
Using Oz for College TimetablingMartin Henz and J�org W�urtzGerman Research Center for Arti�cial Intelligence (DFKI)Stuhlsatzenhausweg 3, D{66123 Saarbr�ucken, Germanyfhenz,wuertzg@dfki.uni-sb.deAbstract. In this paper, we concentrate on a typical scheduling prob-lem: the computation of a timetable for a German college. Like manyother scheduling problems, this problem contains a variety of complexconstraints and necessitates special-purpose search strategies. Techniquesfrom Operations Research and traditional constraint logic programmingare not able to express these constraints and search strategies on a suf-�ciently high level of abstraction. We show that the higher-order con-current constraint language Oz provides this high-level expressivity, andcan serve as a useful programming tool for college timetabling.

In Proceedings of the 1995 International Conference on the Practice and Theory ofAtomated Timetabling, Edinburgh, Scotland, 20 August{1 September.



1 IntroductionConstraint Logic Programming over �nite domains is a rapidly growing researcharea aiming at the solution of large combinatorial problems. For many real-world problems the constraint logic programming approach (extended to theconcurrent constraint approach) is competitive or better than traditional Oper-ations Research (OR) algorithms. OR techniques lack 
exibility and the e�ortto achieve customized solutions is often una�ordable.The power of constraint logic programming has been proven by languages suchas CHIP [DVS+88], Prolog III [Col90] or CLP(R) [JM87]. To solve real-worldproblems, several new constraints were added as primitives (like atmost or thecumulative constraint [AB93] for scheduling or placement problems importingexperience from OR). This approach might be viable for well known problemsbut is not going to foster the exploration of new areas of applications. Moreclarity and 
exibility for the programmer was achieved by clp(FD) [DC93] (in-spired by [VSD91]). This approach is based on a single primitive constraint(called indexical) with which more complicated constraints may be de�ned. Interms of e�ciency, clp(FD) is competitive with CHIP for certain benchmarks,and adds some 
exibility. But still missing is one characteristic that we consideressential for solving certain constraint problems: the 
exibility to exploratively in-vent new constraints and search strategies. While experimental languages such ascc(FD) [VSD95] and AKL(FD) [CCD94] provide 
exibility in formulating con-straints, their search strategies are still �xed.Oz [Smo95b, SS94, SSW94, ST95] is a concurrent constraint language provid-ing for functional, object-oriented and constraint programming. It is based ona simple yet powerful computation model [Smo95a], which can be seen as anextension of the concurrent constraint model [SR90].In this paper, we describe how the unique features of Oz contribute to computingthe timetable of a German college that we describe in Section 2. The problemcontains a combination of complex constraints preventing the application of morestandard timetabling techniques.What can Oz o�er to solve this problem?Constraint Programming. The concurrent constraint language Oz allows torestrict the possible values of variables to �nite sets of integers. In Section 3,we introduce some basics about concurrent constraint programming. Crucialfor constraint programming is the ability to add constraints on variablesconcurrently and incrementally. In Oz, this is done by propagators, which canexpress several constraints of our timetabling problem as shown in Section 3.Rei�ed Constraints. A general scheme, called rei�ed constraints, allows toexpress the remaining constraints of our timetable problem, as discussed inSection 4. Rei�ed constraints allow to re
ect the fact that a constraint holdsinto a 0/1-valued variable.



