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Abstract

Step-indexed semantic models of types were proposed as an alternative
to purely syntactic proofs of type safety using subject reduction. Building
on work by Ahmed, Appel and others, we introduce a step-indexed model
for the imperative object calculus of Abadi and Cardelli. Providing a se-
mantic account of this calculus using more ‘traditional’, domain-theoretic
approaches has proved challenging due to the combination of dynamically
allocated objects, higher-order store, and an expressive type system. Here
we show that the step-indexed model can interpret a rich type discipline
with object types, subtyping, recursive and bounded quantified types in
the presence of state.
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1 Introduction

The imperative object calculus of Abadi and Cardelli is a very small, yet very
expressive object-oriented language [AC96]. Despite the extreme simplicity of
its syntax, the calculus models many important concepts of object-oriented pro-
gramming, as well as the often subtle interaction between them. In particular
it raises interesting and non-trivial questions with respect to typing.

In contrast to the more common class-based object-oriented languages, in
the imperative object calculus every object comes equipped with its own set of
methods which can be updated at run-time. As a consequence, the methods need
to reside in the store, i.e. the store is higher-order. Moreover, objects are allo-
cated dynamically and aliasing is possible. Dynamically-allocated, higher-order
store is present in different forms in many practical programming languages
(e.g. pointers to functions in C and general references in SML), but it consid-
erably complicates the construction of adequate semantic models in which one
can reason about the behaviour of programs (cf. [Reu03]).

Purely syntactic arguments such as subject-reduction suffice for proving the
soundness of traditional type systems. However, once such type systems are
turned into powerful specification languages, like the logic of objects of Abadi
and Leino [AL97, AL04] or the hybrid type system of Flanagan et al. [FFT06],
arguments based solely on the operational semantics seem no longer appropriate.
The meaning of assertions is no longer obvious, since they have to describe the
code on the heap. We believe that specifications of program behaviour should
have a meaning independent of the particular proof system on which syntactic
preservation proofs rely, as also argued by [Ben05, RS06].

In the setting described above one would ideally prove soundness with respect
to a semantic model that makes a clear distinction between semantic validity and
derivability using the syntactic rules. However, building such semantic models
is challenging, and there is currently no fully satisfactory semantic account of
the imperative object calculus:

Denotational semantics. Domain-theoretic models have been employed in
proving the soundness of the logic of Abadi and Leino [RS04, RS06]. How-
ever, the existing techniques fall short of providing convincing models of
typed objects: [RS04] considers an untyped semantics, and the model of
[RS06] handles neither second-order types, nor object types with variance
annotations. Due to the dynamic-allocated higher-order store present in
the imperative object calculus, the models rely on techniques for recur-
sively defined domains in functor categories [Lev02, Pit96]. This makes
them complex, and establishing properties even for specific programs often
requires a substantial effort.

Equational reasoning. Gordon et al. develop reasoning principles for estab-
lishing the contextual equivalence of untyped objects, and apply them to
prove correctness of a compiler optimization [GHL97]. Jeffrey and Rathke
consider a concurrent variant of the calculus, and characterize may-testing
equivalence in terms of the trace sets generated by a labeled transition
system [JR05]. In both cases the semantics is limited to equational rea-
soning, i.e. establishing contextual equivalences between programs. In
theory, this can be used to verify a program by showing it equivalent to
one that is trivially correct and acts as a specification. However, this can
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be more cumbersome in practice than using program logics, the established
formalism for specifying and proving the correctness of programs.

Translations. Abadi et al. [ACV96] give an adequate encoding of the im-
perative object calculus into a lambda calculus with records, references,
recursive and existential types and subtyping. Together with an interpre-
tation of this target language, an adequate model for the imperative object
calculus could, in principle, be obtained. However, we are not aware of any
adequate domain-theoretic model for general references and impredicative
second-order types. And, even if such a model would be constructed, it will
still be preferable to have a self-contained model for the imperative object
calculus, without the added complexity of the (non-trivial) translation.

A solution to this problem could be the step-indexed semantic models in-
troduced by Appel et al. as an alternative to subject-reduction proofs [AF00,
AM01]. Such models are based directly on the operational semantics, and are
much simpler than the existing domain-theoretic models. In this setting the
types are simply interpreted as sets of syntactic values indexed by a number
of computation steps. Intuitively, a term belongs to a certain type if it be-
haves like an element of that type for any number of steps. Every type is built
as a sequence of increasingly accurate semantic approximations, which allows
one to easily deal with recursion. Type safety is an immediate consequence of
this interpretation of types, and the semantic counterparts of the usual typing
rules are proved as independent lemmas, either directly or by induction on the
index. Ahmed et al. successfully applied this generic technique to a lambda cal-
culus with general references, impredicative polymorphism and recursive types
[AAV02, AAV03, Ahm04].

In this paper we further extend the model of Ahmed et al. with object
types and subtyping, and we use the resulting model to prove the soundness
of an expressive type system for the imperative object calculus. The main
contribution of our work is the novel semantics of object types.

Even though in this paper we are concerned with the safety of a type system,
the step-indexing technique is not restricted to types, and has already been
used for equational reasoning [AM01, Ahm06] and for proving the soundness
of Hoare-style program logics of low-level languages [Ben05, Ben06]. We hope
that eventually it will become possible to use a step-indexed model to prove the
soundness of more expressive program logics for the imperative object calculus.

Outline The next section introduces the syntax, the operational semantics
and the type system that we consider for the imperative object calculus. In
Section 3 we present the step-indexed semantic model for this calculus. In
particular, we provide the definitions of our semantic types together with the
properties that they fulfill. In Section 4 these properties are used to prove the
soundness of the initial type system. Section 5 concludes with a comparison to
related work, together with some interesting directions for further investigation
(one of which is further detailed in Appendix A).
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A,B ::= X | Top | Bot | [md :νd Ad]d∈D | A→ B (types)
| µ(X)A | ∀(X6A)B | ∃(X6A)B

ν ::= ◦ | + | − (variance annotations)

a, b ::= x (variables)
| [md=ς(xd:A)bd]d∈D (object creation)
| a.m (method invocation)
| a.m := ς(x:A)b (method update)
| clone a (shallow copy)

| λ(x:A)b (procedures)
| a b (application)

| foldA b (recursive folding)
| unfoldA b (recursive unfolding)

| Λ(X6A)b (type abstraction)
| a[A] (type application)
| pack X6A = C in a :B (existential package)
| open a as X6A, x:B in b :C (package opening)

Figure 1: Syntax of types and terms

2 The Imperative Object Calculus

We recall the syntax of the imperative object calculus with recursive and second-
order types, and introduce a small-step operational semantics for this calculus
that is equivalent to the big-step semantics given by Abadi and Cardelli [AC96].

2.1 Syntax

Let Var,TVar and Meth be pairwise disjoint, countably infinite sets of variables,
type variables and method names, respectively. Let x, y range over Var, X,Y
range over TVar, and let m range over Meth. Figure 1 defines the syntax of the
types and terms of the imperative object calculus.

Objects are unordered collections of named methods. In a method m =
ς(x:A)b, ς is a binder that binds the ‘self’ argument x in the method body
b. The self argument can be used inside the method body for invoking the
methods of the containing object. Methods with arguments other than self
can be obtained by having a procedural abstraction as the method body. The
methods of an object can be invoked or updated, but no new methods can be
added, and the existing methods cannot be deleted. The type of objects with
methods named md that return results of type Ad, for d in some set D, is written
as [md :νd Ad]d∈D, where ν ∈ {◦,+,−} is a variance annotation that indicates
if the method is considered invoke-only (+), update-only (−), or may be used
without restriction (◦).
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E [·] ::= [·] | E .m | E .m := ς(x:A)b | clone E |
| E b | v E | foldA E | unfoldA E | E [A]
| pack X6A = C in E :B | open E as X6A, x:B in b :C

Figure 2: Evaluation contexts

We write procedural abstractions with type A → B as λ(x:A)b and ap-
plications as a b, respectively. Although procedural abstractions can be de-
fined as syntactic sugar in Abadi and Cardelli’s calculus, it smoothes the the-
ory in Section 3 to include them as primitives. We use foldA and unfoldA
to denote the isomorphism between a recursive type µ(X)B and its unfold-
ing {{X 7→ µ(X)B}}(B). Finally, we consider bounded universal and existential
types ∀(X6A)B and ∃(X6A)B along with their introduction and elimination
forms.

The set of free variables of a term a is denoted by fv(a), and similarly the
free type variables in a type A by fv(A). We identify types and terms up to the
consistent renaming of bound variables. We use {{t 7→ r}} to denote the singleton
map that maps t to r. For a finite map σ from variables to terms, σ(a) denotes
the result of capture-avoiding substitution of all x ∈ fv(a) ∩ dom(σ) by σ(x).
The same notation is used for the substitution of type variables. Generally, for
any function f , the notation f [t := r] denotes the function that maps t to r,
and otherwise agrees with f .

2.2 Operational Semantics

Let Loc be a countably infinite set of heap locations ranged over by l . We extend
the set of terms by run-time representations of objects {md=ld}d∈D, associating
heap locations to a set of method names. Values are generated by the following
grammar:

v ∈ Val ::= {md=ld}d∈D | λ(x:A)b | foldA v
| Λ(X6A)b | pack X6A = C in v :B

Apart from run-time objects, values consist of procedures, type abstractions
and existential packages as in the call-by-value lambda calculus. We often only
consider terms and values without free variables, and denote the set of these
closed terms and closed values by CTerm and CVal, respectively. We call pro-
grams the closed terms in which locations do not occur, and we denote the set
of all programs by Prog. A heap h is a finite map from Loc to CVal 1, and we
write Heap for the set of all heaps.

Figure 2 defines the set of evaluation contexts, formalizing a left-to-right,
call-by-value strategy. We write E [a] for the term obtained by plugging a into
the hole [·] of E . The one-step reduction relation → is defined as the least
relation on configurations 〈h, a〉 ∈ Heap × CTerm generated by the rules in

1In fact, for the purpose of modelling the object calculus it would suffice to regard proce-
dures as the only kind of storable value.
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(Red-Obj) 〈h, [md=ς(xd:A)bd]d∈D〉 → 〈h [ld := λ(xd:A)bd]d∈D , {md=ld}d∈D〉
where ∀d ∈ D. ld /∈ dom(h)

(Red-Inv) 〈h, {md=ld}d∈D .me〉 → 〈h, h(le) {md=ld}d∈D〉
if e ∈ D

(Red-Upd) 〈h, {md=ld}d∈D .me := ς(x:A)b〉 → 〈h [le := λ(x:A)b], {md=ld}d∈D〉

if e ∈ D

(Red-Clone) 〈h, clone {md=ld}d∈D〉 → 〈h
ˆ
l′d := h(ld)

˜
d∈D

,
˘

md=l′d
¯

d∈D
〉

where ∀d ∈ D. l′d /∈ dom(h)

(Red-Beta) 〈h, (λ(x:A)b) v〉 → 〈h, {{x 7→ v}}(b)〉

(Red-Unfold) 〈h, unfoldA (foldB v)〉 → 〈h, v〉

(Red-TBeta) 〈h, (Λ(X6A)b)[B]〉 → 〈h, {{X 7→ B}}(b)〉

(Red-Open) 〈h, open v as X6A, x:B in b :C〉 → 〈h, {{x 7→ v′, X 7→ C′}}(b)〉
where v ≡ pack X ′6A′ = C′ in v′ :B′

Figure 3: One-step reduction

Figure 3 and closed under the following context rule:

〈h, a〉 → 〈h ′, a′〉 =⇒ 〈h, E [a]〉 → 〈h ′, E [a′]〉 (Red-Ctx)

The methods are actually stored in the heap as procedures. Object con-
struction allocates new heap storage for these procedures and returns a record
of references to them (Red-Obj). Upon method invocation the corresponding
stored procedure is retrieved from the heap and applied to the enclosing object
(Red-Inv). The self parameter is thus passed just like any other procedure
argument. This makes the ‘self-application’ semantics of method invocation ex-
plicit, while technically, it allows us to more directly use the step-indexed model
of Ahmed et al. [AAV02, AAV03, Ahm04].

While variables are immutable identifiers, methods can be updated destruc-
tively. Such updates only modify the heap and leave the run-time object un-
changed (Red-Upd). Object cloning generates a shallow copy of the object in
the heap (Red-Clone). The last four rules in Figure 3 are as in the lambda
calculus.

For k ∈ N, →k denotes the k-step reduction relation. We write 〈h, a〉9 if
the configuration 〈h, a〉 is irreducible (i.e. there exists no configuration 〈h ′, a′〉
such that 〈h, a〉 → 〈h ′, a′〉).

Note that reduction is not deterministic, due to the arbitrarily chosen fresh
locations in (Red-Obj) and (Red-Clone). However, we still have that there
is always at most one, uniquely determined redex. This has the important
consequence that the reduction order is fixed. For example, if there is a reduc-
tion sequence beginning with a method invocation and ending in an irreducible
configuration: 〈h1, a.m〉 →k 〈h2, b〉9, then this sequence can be split into

〈h1, a.m〉 →i 〈h ′1, a′.m〉 →k−i 〈h2, b〉
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where 〈h1, a〉 →i 〈h ′1, a′〉9 for some i ≥ 0. Similar decompositions into subse-
quences hold for reductions starting from the other term forms.

It is easy to see that the operational semantics is independent of the type
annotations inside terms. Also the semantic types that we consider in Section 3
will not depend on the syntactic type expressions in the terms. In order to
reduce the notational overhead and to prevent confusion between the syntax
and semantics of types we will omit type annotations when presenting the step-
indexed model. For example, instead of a[A] we will merely write a[].

2.3 Type System

The type system we consider features procedure, object, iso-recursive and im-
predicative, bounded quantified types, as well as subtyping, and corresponds to
FOb<:µ from [AC96].

It is fairly standard and consists of four inductively defined typing judgments:

• Γ ` �, describing well-formed typing contexts,

• Γ ` A, defining well-formed types,

• Γ ` A 6 B, for subtyping between well-formed types, and

• Γ ` a : A, for typing terms.

The typing context Γ is a list containing type bindings for the (term) variables
x:A and upper bounds for the type variables X6A. The first two judgments
are defined in Figure 4: a typing context is well-formed if it does not contain
duplicate bindings for (term or type) variables and all types appearing in it are
well-formed; a type is well-formed with respect to a well-formed context Γ if all
its type variables appear in Γ.

Figure 5 defines the subtype relation. It allows subtyping in width for the
object types: an object type with more methods is a subtype of an object type
with less methods, as long as the types of the common methods agree. For the
invoke-only (+) and update-only methods (−) in a type, covariant respectively
contravariant subtyping in depth is allowed (SubObj). Furthermore, the un-
restricted methods (◦) can be regarded by subtyping as either invoke-only or
update-only (SubObjVar). Since the annotations can be conveniently chosen
at creation time (Obj) this brings much flexibility. As explained in [AC96], it
allows the type system to distinguish between the invocations and updates done
through the self argument, and the ones done from the outside.

Finally, Figure 6 defines the typing relation. The applicability of the rules
for method invocation (Inv), and for method update (Upd), depends on the
variance annotation. Also notice that only type-preserving updates are allowed
(Upd). It is important to note that we do not give types to heap locations. The
type system is simpler since it only checks programs, not partially evaluated
terms as it would be required by a subject-reduction proof.
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Well-formed typing contexts Γ ` �

(CtxEmpty) · ` � (CtxVar)
Γ ` A x 6∈ Vars(Γ)

Γ, x:A ` �

(CtxTypeVar)
Γ ` A X /∈ TypeVars(Γ)

Γ, X6A ` �

Well-formed type Γ ` A

(TypeTop)
Γ ` �

Γ ` Top
(TypeBot)

Γ ` �
Γ ` Bot

(TypeVar)
Γ1, X6A,Γ2 ` �
Γ1, X6A,Γ2 ` X

(TypeProc)
Γ ` A Γ ` B

Γ ` A→ B

(TypeObj)
∀d∈D. Γ ` Ad

Γ ` [md:Ad]d∈D
(TypeRec)

Γ, X6Top ` A
Γ ` µ(X)A

(TypeUniv)
Γ, X6A ` B

Γ ` ∀(X6A)B
(TypeExist)

Γ, X6A ` B
Γ ` ∃(X6A)B

Figure 4: Well-formed types and typing contexts
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Subtyping Γ ` A 6 B

(SubRefl)
Γ ` A

Γ ` A 6 A
(SubTrans)

Γ ` A 6 A′ Γ ` A′ 6 B

Γ ` A 6 B

(SubTop)
Γ ` A

Γ ` A 6 Top
(SubBot)

Γ ` A
Γ ` Bot 6 A

(SubVar)
Γ1, X6A,Γ2 ` �

Γ1, X6A,Γ2 ` X 6 A

(SubProc)
Γ ` A′ 6 A Γ ` B 6 B′

Γ ` A→ B 6 A′ → B′

(SubObj)

E ⊆ D ∀e∈E. (νe ∈ {+, ◦} ⇒ Γ ` Ae 6 Be)
∧ (νe ∈ {−, ◦} ⇒ Γ ` Be 6 Ae)

Γ ` [md :νd Ad]d∈D 6 [me :νe Be]e∈E

(SubObjVar)
∀d ∈ D. νd = ◦ ∨ νd = ν′d

Γ ` [md :νd Ad]d∈D 6 [md :ν′d Ad]d∈D

(SubRec)
Γ ` µ(X)A Γ ` µ(Y )B Γ, Y6Top, X6Y ` A 6 B

Γ ` µ(X)A 6 µ(Y )B

(SubUniv)
Γ ` A′ 6 A Γ, X6A′ ` B 6 B′

Γ ` ∀(X6A)B 6 ∀(X6A′)B′

(SubExist)
Γ ` A 6 A′ Γ, X6A ` B 6 B′

Γ ` ∃(X6A)B 6 ∃(X6A′)B′

Figure 5: Subtyping
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Γ ` a : A

(Sub)
Γ ` a : A Γ ` A 6 B

Γ ` a : B
(Var)

Γ1, x:A,Γ2 ` �
Γ1, x:A,Γ2 ` x : A

Procedure types

(Lam)
Γ, x:A ` b : B

Γ ` λ(x:A)b : A→ B
(App)

Γ ` a : B → A Γ ` b : B
Γ ` a b : A

Object types (where A ≡ [md :νd Ad]d∈D)

(Obj)
∀d∈D. Γ, xd:A ` bd : Ad

Γ ` [md=ς(xd:A)bd]d∈D : A
(Clone)

Γ ` a : A
Γ ` clone a : A

(Inv)
Γ ` a : A e ∈ D νe ∈ {+, ◦}

Γ ` a.me : Ae

(Upd)
Γ ` a : A e ∈ D Γ, x:A ` b : Ae νe ∈ {−, ◦}

Γ ` a.me := ς(x:A)b : A

Recursive types

(Unfold)
Γ ` a : µ(X)A

Γ ` unfoldµ(X)A a : {{X 7→ µ(X)A}}(A)

(Fold)
Γ ` a : {{X 7→ µ(X)A}}(A)
Γ ` foldµ(X)A a : µ(X)A

Bounded quantified types

(TAbs)
Γ, X6A ` b : B

Γ ` Λ(X6A)b : ∀(X6A)B
(TApp)

Γ ` a : ∀(X6A)B Γ ` A′ 6 A

Γ ` a[A′] : {{X 7→ A′}}(B)

(Pack)
Γ ` C 6 A Γ ` {{X 7→ C}}(a) : {{X 7→ C}}(B)

Γ ` (pack X6A = C in a :B) : ∃(X6A)B

(Open)
Γ ` a : ∃(X6A)B Γ ` C Γ, X6A, x:B ` b : C

Γ ` (open a as X6A, x:B in b :C) : C

Figure 6: Typing of terms
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3 A Step-indexed Semantics of Objects

Modelling higher-order store is necessarily more involved than the treatment
of first-order storage since the semantic domains become mutually recursive.
Recall that heaps store values which may be procedures. These in turn can be
modeled as functions that take a value and the initial heap as input, and return
a value and the possibly modified heap upon termination. This suggests the
following semantic domains for values and heaps, respectively:

DVal = (DHeaps ×DVal ⇀ DHeaps ×DVal) + . . .

