step-indexed model of recursive types,
but also sketched a step-indexed partial equivalence relation model [AM01].
Ahmed later modified this model to obtain a step-indexed binary logical relation
that she proved to be an equivalence (the transitivity of the original relation is
still open). She also extended the model to impredicative quantified types and
showed that her relation captures exactly contextual equivalence [Ahm06]. This
was all done in a pure functional setting, and Ahmed hopes to scale it up to
support dynamically allocated mutable references. Equational reasoning in the
presence of state is generally regarded as a hard problem, one that is still open.

In the context of object calculi it would be interesting to see whether data
abstraction is preserved in the presence of objects, or if subsumption for objects
enforces information hiding. For the functional object calculus this should be
possible by extending Ahmed’s logical relation to object types and subtyping,
using probably some of the results of this thesis.

Program Logic for the Imperative Object Calculus

The imperative object calculus features dynamically-allocated higher-order store
(i.e. executable code can be dynamically stored on the heap). This feature is
present in different forms in most practical programming languages: pointers to
functions in C, callbacks in Java, or general references in ML.

Purely syntactic arguments do not suffice for proving the soundness of a
program logic for the imperative object calculus. The meaning of assertions is
not obvious, since they have to describe the code on the heap. In this setting
one can only prove soundness with respect to a semantic model, which makes a
clear distinction between validity and derivability: a logic is sound if everything
that can be derived using the rules is also valid with respect to the model.

However, finding good semantic models in which one can reason about the
behaviour of programs is challenging for languages with dynamically-allocated
higher-order store. Classical denotational models based on ordered sets tend to
become very complex. Usually for modelling dynamic allocation alone one has
to move to a possible-worlds model, formalized as a category of functors over
complete partial orders. And while the denotational models achieve the goal of
separating the notion of logical validity from derivability, in the existing models
many operationally valid equations involving state do not hold.

5.3. FUTURE WORK 59

The only program logic for the imperative object calculus found in the lit-
erature is the logic of objects of Abadi and Leino, which extends a simple type
system with first-order logic formulas about the store [AL97, AL04]. Reus and
Schwinghammer proved the soundness of this logic with respect to a denota-
tional model and extended it to recursive specifications [RS06a, Sch06]. This
denotational model is already quite complex, still it is not abstract enough to
capture many natural equivalences involving state, and it does not have an
elegant treatment of subtyping.

Therefore it would be interesting to investigate whether the techniques used
for building simpler semantic models such as step-indexing, can also be used
to prove the soundness of the logic of objects. For example Benton used step-
indexing as a technical device together with a notion of orthogonality relating
expressions to contexts to show the soundness of a compositional program logic
for a very simple stack-based abstract machine [Ben05]. He also employed step-
indexing in a Floyd-Hoare-style framework based on relational parametricity for
the specification and verification of machine code programs [Ben06].

The logic of Abadi and Leino is similar to Floyd-Hoare logic [Flo67, Hoa69]
and it does not allow local or modular reasoning [PB05, KBAR06, NAMB07].
It would thus be interesting to design a better program logic for the imperative
object calculus, one that allows local reasoning about the store like the separa-
tion logic of O’Hearn and Reynolds [ORY01, Rey02]. The first separation logic
for higher-order store was recently proposed by Reus and Schwinghammer, for
a very simple language of commands, so objects would be a big step forward
[RS06b]. Finally, maybe the new logic could also allow modular reasoning about
abstract data structures, similarly to Reynolds’ specification logic [Rey82].

60 CHAPTER 5. CONCLUSION

Appendix A

Technical Definitions

A.1 Free Variables

FV(x) , {x}

FV(ς(x)b) , FV(b) \ {x}

FV([md=ς(xd)bd]d∈D) ,
⋃

d∈D FV(ς(xd)bd)

FV(a.m) , FV(a)

FV(a.m := ς(x)b) , FV(a) ∪ FV(ς(x)b)

FV(Λ. a) , FV(a)

FV(a []) , FV(a)

FV(pack a) , FV(a)

FV(open a as x in b) , FV(a) ∪ (FV(b) \ {x})

A.2 Capture-avoiding substitution

Let σ be a finite map from variables to terms (a substitution). Then we define
the result of applying σ as follows.