Constructive Disjunction. Disjunctive constraints (like resource or capacityconstraints), can be used constructively in Oz, i.e. information common todi�erent branches can be lifted out for active pruning. We describe construc-tive disjunction [VSD95] in Section 5 and show how it can be used for ovelapconstraints in our timetabling problem.Flexible Enumeration. In Oz, the programmer can invent customized searchstrategies for solving the timetabling problem and optimizing the solutionsfound. In Section 6, we develop a search strategy especially adapted to ourproblem, combining the �rst-fail heuristic for variable selection with a prior-ity scheme for value selection. This strategy results in an e�ciently computed�rst solution approximating an optimality criteria for the distribution of thecollege courses.Optimization. This �rst solution can be further optimized using a branch-and-bound technique. Optimization can be achieved through an incrementalprocess, allowing the user to inspect the current solution any time and tointerrupt and resume the optimization at will, as described in Section 7.Interoperability. The interoperability libraries of Oz allow convenient pro-gramming of graphical user interfaces, including the visualization of thecomputed timetables, as presented in Section 8.In Section 9, we compare the described techniques with other approaches inconstraint logic programming.Due to space limitations we cannot further detail other aspects of Oz like con-ditionals and disjunctions, which have shown to be useful for other constraintproblems. The interested reader is referred to the documentation of the Oz sys-tem (see concluding remark of the paper).2 The ProblemOur goal was to �nd a weekly timetable for the Catholic College for Social Workin Saarbr�ucken, Germany, in the spring semester 95. The school o�ers a fouryear program for a degree in social work. Some courses are mandatory for anddedicated to students of a certain year while others are optional and open to allstudents. There are 91 courses, 34 instructors and 7 rooms of varying size. Theassignment of instructors to courses is �xed. Each course needs to take place ina room of su�cient size. There are �ve school days, and the courses are beingheld between 8:15 am and 5 pm. They may start every quarter of an hour. Thereare short courses of 3 quarters and long courses of 6 quarters. There must be abreak of at least one quarter after a short course and of at least two quartersafter a long course.In the following we state the additional constraints that a schedule must ful�ll.



C1) Some courses are limited to certain time slots.C2) Some instructors have times of unavailability.C3) There are di�erent lunch breaks for the di�erent years in the program.C4) Some courses must be held after others.C5) There are sets of courses whose members must be held in parallel.C6) To every course, a room of su�cient size must be assigned.C7) An instructor can only teach one course at a time.C8) Two instructors want to take turns in caring for an infant child and thereforecannot teach at the same time.C9) The mandatory courses of each year must not overlap.C10) Some optional courses must not overlap with courses of the �rst two years,and others not with courses of any year.C11) Two mandatory courses of a year may overlap if they are split in groups.C12) The instructors do not want to teach on more than 3 days a week.C13) All members of some sets of courses must be held on di�erent days.The schedule should obey the following criteria as well as possible: The courses ofthe �rst two years should be grouped around Monday, Tuesday and Wednesday.If this is not possible they should be scheduled on Thursday or Friday morning.The third year should be placed on Wednesday and the fourth preferably onTuesday and Thursday. The number of courses after the lunch break and onThursday1 and Friday should be minimized.3 Constraints and Propagators in OzOur goal is to assign to every course a starting time and a room. Note that theassignment of instructors to courses is �xed in our college. Here, we concentrateon the starting time and show in Section 4 how the room assignment is handled.The courses are held between 8:15 am and 5 pm on �ve school days and maystart every quarter of an hour. Thus, there are 36 � 5 = 180 possible startingtimes for each course. Since there are 91 courses, the overall search space con-tains 18091 elements. Instead of enumerating the whole search space and testingwhether a valuation satis�es all the constraints (generate & test), the idea of con-straint programming is to restrict the search space a priori through constraints.While the search space is being explored, more information on the starting timesbecomes known, i.e., the search space can be further pruned, while it is beingexplored. A programming language for constraint programming needs to provide
exible means to express pruning operators. In this and the following section,we concentrate on pruning operators, while the exploration of the search spaceis described in Section 6 and Section 7.We represent a course, say \Psychology 101", by grouping together its start time,duration, instructor, room size, and its name in a record of the form1 In Germany, several holidays in the spring semester fall on a Thursday.