DHeaps = Loc ⇀fin DVal

(1)

A simple cardinality argument shows that there are no set-theoretic solutions
(i.e. where A ⇀ B denotes the set of all partial functions from A to B) satisfying
the equations in (1). A possible solution is to use a domain-theoretic approach,
as done for imperative objects in [KR94, RS04].

However, in a model of a typed calculus one wants even more: naively taking
a collection Type of subsets τ ⊆ DVal as interpretations of syntactic types does
not work, since values generally depend on the heap and a typed model should
guarantee that all heap access operations are type-correct. One is led to (i) also
consider heap typings: partial maps Ψ ∈ HeapTypings = Loc ⇀fin Type that
map heap locations to the set of possible values that may be stored, and (ii)
to refine the collection of types to take heap typings into account: a type will
then consist of values paired with heap typings which describe the necessary
requirements on heaps. Thus (i) and (ii) suggest to take

Types = P(HeapTypings×DVal)
HeapTypings = Loc ⇀fin Types

(2)

Again, a cardinality argument shows the impossibility of defining these sets.
A final obstacle to modelling imperative languages, albeit independent of

the higher-order nature of heaps, is due to dynamic allocation in the heap. It
results in heap typings that may vary in the course of a computation, reflecting
the changing ‘shape’ of the heap. However, as is the case for many high-level
languages, the object calculus is well-behaved in this respect:

• inside the language, there is no possibility of deallocating heap locations;
and

• only weak (i.e. type-preserving) updates are allowed.

As a consequence, extensions are the only changes of heap typings that need
to be considered. Intuitively, values that rely on heaps with typing Ψ will also
be type-correct for extended heaps, with an extended heap typing Ψ′ w Ψ. For
this reason, semantic models of dynamic allocation typically lend themselves to
a Kripke-style presentation, where all semantic entities are indexed by possible
worlds drawn from the set of heap typings, partially (pre-) ordered by heap
extension.

Rather than trying to extend the already complex domain-theoretic models
to heap typings and dynamic allocation, we will use the step-indexing technique.
Being based directly on the operational semantics, this provides an alternative
that has less mathematical overhead. In particular, there is no need to find
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semantic domains satisfying (1); we can simply have DVal be the set of closed
values and use syntactic procedures in place of set-theoretic functions. More-
over, it is relatively easy to also model impredicative second-order types in the
step-indexed model of [Ahm04, AAV03], which is crucial for the interpretation
of object types we develop below. This is non-trivial in the domain-theoretic
models, at best.

The circularity in (2) is resolved by considering a stratification based on
a notion of ‘k-step execution safety’, in contrast to the information ordering
employed in domain theory: the central idea is that a term has a type τ with
approximation k if this assumption cannot be proved wrong (in the sense of
reaching a stuck state) in any context by executing fewer than k steps. The
key insight with respect to constructing sets (2) is that all language constructs
operating on the heap (reading, updating, and allocating) each consume one
step. Thus, in order to determine whether a heap typing-value pair 〈Ψ, v〉
belongs to a type τ with approximation k it is sufficient to know the types of
the stored values on which v relies (as recorded by Ψ) only up to level k − 1.
The true meaning of types and heap typings is then obtained by taking the limit
over all approximations.

The preceding considerations are now formalized, building on the model
originally developed by Ahmed et al. for an ML-like language with general ref-
erences and impredicative second-order types [AAV02, AAV03, Ahm04]. Apart
from some notational differences, the definitions in Section 3.1 are the same as
in [Ahm04]. Section 3.2 adds subtyping, while Section 3.3 deals with procedure
types and Section 3.4 revisits reference types. The semantics of object types
is presented in Section 3.5, and constitutes the main contribution of this pa-
per. We further deviate from [Ahm04] by adding bounds to the second-order
types in Section 3.6, and by using iso-recursive instead of equi-recursive types
in Section 3.7.

3.1 The Semantic Model

To make the (circular) definition of types and heap typings from (2) work,
the step-indexed semantics considers triples with an additional natural num-
bers index, rather than just pairs. First, we inductively define two families
(PreTypek)k∈N of pre-types, and (HeapTypingk)k∈N of heap pre-typings, by

τ ∈ PreType0 ⇔ τ = ∅
τ ∈ PreTypek+1 ⇔ τ ∈ P(N× (

⋃
j≤k HeapTypingj)× CVal)

∧ ∀〈j,Ψ, v〉 ∈ τ. j ≤ k ∧ Ψ ∈ HeapTypingj

where HeapTypingk = Loc ⇀fin PreTypek. Clearly PreTypek ⊆ PreTypek+1 and
thus HeapTypingk ⊆ HeapTypingk+1 for all k. Now it is possible to set

τ ∈ PreType ⇔ τ ∈ P(N× (
⋃
j HeapTypingj)× CVal)

∧ ∀〈j,Ψ, v〉 ∈ τ. Ψ ∈ HeapTypingj

When writing 〈k,Ψ, v〉 in the following we always implicitly assume that Ψ ∈
HeapTypingk.
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Definition 3.1 (Semantic approximation). For any pre-type τ we call bτck the
k-th approximation of τ and define it as the subset containing all elements of τ
that have an index strictly less than k:

bτck = {〈j,Ψ, v〉 ∈ τ | j < k}

This is lifted pointwise to (partial) functions to pre-types:

bΨck = λl ∈ dom(Ψ). bΨ(l)ck

From these definitions we have:

Proposition 3.2 (Stratification). For all τ ∈ PreType and k ∈ N,

bτck ∈ PreTypek.

So in particular, if 〈k,Ψ, v〉 ∈ τ and l ∈ dom(Ψ) then Ψ(l) ∈ PreTypej
for some j ≤ k. This is captured by the following ‘stratification invariant’,
which all the constructions on (pre-) types will satisfy, and which ensures the
well-foundedness of the whole construction:

Stratification invariant. For all pre-types τ , bτck+1 cannot depend on any
pre-type beyond approximation k.

As indicated above, in order to take dynamic allocation into account we
consider a possible worlds model. Intuitively we think of a pair (k,Ψ) as de-
scribing the state of a heap h, where Ψ lists locations in h that are guaranteed
to be allocated, and contains the approximate type (up to approximation k)
of the stored values. In the course of a computation, there are three different
situations where the heap state changes:

• New objects are allocated on the heap, which is reflected by a heap pre-
typing Ψ′ with additional locations compared to Ψ. This operation does
not affect any of the previously stored objects, so Ψ′ will be an extension
of Ψ.

• The program executes for k − j steps, for some j ≤ k, without accessing
the heap. This is reflected by a heap state (j, bΨcj) that ‘forgets’ that we
have a more precise approximation, and guarantees that the heap is safe
only for j execution steps.

• The heap is updated, in such a way that all typing guarantees of Ψ are
preserved. Thus updates will be reflected by an information forgetting
extension, as in the previous case. However, because of the step taken by
the update itself, in this case we necessarily have that j < k.

The following definition of state extension captures these possible evolutions of
a state.

Definition 3.3 (State extension). The state extension v is the relation on
N× (Loc ⇀fin PreType) defined by

(k,Ψ) v (j,Ψ′) ⇔ j ≤ k ∧ dom(Ψ) ⊆ dom(Ψ′)
∧ ∀l ∈ dom(Ψ). bΨ′cj (l) = bΨcj (l)
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It is easily seen that state extension is a preorder.

Proposition 3.4. State extension is a preorder.

Proof. Reflexivity of v is obvious. For transitivity, assume that (k,Ψ) v (j,Ψ′)
and (j,Ψ′) v (i,Ψ′′), i.e., that

j ≤ k ∧ dom(Ψ) ⊆ dom(Ψ′) ∧ ∀l ∈ dom(Ψ). bΨ′cj (l) = bΨcj (l) (1)

i ≤ j ∧ dom(Ψ′) ⊆ dom(Ψ′′) ∧ ∀l ∈ dom(Ψ′). bΨ′′ci (l) = bΨ′ci (l) (2)

From (1) and (2) we have that i ≤ j ≤ k and dom(Ψ) ⊆ dom(Ψ′) ⊆ dom(Ψ′′).
Let l ∈ dom(Ψ). From (1) we have that bΨ′cj (l) = bΨcj (l). By the defini-

tion of semantic approximation (Definition 3.1) this implies that
⌊
bΨ′cj

⌋
i
(l) =⌊

bΨcj
⌋
i
(l), or equivalently bΨ′ci (l) = bΨci (l). This, together with (2), yields

bΨ′′ci (l) = bΨci (l), so by Definition 3.3 we conclude that (k,Ψ) v (i,Ψ′′).

A particular case of state extension corresponds to the execution of some
steps without allocations.

Proposition 3.5 (Information-forgetting extension). If j ≤ k then (k,Ψ) v
(j, bΨcj).

The step-indexing technique relies on the approximation of the ‘true’ set
of values that constitute a type, by all those values which behave accordingly
unless a certain number of computation steps is taken. Reducing the number
of available steps, we will only be able to make less distinctions. Moreover, if
for instance a procedure relies on locations in a heap as described by a state
(k,Ψ), we can safely apply it after further allocations. In fact, if we are only
interested in safely executing the procedure for j < k steps, a correspondingly
approximate heap will suffice. These conditions are captured precisely by state
extension, so we require our semantic types to be closed under state extension:

Definition 3.6 (Semantic types and heap typings). The set Type of semantic
types is defined by

τ ∈ Type ⇔ τ ∈ PreType ∧ ∀k, j ≥ 0. ∀Ψ,Ψ′. ∀v ∈ CVal.
(k,Ψ) v (j,Ψ′) ∧ 〈k,Ψ, v〉 ∈ τ ⇒ 〈j,Ψ′, v〉 ∈ τ

We define the set HeapTyping = Loc ⇀fin Type of heap typings, ranged over
by Ψ in the following, as the subset of heap pre-typings that map to semantic
types.

As explained by Ahmed in [Ahm04], this structure may be viewed as an
instance of Kripke models of intuitionistic logic where states are the possible
worlds, state extension is the reachability relation between worlds, and where
the closure under state extensions corresponds to Kripke monotonicity.

Definition 3.7 (Well-typed heap). A heap h has type Ψ with approximation k,
written as h :k Ψ, if

dom(Ψ) ⊆ dom(h) ∧ ∀j < k. ∀l ∈ dom(Ψ). 〈j, bΨcj , h(l)〉 ∈ Ψ(l)
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Semantic types only contain values, but we also need to associate types to
terms that are not values. We do this in two steps, first for closed terms, then
for arbitrary ones. A closed term has a certain type with approximation k with
respect to some heap typing Ψ, if in all heaps that are allowed by Ψ the term
behaves like an element of the type for k computation steps. In general, before
reducing to a value the term will execute for j steps, and possibly allocate some
new heap locations in doing so. The state describing the final heap will therefore
be an extension of the state describing the initial store, and it only needs to
be safe for the remaining k − j steps. Similarly, the final value needs to be in
the original type only for another k − j steps. The next definition makes this
precise.

Definition 3.8 (Closed Term :k,Ψ Semantic Type). For a term a we define that
a has type τ with respect to the state (k,Ψ) as:

a :k,Ψ τ ⇔ fv(a) = ∅ ∧ ∀j < k, h, h ′, b.

(h :k Ψ ∧ 〈h, a〉 →j 〈h ′, b〉 ∧ 〈h ′, b〉9)
⇒ ∃Ψ′. (k,Ψ) v (k − j,Ψ′) ∧ h ′ :k−j Ψ′ ∧ 〈k − j,Ψ′, b〉 ∈ τ

In the case of a value v, the statements 〈k,Ψ, v〉 ∈ τ and v :k,Ψ τ are closely
related:

Proposition 3.9.

1. If v is a closed value such that 〈k,Ψ, v〉 ∈ τ then v :k,Ψ τ .

2. If k > 0 and there exists some h such that h :k Ψ then the converse
implication is also true.

Proof. Suppose v ∈ CVal. Then from the operational semantics it is immediate
that 〈h, v〉9 for all h, hence for all j ≥ 0 and all h, h ′ and b:

〈h, v〉 →j 〈h ′, b〉 ∧ 〈h ′, b〉9 ⇔ j = 0 ∧ h ′ = h ∧ b ≡ v (1)

Thus, 〈k,Ψ, v〉 ∈ τ ⇒ v :k,Ψ τ is obvious. Conversely assume v :k,Ψ τ , which by
(1) means that for all h :k Ψ there is some Ψ′ such that

(k,Ψ) v (k,Ψ′) ∧ h :k Ψ′ ∧ 〈k,Ψ′, v〉 ∈ τ

By assumption there is some h :k Ψ, and we may without loss of generality as-
sume that dom(h) = dom(Ψ). But since h :k Ψ′ we obtain dom(Ψ′) ⊆ dom(h) =
dom(Ψ), thus (k,Ψ) v (k,Ψ′) gives also (k,Ψ′) v (k,Ψ), and we obtain 〈k,Ψ, v〉
by closure of the type τ under state extension.

Remark. The converse of Proposition 3.9(1) does not hold in general. Specifi-
cally, if either k = 0 or Ψ(l) = ∅ for some l, then v :k,Ψ τ is trivially true even
when τ = ∅, while 〈k,Ψ, v〉 /∈ ∅.

Even though the terms we evaluate are closed, when type-checking their
subterms we also have to reason about open terms. Typing open terms is done
with respect to a semantic type environment which maps variables to semantic
types. We reduce typing open terms to typing closed terms by substituting all
free variables with appropriate closed values. This is done by a value environ-
ment (a finite map from variables to closed values) that agrees with the type
environment.

16



Definition 3.10 (σ :k,Ψ Σ). We say that value environment σ agrees with
semantic type environment Σ, with respect to the state (k,Ψ), if for all x in
dom(Σ) we have that σ(x) :k,Ψ Σ(x). We denote this by σ :k,Ψ Σ.

Definition 3.11 (Semantic typing judgement). We say that a term a (possibly
with free variables, but not containing locations), has type τ with respect to a
semantic type environment Σ, written as Σ |= a : τ , if after substituting well-
typed values for the free variables of a, we obtain a closed term that has type τ
for any number of computation steps. More precisely:

Σ |= a : α ⇔ fv(a) ⊆ dom(Σ)
∧ ∀k ≥ 0. ∀Ψ. ∀σ :k,Ψ Σ. σ(a) :k,Ψ α

By construction, the semantic typing judgment enforces that all terms that
are typable with respect to it do not produce type errors when evaluated.

Definition 3.12 (Safe for k steps). We call a configuration 〈h, a〉 safe for k
steps, if the term a does not get stuck in less than k steps when evaluated in
the heap h, i.e. we define the set of all such configurations by

Safek = {〈h, a〉 | ∀j < k. ∀h ′, b. 〈h, a〉 →j 〈h ′, b〉
∧ 〈h ′, b〉9 ⇒ b ∈ Val}

Proposition 3.13. If a :k,Ψ τ and h :k Ψ then 〈h, a〉 ∈ Safek.

Proof. Suppose a :k,Ψ τ and h :k Ψ, let j < k and assume 〈h, a〉 →j 〈h ′, b〉
for some h ′ and b. By Definition 3.8, if 〈h ′, b〉9 then there exists Ψ′ such that
(k,Ψ) v (k − j,Ψ′) and 〈k − j,Ψ′, b〉 ∈ τ . In particular, τ ∈ Type implies
b ∈ CVal which proves 〈h, a〉 ∈ Safek.

Definition 3.14 (Safety). We call a configuration safe if it does not get stuck
in any number of steps:

Safe =
⋂
k∈N Safek

Theorem 3.15 (Safety). For all programs a, if ∅ |= a : α, then for all h
〈h, a〉 ∈ Safe.

Proof. We assume that a is a closed term without locations such that

∅ |= a : α (1)

Let h be an arbitrary heap, and k a non-negative integer. Let Ψ0 be the
empty heap typing, and σ an arbitrary value environment. By Definition 3.10
we have that σ :k,Ψ0 ∅. This together with (1) gives by Definition 3.11 that
σ(a) :k,Ψ0 α. Since a is closed this is equivalent to

a :k,Ψ0 α (2)

Since Ψ0 is empty by Definition 3.7 we have that h :k Ψ0. Thus 〈h, a〉 ∈ Safek by
Proposition 3.13. Since k was chosen arbitrarily we can conclude that 〈h, a〉 ∈
Safe.
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This result is much more direct than in a subject-reduction proof [WF94].
However, unlike with subject-reduction, the validity of the typing rules still
needs to be proved with respect to the model. We do this in two steps. In the
remainder of this section we introduce the specific semantic types of our model,
and prove that they satisfy certain semantic typing lemmas. These proofs are
similar in spirit to proving the ‘fundamental theorem’ of Kripke logical relations
[MM91]. Then, in Section 4 we prove the soundness of the rules of the initial
type system with respect to these typing lemmas.