σ(x) , σ(x)1, if x∈Dom(σ)

σ(x) , x, if x6∈Dom(σ)

σ(ς(x)b) , ς(x′)(σ [x′↑] ([x 7→ x′] (b)))23, if x′ 6∈FV(ς(x)b)∪
⋃

x∈Dom(σ) FV(σ(x))

σ([md=ς(xd)bd]d∈D) , [md=σ(ς(xd)bd)]d∈D

1Our notation is the same for applying a substitution to a term (the left-hand side), and
applying a substitution to a variable (the right-hand side). The first is the homomorphic
extension of the second.

2By σ [x↑] we denote σ where the binding for x is removed: σ [x↑] , σ \ {(x, σ(x))}.
3By [x 7→ y] we denote a singleton map which only maps x to y: [x 7→ y] , {(x, y)}

61

62 APPENDIX A. TECHNICAL DEFINITIONS

σ(a.m) , (σ(a)).m

σ(a.m := ς(x)b) , σ(a).m := σ(ς(x)b)

σ(Λ. a) , Λ. σ(a)

σ(a []) , σ(a) []

σ(pack a) , pack σ(a)

σ(open a as x in b) , open σ(a) as x′ in (σ [x′↑] ([x 7→ x′] (b))),
if x′ 6∈FV(ς(x)b) ∪

⋃
x∈Dom(σ) FV(σ(x))

Special Case: Closed Substitution

We say that a substitution σ is closed if ∀x∈Dom(σ). FV(σ(x)) = ∅. If σ
is closed, then in the previous definition we can always trivially satisfy the
side-condition on the fresh variables by chosing x′ = x. This gives us a sim-
pler, deterministic way of applying closed substitutions that does not employ
α-renaming. This case is particularly interesting, since our value environments
are closed substitutions.

σ(x) , σ(x), if x∈Dom(σ)

σ(x) , x, if x6∈Dom(σ)

σ([md=ς(xd)bd]d∈D) , [md=ς(xd)(σ [xd↑] (bd))]d∈D

σ(a.m) , (σ(a)).m

σ(a.m := ς(x)b) , (σ(a)).m := ς(x)(σ [x↑] (b))

σ(Λ. a) , Λ. σ(a)

σ(a []) , σ(a) []

σ(pack a) , pack σ(a)

σ(open a as x in b) , open σ(a) as x in σ [x↑] (b)

A.3 Type erasure

E(x) = x

E([md=ς(xd:A)bd]d∈D) = [md=ς(xd)bd]d∈D

E(a.me) = E(a).me

E(a.me := ς(x:A)b) = E(a).me := ς(x)E(b)

E(λx:A. b) = λx.E(b)

E(a b) = E(a) E(b)

E(foldµX.A a) = E(a)

A.4. FREE TYPE VARIABLES 63

E(unfoldµX.A a) = E(a)

E(ΛX6A. b) = Λ. E(b)

E(a A′) = E(a) []

E(pack X6A = C in a :B) = pack E(A)

E(open a as X6A, x:B in b :D) = open E(a) as x in E(b)

A.4 Free Type Variables

FV(Top) = FV(Bot) = ∅

FV(X) = {X}

FV(µX.A) = FV(A) \ {X}

FV(A→B) = FV(A) ∪ FV(B)

FV([md :νd
Ad]d∈D) =

⋃
d∈D FV(Ad)

FV(∀X6A.B) = FV(A) ∪ FV(B) \ {X}

FV(∃X6A.B) = FV(A) ∪ FV(B) \ {X}

A.5 Type Substitution

We consider types to be syntactically equal up to the α-renaming of bound type
variables, so that the side conditions for the last three cases in the definition
can always be satisfied by α-renaming type variables.

X[X:=B] = A

Y [X:=B] = Y , if X 6= Y

Top[X:=B] = Top

Bot[X:=B] = Bot

(A→A′)[X:=B] = (A[X:=B])→(A′[X:=B])

[md :νd
Ad]d∈D [X:=B] = [md :νd

Ad[X:=B]]d∈D

(µY.A)[X:=B] = µY.(A[X:=B]), if Y 6=X and Y 6∈FV(B)

(∀Y6A′.B′)[X:=B] = ∀Y6(A′[X:=B]).(B′[X:=B]), if Y 6=X and Y 6∈FV(B)

(∃Y6A′.B′)[X:=B] = ∃Y6(A′[X:=B]).(B′[X:=B]), if Y 6=X and Y 6∈FV(B)

64 APPENDIX A. TECHNICAL DEFINITIONS

Bibliography

[AAV03] Amal J. Ahmed, Andrew W. Appel, and Roberto Virga. An in-
dexed model of impredicative polymorphism and mutable references.
Princeton University, January 2003.