Psych101 = course(start : _

dur : 6

instructor: ´Smith´

roomsize : big

name : ´Psychology 101´)The underscore _ indicates that no information on the start value is known. Thestarting time of a course is represented by an integer denoting the correspondingquarter of the school week. Because initially it is known that the course muststart between quarter 1 and quarter 180 we can add the constraint
Psych101.start :: 1#180expressing that this course can take values between 1 and 180, i.e., Psych101.start2 f1; : : : ; 180g in a more mathematical notation. We say that the starting timeis constrained to a �nite domain.Such constraints are stored in a constraint store. For the constraints residing inthe constraint store Oz provides e�cient algorithms to decide satis�ability. Thelargest set of integers satisfying all the constraints for a variable in the store, iscalled the domain of that variable. To distinguish the constraints in the storefrom more complex constraints, we often call them basic constraints.The idea of constraint programming is to install constraints that further limitthe possible start value for every course. For example, a constraint of type C1may say that the course \Psychology 101" must be held on Monday morning oron Tuesday morning. This constraint is imposed on the constraint store by theexpression Psych101.start ::[1#18 37#54]2 limiting the start value in theconstraint store to satisfy Psych101.start 2 f1; : : : ; 18; 37; : : : ; 54g.Besides C1, the constraints C2 and C3 can be expressed by such constraints.For more complex arithmetic constraints it isknown that deciding their satis�ability is notcomputationally tractable (there are severalNP-complete problems on �nite domains, e.g. storepropagator � � � propagatorgraph coloring). Thus, such constraints are not contained in the constraint storebut are modeled by installing so called propagators inspecting the constraintstore, as depicted above.A propagator inspects the store and when values are ruled out from the domainof a variable, it may add more information to the store, i.e., it may amplify thestore by adding more basic constraints. Thus, we are replacing global consistency,which is assured for the constraints in the store, by local consistency whereunsatis�ability may not be detected. It is important to allow propagators to actconcurrently since it is not statically known when they will be able to perform2 The term [1#18 37#54] denotes a list consisting of the two pairs 1#18 and 37#54.



their computation. This is one major motivation behind concurrent constraintprogramming.As an example consider a constraint of type C4, which states that the course\Sociology 101" must be held after our course \Psychology 101". It can beexpressed by installing the propagator
Psych101.start + Psych101.dur =<: Socio101.startFor example, if Psych101.start is constrained as above to Monday morningor Tuesday morning, and Psych101.dur to 6, then the propagator will add thebasic constraint
Socio101.start :: 7#180to the constraint store. Vice versa, if later on it becomes known that Socio101starts the latest at 10:30 am on Monday (Socio101.start 2 f7; : : : ; 10g), then
Psych101.startwill be constrained to start the latest at 9:00 am (Psych101.start2 f1; : : : ; 4g). Note that the propagator remains active, waiting for more infor-mation on either Psych101.start or Socio101.start to come.Observe that in the implementation we have to add the necessary break after
Psych101 (depending on Psych101.dur) but we omit the breaks in this presen-tation for simplicity.The constraint C5 is modeled by using the propagator =: expressing equality.Note that S=:T is modeled by S=<:T S>=:T. Thus holes in the domains of S and
T as in Psych101.start are not considered for =:. It implements only partialarc-consistency instead of full arc-consistency in the terminology of [Mac77].Interval-consistency can be implemented e�ciently since the propagator onlyneeds to watch the currently smallest and biggest possible values for the involvedvariables.4 Rei�ed ConstraintsWe have seen in the previous section that propagators are crucial components ina constraint programming system, since they allow to prune the search space. Aconstraint programming language therefore must strive to easily express manykinds of propagators. In this section, we introduce rei�ed constraints as a generictool to express new propagators and show how the remaining constraints C6 -C13 of our college problem can be expressed with them.The constraint C6 says that for every point in time the number of courses ofa certain size must not exceed the number of rooms of that size. Assume thatthere are NumberOfRooms di�erent rooms available of a given size. If we are ableto compute for every quarter of an hour Q of the teaching week the number of



courses CoursesAtQ of the given size being held in this quarter, then we onlyneed to install the propagator
CoursesAtQ =<: NumberOfRoomsto express C6 for every quarter Q and every room size. To compute CoursesAtQit would be convenient to be able to constrain a boolean variable CAtQ to 1if a given course overlaps Q and to 0 if it does not. Then CoursesAtQ can beobtained simply by computing the sum of all CAtQ over all courses of the givensize. To compute CAtQ, we use rei�ed constraints, i.e. propagators that re
ectthe validity of a constraint into a variable. Rei�ed constraints are also known inthe literature as nested constraints [BO92, Sid93].The constraint whose validity we want to re
ect, has the form
Course.start :: Q-Course.dur+1 # Qexpressing that Course has started before or at quarter Q, but not �nished at Q.Now, we re
ect the validity of this constraint into the variable CAtQ:
CAtQ = Course.start :: Q-Course.dur+1 # QFirst of all, every rei�ed constraint always constrains the �rst variable to be either0 or 1, i.e. CAtQ 2 f0; 1g. As in previous propagators, information 
ows eitherway. If the store logically implies Course.start 2 fQ-Course.dur+1; : : : ; Qg,
CAtQ is constrained to 1. If the store implies Course.start 62 fQ-Course.dur+1; : : : ; Qg,
CAtQ is constrained to 0. Vice versa, if CAtQ is constrained to 1 or 0, the basic con-straint Course.start :: Q-Course.dur+1 # Q or its negation Course.start