Even though the semantic typing lemmas are constructed so that they di-
rectly correspond to the rules of the original type system, there is a big difference
between the two. While the semantic typing lemmas allow us to logically derive
valid semantic judgments using other valid judgments as premises, the typing
rules are just syntax which is used in the inductive definitions of the typing and
subtyping relations.

3.2 Subtyping

Since types in the step-indexed model are sets (with some additional properties),
the natural subtyping relation is set inclusion. This subtyping relation forms
a complete lattice on semantic types, where infima and suprema are given by
set-theoretic intersections and unions, respectively. The least element is ⊥ = ∅,
the greatest:

> = {〈j,Ψ, v〉 | j ∈ N,Ψ ∈ HeapTypingj , v ∈ CVal}.

Obviously ⊥ and > satisfy both the stratification invariant (i.e. they are
pre-types) and the closure under state extension condition, so they are indeed
semantic types.

We state a standard subsumption property which allows us to use a term of
a more specific type than the context requires.

Proposition 3.16 (Closed subsumption). If a :k,Ψ α and α ⊆ β, then a :k,Ψ β.

Proof. An easy consequence of Definition 3.8.

Lemma 3.17 (Subsumption). If Σ |= a : α and α ⊆ β then Σ |= a : β.

Proof. Immediate consequence of Proposition 3.16 and Definition 3.11.

While it is very easy to define subtyping this way, the interaction between
subtyping and the other features of the type system, in particular the object
types, is far from trivial.

3.3 Procedure Types

Intuitively, a procedure has type α → β if, when invoked with an argument of
type α, it produces a result of type β. In a step-indexed model, a procedure has
type α→ β for k computation steps if when applied to any well-typed argument
of type α it produces a result that has type β for another k − 1 steps. This
is because the procedure application itself takes one computation step, and the
only way to use a procedure is by applying it to some argument.

18



Additionally, we have to take into account that the procedure can also be
applied after some computation steps that extend the heap. So, for every j < k
and for every heap typing Ψ′ such that (k,Ψ) v (j,Ψ′), when applying the
procedure to a value in type α for j steps with respect to Ψ′, the result must
have type β for j steps with respect to Ψ′. This fits nicely with the possible
worlds reading of procedure types as intuitionistic implication.

Definition 3.18 (Procedure types). If α and β are semantic types, then

α→ β = {〈k,Ψ, λx. b〉 | ∀j<k,Ψ′, v. ((k,Ψ) v (j,Ψ′)
∧ 〈j,Ψ′, v〉 ∈ α)⇒ {{x 7→ v}}(b) :j,Ψ′ β}

Proposition 3.19. If α and β are semantic types, then α → β is also a se-
mantic type.

Proof sketch. We must show that the stratification invariant holds, and that
α→ β is closed under state extension. This is proved as Lemma 3.14 in [Ahm04,
page 64]).

Lemma 3.20 (SemLam: Abstraction). If Σ[x := α] |= b : β then Σ |= λx. b :
α→ β.

Proof. We assume that
Σ[x := α] |= b : β (1)

Let k ≥ 0, and assume Ψ and σ are such that

σ :k,Ψ Σ (2)

We have to show that σ(λ(x)b) :k,Ψ α → β. Without loss of generality we
assume that x 6∈ dom(σ) (otherwise we α-rename x), so equivalently we will
show that λ(x)σ(b) :k,Ψ α→ β. Since λ(x)σ(b) is a value, by Proposition 3.9 it
actually suffices to show that 〈k,Ψ, λ(x)σ(b)〉 ∈ α→ β.

Let j < k, Ψ′ and v such that

(k,Ψ) v (j,Ψ′) (3)

and
〈j,Ψ′, v〉 ∈ α (4)

From (2) and (3) by Definition 3.6 we have that σ :j,Ψ′ Σ. This together
with (4) gives us that σ[x := v] :j,Ψ′ Σ[x := α]. So from (1) by Definition 3.11
we have that σ[x := v](b) :j,Ψ′ β. From this, by definition 3.18 we conclude that
〈k,Ψ, λ(x)σ(b)〉 ∈ α→ β.

Lemma 3.21 (SemApp: Application). If Σ |= a : β → α and Σ |= b : β then
Σ |= a b : α.

Proof. We assume that
Σ |= a : β → α (1)

and
Σ |= b : β (2)

and we show that Σ |= a b : α.
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Let k ≥ 0, Ψ and σ :k,Ψ Σ. By Definition 3.11 it suffices to show that

σ(a) σ(b) :k,Ψ α.

From (1) by Definition 3.11 we get that

σ(a) :k,Ψ β → α (3)

Let j < k, h, h′ and b′ such that the following three conditions are fulfilled

h :k Ψ (4)

〈h, σ(a) σ(b)〉 →j 〈h′, b′〉 (5)
〈h′, b′〉9 (6)

From (3) and (4) by Proposition 3.13 it follows that 〈h, σ(a)〉 ∈ Safek. From
(5) and (6) by the operational semantics, there exists i1 < j such that

〈h, σ(a)〉 →i1 〈h1, b1〉 (7)
〈h1, b1〉9 (8)

From (3), (4), (7) and (8) by Definition 3.8 we get that there exists a heap
typing Ψ1 such that

(k,Ψ) v (k − i1,Ψ1) (9)
h1 :k−i1 Ψ1 (10)

〈k − i1,Ψ1, b1〉 ∈ β → α (11)

From (7) and (5) by rule Red-Ctx we get

〈h1, b1 σ(b)〉 →j−i1 〈h′, b′〉 (12)

From (11) we can deduce that b1 is a closed value.
From (15) and (4) by Proposition 3.13 it follows that 〈h, σ(b)〉 ∈ Safek. From

(12) and (6) by the operational semantics, there exists i2 < j − i1 such that

〈h1, σ(b)〉 →i2 〈h2, b2〉 (13)
〈h2, b2〉9 (14)

Since (k,Ψ) v (k − i1,Ψ1) (9) and we assumed that σ :k,Ψ Σ we get that
σ :k−i1,Ψ1 Σ. Thus from (2) by Definition 3.11 we get that

σ(b) :k−i1,Ψ1 β (15)

From (15), (10), (13) and (14) by Definition 3.8 we get that there exists a
heap typing Ψ2 such that

(k − i1,Ψ1) v (k − i1 − i2,Ψ2) (16)
h2 :k−i1−i2 Ψ2 (17)

〈k − i1 − i2,Ψ2, b2〉 ∈ β (18)

From (11) and (16) by the closure under state extension property of types
(Definition 3.6) we infer that

〈k − i1 − i2,Ψ2, b1〉 ∈ β → α (19)
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We choose k∗ = k − i1 − i2 − 1 and Ψ∗ = bΨ2ck∗ . By Proposition 3.5 we
have that

(k − i1 − i2,Ψ2) v (k∗,Ψ∗) (20)

From (18) and (20) by Definition 3.6 we have

〈k∗,Ψ∗, b2〉 ∈ β (21)

From (19), (20) and (21) by Definition 3.18 we have that b1 = λ(x)c for
some c and

{{x 7→ b2}}(c) :k∗,Ψ∗ α (22)

From (12) and (13) by the Red-Ctx rule we have that

〈h2, (λ(x)c) b2〉 →j−i1−i2 〈h′, b′〉 (23)

By rule Red-Beta

〈h2, (λ(x)c) b2〉 → 〈h2, {{x 7→ b2}}(c)〉 (24)

From (23) and (24) we have that

〈h2, {{x 7→ b2}}(c)〉 →j−i1−i2−1 〈h′, b′〉 (25)

From (22), (17), (25) and (6) by Definition 3.8 we get that there exists a Ψ′

such that

(k∗,Ψ∗) v (k − j,Ψ′) (26)
h′ :k−j Ψ′ (27)

〈k − j,Ψ′, b′〉 ∈ α (28)

From (9), (16), (20) and(26) by the transitivity of the state extension relation
(Proposition 3.4)

(k,Ψ) v (k − j,Ψ′) (29)

From (4), (5), (6), (29), (27) and (28) by Definition 3.8 we can conclude that
σ(a) σ(b) :k,Ψ α, which is what we wanted to show.

The procedure type constructor is of course contravariant in the argument
type and covariant in the result type.

Lemma 3.22 (SemSubProc: Subtyping Procedure Types). If α′ ⊆ α and
β ⊆ β′ then α→ β ⊆ α′ → β′.

Proof. We assume
α′ ⊆ α (1)

and
β ⊆ β′. (2)

We need to show that α → β ⊆ α′ → β′. Let 〈k,Ψ, λ(x)b〉 ∈ α → β. It
suffices to show that: 〈k,Ψ, λ(x)b〉 ∈ α′ → β′.

Let j < k, Ψ′ and v such that

(k,Ψ) v (j,Ψ′) (3)
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and
〈j,Ψ′, v〉 ∈ α′. (4)

From (1) and (4) we immediately have

〈j,Ψ′, v〉 ∈ α (5)

From (3) and (5) by definition 3.18 we get that

{{x 7→ v}}(b) :j,Ψ′ β (6)

From (2) and (6) by Lemma 3.16 we have that {{x 7→ v}}(b) :j,Ψ′ β′. Finally, by
definition 3.18 we can conclude that 〈k,Ψ, λ(x)b〉 ∈ α′ → β′.

3.4 Revisiting Reference Types

While our calculus does not have references syntactically, we will use the model
of references from [AAV03, Ahm04] in our construction underlying object types.
In order to interpret the variance annotations in object types, we also need to
introduce readable reference types and writable reference types, with covariant
and contravariant subtyping, respectively [Rey96, PS96, CDV07].

A heap typing associates to each allocated location the precise type that
can be used when reading from it and writing to it. So all heap locations
support both reading and writing at a certain type, and we do not have read-
only or write-only locations. Intuitively, for the readable reference types and
the writable ones the precise type of the locations is only partially known, so
that without additional information only one of the two operations is safe at a
meaningful type.

We first recall the definition of reference types from [AAV03, Ahm04].

Definition 3.23 (Reference types). If τ is a semantic type then

ref◦τ = {〈k,Ψ, l〉 | bΨ(l)ck = bτck}

According to this definition, a location l has type ref◦τ if the type associated
to l by the heap typing Ψ is approximately τ . Semantic approximation is used
to satisfy the stratification invariant, and is operationally justified by the fact
that reading from a location or writing to it takes one computation step. So, l
has type ref◦τ for k steps if all values that are read from l or written to l have
type τ for k − 1 steps.

The readable reference type ref+τ is similar to ref◦τ , but poses less con-
straints on the heap typing Ψ: it only requires that Ψ(l) is a subtype of τ , as
before up to some approximation.

Definition 3.24 (Readable reference types). If τ is a type then

ref+τ = {〈k,Ψ, l〉 | bΨck (l) ⊆ bτck}

The value stored at location l also has type τ by subsumption, and therefore
can be read and safely used as a value of type τ . However, the true type of
location l is in general unknown, so writing any value to it could be unsafe (the
true type of l might be the empty type ⊥). On the other hand, knowing that
a location has type ref+τ does not mean that we cannot write to it: it simply
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means that we do not know the type of the values that can be written to it, so
in the absence of further information no writing can be guaranteed to be type
safe2.

Dually, the type ref−τ of writable references contains all those locations l
whose type associated by Ψ is a supertype of τ .

Definition 3.25 (Writable reference types). If τ is a type then

ref−τ = {〈k,Ψ, l〉 | bτck ⊆ bΨck (l)}

We can safely write a value of type τ to a location of type ref−τ , since this
value also has the real type of location l by subsumption. However, the real
type of such locations can be arbitrarily general. In particular it can be >, the
type of all values. Thus a location about which we only know that it has type
ref−τ can only be read safely at type >.

With these definitions, the usual reference type from [Ahm04, AAV03] can
be recovered as the intersection of a readable and a writable reference type:

ref◦τ = ref+τ ∩ ref−τ

Hence ref+τ and ref−τ are both supertypes of ref◦τ :

ref◦τ ⊆ ref+τ ref◦τ ⊆ ref−τ

It can also be easily shown that the readable reference type constructor is co-
variant, while the writable reference one is contravariant. The usual reference
types are therefore obviously invariant. For a variance annotation ν ∈ {◦,+,−}
we use refν to stand for the reference type constructor with this variance. Note
that, strictly speaking, the set refντ is not a semantic type since for our calculus
locations are not values. The definition of object types we give below does not
rely on refντ being a type.

3.5 Object Types

Giving a semantics to object types is challenging. Not surprisingly, the definition
of object types is more complex than the other definitions of types encountered
in this paper. A look at the typing rules from Section 2 gives an indication
why this is the case. First, an adequate interpretation of object types must
permit subtyping both in width and in depth, taking the variance annotations
into account accordingly. Second, in contrast to all the other types we consider
which have just a single elimination rule, once constructed, objects support
three different operations: invocation, update, and cloning. The definition of
object types must ensure the consistent use of an object through all possible
future operations. That is, all the requirements on which invocation, update or
cloning rely must already be established at object creation time.

We will now explain the construction in detail. It is well-known that invo-
cation, update, cloning and the desired subtyping properties impose conflicting
requirements on typed objects:

2Note that this is conceptually different from the immutable reference types modeled in
[Ahm04] using singleton types.
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• Our decision to store methods in the heap as procedures, together with the
‘self-application’ operational semantics of method invocation (Red-Inv in
Figure 3), suggests that object types are somewhat similar to recursive
types of records of references holding procedures that take the enclosing
record as argument:

[md : τd]d∈D ≈ µ(α).{md : ref◦(α→ τd)}d∈D.

However, the invariance of the reference type constructor blocks any form
of subtyping, even just in width3.

• A combination of type recursion and an existential quantifier that uses
the recursion variable as bound would allow us to enforce covariance for
the positions of the recursion variable, and thus have subtyping in width:

[md : τd]d∈D ≈ µ(α).∃α′ ⊆ α.{md : ref◦(α′ → τd)}d∈D

This is similar to the encoding of self types explored in [AC96, ACV96].

• For subtyping in depth with respect to the variance annotations we sim-
ply use the readable and writable reference types defined in the previous
section:

[md :νd τd]d∈D ≈ µ(α).∃α′⊆α.{md : refνd(α′ → τd)}d∈D.

Still, by keeping α′ abstract, neither the typing rule for method invocation
(Inv in Figure 6), nor the one for object cloning (Clone) is validated.

• By explicitly enforcing in the definition of object types that the object
value itself belongs in fact to this existentially quantified α′, the assump-
tions become sufficiently strong to repair the invocation case. In fact, by
enforcing this not only for the current object value, but also for all ‘very
similar’ values, maybe not even created yet, the case of cloning is also
covered.

The parts of the following definition can be nicely matched to the permitted
operations on objects, as outlined above:

Definition 3.26 (Object types). Let α = [md :νd τd]d∈D, defined as the set of
all triples 〈k,Ψ, {me=le}e∈E〉 such that

D ⊆ E (1)
∧ ∃α′. α′ ∈ Type ∧ α′ ⊆ bαck (2)
∧ (∀j < k. ∀Ψ′. ∀ {me=l′e}e∈E . (k,Ψ) v (j,Ψ′) (3)

∧ (∀e ∈ E. bΨ′cj (l′e) = bΨcj (le))⇒ 〈j, bΨ′cj , {me=l′e}e∈E〉 ∈ α
′)

∧ (∀d ∈ D. νd ∈ {+, ◦} ⇒ bΨck (ld) ⊆ bα′ → τdck) (4)
∧ (∀d ∈ D. νd ∈ {−, ◦} ⇒ bα′ → τdck ⊆ bΨck (ld)) (5)

3It turns out that even without the reference types (e.g. for the functional object calculus)
the contravariance of the procedure type constructor in its first argument would still cause
any sort of subtyping to fail.
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The first condition ensures that all values in an object type provide at least
the required methods listed by this type, but can also provide more. Clearly
this is necessary for subtyping in width. Condition (2) postulates the existence
of a more specific type α′, which may be thought of as the ‘true’ type of the
object {me=le}e∈E (up to approximation k). The subsequent conditions are
then all stated in terms of α′ rather than α.

As explained above, in order to be able to invoke methods we must know
that {me=le}e∈E belongs to the more specific type α′ for j < k steps (which
suffices since application consumes a step). In the particular case where Ψ′ is Ψ
and {me=l′e}e∈E is {me=le}e∈E condition (3) states exactly this. We need the
more general formulation in order to ensure that the clones of the considered
object also belong to the same type α′. Therefore we enforce that no matter
how an object value {me=l′e}e∈E is constructed it belongs to type α′, provided
that it satisfies the same typing assumptions as {me=le}e∈E , with respect to
a possibly extended heap typing Ψ′. Allowing for state extension is necessary
since cloning itself allocates new locations not present in the original Ψ, and also
because cloning can be performed after some intermediate computation steps
that result in further allocations.

Conditions (4) and (5) simply unfold the definitions of reference types from
Section 3.4 for the given variance annotations.

We show that this definition of object types actually makes sense, in that
it defines a semantic type. This is not immediately obvious because of the
recursion.

Proposition 3.27. If τd ∈ Type for all d ∈ D, then we also have that

[md :νd τd]d∈D ∈ Type.

Proof. We show 3 properties: firstly, the definition α = [md :νd τd]d∈D is well-
founded; secondly, the set thus defined is a pre-type, and thirdly that it satisfies
the closure under state extension property.

1. Clearly τ =
⋃
k bτck for any type τ , by the definition of approximation.

Considering Definition 3.26 it is obvious that each bαck is defined only in
terms of bαcj for j < k. In particular in the case k = 0 the set bαc0 neces-
sarily equals ∅, and we may define [md :νd τd]d∈D =

⋃
k

⌊
[md :νd τd]d∈D

⌋
k

by induction on k.

2. We need to show that for all 〈k,Ψ, v〉 ∈ α, Ψ ∈ HeapTypingk. But this is
clear by our convention of only considering such well-formed triples.