[AC95a] Mart́ın Abadi and Luca Cardelli. An imperative object calculus. In
Peter D. Mosses, Mogens Nielsen, and Michael I. Schwartzbach, edi-
tors, TAPSOFT, volume 915 of Lecture Notes in Computer Science,
pages 471–485. Springer, 1995.

[AC95b] Mart́ın Abadi and Luca Cardelli. A theory of primitive objects:
Second-order systems. Science of Computer Programming, 25(2-
3):81–116, December 1995.

[AC96a] Mart́ın Abadi and Luca Cardelli. A Theory of Objects. Springer,
1996.

[AC96b] Mart́ın Abadi and Luca Cardelli. A theory of primitive objects:
Untyped and first-order systems. Information and Computation,
125(2):78–102, March 1996.

[AF00] Andrew W. Appel and Amy P. Felty. A Semantic Model of Types
and Machine Instructions for Proof-Carrying Code. In POPL 2000:
The 27th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 243–253, Boston, MA, Jan 2000.
ACM Press.

[AFM05] Amal J. Ahmed, Matthew Fluet, and Greg Morrisett. A step-
indexed model of substructural state. In Olivier Danvy and Ben-
jamin C. Pierce, editors, International Conference on Functional
Programming (ICFP’05), pages 78–91. ACM Press, 2005.

[Ahm04] Amal J. Ahmed. Semantics of types for mutable state. PhD thesis,
Princeton University, 2004.

[Ahm06] Amal J. Ahmed. Step-indexed syntactic logical relations for recur-
sive and quantified types. In Peter Sestoft, editor, ESOP, volume
3924 of Lecture Notes in Computer Science, pages 69–83. Springer,
2006.

[AL97] Mart́ın Abadi and K. Rustan M. Leino. A logic of object-oriented
programs. In Michel Bidoit and Max Dauchet, editors, Proceedings
of Theory and Practice of Software Development, volume 1214 of

65

66 BIBLIOGRAPHY

Lecture Notes in Computer Science, pages 682–696. Springer, 1997.
Superseded by [AL04].

[AL04] Mart́ın Abadi and K. Rustan M. Leino. A logic of object-oriented
programs. In Nachum Dershowitz, editor, Verification: Theory and
Practice. Essays Dedicated to Zohar Manna on the Occasion of his
64th Birthday, Lecture Notes in Computer Science, pages 11–41.
Springer, 2004.

[AM01] Andrew W. Appel and David McAllester. An indexed model of
recursive types for foundational proof-carrying code. ACM Trans-
actions on Programming Languages and Systems, 23(5):657–683,
September 2001.

[AMRV07] Andrew W. Appel, Paul-André Melliès, Christopher D. Richards,
and Jérôme Vouillon. A very modal model of a modern, major,
general type system. ACM SIGPLAN Notices, 42(1):109–122, 2007.

[ARS02] Andrew Appel, Christopher Richards, and Kedar Swadi. A kind
system for typed machine language. Technical report, Princeton
University, September 2002.

[Bar92] Henk P. Barendregt. Lambda calculi with types. In Samson Abram-
sky, Dov Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic
in Computer Science, volume 2, chapter 2, pages 117–309. Oxford
University Press, 1992.

[BCP99] Kim B. Bruce, Luca Cardelli, and Benjamin C. Pierce. Comparing
object encodings. Information and Computation, 155(1/2):108–133,
November 1999.

[BDCd95] Franco Barbanera, Mariangiola Dezani-Ciancaglini, and Ugo
de’Liguoro. Intersection and union types: Syntax and semantics.
Information and Computation, 119(2):202–230, 1995.

[Ben05] Nick Benton. A typed, compositional logic for a stack-based abstract
machine. In Zoltan Esik, editor, Asian Symposium on Programming
Languages and Systems APLAS’05, volume 3780 of Lecture Notes
in Computer Science, pages 182–196. Springer, 2005.

[Ben06] Nick Benton. Abstracting allocation: the new new thing. In Com-
puter Science Logic, volume 4207 of Lecture Notes in Computer Sci-
ence, pages 364–380. Springer, 2006.