\:: Q-Course.dur+1 # Q is imposed on the store. It is essential that while
CAtQ is not determined to 0 or 1, the constraint on the right-hand side is usedonly for checking but not for pruning. If already NumberOfRooms courses arescheduled at Q, the remaining boolean variables CAtQ will be constrained to 0by the propagator CoursesAtQ =<:NumberOfRooms.Because we guarantee that at each time there are su�ciently many rooms avail-able, it is straightforward to assign appropriate rooms to the courses. In partic-ular, the room assignment can be performed after the timetable computation,which reduces the complexity of the problem considerably.The constraints C7 - C11 express overlapping conditions on courses. Assumethat Psych101 and Socio101 are mandatory courses for �rst year students.Then C9 says that they may not overlap. This constraint can be expressed witha disjunction of the following form

Psych101.start+ Psych101.dur � Socio101.start_ Socio101.start+ Socio101.dur � Psych101.startIf we are able to install a propagator stating that at least one of a given set of



complex constraints is valid, we can express this disjunction. Thus, our problemis solved by reifying complex constraints:
B1 = Psych101.start + Psych101.dur =<: Socio101.start

B2 = Socio101.start + Socio101.dur =<: Psych101.start

B1 + B2 >=: 1

(1)Let us consider the �rst rei�ed constraint. If Psych101.start+Psych101.dur �
Socio101.start is logically implied by the constraint store, the basic con-straint B1::1 is imposed on the store. If Psych101.start+ Psych101.dur >
Socio101.start is logically implied by the constraint store, the basic constraint
B1::0 is imposed on the store. Vice versa, if B1 is constrained to 1, the propa-gator Psych101.start + Psych101.dur =<: Socio101.start is installed andif B1 is constrained to 0, the propagator Psych101.start + Psych101.dur >:

Socio101.start is installed.As an example consider now Psych101.start 2 f8; : : : ; 12g, Psych101.dur= 6,
Socio101.start 2 f10; : : : ; 14g and Socio101.dur= 6. The second rei�ed con-straint constrains B2 to 0 because the constraint store implies Socio101.start+
Socio101.dur > Psych101.start. The constraint B2 ::0 in the store allowsthe propagator B1 + B2 >=:1 to constrain B1 to 1. This allows the �rst rei�edpropagator to install the propagator Psych101.start + 6 =<:Socio101.start,constraining Psych101.start to 8 and Socio101.start to 14, the only possiblevalues, if the two courses do not overlap.Encoding the constraints C7 - C10 now becomes straightforward. For example,C7 says that no two courses of an instructor must overlap. Thus, for every pairof courses of an instructor, a propagator of the above form must be installed.The constraint C11 boils down to the constraint that a certain course, say
SplitCourse, may overlap with at most one of a list OtherSplitCourses ofother courses. If we are able to install a propagator that constrains a variable
Overlap to 1, if a course overlaps with the course SplitCourse and to 0, if itdoes not, we can build the sum Sum of these variables over OtherSplitCourses.Then, we only need to impose the constraint Sum =<:1, stating that at most oneof OtherSplitCourses overlaps with SplitCourse.So how can we constrain the Overlap variables? Two courses SplitCourse and
OtherSplit overlap, if OtherSplit starts before SplitCourse is �nished andvice versa, i.e. if both the constraints
SplitCourse.start+SplitCourse.dur >: OtherSplit.startand
OtherSplit.start+OtherSplit.dur >: SplitCourse.starthold. The variable Overlap must be constrained to 1, if these two constraintshold and to 0 otherwise:



B1 = SplitCourse.start+SplitCourse.dur >:

