
Oz|A Programming Language for Multi-Agent Systems�Martin Henz, Gert Smolka, J�org W�urtzGerman Research Center for Arti�cial Intelligence (DFKI)Stuhlsatzenhausweg 3D-6600 Saarbr�uckenGermanyE-mail: fhenz, smolka, wuertzg@dfki.uni-sb.deAbstractOz is an experimental higher-order concurrentconstraint programming system under develop-ment at DFKI. It combines ideas from logic andconcurrent programming in a simple yet expres-sive language. From logic programming Oz in-herits logic variables and logic data structures,which provide for a programming style wherepartial information about the values of vari-ables is imposed concurrently and incremen-tally. A novel feature of Oz is that it accommo-dates higher-order programming without sacri-�cing that denotation and equality of variablesare captured by �rst-order logic. Another newfeature of Oz is constraint communication, anew form of asynchronous communication ex-ploiting logic variables. Constraint communi-cation avoids the problems of stream communi-cation, the conventional communication mech-anism employed in concurrent logic program-ming. Constraint communication can be seenas providing a minimal form of state fully com-patible with logic data structures.Based on constraint communication andhigher-order programming, Oz readily supportsa variety of object-oriented programming stylesincluding multiple inheritance.1 IntroductionOz is an attempt to create a high-level concurrent pro-gramming language bringing together the merits of logicand object-oriented programming in a uni�ed language.Our natural starting point was concurrent constraintprogramming [Saraswat and Rinard, 1990], which bringstogether ideas from constraint and concurrent logic pro-gramming. Constraint logic programming [Ja�ar andLassez, 1987, Colmerauer and Benhamou, 1993], on theone hand, originated with Prolog II [Colmerauer et al.,1983] and was prompted by the need to integrate num-bers and data structures in an operationally e�cient,yet logically sound manner. Concurrent logic program-ming [Shapiro, 1989], on the other hand, originated with�This work has been supported by the Bundesminister f�urForschung und Technologie, contract ITW-9105.

the Relational Language [Clark and Gregory, 1981] andwas promoted by the Japanese Fifth Generation Project,where logic programming was conceived as the basic sys-tem programming language and thus had to account forconcurrency, synchronization and indeterminism. Forthis purpose, the conventional SLD-resolution schemehad to be replaced with a new computation model basedon the notion of committed choice. At �rst, the newmodel developed as an ad hoc construction, but �nallyMaher [Maher, 1987] realized that commitment of agentscan be captured logically as constraint entailment. Amajor landmark in the new �eld of concurrent constraintprogramming is AKL [Janson and Haridi, 1991], the �rstimplemented concurrent constraint language accommo-dating search and deep guards.Saraswat's concurrent constraint model [Saraswat andRinard, 1990] can accommodate object-oriented pro-gramming along the lines of Shapiro's stream-basedmodel for Concurrent Prolog [Shapiro and Takeuchi,1983]. However, this model is intolerably low-level dueto the clumsiness of stream communication and the lackof higher-order programming facilities. This becomesfully apparent when the model is extended to providefor inheritance [Goldberg et al., 1992].Thus the two essential innovations Oz has to provideto be well-suited for object-oriented programming arebetter communication and a facility for higher-order pro-gramming. Both innovations require stepping outside ofestablished semantical foundations. The semantics of Ozis thus speci�ed by a new mathematical model, called theOz Calculus, whose technical set-up was inspired by the�-calculus [Milner, 1991], a recent foundationally moti-vated model of concurrency.The way Oz provides for higher-order programming isunique in that denotation and equality of variables arecaptured by �rst-order logic only. In fact, denotationof variables and the facility for higher-order program-ming are completely orthogonal concepts in Oz. This isin contrast to existing approaches to higher-order logicprogramming [Nadathur and Miller, 1988, Chen et al.,1993].Constraint communication is asynchronous and inde-terministic. A communication event replaces two com-plementary communication tokens with an equation link-ing the partners of the communication. Constraint com-munication introduces a minimal form of state that