3. Assume 〈k,Ψ, v〉 ∈ [md :νd τd]d∈D, and let k′,Ψ′ be such that

(k,Ψ) v (k′,Ψ′) (1)

We show that 〈k′,Ψ′, v〉 ∈ [md :νd τd]d∈D, by verifying all the conditions
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of Definition 3.26. By the assumption, we obtain

v ≡ {me=le}e∈E , D ⊆ E (2)
∃α′. α′ ∈ Type ∧ α′ ⊆ bαck (3)
∀j < k. ∀Ψ∗. ∀ {me=l′e}e∈E . (k,Ψ) v (j,Ψ∗) ∧ (4)

(∀e ∈ E. bΨ∗cj (l′e) = bΨcj (le))⇒ 〈j, bΨ∗cj , {me=l′e}e∈E〉 ∈ α
′

∀d ∈ D. νd ∈ {+, ◦} ⇒ bΨck (ld) ⊆ bα′ → τdck (5)
∀d ∈ D. νd ∈ {−, ◦} ⇒ bα′ → τdck ⊆ bΨck (ld) (6)

By assumption (1) k′ ≤ k, thus by choosing β′ = bα′ck′ , (3) gives

∃β′. β′ ∈ Type ∧ β′ ⊆ bαck′ (7)

By (1), (4), bα′ck′ = β′ and the transitivity of v, we have that

∀j < k′. ∀Ψ∗. ∀ {me=l′e}e∈E . (k′,Ψ′) v (j,Ψ∗) ∧ (8)
(∀e ∈ E. bΨ∗cj (l′e) = bΨ′cj (le))⇒ 〈j,Ψ∗, {me=l′e}e∈E〉 ∈ β

′

From (5) and (6), because ld ∈ dom(Ψ) for all d ∈ D, and because b·ck′ is
monotonic with respect to set inclusion, we have that:

∀d ∈ D. νd ∈ {+, ◦} ⇒ bΨck′ (ld) ⊆ bβ
′ → τdck′ (9)

∀d ∈ D. νd ∈ {−, ◦} ⇒ bβ′ → τdck′ ⊆ bΨck′ (ld) (10)

Finally, from (2), (7), (8), (9) and (10), by Definition 3.26 (Object types)
we obtain the property that 〈k′,Ψ′, v〉 ∈ [md :νd τd]d∈D, i.e. we have
closure under state extension.

Lemma 3.28 (SemObj: Object construction). For all object types α = [md :νd τd]d∈D,
if for all d ∈ D we have Σ[xd := α] |= bd : τd, then Σ |= [md=ς(xd)bd]d∈D : α.

Proof. Let α = [md :νd τd]d∈D. We assume that

∀d ∈ D. Σ[xd := α] |= bd : τd (1)

and show that
Σ |= [md=ς(xd)bd]d∈D : α.

Let k ≥ 0, σ be a value environment and Ψ be a heap typing such that

σ :k,Ψ Σ (2)

By Definition 3.11 we need to show that

σ([md=ς(xd)bd]d∈D) :k,Ψ α

Without loss of generality we assume that ∀d ∈ D. xd 6∈ dom(σ) (otherwise
we α-rename), and since σ is closed we will equivalently show that

[md=ς(xd)σ(bd)]d∈D :k,Ψ α
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Let j < k, h, h′ and b′ such that the following three conditions are fulfilled

h :k Ψ (3)

〈h, [md=ς(xd)σ(bd)]d∈D〉 →
j 〈h′, b′〉 (4)

〈h′, b′〉9 (5)

By the operational semantics the only way to reduce an object is directly to an
object value using Red-Obj. This means that actually j = 1 and

h′ = h [ld := λ(xd)σ(bd)]d∈D , where ∀d ∈ D. ld 6∈ dom(h) (6)
b′ = {md=ld}d∈D (7)

We choose
Ψ′ =

⌊
Ψ [ld := (α→ τd)]d∈D

⌋
k−1

(8)

and show that

(k,Ψ) v (k − 1,Ψ′) (9)
h′ :k−1 Ψ′ (10)

〈k − 1,Ψ′, b′〉 ∈ α (11)

Showing (9) is trivial by the construction of Ψ′ (8), which only adds new
locations to Ψ but does not modify the existing ones.

In order to show (10) by Definition 3.7 we first need to show that dom(Ψ′) ⊆
dom(h′). From (3) by Definition 3.7 we know that dom(Ψ) ⊆ dom(h). From (8)
we know that dom(Ψ′) = dom(Ψ) ∪ {ld | d ∈ D}, and similarly from (6) that
dom(h′) = dom(h) ∪ {ld | d ∈ D}. By a simple set-theoretic argument we get
that dom(Ψ′) ⊆ dom(h′).

Let i < k− 1 and l ∈ dom(Ψ′). By Proposition 3.5 we get that (k− 1,Ψ′) v
(i, bΨ′ci), which together with (9) by the transitivity of state extension gives us

(k,Ψ) v (i, bΨ′ci) (12)

For (10) we also need to show that 〈i, bΨ′ci , h′(l)〉 ∈ bΨ′ck−1 (l). Since
i < k − 1 it suffices to show that

〈i, bΨ′ci , h
′(l)〉 ∈ Ψ′(l)

We distinguish two cases:

Case l = ld for some d ∈ D. From (8) and (6) respectively we get that

Ψ′(l) = bα→ τdck−1

h′(l) = λ(xd)σ(bd)

Thus we need to show

〈i, bΨ′ci , λ(xd)σ(bd)〉 ∈ bα→ τdck−1 (13)

By Lemma 3.20 and assumption (1) we already know that

∀d ∈ D. Σ |= λxd. bd : α→ τd (14)
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With (2) and Definition 3.11, (14) yields

∀d ∈ D. λ(xd)σ(bd) :k,Ψ α→ τd (15)

Since j < k we know that k > 0. Also we have that h :k Ψ (3) so by Proposi-
tion 3.9 (15) is equivalent to

∀d ∈ D. 〈k,Ψ, λ(xd)σ(bd)〉 ∈ α→ τd (16)

By (12) and the closure under state extension of each α→ τd, (16) implies the
required (13).

Case l ∈ dom(Ψ). From (8) and (6) respectively we get that Ψ′(l) = bΨ(l)ck−1

and h′(l) = h(l). So we actually need to show that 〈i, bΨ′ci , h(l)〉 ∈ bΨ(l)ck−1.
From (3) by Definition 3.7 we get that 〈k,Ψ, h(l)〉 ∈ Ψ(l). Since Ψ(l) ∈ Type
and (k,Ψ) v (i, bΨ′ci) (12), by the closure under state extension condition
on types we finally get that 〈i, bΨ′ci , h(l)〉 ∈ Ψ(l). Thus, 〈i, bΨ′ci , h(l)〉 ∈
bΨ(l)ck−1 since i < k − 1.

Finally, we need to show (11), i.e. that 〈k − 1,Ψ′, {md=ld}d∈D〉 ∈ α. To
this end, we prove the following more general claim:

∀j0 ∈ N. ∀Ψ0. ∀ {md=l ′d}d∈D . j0 < k ∧ (k − 1,Ψ′) v (j0,Ψ0) (17)
∧ (∀d ∈ D. bΨ0cj0 (l ′d) = bΨ′cj0 (ld))

⇒ 〈j0, bΨ0cj0 , {md=l ′d}d∈D〉 ∈ α

From this (11) follows by taking j0 = k − 1, Ψ0 = Ψ′, and l ′d = ld for all d ∈ D,
and by observing that v is reflexive and that b′ ≡ {md=ld}d∈D.

The claim is proved by induction on j0. So assume j0 ∈ N and Ψ0 are such
that j0 < k and

(k − 1,Ψ′) v (j0,Ψ0) (18)

hold. Moreover, for all d ∈ D let l ′d ∈ dom(Ψ0) such that

∀d ∈ D. bΨ0cj0 (l ′d) = bΨ′cj0 (ld) (19)

We show that 〈j0, bΨ0cj0 , {md=l ′d}d∈D〉 ∈ α, by checking that the conditions
obtained by unfolding the definition of α = [md :νd τd]d∈D all hold. Clearly we
have

D ⊆ D (20)

as required for the shape of {md=l ′d}d∈D. By choosing α′ = bαcj0 , we obtain

∃α′.α′ ∈ Type ∧ α′ ⊆ bαcj0 (21)

Next, we must prove that

∀j < j0. ∀Ψ1.∀ {md=l ′′d }d∈D . (j0,Ψ0) v (j,Ψ1) (22)
∧ (∀d ∈ D. bΨ1cj (l ′′d ) = bΨ0cj (l ′d))

⇒ 〈j, bΨ1cj , {md=l ′′d }d∈D〉 ∈ α
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So assume j < j0 and Ψ1 and l ′′d are such that (j0,Ψ0) v (j,Ψ1) and bΨ1cj (l ′′d ) =
bΨ0cj (l ′d)) for all d ∈ D. Now j < j0 and assumption (19) yield for all d ∈ D

bΨ1cj (l ′′d ) = bΨ0cj (l ′d) =
⌊
bΨ0cj0 (l ′d)

⌋
j

=
⌊
bΨ′cj0 (ld)

⌋
j

= bΨ′cj (ld) (23)

Moreover, by (18) and transitivity of v we have

(k − 1,Ψ′) v (j0,Ψ0) v (j,Ψ1) (24)

Since j < j0 < k, the induction hypothesis of the claim gives

〈j, bΨ1cj , {md=l ′′d }d∈D〉 ∈ α (25)

thus we have established (22).
Finally, by the construction of Ψ′ in (8), (18) and (19), we obviously have

bΨ0cj0 (l′d) = bΨ′cj0 (ld) = bα→ τdcj0 = bα′ → τdcj0 (26)

for all d ∈ D. Clearly (26) entails

∀d ∈ D. νd ∈ {+, ◦} ⇒ bΨ0cj0 (l′d) ⊆ bα′ → τdcj0 (27)

∀d ∈ D. νd ∈ {−, ◦} ⇒ bα′ → τdcj0 ⊆ bΨ0cj0 (l′d) (28)

By Definition 3.26 applied to the object type α = [md :νd τd]d∈D the properties
(20), (21), (22), (27) and (28) establish that indeed 〈j0, bΨ0cj0 , {md=l ′d}d∈D〉 ∈
α. This finishes the inductive proof of claim (17), and thus of the lemma.

Our attempts to prove 〈k−1,Ψ′, b′〉 ∈ α directly have failed, and the gener-
alization to claim (17) seems crucial. In fact, the induction on the step index
j resolves the recursion that is inherent to objects due to the self application
semantics of method invocation.

Lemma 3.29 (SemClone: Object cloning). For all object types α = [md :νd τd]d∈D,
if Σ |= a : α then Σ |= clone a : α.

Proof. Let α = [md :νd τd]d∈D. We assume Σ |= a : α and show that Σ |=
clone a : α. Let k ≥ 0, σ be a value environment and Ψ be a heap typing such
that σ :k,Ψ Σ. From Σ |= a : α we get by Definition 3.11 that

σ(a) :k,Ψ α (1)

What we need to show is that clone σ(a) :k,Ψ α.
Let j < k, the heaps h and h′ and the term b′ such that the following three

conditions are fulfilled

h :k Ψ (2)

〈h, clone σ(a)〉 →j 〈h′, b′〉 (3)
〈h′, b′〉9 (4)

By the operational semantics there exist i ≤ j, h∗ and a∗ such that

〈h, clone σ(a)〉 →j−i 〈h∗, clone a∗〉 →i 〈h′, b′〉 (5)

〈h, σ(a)〉 →j−i 〈h∗, a∗〉 (6)
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From (1), (2) and (6) by Definition 3.8 there exists Ψ∗ so that

(k,Ψ) v (k − j + 1,Ψ∗) (7)
h∗ :k−j+1 Ψ∗ (8)

〈k − j + 1,Ψ∗, a∗〉 ∈ α (9)

From (9) by Definition 3.26 a∗ = {me=le}e∈E and there exists α′ such that

D ⊆ E (10)
α′ ∈ Type ∧ α′ ⊆ bαck−j+1 (11)

∀j′′<k − j + 1. ∀Ψ′′. ∀ {me=l′′e }e∈E . (k − j + 1,Ψ∗) v (j′′,Ψ′′) ∧ (12)
(∀e ∈ E. bΨ′′cj′′ (l

′′
e ) = bΨ∗cj′′ (le))⇒ 〈j

′′, bΨ′′cj′′ , {me=l′′e }e∈E〉 ∈ α
′

∀d ∈ D. νd ∈ {+, ◦} ⇒ bΨ∗ck−j+1 (ld) ⊆ bα′ → τdck−j+1 (13)

∀d ∈ D. νd ∈ {−, ◦} ⇒ bα′ → τdck−j+1 ⊆ bΨ
∗ck−j+1 (ld) (14)

From (5) by rule Red-Clone we get that i = 1 and

〈h, clone σ(a)〉 →j−1 〈h∗, clone {me=le}e∈E〉 → 〈h
′, {me=l′e}e∈E〉 (15)

∀e ∈ E. l′e 6∈ dom(h∗) (16)
h′ = h∗ [l′e := h∗(le)]e∈E (17)

We choose
Ψ′ =

⌊
Ψ∗ [l′e := Ψ∗(le)]e∈E

⌋
k−j (18)

and show that

(k,Ψ) v (k − j,Ψ′) (19)
h′ :k−j Ψ′ (20)

〈k − j,Ψ′, {me=l′e}e∈E〉 ∈ α (21)

We start by proving (19). From (7) we already know that (k,Ψ) v (k− j +
1,Ψ∗) so by Proposition 3.4 it suffices to show that (k− j+ 1,Ψ∗) v (k− j,Ψ′).
Let l ∈ dom(Ψ∗). By construction (18) we have that bΨ∗ck−j (l) = bΨ′ck−j (l),
so indeed

(k − j + 1,Ψ∗) v (k − j,Ψ′) (22)

thus by transitivity also (k,Ψ) v (k − j,Ψ′).
In order to show (20) by Definition 3.7 we first need to show that dom(Ψ′) ⊆

dom(h′). From (2) by Definition 3.7 we know that dom(Ψ) ⊆ dom(h). From
(18) we know that dom(Ψ′) = dom(Ψ) ∪ {l′e | e ∈ E}, and similarly from (17)
that dom(h′) = dom(h) ∪ {l′e | e ∈ E}. By a simple set-theoretic argument we
get that dom(Ψ′) ⊆ dom(h′).

Let i < k− j and l ∈ dom(Ψ′). By Proposition 3.5 we get that (k− j,Ψ′) v
(i, bΨ′ci), which together with (19) by the transitivity of state extension gives
us

(k,Ψ) v (i, bΨ′ci) (23)

For (20) we now need to show that 〈i, bΨ′ci , h′(l)〉 ∈ bΨ′ck−j (l). We equiv-
alently show that 〈i, bΨ′ci , h′(l)〉 ∈ Ψ′(l) by case analysis on the provenience of
the label l.
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Case l ∈ dom(Ψ∗). By (17) and (18) we get that h′(l) = h∗(l) and Ψ′(l) =
bΨ∗(l)ck−j respectively. Therefore it suffices to show that 〈i, bΨ′ci , h∗(l)〉 ∈
Ψ∗(l), by i < k − j.
From (8) by Definition 3.7 we get that

〈k − j, bΨ∗ck−j , h
∗(l)〉 ∈ Ψ∗(l) (24)

By construction (18) we have that for all l′ ∈ dom(Ψ∗), bΨ∗ci (l′) = bΨ′ci (l′).
So by Definition 3.3

(k − j, bΨ∗ck−j) v (i, bΨ′ci) (25)

Since Ψ∗(l) ∈ Type, from equations (24) and (25) by Definition 3.6 we infer
that 〈i, bΨ′ci , h∗(l)〉 ∈ Ψ∗(l).

Case l = l′e for some e ∈ E. By (17) and (18) we get that h′(l′e) = h∗(le) and
bΨ′(l′e)ck−j = Ψ∗(le) respectively. But le ∈ dom(Ψ∗) so by the previous case
〈i, bΨ′ci , h∗(le)〉 ∈ Ψ∗(le).

Finally, we have to show that 〈k − j,Ψ′, {me=l′e}e∈E〉 ∈ α (21).
From (11) and the definition of semantic approximation (Definition 3.1) we

get that, for β′ = bα′ck−j

β′ ∈ Type ∧ β′ ⊆ bαck−j (26)

In order to show (21) one of the properties we need is

∀j′′<k − j. ∀Ψ′′. ∀ {me=l′′e }e∈E . (k − j,Ψ′) v (j′′,Ψ′′) ∧ (27)
(∀e ∈ E. bΨ′′cj′′ (l

′′
e ) = bΨ′cj′′ (le))⇒ 〈j

′′, bΨ′′cj′′ , {me=l′′e }e∈E〉 ∈ β
′

Let j′′ < k − j, Ψ′′ and {me=l′′e }e∈E such that

(k − j,Ψ′) v (j′′,Ψ′′) (28)
∀e ∈ E. bΨ′′cj′′ (l

′′
e ) = bΨ′cj′′ (le) (29)

From (22) and (28) by the transitivity of state extension we get that

(k − j + 1,Ψ∗) v (j′′,Ψ′′) (30)

The construction of Ψ′ (18) gives us that Ψ′(le) = bΨ∗(le)ck−j for all e in
E, thus from (29) and j′′ < k − j:

∀e ∈ E. bΨ′′cj′′ (l
′′
e ) = bΨ∗cj′′ (le) (31)

Properties (12), (30) and (31) finally yield 〈j′′, bΨ′′cj′′ , {me=l′′e }e∈E〉 ∈ β′,
which concludes the proof of (27).

The construction of Ψ′ also gives us that Ψ′(ld) = bΨ∗(l′d)ck−j for all d in
D, so (13) and (14) and the choice of β′ imply

∀d ∈ D. νd ∈ {+, ◦} ⇒ bΨ′ck−j (l′d) ⊆ bβ′ → τdck−j (32)

∀d ∈ D. νd ∈ {−, ◦} ⇒ bβ′ → τdck−j ⊆ bΨ
′ck−j (ld) (33)

From (10), (26), (27), (32) and (33) by Definition 3.26 we conclude that
〈k − j, bΨ′ck−j , {me=l′e}e∈E〉 ∈ α.
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Lemma 3.30 (SemInv: Method invocation). For all object types α = [md :νd τd]d∈D
and for all e ∈ D, if Σ |= a : α and νe ∈ {+, ◦}, then Σ |= a.me : τe.

Proof. Let α = [md :νd τd]d∈D. We assume that e ∈ D, νe ∈ {+, ◦}, and
Σ |= a : α and show that Σ |= a.me : τe.