OtherSplit.start

B2 = OtherSplit.start+OtherSplit.dur >: SplitCourse.start

Overlap = B1 + B2 =: 2

(2)As usual, this constraint works also the other way around, e.g. if Overlap isknown to be 1, then B1 + B2 =:2 is installed. Thus, B1 and B2 are constrainedto 1 and, hence, both propagators are installed. If Overlap is known to be 0, forexample because another Overlap variable in Sum is already 1, the propagator
B1+B2 \=:2 is installed stating that only one of B1 and B2 may be constrainedto 1. Thus, if, for example, B2 is constrained to 1, then B1 is constrained to 0and the rei�ed constraint for B1 installs the non-rei�ed version of its negation:
SplitCourse.start + SplitCourse.dur =<: OtherSplit.start.In a similar way, the constraint C12 can be expressed. Assume that all coursesthat a given instructor teaches are contained in the list Courses. For everyinstructor and every day, we compute the boolean value TeachesOnDay with
TeachesOnDay = 1 =<: SumOfCoursesOnDaywhere SumOfCoursesOnDay is the sum of the boolean variables obtained byreifying for every element of Courses a constraint that states that the course istaught on that day. For every instructor, we can express that she only teacheson three days with the propagator
TeachesOnDays =<: 3where TeachesOnDays is the sum of all TeachesOnDay variables over the week.For example, if three courses have already been placed on di�erent days, sayMonday through Wednesday, then all the remaining courses are constrained tobe held on Monday through Wednesday, thus, reducing the search space consid-erably.The same technique can be applied for our last constraint C13. Assume that allelements of the list DifferentDayCourseswith length NumberOfDifferentDayCoursesmust be held on a di�erent day. Then the propagator
TeachesOnDays =: NumberOfDifferentDayCoursesdoes the job, where TeachesOnDays is de�ned as for C12.5 Constructive DisjunctionIn this section, we reconsider how to model the overlapping of two courses. Letus assume that the starting time of our two courses Psych101 and Socio101is between (and including) 8:15 am (quarter 1) and 10:30 am (quarter 10), i.e.,
Psych101.start, Socio101.start 2 f1; : : : ; 10g, and both durations are 6



quarters. Then the non-overlapping constraint of the courses expresses the dis-junction
Psych101.start+6 � Socio101.start_Socio101.start+6 � Psych101.startThe left alternative of the disjunction constrains Psych101.start to f1; : : : ; 4g,i.e., Psych101 must start before or at 9 am. Analogously, the right alternativeconstrains Psych101.start to f7; : : : ; 10g, i.e., it must start after or at 9:45 pm.Thus, independent of which alternative will succeed, we know that Psych101cannot start at 9:15 (quarter 5) am or at 9:30 am (quarter 6), i.e., Psych1012 f1; : : : ; 4; 7; : : : ; 10g.The propagators in Section 4, however, do not extract this valuable informationon Psych101. To obtain more pruning, there is a more active form of disjunctionavailable in Oz, called constructive disjunction [VSD95]. It extracts the commoninformation from the alternatives of a disjunction. We replace program (1) byconstructive disjunction, supported in the following syntax:
dis Psych101.start + Psych101.dur =<: Socio101.start

[] Socio101.start + Socio101.dur =<: Psych101.start

endAs in (1), if one alternative is unsatis�able, the propagator corresponding tothe other alternative is installed. Additionally, common information is extractedas described above. While the pruning is enhanced by constructive disjunction,it is also potentially more expensive, since extraction of common informationmay be attempted relatively often. Thus it takes some experimentation to �ndout which form of disjunction is most appropriate for a given application. It isessential that propagators also take holes in the domains into account, becausein our problem constructive disjunction cuts holes in domains of variables. Thisis the case for rei�ed basic constraints like B = X::9#10. If, for example, thebasic constraint X::[1#8 11#15] is added, B is constrained to 0. The use ofconstructive disjunction for all non-overlap constraints (C7 - C11) in our collegeproblem resulted in a speed up of more than one order of magnitude.For modeling constraint C12, we use a ternary constructive disjunction insteadof program (2):
dis B=:1 SplitCourse.start+SplitCourse.dur >: OtherSplit.start

OtherSplit.start+OtherSplit.dur >: SplitCourse.start

[] B=:0 SplitCourse.start+SplitCourse.dur =<: OtherSplit.start

[] B=:0 OtherSplit.start+OtherSplit.dur =<: SplitCourse.start

endThe common information is in this case extracted from all three alternatives (ortwo if one alternative is known to be unsatis�able). If all but one alternativeare known to be unsatis�able, the propagators of the remaining alternative areinstalled (since the disjunction must be true).