is fully compatible with logic data structures. E�-cient implementation of fair constraint communicationis straightforward.The paper is organized as follows. The next sectionoutlines a simpli�ed version of the Oz Calculus. Sec-tion 3 shows how Oz accommodates records as a logicdata structure. The remaining sections present one pos-sible style of concurrent object-oriented programmingfeaturing multiple inheritance.2 The Oz CalculusThe operational semantics of Oz is de�ned by a mathe-matical model called the Oz Calculus [Smolka, 1993]. Inthis section we outline a simpli�ed version su�cing forthe purposes of this paper.The basic notion of Oz is that of a computation space.A computation space consists of a number of agents con-nected to a blackboard (see Fig. 1). Each agent readsthe blackboard and reduces once the blackboard containsthe information it is waiting for. The information on theblackboard increases monotonically. When an agent re-duces, it may put new information on the blackboardand create new agents. Agents themselves may have oneAA �� %%% eeeeee%%%BlackboardAgent Agent...
Figure 1: Computation Modelor several local computation spaces. Hence the entirecomputation system is a tree-like structure of computa-tion spaces (see Fig. 1).The agents of a computation space are agents at themicro-level. They are used to program agents at themacro-level. One interesting form of macro-agents arethe objects we will introduce in a later section of thispaper.Formally, a computation state is an expression ac-cording to Fig. 2. (If � is a syntactic category, � de-notes a possibly empty sequence � . . . �.) Constraints,abstractions and communication tokens reside on theblackboard. Applications and conditionals are agents.Composition and quanti�cation are the glue assemblingagents and blackboard items into a computation space.Quanti�cation introduces local variables. Abstractionsmay be seen as procedure de�nitions and applications asprocedure calls.The clauses of a conditional are unordered. Theirguards, i.e., � in 9x (� then �), constitute local com-putation spaces. Note that any expression can be takenas a guard; one speaks of a
at guard if the guard is aconstraint.There are two variable binders: quanti�cation 9x�binds x with scope � and abstraction x: y=� binds the

variables in y with scope �. Free variables of an expres-sion are de�ned accordingly.x; y; z : variables�; �; � ::=� constraintx: y=� abstractionx ! y put tokenx?y get tokenxy applicationif !1 . . . !n else � conditional� ^ � composition9x� quanti�cation! ::= 9x (� then �) clause�; ::= ? j > j s := t j r(s) j � ^ Figure 2: Expressions of the Oz CalculusComputation is de�ned as reduction (i.e., rewriting)of expressions. A reduction step is performed by ap-plying a reduction rule to a subexpression satisfying theapplication conditions of the rule. There is no backtrack-ing. Control is provided by the provision that reductionrules must not be applied to mute subexpressions, i.e.,subexpressions that occur within bodies of clauses, elseparts of conditionals, or bodies of abstractions. It is upto the implementation which non-mute subexpression isrewritten with which applicable rule.Reduction \� ! �" is de�ned modulo structural con-gruence \� � �" of expressions, that is, satis�es theinference rule � � �0 �0 ! � 0 � 0 � �� ! � :Structural congruence is an abstract equality for compu-tation states turning them from purely syntactic objectsinto semantical objects. Structural congruence providesfor associativity and commutativity of composition, re-naming of bound variables, quanti�er mobility9x� ^ � � 9x(� ^ �) if x does not occur free in � ,constraint simpli�cation, and information propagationfrom global blackboards to local blackboards.2.1 ConstraintsConstraints (�, in Figure 2) are formulas of �rst-orderpredicate logic providing for data structures. Logicalconjunction of constraints coincides with compositionof expressions. Constraints express partial informationabout the values of variables. The semantics of con-straints is de�ned logically by a �rst-order theory � andimposed with the congruence law� � if � j= �$.This law closes the blackboard under entailed constraints(since � j= �! i� � j= � $ � ^). The congruence