Let k ≥ 0, σ and Ψ such that σ :k,Ψ Σ. From Σ |= a : α we get by
Definition 3.11 that

σ(a) :k,Ψ α (1)

We need to show that
σ(a).me :k,Ψ τe

To this end, let j < k, and consider heaps h and h ′ and a term b′ such that the
following three conditions are fulfilled:

h :k Ψ (2)

〈h, σ(a).me〉 →j 〈h ′, b′〉 (3)
〈h ′, b′〉9 (4)

From (3) we have by the operational semantics, for some i ≤ j, h∗ and b∗,

〈h, σ(a)〉 →i 〈h∗, b∗〉9 (5)

From (1), (2) and (5), by Definition 3.8 it follows that there exists a heap typing
Ψ∗ such that

(k,Ψ) v (k − i,Ψ∗) (6)
h∗ :k−i Ψ∗ (7)

〈k − i,Ψ∗, b∗〉 ∈ α = [md :νd τd]d∈D (8)

By the definition of object types, (8) shows that there exists a set C and α′ ⊆ α
such that b∗ ≡ {mc=lc}c∈C , D ⊆ C and

α′ ∈ Type ∧ α′ ⊆ bαck−i (9)

∀j < k − i. ∀Ψ′. ∀ {mc=l′c}c∈C . (k − i,Ψ∗) v (j,Ψ′)
∧ (∀c ∈ C. bΨ′cj (l′c) = bΨ∗cj (lc))⇒ 〈j, bΨ′cj , {mc=l′c}c∈C〉 ∈ α

′)
(10)

∀d ∈ D. νd ∈ {+, ◦} ⇒ bΨ∗ck−i (ld) ⊆ bα′ → τdck−i (11)

From e ∈ D and νe ∈ {+, ◦} using (11) we deduce that

bΨ∗ck−i (le) ⊆ bα′ → τeck−i (12)

So by expanding the definition of statement (7) for k − i− 1 < k − i we have

〈k − i− 1, bΨ∗ck−i−1 , h
∗(le)〉 ∈ bα′ → τeck−i (13)

which by the definition of the procedure type α′ → τe means in particular that
h∗(le) must be an abstraction, i.e. for some x and a′, h∗(le) ≡ λ(x)a′. Thus,
since b∗ ≡ {mc=lc}c∈C ∈ CVal and e ∈ D ⊆ C, by (5), Red-Ctx, Red-Inv,
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Red-Beta and the operational semantics, the sequence in (3) is necessarily of
the form

〈h, σ(a).me〉 →i 〈h∗, {mc=lc}c∈C .me〉
→ 〈h∗, (λ(x)a′) {mc=lc}c∈C〉
→ 〈h∗, {{x 7→ {mc=lc}c∈C}}(a

′)〉
→j−i−2 〈h′, b′〉

(14)

Since k − i− 2 < k − i by Proposition 3.5 we have that

(k − i,Ψ∗) v (k − i− 2, bΨ∗ck−i−2) (15)

so we can instantiate (10) with l′c = lc and Ψ′ = bΨ∗ck−i−2 to obtain

〈k − i− 2, bΨ∗ck−i−2 , {mc=lc}c∈C〉 ∈ α
′ (16)

From this using (13) and from the definition of procedure types, we obtain

{{x 7→ b∗}}(a′) :k−i−2,bΨ∗ck−i−2
τe (17)

On the other hand, (7) implies

h∗ :k−i−2 bΨ∗ck−i−2 (18)

by Definition 3.7, Proposition 3.5 and the closure of types under state extension.
Moreover, by (14), 〈h∗, {{x 7→ {mc=lc}c∈C}}(a′)〉 →j−i−2 〈h ′, b′〉, which by (3)
is irreducible. This, combined with (18) and (17), by Definition 3.8, means that
there exists some Ψ′ such that

(k − i− 2, bΨ∗ck−i−2) v (k − j,Ψ′) (19)

h′ :k−j Ψ′ (20)
〈k − j,Ψ′, b′〉 ∈ τe (21)

From (6), (15) and (19), using the transitivity of state extension we obtain

(k,Ψ) v (k − j,Ψ′) (22)

From (2), (3), (4), and (22), (20), (21), we can then conclude that σ(a).me :k,Ψ τe
holds, which is what we needed to show.

Lemma 3.31 (SemUpd: Method update). For all object types α = [md :νd τd]d∈D
and for all e ∈ D, if Σ |= a : α and Σ[x := α] |= b : τe and νe ∈ {−, ◦}, then
Σ |= a.me := ς(x)b : α.

Proof. Let α ≡ [md :νd τd]d∈D, and let e ∈ D such that

νe ∈ {−, ◦} (1)

Moreover, we assume that

Σ |= a : α (2)
Σ[x := α] |= b : τe (3)

33



We will show that
Σ |= a.me := ς(x)b : α

Let k ≥ 0, let Ψ be a heap typing and σ a value environment such that
σ :k,Ψ Σ. What we need to show is that

σ(a).me := σ(ς(x)b) :k,Ψ α

However, without loss of generality we can assume that x 6∈ dom(σ) (otherwise
we α-rename x), so we will show the equivalent statement

σ(a).me := ς(x)σ(b) :k,Ψ α

From (2) by Definition 3.11 we obtain that

σ(a) :k,Ψ α (4)

Let j < k, h, h′ and b such that

h :k Ψ (5)

〈h, σ(a).me := ς(x)σ(b)〉 →j 〈h′, b〉 (6)
〈h′, b〉9 (7)

By the operational semantics

〈h, σ(a).me := ς(x)σ(b)〉 →j−1 〈h∗, {me=le}e∈E .me := ς(x)σ(b)〉 (8)
→ 〈h′, {me=le}e∈E〉 (9)

h′ = h∗ [le := λ(x)σ(b)]e∈E (10)

By Red-Ctx we have

〈h, σ(a)〉 →j−1 〈h∗, {me=le}e∈E〉 (11)

From (4), (5) and (11) by Definition 3.8 we have that there exists Ψ∗ such
that

(k,Ψ) v (k − j + 1,Ψ∗) (12)
h∗ :k−j+1 Ψ∗ (13)

〈k − j + 1,Ψ∗, {me=le}e∈E〉 ∈ α (14)

Since by Proposition 3.5 (k − j + 1,Ψ∗) v (k − j, bΨ∗ck−j), by transitivity
we also have that

(k,Ψ) v (k − j, bΨ∗ck−j) (15)

Also, by the closure under state extension property of type α, from (14) we
infer that

〈k − j, bΨ∗ck−j , {me=le}e∈E〉 ∈ α (16)

In order to satisfy all conditions of Definition 3.8 it remains to be shown
that h′ :k−j bΨ∗ck−j . This is non-trivial and will constitute the remainder of
this proof.

It is easy to see that dom(Ψ∗) ⊆ dom(h′) since dom(h′) = dom(h∗) and
h∗ :k−j+1 Ψ∗ (13).
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Let i < k − j, and let l ∈ dom(Ψ∗). It remains to be shown that

〈i, bΨ∗ci , h
′(l)〉 ∈ Ψ∗(l)

From (14) by the definition of object types (Definition 3.26) it follows that
there exists α′ such that amongst others

D ⊆ E (17)
α′ ∈ Type ∧ α′ ⊆ bαck−j+1 (18)

∀d ∈ D. νd ∈ {−, ◦} ⇒ bα′ → τdck−j+1 ⊆ bΨ
∗ck−j+1 (ld) (19)

We proceed by case analysis on the location l.

Case l = le. From (9) we have that h′(le) = λ(x)σ(b). Since e ∈ D from (17)
and νe ∈ {−, ◦} from (1) we can apply (19) and get that

bα′ → τeck−j+1 ⊆ bΨ
∗ck−j+1 (le) (20)

Therefore by the monotonicity of semantic approximation we also have

bα′ → τeck−j ⊆ bΨ
∗ck−j (le) (21)

Also from (18) by Lemma 3.22 we obtain that bα→ τeck−j+1 ⊆ bα′ → τeck−j+1

which is again equivalent to

bα→ τeck−j ⊆ bα
′ → τeck−j (22)

From (21) and (22) by transitivity we get that

bα→ τeck−j ⊆ bΨ
∗ck−j (le) (23)

By Lemma 3.20 and assumption (3) we already know that

Σ |= λx. b : α→ τe (24)

Since σ :k,Ψ Σ Definition 3.11 yields

λ(x)σ(b) :k,Ψ α→ τd (25)

Since j < k we know that k > 0. Also we have that h :k Ψ (5) so by Proposi-
tion 3.9 (25) is equivalent to

〈k,Ψ, λ(x)σ(b)〉 ∈ α→ τe (26)

Since i < k − j + 1 by Property 3.5 we have that (k − j + 1,Ψ∗) v (i, bΨ∗ci).
Thus from (k,Ψ) v (k − j + 1,Ψ∗) (12) by transitivity we know that

(k,Ψ) v (i, bΨ∗ci) (27)

From (26) and (27) by the closure under state extension of we obtain that
〈i, bΨ∗ci , λ(x)σ(b)〉 ∈ α→ τe or equivalently

〈i, bΨ∗ci , λ(x)σ(b)〉 ∈ bα→ τeck−j (28)

So by (28) and (23) we get what we want, namely

〈i, bΨ∗ci , λ(x)σ(b)〉 ∈ bΨ∗ck−j (le)
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Case l 6= le. This case is easier since the value in the heap does not change for
this location (h′(l) = h∗(l)). From (13) we get that

〈k − j, bΨ∗ck−j , h
∗(l)〉 ∈ Ψ∗(l) (29)

Moreover, since i < k− j we can use Proposition 3.5 from which it follows that

(k − j, bΨ∗ck−j) v (i, bΨ∗ci) (30)

From (29) and (30) since Ψ∗(l) is a type we finally get that

〈i, bΨ∗ci , h
∗(l)〉 ∈ Ψ∗(l)

Lemma 3.32 (SemSubObj: Subtyping object types). E ⊆ D and for all
e ∈ E if νe ∈ {+, ◦} then αe ⊆ βe and if νe ∈ {−, ◦} then βe ⊆ αe imply that
[md :νd αd]d∈D ⊆ [me :νe βe]e∈E.

Proof. We assume that

E ⊆ D (1)
∀e ∈ E. νe ∈ {+, ◦} ⇒ αe ⊆ βe (2)
∀e ∈ E. νe ∈ {−, ◦} ⇒ βe ⊆ αe (3)

Let us denote α , [md :νd αd]d∈D and β , [me :νe βe]e∈E . We prove that
for all heap typings Ψ, for all values v, for all k ≥ 0, if 〈k,Ψ, v〉 ∈ α then
〈k,Ψ, v〉 ∈ β, by course-of-values induction on k.

Let Ψ be an arbitrary heap typing and v be a value. The induction hypothesis
is that for all j < k if 〈j,Ψ, v〉 ∈ α then 〈j,Ψ, v〉 ∈ β, or equivalently

bαck ⊆ bβck (4)

Assume that 〈k,Ψ, v〉 ∈ α, then by the definition of α (Definition 3.26) we
have that v = {mc=lc}c∈C and

D ⊆ C (5)
∃α′.α′ ∈ Type ∧ α′ ⊆ bαck (6)

∀j < k. ∀Ψ′. ∀ {mc=l′c}c∈C . (k,Ψ) v (j,Ψ′) ∧ (7)
(∀c ∈ C. bΨ′cj (l′c) = bΨcj (lc))⇒ 〈j, bΨ′cj , {mc=l′c}c∈C〉 ∈ α

′

∀d ∈ D. νd ∈ {+, ◦} ⇒ bΨck (ld) ⊆ bα′ → αdck (8)
∀d ∈ D. νd ∈ {−, ◦} ⇒ bα′ → αdck ⊆ bΨck (ld) (9)

From (1) and (5) by transitivity

E ⊆ C (10)

From (6) and (4) by transitivity we get that

α′ ⊆ bβck (11)
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We will now show that

∀e ∈ E. νe ∈ {+, ◦} ⇒ bΨck (le) ⊆ bα′ → βeck (12)

Let e in E such that νe ∈ {+, ◦}, therefore by (2) we deduce that αe ⊆ βe.
Thus by Lemma 3.22 (subtyping procedure types) we immediately get that α′ →
αe ⊆ α′ → βe, and if we apply semantic approximation also that bα′ → αeck ⊆
bα′ → βeck. But since E ⊆ D from (8) we know that bΨck (le) ⊆ bα′ → αeck.
By transitivity we can therefore conclude that bΨck (le) ⊆ bα′ → βeck.

Similarly we show that

∀e ∈ E. νe ∈ {−, ◦} ⇒ bα′ → βdck ⊆ bΨck (ld) (13)

Let e in E such that νe ∈ {−, ◦}, so by (2) we have βe ⊆ αe. Thus by
Lemma 3.22 (subtyping procedure types) we deduce that α′ → βe ⊆ α′ → αe,
and if we apply semantic approximation also that bα′ → βeck ⊆ bα′ → αeck.
But since E ⊆ D from (9) we know that bα′ → αeck ⊆ bΨck (le). By transitivity
we can therefore conclude that bα′ → βeck ⊆ bΨck (le).

Putting it all together, from (10), (11), (7), (12), (13) we deduce that
〈k,Ψ, v〉 ∈ β, and therefore that α ⊆ β.

Lemma 3.33 (SemSubObjVar: Subtyping Object Variances). If for all d ∈ D
we have νd = ◦ or νd = ν′d then [md :νd τd]d∈D ⊆ [md :ν′d τd]d∈D.

Proof. We assume that

∀d ∈ D. νd = ◦ ∨ νd = ν′d (1)

Let us denote α , [md :νd τd]d∈D and α′ , [md :ν′d τd]d∈D. We prove that
for all heap typings Ψ, for all values v, for all k ≥ 0, if 〈k,Ψ, v〉 ∈ α then
〈k,Ψ, v〉 ∈ α′, by course-of-values induction on k.

Let Ψ be an arbitrary heap typing and v be a value. The induction hypothesis
is that for all j < k if 〈j,Ψ, v〉 ∈ α then 〈j,Ψ, v〉 ∈ α′, or equivalently

bαck ⊆ bα
′ck (2)

Assume that 〈k,Ψ, v〉 ∈ α, then by the definition of α (Definition 3.26) we
have that v = {me=le}e∈E and

D ⊆ E (3)
∃α′′.α′′ ∈ Type ∧ α′′ ⊆ bαck (4)

∀j < k. ∀Ψ′. ∀ {me=l′e}e∈E . (k,Ψ) v (j,Ψ′) ∧ (5)
(∀e ∈ E. bΨ′cj (l′e) = bΨcj (le))⇒ 〈j, bΨ′cj , {me=l′e}e∈E〉 ∈ α

′′

∀d ∈ D. νd ∈ {+, ◦} ⇒ bΨck (ld) ⊆ bα′′ → τdck (6)
∀d ∈ D. νd ∈ {−, ◦} ⇒ bα′′ → τdck ⊆ bΨck (ld) (7)

From (4) and (2) by transitivity we get that

α′′ ⊆ bα′ck (8)

The hypothesis (1) implies that

∀d ∈ D. ν′d ∈ {+, ◦} ⇒ νd ∈ {+, ◦} (9)
∀d ∈ D. ν′d ∈ {−, ◦} ⇒ νd ∈ {−, ◦} (10)
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From (9) and (6) we get that

∀d ∈ D. ν′d ∈ {+, ◦} ⇒ bΨck (ld) ⊆ bα′′ → τdck (11)

Similarly from (10) and (7) we get that

∀d ∈ D. ν′d ∈ {−, ◦} ⇒ bα′′ → τdck ⊆ bΨck (ld) (12)

Finally, from (3), (8), (5), (11), (12) we deduce that 〈k,Ψ, v〉 ∈ α′, and
therefore that α ⊆ α′.

3.6 Bounded Quantified Types

Impredicative quantified types in a step-indexed model were previously studied
by Ahmed et al. for a lambda-calculus with general references, and we follow
their presentation [AAV03, Ahm04]. However, unlike in the work of Ahmed
et al. our quantifiers have bounds, and we are also studying subtyping. It is
important to note that the impredicative second-order types were the reason
why a semantic stratification of types was needed in [Ahm04], as opposed to a
syntactic one based on the nesting of reference types [AAV02].

A type constructor (i.e. a function from semantic types to semantic types)
F is non-expansive if in order to determine whether a term has type F (τ) with
approximation k, it suffices to know the type τ only to approximation k. As we
will later show all our type constructors are non-expansive.

Definition 3.34 (Non-expansiveness). A type constructor F : Type→ Type is
non-expansive if for all types τ and for all k ≥ 0 we have

bF (τ)ck = bF (bτck)c
k

The definitions of second-order types require that ∀ and ∃ are only applied
to non-expansive type constructors. Note that the non-expansiveness condition
in the following definitions ensures that, in order to determine level k of a
universal or existential type, a quantification over types τ in PreTypek suffices.
This helps avoid the circularity that is otherwise introduced by the impredicative
quantification.

Definition 3.35 (Bounded universal types). If F is non-expansive

∀αF = {〈k,Ψ,Λ. a〉 | ∀j,Ψ′. ∀τ. (k,Ψ) v (j,Ψ′) ∧ bτcj ∈ Type

∧ bτcj ⊆ bαcj ⇒ ∀i < j. a :i,bΨ′ci F (τ)}

Definition 3.36 (Bounded Existential Types). If F is non-expansive

∃αF = {〈k,Ψ,pack v〉 | ∃τ. bτck ∈ Type ∧ bτck ⊆ bαck
∧ ∀j < k. 〈j, bΨcj , v〉 ∈ F (τ)}

Proposition 3.37. If α is a type and F is a non-expansive type constructor,
then ∀αF and ∃αF are also types.

Proof. Firstly, note that ∀αF is well-defined as a set since the definition of
b∀αF ck relies on only bF (τ)cj for j < k, which by the non-expansiveness of F
means only on bτcj . The same is true of ∃αF .
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Moreover, by our convention that all triples involved in the definitions obey
the stratification invariant, both ∀αF and ∃αF are pre-types.

The closure under state extension of ∀αF follows from the quantification over
all states extending (k,Ψ) in Definition 3.35, and the transitivity of v. Closure
under state extension of ∃αF follows from the monotonicity of approximation
with respect to inclusion, and the fact that F (τ) ∈ Type is already closed.

The usual semantic typing lemmas are proved as in [Ahm04]; the additional
precondition τ ⊆ α in (SemTApp) and (SemPack) serves to establish the
requirements for the bounds.

Lemma 3.38 (SemTAbs: Type abstraction). Let F be a non-expansive type
constructor. If for all types τ such that τ ⊆ α we have Σ |= a : F (τ) then
Σ |= Λ. a : ∀αF .