6 EnumerationTo achieve maximal pruning of the search space, we allow the propagators toexhaustively amplify the constraint store. We call a store, together with all thepropagators, stable if none of the propagators can add any more informationto it. Typically many variables still have more than one possible values afterstability of the store. Thus, we want to explore the remaining search space. Weproceed in two steps. First, we compute a fairly good �rst solution as describedin this section and then we optimize starting from this solution as described inSection 7.To explore the remaining search space, one of the variables that have more thanone possible value is selected and speculatively constrained to these values. In or-der to speculatively constrain a variable to a value, we impose this constraint ona copy of the current constraint store, including all the propagators. If later on,the computation fails, another value can be tried on another copy of the store.3We call this process enumeration (in the literature it is also known as labeling).Once a variable is speculatively constrained to an integer, some propagators typ-ically become able to amplify the constraint store again. When the constraintstore becomes stable again, the next variable is selected for enumeration, andso on. Thus, propagators allow to prune the search space, while it is being ex-plored. This scenario makes clear why a sequential language is inappropriatefor describing constraint problems. In a sequential language, the complex inter-action between enumeration and propagation needs to be made explicit by theprogrammer, while concurrent constraint languages allow to conceptually sepa-rate propagation and enumeration. Sequential languages like ECLiPSe [ECR95]deal with that problem by introducing ad hoc concepts like freeze and demons.The enumeration process has two degrees of freedom. Firstly, the variable tobe enumerated next needs to be selected, and secondly, the order in which theremaining possible values are tried, needs to be �xed. It is an essential ingredientof Oz that both variable and value selection can be programmed in Oz achievinga high degree of 
exibility. For variable selection, we apply the �rst-fail strategy,in which a variable with the currently smallest domain is selected.Using the �rst-fail strategy with the usual value selection beginning with thesmallest possible value does not lead to a solution of our problem after one dayof computation on a Sun Sparc 20.4 The so-called �rst-�t strategy, which triesto place a course in the day with the fewest already placed courses as describedin [BGJ94], also does not lead to a solution in reasonable time. Instead, we3 Instead of copying the store, as it is done in Oz, one can also trail the previousdomain of the variable and restore it on failure.4 The usual �rst-fail strategy performs poorly because this strategy tries to placecourses in a compact timetable. Due to the topology of our search space, this resultsin a behavior we call \thrashing" when constraints are violated because the enumer-ation strategy is not `clever enough' to �nd the responsible variables. An approachusing intelligent backtracking could help here [BP84].



enumerate the courses of each year starting from a di�erent time of the week.The domain from 1 through 180 is divided in 10 blocks representing morningsand afternoons of school days. These blocks can be individually ordered foreach course (in the implementation we use the same ordering for each year). Bycarefully choosing these blocks, we can come to a �rst solution very fast.We can make use of this additional 
exibility to optimize the timetable accordingto the criteria in Section 2. We simply order the blocks such that the preferredtimes are tried earlier than others. The �rst solution is now more likely to bebetter with respect to the criteria.
7 OptimizationIn the previous section we have seen how we approach the optimization criteriaby choosing a suitable enumeration strategy. However, experimentation showsthat enumeration alone cannot guarantee that the �rst solution will ful�ll thecriteria su�ciently well. A way to achieve optimal solutions in constraint logicprogramming is the use of branch-and-bound. Branch-and-bound starts out withone solution and imposes that every next solution must be better than the pre-vious one using a suitably de�ned cost function.Soft constraints, i.e., constraints which should hold, but might be dropped, ifnecessary, can be modeled by including their rei�ed version in the cost function.As an example consider that Course should be scheduled on Monday. The costfunction will use the result B of the rei�ed constraint B = CourseNew::Monday

>:CourseOld::Monday.In timetabling, as in many constraint problems in the real world, there is rarelya unique cost-function to optimize. For example, the goals to achieve compacttimetables for students and instructors may con
ict with each other. Hence, wehave chosen general criteria that students and instructors can agree upon, suchas minimizing the number of courses being held after the lunch break.After the �rst (fairly good) solution is found with customized �rst-fail, we usebranch-and-bound search to further optimize starting from this solution. Sincedue to the topology of our search space, going for the globally best solution isnot feasible, the user can de�ne a limit on the number of enumeration steps lead-ing to a resource-limited branch-and-bound search. The user can interrupt theoptimization at any time and request the currently best solution. This solutioncan be inspected and the user can decide whether it is good enough or whethershe likes to search for a better solution. This process can be continued arbitrarilyoften. In this sense, we can say that we implement an anytime algorithm.