lawx :=y ^ � � x :=y ^ �[y=x] if y is free for x in �imposes equalities on the blackboard to the rest of thecomputation space (�[y=x] is obtained from � by replac-ing every free occurrence of x with y). Equality of vari-ables is strictly �rst-order: Two variables x, y are equal ifthe constraints on the blackboard entail x :=y, and di�er-ent if the constraints on the blackboard entail :(x :=y).Of course, the information on the blackboard may be in-su�cient to determine whether two variables are equal ordi�erent. Moreover, an inconsistent blackboard entailsboth x :=y and :(x :=y).The Anullation Law9x(� ^ y:�) � >if � j= 9x� and y � L(x; �), whereL(x; �) := fy 2 x j 8z: � j=� y :=z) z 2 xgprovides for the deletion of quanti�ed constraints andabstractions not a�ecting visible variables.2.2 ApplicationAn application agent xy waits until an abstraction forits link x appears on the blackboard and then reduces asfollows:xy ^ x: z=� ! 9z (z :=y ^ �) ^ x: z=�if x and y are disjoint and of equal length:Note that the blackboard y: z=� ^ x :=y contains an ab-straction for x due to the congruence laws stated above.Since the link x of an abstraction x: y=� is a variablelike any other, abstractions can easily express higher-order procedures. Note that an abstraction x: y=� doesnot impose any constraints (e.g., equalities) on its linkx.2.3 Constraint CommunicationThe semantics of the two communication tokens is de-�ned by the Communication Rule:x ! y ^ z?y ! x :=z:Application of this rule amounts to an indeterministictransition of the blackboard replacing two complemen-tary communication tokens with an equality constraint.The Communication Rule is the only rule deleting itemsfrom the blackboard. Since agents read only constraintsand abstractions, the information visible to agents nev-ertheless increases monotonically.2.4 ConditionalIt remains to explain the semantics of a conditional agentif 9x1 (�1 then �1) � � � 9xn (�n then �n) else �:The guards �i of the clauses are local computationspaces reducing concurrently. For the local computa-tions to be meaningful it is essential that informationfrom global blackboards is visible on local blackboards.

This is achieved with the Propagation Law (recall thatthe clauses are unordered):� ^ if 9x (� then �) ! else ��� ^ if 9x (� ^ � then �) ! else �if � is a constraint or abstraction andno variable in x appears free in �.Read from left to right, the law provides for copying in-formation from global blackboards to local blackboards.Read from right to left, the law provides for deletion oflocal information that is present globally. An exampleveri�ed by employing the Propagation Law in both di-rections (as well as constraint simpli�cation) isx :=1 ^ if (x :=1 then �) (x :=2 then �) else �� x :=1 ^ if (> then �) (? then �) else �:The example assumes that the constraint theory entailsthat 1 and 2 are di�erent.Operationally, the constraint simpli�cation and prop-agation laws can be realized with a so-called relative sim-pli�cation procedure. Relative simpli�cation for the con-straint system underlying Oz is investigated in [Smolkaand Treinen, 1992].There are two distinguished forms a guard of a clausemay eventually reduce to, called satis�ed and failed. If aguard of a clause is satis�ed, the conditional can reduceby committing to this clause:if 9x (� then �) ! else � ! 9x (�^�) if 9x � � >.Reduction puts the guard on the global blackboard andreleases the body of the clause.A guard is failed if the constraints on its blackboardare unsatis�able. If the guard of a clause is failed, theclause is simply discarded:if 9x (?^ � then �) ! else � ! if ! else �:Thus a conditional may end up with no clauses at all, inwhich case it reduces to its else part:if else � ! �:The reductionx :=1 ^ if (x :=1 then �) (x :=2 then �) else �! x :=1 ^ �is an example for the application of the �rst rule, andx :=3 ^ if (x :=1 then �) (x :=2 then �) else �!� x :=3 ^ �is an example employing the other two reduction rules.2.5 Logical SemanticsThe subcalculus obtained by disallowing communicationtokens and conditionals with more than one clause en-joys a logical semantics by translating expressions intoformulas of �rst-order predicate logic as follows (compo-sition is interpreted as conjunction, and quanti�cation isinterpreted as existential quanti�cation):x: y=� =) 8y (apply(xy)$ �)xy =) apply(xy)if 9x (� then �) else � =) 9x (� ^ �) _ (:9x� ^ �):