Lemma 3.39 (SemTApp: Type application). Let F be a non-expansive type
constructor, α and τ two types such that τ ⊆ α. If Σ |= a : ∀αF then Σ |= a[] :
F (τ).

Lemma 3.40 (SemPack). Let F be a non-expansive type constructor and α
a type. If there exists a type τ such that τ ⊆ α and Σ |= a : F (τ) then
Σ |= pack a : ∃αF .

Lemma 3.41 (SemOpen). Let F be a non-expansive type constructor. If Σ |=
a : ∃αF and for all types tau such that τ ⊆ α we have Σ[x := F (τ)] |= b : β then
Σ |= open a as x in b : β.

The lemmas for subtyping are shown easily by just unfolding the definitions.

Lemma 3.42 (SemSubUniv: Subtyping universal types). Let F and G be two
non-expansive type constructors, and α and β two types such that β ⊆ α. If for
all types τ ⊆ β we have that F (τ) ⊆ G(τ) then ∀αF ⊆ ∀βG.

Proof. We assume that

β ⊆ α (1)
∀τ ∈ Type. τ ⊆ β ⇒ F (τ) ⊆ G(τ) (2)

We need to show that

∀αF ⊆ ∀βG

We assume that

〈k,Ψ,Λ. a〉 ∈ ∀αF. (3)

We still need to show that 〈k,Ψ,Λ. a〉 ∈ ∀βG.
Let j, Ψ′ and τ so that

(k,Ψ) v (j,Ψ′) (4)
bτcj ∈ Type (5)

bτcj ⊆ bβcj (6)
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Also let i < j. From (1) and (6) by transitivity we get that bτcj ⊆ bαcj .
So from (3), (4) and (5) by Definition 3.35 we get that a :i,bΨ′ci F (τ), or
equivalently by the non-expansiveness of F also

a :i,bΨ′ci F (bτcj) (7)

From (6) bτcj ⊆ bβcj , and since also bβcj ⊆ β, by transitivity we obtain
that bτcj ⊆ β. From this and (5) by (2) we infer that

F (bτcj) ⊆ G(bτcj) (8)

From (7) and (8) by Proposition 3.16 we infer that a :i,bΨ′ci G(bτcj). This
is equivalent, by the non-expansivity of G to

a :i,bΨ′ci G(τ) (9)

Finally, from (9) by Definition 3.35 we conclude that 〈k,Ψ,Λ. a〉 ∈ ∀βG.

Lemma 3.43 (SemSubExist: Subtyping existential types). Let F and G be
two non-expansive type constructors, and α and β two types such that α ⊆ β.
If for all types τ ⊆ α we have that F (τ) ⊆ G(τ) then ∃αF ⊆ ∃βG.

Proof. We assume that

α ⊆ β (1)
∀τ ∈ Type. τ ⊆ β ⇒ F (τ) ⊆ G(τ) (2)

We need to show that

∃αF ⊆ ∃βG

We assume that

〈k,Ψ,pack v〉 ∈ ∃αF. (3)

We still need to show that 〈k,Ψ,pack v〉 ∈ ∃βG.
From the assumption (3) by Definition 3.36 there exists a set τ such that

bτck ∈ Type (4)
bτck ⊆ bαck (5)

∀j < k. 〈j, bΨcj , v〉 ∈ F (τ) (6)

Let j < k; from (6) since F is non-expansive it follows that

〈j, bΨcj , v〉 ∈ F (bτck) (7)

From (5) and bαck ⊆ α by transitivity bτck ⊆ α, thus by (2) it follows

F (bτck) ⊆ G(bτck) (8)

From (7) and (8) by Proposition 3.16 we infer that 〈j, bΨcj , v〉 ∈ G(bτck),
or equivalently, by the non-expansivity of G that

〈j, bΨcj , v〉 ∈ G(τ) (9)

From (1) it follows that bτck ⊆ bαck, thus from (5) by transitivity we obtain
that

bτck ⊆ bαck (10)
Finally, from (10), (4) and (9) by Definition 3.36 we conclude that 〈k,Ψ,pack v〉 ∈

∃βG.
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3.7 Recursive Types

In contrast to most previous work on step-indexed models, we consider iso-
recursive rather than equi-recursive types4, so folds and unfolds are explicit in
our syntax and consume computation steps. This is simpler, and sufficient for
our purpose. As a benefit, it suffices to require type constructors to be non-
expansive, as opposed to the stronger ‘contractiveness’ requirement in [AM01].

Definition 3.44 (Recursive types). Let F : Type → Type be a non-expansive
function. We define the set µF by

〈k,Ψ, fold v〉 ∈ µF ⇔ ∀j < k. ∀Ψ′. (k,Ψ) v (j,Ψ′)⇒ 〈j,Ψ′, v〉 ∈ F (µF )

Proposition 3.45. For all non-expansive F : Type → Type, µF ∈ Type is
uniquely defined.

Proof. The well-definedness follows from the observation that bµF ck is defined
only in terms of bF (µF )cj for j < k, which by non-expansiveness of F means
that it relies only on bµF cj . The closure under state extension is immediate
from the definition.

Lemma 3.46 (SemFold: Fold). If Σ |= a : F (µF ) then Σ |= fold a : µF .

Proof. Under the premise
Σ |= a : F (µF ) (1)

we must show that
Σ |= fold a : µF

Let k ≥ 0, let Ψ be a heap typing and σ a value environment such that
σ :k,Ψ Σ. By the hypothesis (1) it follows that

σ(a) :k,Ψ F (µF ) (2)

Let j < k, h, h′ and b such that

h :k Ψ (3)

〈h, foldσ(a)〉 →j 〈h′, b〉9

Thus by the operational semantics

〈h, foldσ(a)〉 →j 〈h′, fold v〉9

Therefore by the Red-Ctx rule

〈h, σ(a)〉 →j 〈h′, v〉

From this together with (2) and (3) by Definition 3.8 we obtain that there
exists a heap typing Ψ′ such that

(k,Ψ) v (k − j,Ψ′) (4)
h :k−j Ψ′ (5)

〈k − j,Ψ′, v〉 ∈ F (µF ) (6)

4Still, iso-recursive types have been considered by Ahmed for a step-indexed relational
model of a lambda calculus [Ahm06].
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Moreover, since F (µF ) is a type, thus closed under state extension, from (6)
we deduce that

∀i. ∀Ψ′′. (k − j,Ψ′) v (i,Ψ′′)⇒ 〈i,Ψ′′, v〉 ∈ F (µF ) (7)

Which matches the requirements in the definition of µF (Definition 3.44), more
precisely from (7) we have

〈k − j,Ψ′, fold v〉 ∈ µF (8)

This concludes the proof since (4), (5) and (8) give us by Definition 3.8 that

foldσ(a) :k,Ψ µF

Lemma 3.47 (SemUnfold: Unfold). If Σ |= a : µF then Σ |= unfold a :
F (µF ).

Proof. We assume that
Σ |= a : µF (1)

and show that
Σ |= unfold a : F (µF )

Let k ≥ 0, let Ψ be a heap typing and σ a value environment such that
σ :k,Ψ Σ. The hypothesis (1) gives us that

σ(a) :k,Ψ µF (2)

Let j < k, h, h′ and b such that

h :k Ψ (3)

〈h,unfoldσ(a)〉 →j 〈h′, b〉9

By the operational semantics this implies

〈h,unfoldσ(a)〉 →j−1 〈h′,unfold (fold v)〉 → 〈h′, v〉

Thus by by the Red-Ctx rule

〈h, σ(a)〉 →j−1 〈h′, fold v〉9

From this together with (2) and (3) by Definition 3.8 we obtain that there
exists a heap typing Ψ′ such that

(k,Ψ) v (k − j + 1,Ψ′) (4)
h :k−j+1 Ψ′ (5)

〈k − j + 1,Ψ′, fold v〉 ∈ µF (6)

Expanding the definition of µF in (6) we get

∀i < k − j + 1. ∀Ψ′′. (k − j + 1,Ψ′) v (i,Ψ′′)⇒ 〈i,Ψ′′, v〉 ∈ F (µF )
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By choosing i = k − j and Ψ′′ = Ψ′ we infer that

〈k − j,Ψ′, v〉 ∈ F (µF ) (7)

Finally, from (4), (5) and (7) by Definition 3.8 we conclude that

unfoldσ(a) :k,Ψ µF

Lemma 3.48 (SemSubRec: Subtyping Recursive Types). Given two non-
expansive functions from types to types F and G we show that, if for all α and
β such that α ⊆ β we have that F (α) ⊆ G(β), then µF ⊆ µG.

Proof. We assume that F and G are two non-expansive type constructors such
that

∀α, β ∈ Type. α ⊆ β ⇒ F (α) ⊆ G(β) (1)

We show that for all heap typings Ψ, for all values v, and for all k ≥ 0 if
〈k,Ψ, fold v〉 ∈ µF then 〈k,Ψ, fold v〉 ∈ µG, by course-of-values induction on k.

Let Ψ be an arbitrary heap typing and v be a value. The induction hypothesis
is that for all j < k if 〈j,Ψ, fold v〉 ∈ µF then 〈j,Ψ, fold v〉 ∈ µG, or equivalently

bµF ck ⊆ bµGck (2)

Suppose that
〈k,Ψ, fold v〉 ∈ µF (3)

Let j < k and let Ψ′ be a heap typing such that

(k,Ψ) v (j,Ψ′) (4)

From (3) and (4) by Definition 3.44 we get that 〈j,Ψ′, v〉 ∈ F (µF ), or equiva-
lently 〈j,Ψ′, v〉 ∈ bF (µF )ck. Since F is non-expansive 〈j,Ψ′, v〉 ∈ bF (bµF ck)c

k
,

which is equivalent to
〈j,Ψ′, v〉 ∈ F (bµF ck) (5)

We now apply (1) to (5) and (2), by instantiating α with bµF ck and β with
bµGck. We obtain that 〈j,Ψ′, v〉 ∈ G(bµGck). By a similar judgement as before
this is equivalent to 〈j,Ψ′, v〉 ∈ bG(bµGck)c

k
, then we use the non-expansivity

of G to get 〈j,Ψ′, v〉 ∈ bG(µG)ck, which is finally equivalent to

〈j,Ψ′, v〉 ∈ G(µG) (6)

From (4) and (6) by the definition of µ we conclude that

〈k,Ψ, fold v〉 ∈ µG

Lemma 3.49 (Non-expansiveness). All the type constructors we consider are
non-expansive.

43



Proof. Even though not strictly necessary, we prove the stronger property that
all the type constructors we consider are contractive. A type constructor F is
contractive if in order to determine whether a term has type F (τ) with approx-
imation k + 1, it suffices to know the type τ only to approximation k. More
precisely, a F is contractive if for all types τ and for all k ≥ 0 we have that:

bF (τ)ck+1 = bF (bτck)c
k+1

It is immediate that contractiveness implies non-expansivity, however there are
type constructors which are non-expansive but not contractive, e.g. the identity
on types.

We show the following five statements:

1. bα→ βck+1 = bbαck → bβckck+1
;

2. bµF ck+1 = bµ bF ckck+1
, for all F non-expansive;

3.
⌊
[md :νd τd]d∈D

⌋
k+1

=
⌊
[md :νd bτdck]

d∈D
⌋
k+1

;

4. b∀αF ck+1 =
⌊
∀bαck bF ck

⌋
k+1

, for all F non-expansive;

5. b∃αF ck+1 =
⌊
∃bαck bF ck

⌋
k+1

, for all F non-expansive.

Showing 1. is very easy from Definition 3.18, since when defining 〈k,Ψ, λx. b〉 ∈
α → β we only use α and β up to level j < k. The proof of 3. is done by
induction on k. For k = 0 the property is vacuously true so we focus on the
case k > 0. The induction hypothesis is that

bµF ck =
⌊
µ bF ck−1

⌋
k

(1)

We want to show that for all j < k+ 1, for all heap typings Ψ and for all values
v we have that

〈j,Ψ, v〉 ∈ bµF ck+1 ⇔ 〈j,Ψ, v〉 ∈ bµ bF ckck+1
,

or equivalently that

〈j,Ψ, v〉 ∈ µF ⇔ 〈j,Ψ, v〉 ∈ µ bF ck .

Let i < j ≤ k and Ψ′ such that (j,Ψ) v (i,Ψ′), and assume without loss of
generality that v = fold v′. By Definition 3.44 it suffices to show that

〈i,Ψ′, v′〉 ∈ F (µF )⇔ 〈i,Ψ′, v′〉 ∈ bF ck (µ bF ck),

or equivalently that

〈i,Ψ′, v′〉 ∈ bF (µF )ck ⇔ 〈i,Ψ
′, v′〉 ∈ bF (µ bF ck)c

k
.

We show that under the current assumptions actually

bF (µF )ck = bF (µ bF ck)c
k
.
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This proceeds as follows:

bF (µF )ck = bF bµF ckck (by F non-expansive)

=
⌊
F
⌊
µ bF ck−1

⌋
k

⌋
k

(by (1))

=
⌊
F
⌊
µ bbF ckck−1

⌋
k

⌋
k

(obviously)

=
⌊
F bµ bF ckck

⌋
k

(by (1))

= bF (µ bF ck)c
k

(by F non-expansive)

This concludes the proof of 2. The proof of 3. follows from Definition 3.26
by a similar inductive argument. The proofs of 4. and 5. are much more direct,
from Definition 3.35 and 3.36 respectively.
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3.8 Semantic Typing Lemmas

For easy reference we restate the semantic typing lemmas.

Σ |= a : α
For all non-expansive F,G : Type→ Type, and where α ≡

ˆ
md :νd τd

˜
d∈D in

(SemObj), (SemInv), (SemUpd) and (SemClone)

Σ |= a : α α ⊆ β =⇒ Σ |= a : β (SemSub)

(∀d ∈ D. Σ[xd := α] |= bd : τd) =⇒ Σ |= [md=ς(xd)bd]d∈D : α

(SemObj)

(Σ |= a : α ∧ e ∈ D ∧ νe ∈ {+, ◦}) =⇒ Σ |= a.me : τe (SemInv)

(Σ |= a : α ∧ e ∈ D ∧ νe ∈ {−, ◦} ∧ Σ[x := α] |= b : τe) =⇒ Σ |= a.me := ς(x)b : α
(SemUpd)

Σ |= a : α =⇒ Σ |= clone a : α (SemClone)

Σ[x := α] |= b : β =⇒ Σ |= λx. b : α→ β (SemLam)

(Σ |= a : β → α ∧ Σ |= b : β =⇒ Σ |= a b : α (SemApp)

(∀τ ∈ Type. τ ⊆ α⇒ Σ |= a : F (τ)) =⇒ Σ |= Λ. a : ∀αF (SemTAbs)

(Σ |= a : ∀αF ∧ τ ∈ Type ∧ τ ⊆ α) =⇒ Σ |= a[] : F (τ) (SemTApp)

(∃τ ∈ Type. τ ⊆ α ∧ Σ |= a : F (τ)) =⇒ Σ |= pack a : ∃αF (SemPack)

(Σ |= a : ∃αF ∧ ∀τ∈Type. τ ⊆ α⇒ Σ[x := F (τ)] |= b : β) =⇒ Σ |= open a as x in b : β
(SemOpen)

Σ |= a : µF =⇒ Σ |= unfold a : F (µF )
(SemUnfold)

Σ |= a : F (µF ) =⇒ Σ |= fold a : µF (SemFold)

Figure 7: Semantic typing lemmas

α ⊆ β
For all non-expansive F,G : Type→ Type,

α
′ ⊆ α ∧ β ⊆ β′ =⇒ α→ β ⊆ α′ → β

′
(SemSubProc)

((∀d ∈ D. νd ∈ {+, ◦} ⇒ αd ⊆ βd) (SemSubObj)

∧ D ⊆ E ∧ (∀d ∈ D. νd ∈ {−, ◦} ⇒ βd ⊆ αd)) =⇒ [me :νe αe]e∈E ⊆
ˆ
md :νd βd

˜
d∈D

(∀d ∈ D. νd = ◦ ∨ νd = ν
′
d) =⇒

ˆ
md :νd αd

˜
d∈D ⊆ [md :ν′

d
αd]d∈D

(SemSubObjVar)

(β ⊆ α ∧ ∀τ ∈ Type. τ ⊆ β ⇒ F (τ) ⊆ G(τ)) =⇒ ∀αF ⊆ ∀βG (SemSubUniv)

(α ⊆ β ∧ ∀τ ∈ Type. τ ⊆ α⇒ F (τ) ⊆ G(τ)) =⇒ ∃αF ⊆ ∃βG (SemSubExist)

(∀α, β. α ⊆ β ⇒ F (α) ⊆ G(β)) =⇒ µF ⊆ µG (SemSubRec)

Figure 8: Semantic typing lemmas for subtyping
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JXKη = η(X)
q
[md :νd Ad]d∈D

y
η

=
[
md :νd JAdKη

]
d∈D

JBotKη = ⊥ Jµ(X)AKη = µ(λα∈Type. JAKη[X:=α])

JTopKη = > J∀(X6A)BKη = ∀JAKη (λα∈Type. JBKη[X:=α])

JA→ BKη = JAKη → JBKη J∃(X6A)BKη = ∃JAKη (λα∈Type. JBKη[X:=α])

Figure 9: Interpretation of types

4 Semantic Soundness

In order to prove that well-typed terms are safe to evaluate we relate the syn-
tactic types to their semantic counterparts, and then use the fact that the se-
mantic typing judgement enforces safety by construction (Theorem 3.15). This
approach is standard in denotational semantics (see, for instance, [Mit96]). In
fact, neither the statements nor the proofs of subtyping (Lemma 4.7) and se-
mantic soundness (Theorem 4.8) mention the step-indices explicitly.

Definition 4.1 (Interpretation of types). Let η be a total function from type
variables to semantic types. The interpretation JAKη of a type A is given by the
structurally recursive meaning function in Figure 9.

Note that in Figure 9 the type constructors used on the left hand sides of
the equations are simply syntax, while those on the right hand sides refer to the
corresponding semantic constructions, as defined in the previous section.

Definition 4.2 (Interpretation of typing contexts). The interpretation of a
well-formed typing context Γ with respect to η is given by the function that
maps x to JAKη, for every x:A ∈ Γ (or equivalently, by the the indexed product∏
x:A∈Γ JAKη).

Recall that non-expansiveness is a necessary precondition for some of the
semantic typing lemmas. In particular, the well-definedness of JAKη depends on
non-expansiveness, due to the use of µ, ∀(·) and ∃(·) in Figure 9. So we begin
by showing that the interpretation of types is a non-expansive map.