8 Implementation IssuesFigure 1 shows the top-level graphical user interface to our timetabling program.By using the object-oriented features of Oz and the interface to the windowprogramming toolkit Tcl/Tk [Meh94] it was straightforward to implement theinterface. The interoperability features of Oz [Sch94] allow the integration oftools to display, type-set (using LATEX) and print the resulting timetable.

Fig. 1. Top-level graphical user interfaceThe visualization of the resulting timetable turned out to be extremely usefulfor the human user to judge the quality of the solutions during optimization.Figure 2 shows a program generated timetable visualization of a solution.Other features of the language Oz, such as statically scoped higher-order pro-gramming and concurrent object-oriented programming, which are not availablein other constraint logic languages, vastly facilitate coding and maintenance ofprograms.The program deals with more than 25000 propagators. The �rst solution is foundin less than a minute on a Sun Sparc20 with 60 MHz. A considerable optimizationof 5 lectures less at afternoons is obtained after further 10 minutes.9 Comparison to Constraint LanguagesIn this section we brie
y compare Oz with existing constraint systems for solvingcombinatorial problems.CHIP [DVS+88] is the forerunner for most commercial constraint systems. Itlacks 
exibility for search strategies and constructive disjunction. Only a smallset of prede�ned rei�ed constraints are supported by an if-then-else construct.Nevertheless, it is a successful commercial tool because several OR techniques



Fig. 2. Program generated timetable visualizationhave been incorporated in operators dealing with disjunctive information. Dis-junctive constraints not appropriate for these operators must be modeled bychoice-points.ECLiPSe[ECR95] is the research successor of CHIP enriched with features likeattributed variables. By using attributed variables it is possible to program user-de�ned constraints on a rather low level.clp(FD) [DC93] is a constraint language compiling to the C language. It is basedon indexicals [VSD91] and is the fastest �nite domain system freely available.Nevertheless it supports only basic ingredients for constraint programming (norei�ed constraints or conditionals).The portation of the indexical approach to the concurrent constraint paradigmresulted in the system AKL(FD) [CCD94]. It includes means to express rei�edconstraints and constructive disjunction. Unfortunately, the maximal domain islimited to 255 and the system is not publicly available. The ability to invent new



search strategies is not given.cc(FD) [VSD95] served as an inspiration for both AKL(FD) and Oz. cc(FD) in-tegrates for the �rst time rei�ed constraints, realized by the cardinality operator(which can be expressed in Oz), with constructive disjunction. cc(FD) does notsupport the ability to invent new search strategies. There is no implementationof cc(FD) available for further comparison.AcknowledgementsWe thank the Prorektor of the Catholic College for Social Work at Saarbr�ucken,Peter Huberich, for explaining his timetabling problems to us. We thank To-bias M�uller for implementing the constraint solver and Benjamin Lorenz formaintaining the timetable program. Martin M�uller and Christian Schulte con-tributed comments on a draft of the paper. The research reported in this paperhas been supported by the Bundesminister f�ur Bildung, Wissenschaft, Forschungund Technologie (FTZ-ITW-9105), the Esprit Project ACCLAIM (PE 7195) andthe Esprit Working Group CCL (EP 6028).RemarkThe DFKI Oz system and the documentation are available from the program-ming systems lab of DFKI through anonymous ftp from ps-ftp.dfki.uni-sb.deor through WWW from http://ps-www.dfki.uni-sb.de/oz/.References[AB93] A. Aggoun and N. Beldiceanu. Extending CHIP in order to solve complexscheduling and placement problems. Mathl. Comput. Modelling, 17(7):57{73, 1993.[BGJ94] P. Boizumault, C. Gueret, and N. Jussien. E�cient labeling and constraintrelaxation for solving time tabling problems. Technical Report ECRC-94-38,ECRC, 1994.[BO92] F. Benhamou and W.J. Older. Applying interval arithmetic to integer andboolean constraints. Technical report, Bell Northern Research, June 1992.[BP84] M. Bruynooghe and L.M. Pereira. Deduction revision by intelligent back-tracking. In J.A. Campbell, editor, Implementations of PROLOG. Ellis Hor-wood Limited, 1984.[CCD94] B. Carlson, M. Carlsson, and D. Diaz. Entailment of �nite domain con-straints. In P. van Hentenryck, editor, Proceedings of the International Con-ference on Logic Programming, pages 339{353. The MIT Press, 1994.[Col90] A. Colmerauer. An introduction to PROLOG III. Communications of theACM, pages 70{90, July 1990.