[BN98] Franz Baader and Tobias Nipkow. Term rewriting and all that.
Cambridge University Press, New York, NY, USA, 1998.

[Car85] Luca Cardelli. Amber. In Guy Cousineau, Pierre-Louis Curien, and
Bernard Robinet, editors, Combinators and Functional Program-
ming Languages, volume 242 of Lecture Notes in Computer Science,
pages 21–47. Springer, 1985.

[Car97] Luca Cardelli. Type systems. In Allen B. Tucker, editor, The Com-
puter Science and Engineering Handbook, chapter 103, pages 2208–
2236. CRC Press, 1997.

BIBLIOGRAPHY 67

[CW85] Luca Cardelli and Peter Wegner. On understanding types, data ab-
straction, and polymorphism. ACM Computing Surveys, 17(4):471–
523, 1985.

[FHM94] Kathleen Fisher, Furio Honsell, and John C. Mitchell. A lambda
calculus of objects and method specialization. Nordic Journal of
Computing, 1:3–37, 1994.

[Flo67] Robert W. Floyd. Assigning meanings to programs. In Jacob T.
Schwartz, editor, Proceedings of Mathematical Aspects of Computer
Science, volume 19 of Proceedings of Symposia in Applied Mathe-
matics, pages 19–32. American Mathematical Society, April 1967.

[Gir72] J.-Y. Girard. Interprtation fonctionnelle et limination des coupures
de l’arithmtique d’ordre suprieur. These de doctorat d’tat, Universit
Paris 7, 1972.

[GR96] Andrew D. Gordon and Gareth D. Rees. Bisimilarity for a first-
order calculus of objects with subtyping. In Conference Record of
the 23rd Symposium on Principles of Programming Languages, pages
386–395, January 1996.

[Hoa69] C. A. R. Hoare. An Axiomatic Basis of Computer Programming.
Communications of the ACM, 12:576–580, 1969.

[HS07] Cătălin Hriţcu and Jan Schwinghammer. Step-indexed semantic
model of types for the imperative object calculus. Unpublished
manuscript, May 2007.

[JT93] Achim Jung and Jerzy Tiuryn. A new characterization of lambda
definability. In Typed Lambda Calculus and Applications, pages 245–
257, 1993.

[KBAR06] Neelakantan R. Krishnaswami, Lars Birkedal, Jonathan Aldrich,
and John C. Reynolds. Idealized ML and its separation logic. Sub-
mitted, 2006.

[KR94] Samuel N. Kamin and Uday S. Reddy. Two semantic models
of object-oriented languages. In Carl A. Gunter and John C.
Mitchell, editors, Theoretical Aspects of Object-Oriented Program-
ming: Types, Semantics, and Language Design, pages 464–495. MIT
Press, 1994.

[Lev04] Paul Blain Levy. Call-By-Push-Value. A Functional/Imperative
Synthesis, volume 2 of Semantic Structures in Computation. Kluwer,
2004.

[Mil78] Robin Milner. A theory of type polymorphism in programming lan-
guages. Journal of Computer and System Science, 17(3):348–375,
1978.

[Mit96] John C. Mitchell. Foundations for Programming Languages. MIT
Press, 1996.

68 BIBLIOGRAPHY

[Mog91] Eugenio Moggi. Notions of computation and monads. Information
and Computation, 93:55–92, 1991.

[MPS86] David B. MacQueen, Gordon D. Plotkin, and Ravi Sethi. An ideal
model for recursive polymorphic types. Information and Control,
71(1–2):95–130, October 1986.

[MTM96] Robin Milner, Mads Tofte, and David Macqueen. The Definition of
Standard ML. MIT Press, 1996.

[NAMB07] Aleksandar Nanevski, Amal Ahmed, Greg Morrisett, and Lars
Birkedal. Abstract predicates and mutable adts in hoare type theory.
2007. To Appear in ESOP 2007.

[OR95] Peter W. O’Hearn and Jon G. Riecke. Kripke logical relations and
PCF. Information and Computation, 120(1):107–116, 1995.

[ORY01] Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local
reasoning about programs that alter data structures. In L. Fribourg,
editor, Proceedings of the Annual Conference of the European Asso-
ciation for Computer Science Logic (CSL), volume 2142 of Lecture
Notes in Computer Science, pages 1–18. Springer, 2001.