Lemma 4.3 (Non-expansiveness). JAKη is non-expansive in η.

Proof. We show that
⌊
JAKη

⌋
k

=
⌊
JAKbηck

⌋
k

by induction on the structure of A.

Case A ≡ X. Notice that
⌊
JXKη

⌋
k

= bη(X)ck = bbη(X)ckck =
⌊
JXKbηck

⌋
k
.

Case A ≡ Top or A ≡ Bot. Immediate.
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Case A ≡ B → C. Observe that we have:⌊
JAKη

⌋
k

=
⌊
JBKη → JCKη

⌋
k

(by Definition 4.1)

=
⌊⌊

JBKη
⌋
k
→
⌊
JCKη

⌋
k

⌋
k

(by Lemma 3.49)

=
⌊⌊

JBKbηck

⌋
k
→
⌊
JCKbηck

⌋
k

⌋
k

(induction hyp.)

=
⌊
JBKbηck → JCKbηck

⌋
k

(by Lemma 3.49)

=
⌊
JAKbηck

⌋
k

(by Definition 4.1)

Case A ≡ [md :νd Ad]d∈D. Similarly, from Lemma 3.49 and the induction hy-
pothesis.

Case A ≡ µ(X)B. We have⌊
Jµ(X)BKη

⌋
k

=
⌊
µ(λα. JBKη[X:=α])

⌋
k

(by Definition 4.1)

=
⌊
µ(λα.

⌊
JBKη[X:=α]

⌋
k
)
⌋
k

(by Lemma 3.49)

=
⌊
µ(λα.

⌊
JBKbη[X:=α]ck

⌋
k
)
⌋
k

(induction hyp.)

=
⌊
µ(λα. JBKbη[X:=α]ck

)
⌋
k

(by Lemma 3.49)

=
⌊
Jµ(X)BKbηck

⌋
k

(by Definition 4.1)

Case A ≡ ∀(X6B)C. Similarly, we may conclude⌊
JAKη

⌋
k

=
⌊
∀JBKη (λα. JCKη[X:=α])

⌋
k

(by Definition 4.1)

=
⌊
∀bJBKηck

(λα.
⌊
JCKη[X:=α]

⌋
k
)
⌋
k

(by Lemma 3.49)

=
⌊
∀j

JBKbηck

k
k

(λα.
⌊
JCKbη[X:=α]ck

⌋
k
)
⌋
k

(induction hyp.)

=
⌊
∀JBKbηck

(λα. JCKbη[X:=α]ck
)
⌋
k

(by Lemma 3.49)

=
⌊
JAKbηck

⌋
k

(by Definition 4.1)

Case A ≡ ∃(X6B)C. Similarly, from Lemma 3.49 and the induction hypothe-
sis.

Proposition 4.4. If X /∈ fv(A), then JAKη[X:=α] = JAKη.

Proof sketch. By induction on A.

We prove a standard type substitution lemma that captures the interaction
between syntactic type substitution and the meaning function.
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Lemma 4.5 (Type substitution). If X /∈ fv(B) then

J{{X 7→ B}}(A)Kη = JAKη[X:=JBKη] .

Proof. This is proved by induction on the structure of A:

Case A ≡ Top or A ≡ Bot. Trivial.

Case A ≡ X. Then J{{X 7→ B}}(X)Kη = JBKη = JXKη[X:=JBKη].

Case A ≡ Y 6= X. We have J{{X 7→ B}}(Y )Kη = JY Kη = η(Y ) = JY Kη[X:=JBKη].

Case A ≡ [md :νd Ad]d∈D. In this case we have
q
{{X 7→ B}}([md :νd Ad]d∈D)

y
η

=

=
q
[md :νd {{X 7→ B}}(Ad)]d∈D

y
η

(by substitution)

=
[
md :νd J{{X 7→ B}}(Ad)Kη

]
d∈D

(by Definition 4.1)

=
[
md :νd JAdKη[X:=JBKη]

]
d∈D

(by induction hyp.)

=
q
[md :νd Ad]d∈D

y
η[X:=JBKη]

(by Definition 4.1)

Case A ≡ B → B′. Analogous to the previous case.

Case A ≡ µ(Y )A where Y 6= X and Y /∈ fv(B) (otherwise we α-rename Y ).

J{{X 7→ B}}((µ(Y )A))Kη =

= Jµ(Y )({{X 7→ B}}(A))Kη (by substitution)

= µ(λα. J{{X 7→ B}}(A)Kη[Y :=α]) (by Definition 4.1)

= µ(λα. JAKη[Y :=α][X:=JBKη[Y :=α]]) (by induction hyp.)

= µ(λα. JAKη[X:=JBKη][Y :=α]) (by Proposition 4.4)

= Jµ(Y )AKη[X:=JBKη] (by Definition 4.1)

Case A ≡ ∀(Y6A′)B′ where Y 6= X and Y /∈ fv(B) (otherwise α-rename Y ).

J{{X 7→ B}}((∀(Y6A′)B′))Kη =

= J∀(Y6({{X 7→ B}}(A′)))({{X 7→ B}}(B′))Kη (by substitution)

= ∀J{{X 7→B}}(A′)Kηλα. J{{X 7→ B}}(B′)Kη[Y :=α] (by Definition 4.1)

= ∀JA′K
η[X:=JBKη]

λα. JB′Kη[Y :=α][X:=JBKη[Y :=α]] (by induction hyp.)

= ∀JA′K
η[X:=JBKη]

λα. JB′Kη[X:=JBKη][Y :=α] (by Proposition 4.4)

= J∀(Y6A′)B′Kη[X:=JBKη] (by Definition 4.1)

Case A ≡ ∃(Y6A′)B′. Analogous to the previous case.
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Definition 4.6 (η |= Γ). Let Γ be a well-formed typing context. We say that
η satisfies Γ, written as η |= Γ, if η(X) ⊆ JAKη holds for all X6A appearing in
Γ.

Obviously, from this definition it follows that η |= Γ,Γ′ implies η |= Γ.
Conversely, using Lemma 4.5 it is easy to see that if η |= Γ, X /∈ TypeVars(Γ)
and η(X) ⊆ JAKη then η |= Γ, X6A.

These auxiliary results allow us to prove the soundness of the subtyping
relation, and ultimately the semantic soundness of the syntactic type system
with respect to the model.

Lemma 4.7 (Soundness of subtyping). If Γ ` A 6 B and η |= Γ then JAKη ⊆
JBKη.

Proof. By induction on the derivation of Γ ` A 6 B. We proceed by a case
analysis on the last rule applied.

Case (SubRefl)
Γ ` A

Γ ` A 6 A
. Obviously JAKη ⊆ JAKη holds.

Case (SubTrans)
Γ ` A 6 A′ Γ ` A′ 6 B

Γ ` A 6 B

By the induction hypothesis we have that JAKη ⊆ JA′Kη and JA′Kη ⊆ JBKη.
Clearly this implies JAKη ⊆ JBKη.

Case (SubTop)
Γ ` A

Γ ` A 6 Top
. Trivially, JAKη ⊆ >.

Case (SubBot)
Γ ` A

Γ ` Bot 6 A
. The inclusion ⊥ ⊆ JAKη is trivial.

Case (SubVar)
Γ1, X6A,Γ2 ` �

Γ1, X6A,Γ2 ` X 6 A

By Definition 4.6, the assumption η |= Γ1, X6A,Γ2 entails η(X) ⊆ JAKη. The
result follows since η(X) = JXKη, by Definition 4.1.

Case (SubProc)
Γ ` A′ 6 A Γ ` B 6 B′

Γ ` A→ B 6 A′ → B′

Applying the induction hypothesis to Γ ` A′ 6 A and Γ ` B 6 B′ yields
JA′Kη ⊆ JAKη and JBKη ⊆ JB′Kη respectively. By Lemma 3.22 (SemSubProc)
this gives JAKη → JBKη ⊆ JA′Kη → JB′Kη, and thus by Definition 4.1 we get
JA→ BKη ⊆ JA′ → B′Kη.

Case (SubObj)

E ⊆ D ∀e∈E. (νe ∈ {+, ◦} ⇒ Γ ` Ae 6 Be)
∧ (νe ∈ {−, ◦} ⇒ Γ ` Be 6 Ae)

Γ ` [md :νd Ad]d∈D 6 [me :νe Be]e∈E
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By induction hypothesis for all e ∈ E we get that if νe ∈ {+, ◦} then JAeKη ⊆
JBeKη, and if νe ∈ {−, ◦} then JBeKη ⊆ JAeKη. Since also E ⊆ D, then by

Lemma 3.32 (SemSubObj) we get that
[
md :νd JAdKη

]
d∈D
⊆
[
me :νe JAeKη

]
e∈E

,

which by Definition 4.1 allows us to conclude that
q
[md :νd Ad]d∈D

y
η
⊆

q
[me :νe Ae]e∈E

y
η
.

Case (SubObjVar)
∀d ∈ D. νd = ◦ ∨ νd = ν′d

Γ ` [md :νd Ad]d∈D 6 [md :ν′d Ad]d∈D

By Lemma 3.33 (SemSubObjVar) we obtain that [md :νd JAdKηd]d∈D ⊆

[md :ν′d JAdKηd]d∈D, so Definition 4.1 gives us J[md :νd Ad]d∈DKη ⊆
r

[md :ν′d Ad]d∈D
z

η
.

Case (SubRec)
Γ ` µ(X)A Γ ` µ(Y )B Γ, Y6Top, X6Y ` A 6 B

Γ ` µ(X)A 6 µ(Y )B

Assume η |= Γ, α and β such that α ⊆ β, η′ , η[Y := β][X := α], Γ′ ,
Γ, Y6Top, X6Y . It is immediate from that β ⊆ > = JTopKη, so η[Y := β] |=
Γ, Y6Top. From this, because α ⊆ β and JY Kη[Y :=β] = β by Definition 4.6 we
get that Γ′ |= η′.

Now we can apply the induction hypothesis for Γ′ ` A 6 B, therefore JAKη′ ⊆
JBKη′ . Next, Γ ` µ(X)A implies that Y /∈ fv(A), and analogously Γ ` µ(X)B
implies X /∈ fv(B), so we can reformulate JAKη′ ⊆ JBKη′ to JAKη[X:=α] ⊆
JBKη[Y :=β]. If we denote F , λα. JAKη[X:=α] and G , λβ. JBKη[Y :=β], then
the last relation becomes F (α) ⊆ G(β). Since α and β were chosen arbitrarily,
Lemma 3.48 (SemSubRec) yields µF ⊆ µG, so that by Definition 4.1 we can
conclude that Jµ(X)AKη ⊆ Jµ(Y )BKη.

Case (SubUniv)
Γ ` A′ 6 A Γ, X6A′ ` B 6 B′

Γ ` ∀(X6A)B 6 ∀(X6A′)B′

We first apply the induction hypothesis to Γ ` A′ 6 A and get that JA′Kη ⊆
JAKη, or if we denote α , JAKη and β , JA′Kη, then β ⊆ α. Let τ be a
type so that τ ⊆ β. Definition 4.6 gives us that η[X := τ ] |= Γ, X6A′ so by
applying the induction hypothesis again, this time for Γ, X6A′ ` B 6 B′, we
obtain that JBKη[X:=τ ] ⊆ JB′Kη[X:=τ ]. If we denote F (τ) , JBKη[X:=τ ] and
G(τ) , JB′Kη[X:=τ ], then applying the rule Lemma 3.42 (SemSubUniv) yields
∀αF ⊆ ∀βG. Finally, by applying Definition 4.1 to both sides of the inclusion
we can conclude that J∀(X6A)BKη ⊆ J∀(X6A′)B′Kη as required.

Case (SubExist)
Γ ` A 6 A′ Γ, X6A ` B 6 B′

Γ ` ∃(X6A)B 6 ∃(X6A′)B′

This is analogous to the SubUniv case.

Finally, we prove the semantic soundness of the syntactic type system with
respect to the model. This immediately implies type safety.
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Theorem 4.8 (Semantic soundness). Whenever Γ ` a : A and η |= Γ it follows
that JΓKη |= a : JAKη.

Proof. By induction on the derivation of Γ ` a : A, and a case analysis on the
last rule applied.

Case (Sub)
Γ ` a : A Γ ` A 6 B

Γ ` a : B

From Γ ` a : A by the induction hypothesis we get JΓKη |= a : JAKη. Since Γ `
A 6 B by the soundness of the subtyping relation (Lemma 4.7) JAKη ⊆ JBKη.
By Lemma 3.17 (SemSub) we conclude that JΓKη |= a : JBKη.

Case (Var)
Γ1, x:A,Γ2 ` �

Γ1, x:A,Γ2 ` x : A

By SemVar JΓ1, x:A,Γ2Kη |= x : JΓ1, x:A,Γ2Kη (x), so it suffices to show
that JΓ1, x:A,Γ2Kη (x) = JAKη. But this is immediate from the definition of
JΓ1, x:A,Γ2Kη.

Case (Obj)
∀d∈D. Γ, xd:A ` bd : Ad

Γ ` [md=ς(xd:A)bd]d∈D : A
where A ≡ [md :νd Ad]d∈D

By Definition 4.6 from η |= Γ we get η |= Γ, x:A. We choose an arbi-
trary d from D and apply the induction hypothesis to Γ, xd:A ` bd : Ad
and get that JΓ, xd:AKη |= bd : JAdKη, or equivalently (Definition 4.2) that

JΓKη
[
xd := JAKη

]
|= bd : JAdKη. Now by Lemma 3.28 (SemObj) we get that

JΓKη |= [md=ς(xd)bd]d∈D :
[
md :νd JAdKη

]
d∈D

, so by the meaning of object

types (Definition 4.1) it follows that JΓKη |= [md=ς(xd)bd]d∈D :
q
[md :νd Ad]d∈D

y
η
.

Case (Inv)
Γ ` a : A e ∈ D νe ∈ {+, ◦}

Γ ` a.me : Ae
where A ≡ [md :νd Ad]d∈D

Similar to the other cases.

Case (Upd)
Γ ` a : A e ∈ D Γ, x:A ` b : Ae νe ∈ {−, ◦}

Γ ` a.me := ς(x:A)b : A
,

where A ≡ [md :νd Ad]d∈D. Similar to the other cases.

Case (Clone)
Γ ` a : A

Γ ` clone a : A
where A ≡ [md :νd Ad]d∈D

By the induction hypothesis Γ ` a : A implies JΓKη |= a : JAKη, or equiv-

alently (by Definition 4.1) JΓKη |= a :
[
md :νd JAdKη

]
d∈D

. By Lemma 3.29

(SemClone) and Definition 4.1 we get that JΓKη |= clone a : JAKη.

Case (Lam)
Γ, x:A ` b : B

Γ ` λ(x:A)b : A→ B

Since by the premises of the theorem η |= Γ, by Definition 4.6 we also have
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η |= Γ, x:A. So from Γ, x:A ` b : B by the induction hypothesis JΓ, x:AKη |= b :

JBKη. By Definition 4.2 JΓ, x:AKη = JΓKη
[
x := JAKη

]
. Thus by Lemma 3.20

(SemLam) JΓKη |= λ(x)b : JAKη → JBKη, and finally by the meaning of proce-
dure types (Definition 4.1) we can conclude that JΓKη |= λ(x)b : JA→ BKη.

Case (App)
Γ ` a : B → A Γ ` b : B

Γ ` a b : A

From Γ ` a : B → A, by the induction hypothesis JΓKη |= a : JB → AKη,
and thus by Definition 4.1 JΓKη |= a : JBKη → JAKη. Also by the induction
hypothesis, from Γ ` b : B we get that JΓKη |= b : JBKη. So by Lemma 3.21
(SemApp) we can conclude that JΓKη |= a b : JAKη.

Case (Unfold)
Γ ` a : µ(X)A

Γ ` unfoldµ(X)A a : {{X 7→ µ(X)A}}(A)

From Γ ` a : µ(X)A by the induction hypothesis we have that JΓKη |= a :
Jµ(X)AKη. If we plug in the definition of Jµ(X)AKη, and denote F (α) ,
JAKη[X:=α], then we equivalently get JΓKη |= a : µF . By Lemma 3.47 (Se-

mUnfold) we get that JΓKη |= unfold a : F (µF ). We have that F (µF ) =
JAKη[X:=µ(λα. JAKη[X:=α])] = JAKη[X:=Jµ(X)AKη], and by the type substitution

lemma (Lemma 4.5) that JAKη[X:=Jµ(X)AKη] = J{{X 7→ µ(X)A}}(A)Kη, so finally
JΓKη |= unfold a : J{{X 7→ µ(X)A}}(A)Kη as required.

Case (Fold)
Γ ` a : {{X 7→ µ(X)A}}(A)
Γ ` foldµ(X)A a : µ(X)A

The proof for this case is a reversed version of the proof for the Unfold
case. We apply the induction hypothesis to Γ ` a : {{X 7→ µ(X)A}}(A) and
obtain that JΓKη |= a : J{{X 7→ µ(X)A}}(A)Kη, which by Lemma 4.5 (type
substitution) gives us JΓKη |= a : JAKη[X:=µ(λα. JAKη[X:=α])]. If we denote again

F (α) , JAKη[X:=α], then JΓKη |= a : F (µF ). By Lemma 3.46 (SemFold)
we obtain that JΓKη |= fold a : µF , which finally by Definition 4.1 gives us
JΓKη |= fold a : Jµ(X)AKη.

Case (TAbs)
Γ, X6A ` b : B

Γ ` Λ(X6A)b : ∀(X6A)B

We need to show that JΓKη |= Λ. b : J∀(X6A)BKη, or equivalently by Defini-
tion 4.1 that JΓKη |= Λ. b : ∀JAKη (λα. JBKη[X:=α]). Let us denote α , JAKη and
F , λα. JBKη[X:=α], so that JΓKη |= Λ. b : ∀αF remains to be shown.