Under this translation, reduction is an equivalence trans-formation, that is, if � ! � or � � � , then � j= � $ � .Moreover, negation can be expressed since :� is equiva-lent to if � then ? else >.2.6 Unique NamesA problem closely related to equality and of great impor-tance for concurrent programming is the dynamic cre-ation of new and unique names. Roughly, one would likea construct gensym(x) such thatgensym(x) ^ gensym(y)is congruent to a constraint entailing :(x :=y). For thispurpose we assume that there are in�nitely many dis-tinguished constant symbols called names such that theconstraint theory � satis�es:1. � j= :(a :=b) for every two distinct names a, b2. � j= S $ S[a=b] for every logical sentence S andevery two names a, b (S[a=b] is obtained from Sby replacing every occurrence of b with a).Now gensym(x) is modeled as a generalized quanti�cation9a(x :=a), where the quanti�ed name a is subject to �-renaming. With that and the quanti�er mobility statedabove we in fact obtain a constraint in which x and yare di�erent:9a(x :=a) ^ 9a(y :=a) � 9a(x :=a) ^ 9b(y :=b)� 9a9b(x :=a ^ y :=b):3 RecordsThe constraint system underlying Oz provides a domainthat is closed under record construction [Smolka andTreinen, 1992]. We now outline its constraint theoryas far as is needed for the rest of this paper. We willbe very liberal as it comes to syntax. The reader mayconsult [Smolka and Treinen, 1992] for details.Records are obtained with respect to an alphabet ofconstant symbols, called atoms, and denoted by a; b; f; g.Records are constructed and decomposed by constraintsof the form x := f(a1:x1 . . . an:xn)where f is the label, a1; . . . ; an are the �eld names, andx1; . . . ; xn are the corresponding values of record x. Theorder of the �elds ai:xi is not signi�cant. The semanticsof the above constraint is �xed by two axiom schemesf(a:x) := f(a: y) $ x := yf(a:x) := g(b: y) ! ? if f 6= g or [a] 6= [b]where [a] is the set of elements of the sequence a.Field selection x:y is a partial function on records de-�ned by the axiom schemesf(a:x b: y) : b := yf(a:x) : b := y ! ? if b =2 [a]:The function label(x) is de�ned on records by the schemelabel(f(� � �)) := f:

Finally, record adjunction \adjoinAt(x; y; z)" is de�nedby the schemes:adjoinAt(f(a:x b: y); b; z) := f(a:x b: z)adjoinAt(f(a:x); b; z) := f(a:x b: z) if b =2 [a] :We write f(x1 . . .xn) as a short hand forf(1:x1 . . .n:xn). Thus we obtain Prolog terms as a spe-cial case of records.4 Synchronous CommunicationConstraint communication is asynchronous. The follow-ing program shows how synchronous comunication canbe expressed using constraint communication. Com-putation only proceeds after communication has takenplace (signaled by an acknowledgement).proc fProducergexists Ack initem(0yellow brick0 Ack 1) ! Channelif Ack = 1 then fProducerg �endproc fConsumergexists X Ack initem(X 1 Ack) ? Channelif Ack = 1then fAddToRoad Xg fConsumerg �endWe have now switched to the concrete syntax of Oz:pred fx yg � end stands for x: y=� ^ 9a(x :=a), fx ygfor xy , and juxtaposition for composition. Moreover,nesting is allowed and is eliminated by conjunction andquanti�cation; e.g. item(X 1 Ack) ?Channel expands toexists Y in Y=item(X 1 Ack) Y ?Channel. Finally,the default for a missing else part of a conditional iselse true .5 ObjectsAn object has a static aspect, its method table, and adynamic aspect, its state. Methods are functionsmethod : state � message ! state:A method table is a mapping from method names tomethods, represented as a record whose �eld names actas method names. A message is a record, whose label isthe name of the method and whose �elds are arguments.It turns out that we can represent an object Oby the procedure that sends the message. This rep-resentation gives a unique identity to the object sinceproc fx yg � end stands for x: y=� ^ 9a(x :=a).proc fO Messagegif MethodName Method inMethodName=f label MessagegMethod=MethodTable.MethodNamethen exists State inState ? Cif f label Stateg=statethen fMethod State Messageg ! C ��end