[PB05] Matthew J. Parkinson and Gavin M. Bierman. Separation logic and
abstraction. In Jens Palsberg and Mart́ın Abadi, editors, POPL,
pages 247–258. ACM, 2005.

[Pie92] Benjamin C. Pierce. Programming with intersection types and
bounded polymorphism. PhD thesis, 1992.

[Pie94] Benjamin C. Pierce. Bounded quantification is undecidable. Infor-
mation and Computation, 112(1):131–165, July 1994.

[Pie02] Benjamin C. Pierce. Types and Programming Languages. The MIT
Press, 2002.

[Pit98] Andrew M. Pitts. Existential types: Logical relations and opera-
tional equivalence. In Kim Guldstrand Larsen, Sven Skyum, and
Glynn Winskel, editors, ICALP, volume 1443 of Lecture Notes in
Computer Science, pages 309–326. Springer, 1998.

[Pit00] Andrew M. Pitts. Parametric polymorphism and operational equiva-
lence. Mathematical Structures in Computer Science, 10(3):321–359,
2000.

[Plo73] Gordon D. Plotkin. Lambda-definability and logical relations, 1973.
Memorandum SAI-RM-4, University of Edinburgh.

[Plo75] Gordon D. Plotkin. Call-by-name, call-by-value and the lambda-
calculus. Theoretical Computer Science, 1(2):125–159, 1975.

[Rey82] John C. Reynolds. Idealized Algol and its specification logic. In
Danielle Néel, editor, Tools and Notions for Program Construction,
pages 121–161. Cambridge University Press, 1982.

BIBLIOGRAPHY 69

[Rey88] John C. Reynolds. Preliminary design of the programming language
forsythe. Technical Report CMU-CS-88-159, Carnegie Mellon Uni-
versity, 1988. Superseded by [Rey96].

[Rey96] John C. Reynolds. Design of the programming language forsythe.
Technical Report CMU-CS-96-146, Carnegie Mellon University,
June 1996. Reprinted in O’Hearn and Tennent, ALGOL-like Lan-
guages, vol. 1, pages 173-233, Birkhäuser, 1997.

[Rey02] John C. Reynolds. Separation logic: A logic for shared mutable data
structures. In Proceedings of the 17th IEEE Symposium on Logic in
Computer Science, pages 55–74. IEEE Computer Society, 2002.

[RS06a] Bernhard Reus and Jan Schwinghammer. Denotational semantics
for a program logic of objects. Mathematical Structures in Computer
Science, 16(2):313–358, April 2006.

[RS06b] Bernhard Reus and Jan Schwinghammer. Separation logic for
higher-order store. In Zoltán Ésik, editor, CSL, volume 4207 of
Lecture Notes in Computer Science, pages 575–590. Springer, 2006.

[Sch06] Jan Schwinghammer. Reasoning about Denotations of Recursive Ob-
jects. PhD thesis, Department of Informatics, University of Sussex,
2006.

[Swa03] Kedar N. Swadi. Typed Machine Language. PhD thesis, Princeton
University, July 2003.

[Tai67] William W. Tait. Intensional interpretations of functionals of finite
type i. Journal of Symbolic Logic, 32(2):198–212, 1967.

[WF94] Andrew K. Wright and Matthias Felleisen. A syntactic approach to
type soundness. Information and Computation, 115(1):38–94, 1994.

[Win93] Glynn Winskel. The Formal Semantics of Programming Languages.
MIT Press, 1993.

	Introduction
	Step-indexed Semantic Models
	An Illustrative Example

	The Functional Object Calculus
	Outline

	The Untyped -calculus
	Syntax
	Operational Semantics
	Encodings
	Call-by-name -calculus
	Booleans
	Natural Numbers
	Fixpoint Operator
	Classes and Inheritance

	Step-indexed Semantic Model of Types
	The Semantic Model
	Method Types
	Object Types
	The Simplest Definition
	Subtyping

	Object Types with Variance Annotations
	Definition and Rules
	First-order Encoding of Procedure Types
	Soundness of the Semantic Typing Rules

	Recursive Types
	Bounded Quantified Types
	Vestigial Operators
	Definition and Rules

	Semantic Typing Rules

	Syntactic Types
	Revised Syntax of Terms
	Syntactic Type System
	Semantic Soundness

	Conclusion
	Summary
	Related Work
	Future Work

	Technical Definitions
	Free Variables
	Capture-avoiding substitution
	Type erasure
	Free Type Variables
	Type Substitution