Let τ ⊆ α. By Definition 4.6 η[X := τ ] |= Γ, X6A, so we can apply the
induction hypothesis for Γ, X6A ` b : B, and get that JΓ, X6AKη[X:=τ ] |= b :
JBKη[X:=τ ] = F (τ). By Definition 4.2 and the fact that X does not appear
in Γ, and hence not in any type appearing in Γ, we have JΓ, X6AKη[X:=τ ] =
JΓKη[X:=τ ] = JΓKη by Proposition 4.4. Putting everything together, we obtain
JΓKη |= b : F (τ), which by Lemma 3.38 (SemTAbs) gives us JΓKη |= Λ. b : ∀αF .
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Case (TApp)
Γ ` a : ∀(X6A)B Γ ` A′ 6 A

Γ ` a[A′] : {{X 7→ A′}}(B)

We apply the induction hypothesis to Γ ` a : ∀(X6A)B and obtain that
JΓKη |= a : J∀(X6A)BKη. If we denote α , JAKη and F (α) , JBKη[X:=α],
then by the meaning of universal types JΓKη |= a : ∀αF . From Γ ` A′ 6 A by
the soundness of subtyping (Lemma 4.7) we have that JA′Kη ⊆ JAKη = α. By
Lemma 3.39 (SemTApp) JΓKη |= a[] : F (JA′Kη), and from this by Lemma 4.5
(type substitution) we finally obtain that JΓKη |= a[] : J{{X 7→ A′}}(B)Kη.

Case (Pack)
Γ ` C 6 A Γ ` {{X 7→ C}}(a) : {{X 7→ C}}(B)

Γ ` (pack X6A = C in a :B) : ∃(X6A)B

We need to show that JΓKη |= pack b : J∃(X6A)BKη, or equivalently by Defini-
tion 4.1 that JΓKη |= pack b : ∃JAKη (λα. JBKη[X:=α]). As in the previous cases,
we denote α , JAKη and F , λα. JBKη[X:=α]. Thus it remains to be shown
that JΓKη |= pack b : ∃αF .

By Lemma 4.7 (soundness of subtyping) applied to Γ ` C 6 A we get that
JCKη ⊆ JAKη , α. From Γ ` {{X 7→ C}}(a) : {{X 7→ C}}(B) by the induction
hypothesis we get that JΓKη |= pack b : J{{X 7→ C}}(B)Kη. By the type sub-
stitution lemma (Lemma 4.5) we have J{{X 7→ C}}(B)Kη = JBKη[X:=JCKη] =
F (JCKη). Finally, by Lemma 3.40 (SemPack) we have that JΓKη |= pack b :
∃αF .

Case (Open)
Γ ` a : ∃(X6A)B Γ ` C Γ, X6A, x:B ` b : C

Γ ` (open a as X6A, x:B in b :C) : C

From Γ ` a : ∃(X6A)B by the induction hypothesis we get JΓKη |= a :
J∃(X6A)BKη. If we denote α , JAKη and F (α) , JBKη[X:=α], then by Defini-
tion 4.1 JΓKη |= a : ∃αF .

Let τ be a type such that τ ⊆ α. By Definition 4.6 and the fact that X does not
appear in Γ we have η[X := τ ] |= Γ, X6A, x:B, so we can apply the induction
hypothesis to Γ, X6A, x:B ` b : C and obtain that JΓ, X6A, x:BKη[X:=τ ] |=
b : JCKη[X:=τ ]. By Definition 4.2 and again the fact that X /∈ TypeVars(Γ) we
get JΓ, X6A, x:BKη[X:=τ ] = JΓKη [x := F (τ)], thus JΓKη [x := F (τ)] |= b : JCKη.

Finally, by Lemma 3.41 (SemOpen) since JΓKη |= a : ∃αF and since for all τ ⊆
α we have JΓKη [x := F (τ)] |= b : JCKη, we conclude JΓKη |= open a as x in b :
JAKη.

Corollary 4.9 (Type safety). Well-typed terms are safe to evaluate.

Proof. Immediate from Theorem 4.8 (Semantic Soundness) and Theorem 3.15
(Safety).
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5 Conclusion

We have presented a step-indexed model for Abadi and Cardelli’s imperative
object calculus, and used it to prove the safety of a type system with object
types, recursive and second-order types, as well as subtyping.

5.1 Comparison to Related Work

Domain-theoretic models. Abadi and Cardelli give a semantic model for
the functional object calculus in [AC94, AC96]. Their type system is comparable
to the one we consider here. Types are interpreted as certain partial equivalence
relations over an untyped domain model of the calculus. No indication is given
on how to adapt this to the imperative execution model.

Based on earlier work by Kamin and Reddy [KR94], Reus et al. consider
domain-theoretic models for the imperative object calculus [RS04, RS06, Sch06],
with the goal of proving soundness for the logic of Abadi and Leino [AL04]. The
higher-order store exhibited by the object calculus makes the semantic domains
be defined by mixed-variant recursive equations. The dynamic allocation is then
addressed by interpreting specifications of the logic as Kripke relations, indexed
by store specifications, which are similar to the heap typings used here.

Building on work by Levy [Lev02], an ‘intrinsically’ typed model of the object
calculus is presented in [Sch06], by solving the domain equations in a suitable
category of functors. However, only first-order types are considered.

Compared to the domain-theoretic models, the step-indexed model we pre-
sented not only soundly interprets a richer type language, but we found it also
easier to work with. Being based on the operational semantics, there is no need
for explicit continuity conditions, and the admissibility conditions are replaced
by the closure under state extension condition, which is usually very easy to
check. All that is needed for the construction of recursive and second-order
types are non-expansiveness and the stratification invariant.

It is interesting to see how the object construction rule (Obj) is proved
correct in each case. In [RS04, RS06], it directly corresponds to a recursive
predicate, whose well-definedness (i.e. existence and uniqueness) must be es-
tablished. This imposes some further restrictions on the semantic types [Pit96].
In the typed model of [Sch06], object construction is interpreted using a re-
cursively defined function, and correspondingly (Obj) is proved by fixed point
induction. In the step-indexed case, the essence of the proof is a more elemen-
tary induction on the index (cf. Lemma 3.28).

Semantics of object types. Our main contribution in this paper is the
novel interpretation of object types in the step-indexed model. The stratifi-
cation induced by the step indices permits mixed-variance recursive as well as
impredicative, second-order types to be constructed. Both are key ingredients
in our interpretation of object types; this would be the case even if we consid-
ered a syntactic type system without these features. The use of recursive and
existentially quantified types is in line with the type-theoretic work on object
encodings, which however has mainly focused on object calculi with a functional
semantics [BCP99].

Closest to our work is the encoding of imperative objects into an imperative
variant of system F6µ with updatable records, proposed in [ACV96]. There,
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objects are interpreted as records containing references to the procedures that
represent the methods. As in our case, these records have a recursive and
existentially quantified record type. The difference is that additional record
fields are included in order to achieve invocation and cloning, and uninitialized
fields are used to construct this recursive record in an ‘unsafe’ way. Finally,
variance annotations for imperative objects are not considered.

Step-indexed models. Step-indexed semantic models were introduced by
Appel et al. in the context of foundational proof-carrying code [AF00]. Their
goal was to construct more elementary and more modular proofs of type sound-
ness that can be easily checked automatically. They were primarily inter-
ested in low-level languages, however they also applied their technique to a
pure λ-calculus with recursive types [AM01]. Later Ahmed et al. success-
fully extended it to general references and impredicative polymorphism [AAV02,
AAV03, Ahm04]. The step-indexed semantic model we present extends the one
by Ahmed et al. with object types and subtyping. In order to achieve this,
we refined the reference types from [Ahm04] to readable and writable reference
types. These are similar to the reference types in the Forsythe programming
language [Rey96] and to the channel types of [PS96, CDV07].

Subtyping in a step-indexed semantic model was previously considered by
Swadi who studied a typed machine language [Swa03]. Our setup is however
much different than the one of Swadi. In particular, the subtle issues concerning
the subtyping of object types are original to our work.

The previous work on step-indexing focuses on ‘semantic type systems’,
i.e. the semantic typing lemmas are used directly for type-checking programs
[AF00, AM01, ARS02, AAV03]. However, when one considers more complex
type systems with subtyping, recursive types or polymorphism, the semantic
typing lemmas no longer directly correspond to the usual syntactic rules. These
discrepancies can be fixed, but usually at the cost of more complex models, like
the one developed by Swadi to track type variables [ARS02, Swa03]. In Swadi’s
model an additional semantic kind system is used to track the contractiveness
and non-expansiveness of types with free type variables. We avoid having a
more complex model (e.g. one that tracks type variables) by considering a stan-
dard, syntactic type system. We use the semantic typing lemmas only to prove
the soundness of this syntactic type system, which is more suitable for type
checking programs (in particular it can be made decidable [Pie94]).

Type safety proofs. Abadi and Cardelli use subject-reduction to prove the
safety of several type systems very similar to the one considered in this pa-
per [AC96]. Those purely syntactic proofs are very different from the ‘se-
mantic’ type safety proof we present (for detailed discussions about the dif-
ferences see [WF94, AM01]). Constructing a step-indexed model is definitely
more challenging than proving progress and preservation. However, for our
model we could basically reuse the whole model by Ahmed et al. and extend
it to suit our needs, even though the calculus we are considering is quite dif-
ferent. So one would expect that once enough general models are constructed
(e.g. [AM01, Ahm04, AMRV07]), it will become easier to build new models just
by mixing and matching. Assuming the existence of an adequate step-indexed
model, the effort needed to prove the semantic typing lemmas using ‘pencil-and-
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paper’ is somewhat comparable to the one required for a subject-reduction proof.
Since each of the semantic typing lemmas is proved in isolation, the resulting
type soundness proof is more modular. However, according to [AF00, AM01]
the big advantage of step-indexing should kick in when formalizing the proofs
in a proof assistant.

Functional object calculus. Our initial experiments on the current topic
were done in the context of the functional object calculus [Hri07]. Even though
in the functional setting the semantic model is much simpler, both models satisfy
the same semantic typing lemmas. Even more, the syntactic type system we
considered for the functional calculus is exactly the same as the one in this paper,
so all the results in Section 4 directly apply to the functional object calculus:
well-typed terms do not get stuck, no matter whether they are evaluated in a
functional or an imperative way. It would not be possible to directly prove such
a result using subject-reduction, since in that case the syntactic typing judgment
for the imperative calculus would also depend on a heap typing, and thus be
different from the judgment for the functional calculus. However, since we are
not using subject-reduction, we do not need to type-check partially evaluated
terms which contain heap locations.

5.2 Future Work

Machine checking proofs. Step-indexed models were introduced with machine-
checkable proofs in mind, so the proofs they induce are elementary and very
modular. The proof of type safety we present in this paper should therefore be
very well-suited for translation to some machine-checkable form. This could be
eased to a certain extent by the fact that we extended the model of Ahmed et
al. for which machine-checkable proofs already exist [Ahm04].

Generalizing reference types. In the model described in this paper we
generalize the reference types from [AAV03, Ahm04] to readable and writable
reference types. It turns out that this can be generalized even further. We can
have a reference type constructor that takes two other types as arguments: one
that represents the most general type that can be used when writing to the
reference, and another for the most specific type that can be read from it. This
can be easily expressed using our readable and writable reference types:

ref(α, β) , ref−α ∩ ref+β

Applying this in the context of object calculi would lead not only to more fine-
grained subtyping but also to simplifications (see Appendix A). In particular, the
variance annotations would no longer be needed, and the complex and seemingly
ad-hoc rules for subtyping object types [AC96] would be replaced by the simpler:

(SubObj)
E ⊆ D ∀e ∈ E. Γ ` Be 6 Ae ∧ Γ ` A′e 6 B′e
Γ ` [md : (Ad, A′d) ]d∈D 6 [me : (Be, B′e) ]e∈E

.

We plan to further investigate this. For now, it is worth noting that constructing
semantic models has provided us with deeper insights about the underlying
calculus than purely syntactical arguments.
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Accommodating self types. Since our type system features recursive and
bounded existential types, self types (i.e. recursive object types with ‘proper’
subtyping) can be accommodated via an encoding. While we have not checked
the details, we expect that a treatment of self types can be achieved even more
directly in the model: given monotonic and non-expansive type constructors Fd,
we would define a self type [md :νd Fd]d∈D as in Definition 3.26 (Object types)
but changing condition (2) to

∀d ∈ D. 〈k,Ψ, ld〉 ∈ refνd(α′ → Fd(α′)).

However, unlike in the functional case, for the imperative calculus a remain-
ing problem is that updated methods cannot take advantage of the self types.
Abadi and Cardelli give a modified imperative object calculus with a more com-
plex typing rule for method update that fixes the problem [AC96, Chapter 17].
Incorporating these more general ideas is not straightforward since the underly-
ing calculus and its operational semantics would change. While we believe that
the step-indexing technique is flexible enough to handle this, we leave this for
future work.

Very modal models. Appel et al. recently proposed a new semantic model
which improves the one by Ahmed et al. by considering more fine-grained
semantic types [AMRV07]. It would be interesting to see whether we can more
naturally accommodate imperative objects in this more general model.

More realistic languages. Even though the imperative object calculus pro-
vides a good framework for theoretical experiments, it is different from any
of the object-oriented languages used in practice. It would probably be more
complicated, but also more useful, to construct a step-indexed model for a real
class-based object-oriented programming language, or at least for a less abstract
simplification thereof (e.g. MJ [BPP03]).

More than types. The step-indexing technique has already been employed
for more general reasoning about programs, not only for type safety proofs.
Based on previous work by Appel and McAllester [AM01], Ahmed built a step-
indexed partial equivalence relation model for the lambda calculus with recursive
and impredicative quantified types. She showed that her relational interpreta-
tion of types captures exactly contextual equivalence [Ahm06].

Benton also used step-indexing as a technical device, together with a no-
tion of orthogonality relating expressions to contexts, to show the soundness
of a compositional program logic for a very simple stack-based abstract ma-
chine [Ben05]. He also employed step-indexing in a Floyd-Hoare-style frame-
work based on relational parametricity for the specification and verification of
machine code programs [Ben06].

We hope that our work paves the way for more compelling, semantic inves-
tigations of program logics for the imperative object calculus. We think that it
might be possible to use a step-indexed model to prove the soundness of more
expressive program logics for this calculus. Unfortunately, in order to achieve
this goal, we are still lacking a good understanding of how dependent types can
be modeled in the step-indexed framework, in the presence of side-effects like
non-termination and state.
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(TypeRef)
Γ ` A 6 B

Γ ` ref(A,B)
(SubRef)

Γ ` A′ 6 A Γ ` B 6 B′

Γ ` ref(A,B) 6 ref(A′, B′)

(Ref)
Γ ` a : A

Γ ` ref a : ref(A,A)
(Deref)

Γ ` a : ref(A,B)
Γ `!a : B

(Assign)
Γ ` a : ref(A,B) Γ ` b : A

Γ ` a := b : ref(A,B)

Figure 10: The typing rules for generalized reference types

A Generalizing Object and Reference Types

A.1 Extending Reference Types

The model presented in this paper uses the regular reference types (ref◦τ),
together with readable (ref+τ) and writable (ref−τ) reference types in order to
interpret object types with variance annotations. It turns out that this can be
generalized even further. We can have a reference type constructor that takes
two other types as arguments: ref(A,B), where A represents the most general
type that can be used when writing to the reference, and B the most specific
type that can be read from it.

The usual reference types are obtained by choosing these two arguments to
be equal (ref A = ref(A,A)), and we can also represent readable reference types
as ref(Bot, A), and writable reference types as: ref(A,Top).

The typing rules for generalized reference types are given in Figure 10. Rule
TypeRef states that in order for a reference type ref(A,B) to be well-formed, A
needs to be a subtype of B, otherwise the type system would become unsound.
Rule SubRef allows subtyping of reference types. Notice that the reference type
constructor is contravariant in the first argument and covariant in the second
one. As a consequence, any reference type ref(A,B) can still be converted into
a readable reference type ref(⊥, B) or a writable one ref(A,>).

Γ ` ref(A,B) 6 ref(Bot, B) Γ ` ref(A,B) 6 ref(A,Top)

The other rules in Figure 10 are as one would expect. When a reference is
created it is given the most specific possible type, that of the argument (Ref).
This can then be weakened using the subtyping rule (SubRef). The type
guaranteed by a dereference operation is the second argument to the reference
type constructor (Deref), and conversely the type allowed for an update has to
be the one given by the first argument to ref (or a subtype thereof) (Assign).

Representing such extended reference types in the step-indexed model is
straightforward:

ref(α, β) = {〈k,Ψ, l〉 | bαck ⊆ bΨ(l)ck ⊆ bβck}.

It is easy to see that an extended reference type ref(α, β) can also be defined as
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Let A = [md : (Ad, A′d) ]d∈D and A′ = [md : (Ad, Ad) ]d∈D

(Obj)
∀d ∈ D. Γ, xd : α ` bd : Ad

Γ ` [md=ς(xd:A′)bd]d∈D : A′
(Clone)

Γ ` a : A
Γ ` clone a : A

(Inv)
Γ ` a : A e ∈ D

Γ ` a.me : A′e
(Upd)

Γ ` a : A e ∈ D Γ[x := α] ` b : Ae
Γ ` a.me := ς(x:A)b : α

(SubObj)
E ⊆ D ∀e ∈ E. Γ ` Be 6 Ae ∧ Γ ` A′e 6 B′e
Γ ` [md : (Ad, A′d) ]d∈D 6 [me : (Be, B′e) ]e∈E

Figure 11: The typing rules for generalized object types

the intersection of a readable reference type ref−α, and a writable one ref+β

ref(α, β) = ref−α ∩ ref+β

A.2 Extending Object Types

Applying this idea in the context of object calculi leads not only to more ex-
pressive subtyping but also to simplifications, since the variance annotations are
no longer needed. The object types have two types for each method, one giving
the most general return type for a method that can be used to update the given
method, while the other for the most specific type which can be expected as a
result when invoking the method. Object types would be defined as follows:

Definition A.1 (Object types). Let α = [md : τd, τ ′d]d∈D where τd ⊆ τ ′d for all
d in D, be defined as the set of all triples 〈k,Ψ, {me=le}e∈E〉 such that

D ⊆ E (1)
∧ ∃α′. α′ ∈ Type ∧ α′ ⊆ bαck (2)
∧ (∀j < k. ∀Ψ′. ∀ {me=l′e}e∈E . (k,Ψ) v (j,Ψ′) (3)

∧ (∀e ∈ E. bΨ′cj (l′e) = bΨcj (le))⇒ 〈j, bΨ′cj , {me=l′e}e∈E〉 ∈ α
′)

∧ (∀d ∈ D. 〈k,Ψ, ld〉 ∈ ref((α′ → τd), (α′ → τ ′d))) (4)

Figure 11 presents the typing rules we expect to be validated by this defini-
tion of object types. One thing to note is that the complex rules for subtyping
object types given in Figure 5 or [AC96] are replaced by only one rule (SubObj),
which is similar to rule SubRef from Figure 10.
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