[DC93] D. Diaz and P. Codognet. A minimal extension of the WAM for clp(FD).In Proceedings of the International Conference on Logic Programming, pages774{790, Budapest, Hungary, 1993. MIT Press.[DVS+88] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, andF. Berthier. The constraint logic programming language CHIP. In Proceed-ings of the International Conference on Fifth Generation Computer SystemsFGCS-88, pages 693{702, Tokyo, Japan, December 1988.[ECR95] ECRC. ECLiPSe, User Manual Version 3.5, December 1995.[JM87] J. Ja�ar and S. Michaylov. Methodology and implementation of a CLP sys-tem. In Proceedings of the International Conference on Logic Programming,pages 196{218, 1987.[Mac77] A. K. Mackworth. Consistency in networks of relations. Arti�cial Intelli-gence, 8:99{118, 1977.[Meh94] Michael Mehl. Window programming in DFKI Oz. DFKI Oz documen-tation series, German Research Center for Arti�cial Intelligence (DFKI),Stuhlsatzenhausweg 3, D-66123 Saarbr�ucken, Germany, 1994.[Sch94] Christian Schulte. Open programming in DFKI Oz. DFKI Oz documen-tation series, German Research Center for Arti�cial Intelligence (DFKI),Stuhlsatzenhausweg 3, D-66123 Saarbr�ucken, Germany, 1994.[Sid93] G.A. Sidebottom. A Language for Optimizing Constraint Propagation. PhDthesis, Simon Fraser University, Canada, 1993.[Smo95a] Gert Smolka. The de�nition of Kernel Oz. In Andreas Podelski, editor,Constraints: Basics and Trends, Lecture Notes in Computer Science, vol.910, pages 251{292. Springer-Verlag, 1995.[Smo95b] Gert Smolka. The Oz programming model. In Jan van Leeuwen, editor,Computer Science Today, Lecture Notes in Computer Science, vol. 1000,pages 324{343. Springer-Verlag, Berlin, 1995.[SR90] V.A. Saraswat and M. Rinard. Concurrent constraint programming. In Pro-ceedings of the 7th Annual ACM Symposium on Principles of ProgrammingLanguages, pages 232{245, San Francisco, CA, January 1990.[SS94] Christian Schulte and Gert Smolka. Encapsulated search in higher-orderconcurrent constraint programming. In Maurice Bruynooghe, editor, LogicProgramming: Proceedings of the 1994 International Symposium, pages 505{520, Ithaca, New York, USA, 13{17 November 1994. The MIT Press.[SSW94] Christian Schulte, Gert Smolka, and J�org W�urtz. Encapsulated search andconstraint programming in Oz. In A.H. Borning, editor, Second Workshopon Principles and Practice of Constraint Programming, Lecture Notes inComputer Science, vol. 874, pages 134{150, Orcas Island, Washington, USA,2-4 May 1994. Springer-Verlag.[ST95] G. Smolka and R. Treinen, editors. DFKI Oz Documentation Se-ries. Deutsches Forschungszentrum f�ur K�unstliche Intelligenz GmbH,Stuhlsatzenhausweg 3, 66123 Saarbr�ucken, Germany, 1995.[VSD91] P. Van Hentenryck, V. Saraswat, and Y. Deville. Constraint processing incc(FD). Technical report, Brown University, 1991. Unpublished.[VSD95] P. Van Hentenryck, V. Saraswat, and Y. Deville. Design, implementationand evaluation of the constraint language cc(FD). In Andreas Podelski,editor, Constraints: Basics and Trends, Lecture Notes in Computer Science,vol. 910. Springer Verlag, 1995.This article was processed using the LATEX macro package with LLNCS style