Observe that nested application makes programs moreconcise: fMethod State Messageg ! C stands forexists NState infMethod State Message NStateg NState ! CWhen a message is received by the object O, the methodassociated with the method name is retrieved using themethod table of the object (i.e., late binding). Then thestate of the object is replaced by the state obtained byapplying the method.The following procedure provides a generic scheme forcreating objects from a method table and an initial mes-sage.proc fCreate IMessage MethodTable Ogexists IMethod C inIMethod= MethodTable.fLabel IMessagegfIMethod state(self:O) IMessageg ! Cproc fO Messageg ... endendObserve that the notion of \self" is provided in a natu-ral way by starting with the initial state state(self :O).Object initialization is provided by applying an initialmessage to that state. The resulting state is writtenon the blackboard. Now, the object is ready to receivemessages. We abbreviate message sending of the formfO Mg by O ^M. Note that quanti�cation of the com-munication link C hides the state and provides for dataencapsulation.6 MethodsAssume that we want to model a counter as an object.First, we �x the methods to be stored in the methodtable. To initialize the counter we use the methodproc fInit InS X OutSgif Y in X = init(Y)then OutS = f adjoinAt InS val Yg �endObserve that Init will add the attribute val if it is notpresent in the state InS (see the semantics of adjoinAt inSection 3). To ease the treatment of the state and to geta more elegant notation we abbreviate this abstractionbymeth hhInit init(Y)ii val Y endIncrementing and retrieving is achieved byproc fInc InS X OutSgif X = incthen OutS = f adjoinAt InS val InS.val+ 1g �endproc fGet InS X OutSgif Y in X = get(Y)then OutS = InS Y = InS.val �endwhich is abbreviated tometh hhInc incii val @val+ 1 endmeth hhGet get(Y)ii Y = @val end

A counter is created byMT = mt(init:Init inc:Inc get:Get)fCreate init(0) MT Counterg7 InheritanceIn our framework, inheritance amounts to using themethod tables of other objects to build the method tableof a new object. We modify the procedure Create toprovide for inheritance.proc fCreate Ancestors IMessageNewMethods Ogexists IMethodName IMethod CAllMethods Send in...AllMethods =fAdjoinAll Ancestors NewMethodsgO = object(methods:AllMethodssend:Send)proc fSend Messageg ... endendThe procedure AdjoinAll (not shown) adjoins themethod tables of Ancestors and NewMethods fromleft to right: For any method name, the rightmostmethod de�nition is taken (cf. adjoinAt in Section 3).To make the methods of objects accessible, an ob-ject is now represented as a record containing the meth-ods and the send procedure. Therefore, message send-ing changes slightly: Counter^inc stands now forfCounter:send incg.A counter that is displayed in a window (the objectVisibleObject is de�ned in Section 9) and that can ad-ditionally decrement its value can be created bymeth hhDec decii val @val� 1 endDecCounter =fCreate CounterjVisibleObjectjnilinit(0) mt(dec:Dec)gfor which we introduce the following syntactic sugar.create DecCounterfrom Counter VisibleObjectwith initmeth dec val @val� 1 endend8 Method ApplicationSome languages providing for inheritance support theconcept of super to address methods overwritten dueto the inheritance priority. Oz provides a more generalscheme in that an object can apply to its state methodsof any other object (regardless of inheritance).Assume an already de�ned objectRectangle. A squarecan inherit from a rectangle but needs for initializationonly its length but not its width.

create Square from Rectangle with init(10)meth init(X)hh (Rectangle.methods) .init init(X X) iiend...endwhere the method expands toproc fInit InS X OutSgif Y in X = init(Y)then OutS = fRectangle.methods.initInS init(Y Y)g �endNote that hh@self :methods mii di�ers from @self^m inthat the former tranforms the local state immediately,whereas other messages can be taken before the latter iseventually executed.9 Meta Object ProtocolNow, we modify the object system such that the essen-tials of object creation and message sending can be in-herited, providing the object-system with a meta objectprotocol like in [Kiczales et al., 1991] for CLOS. The newde�nition of Create uses the meta-method create todescribe the object's behavior.proc fCreate Ancestors IMessage NewMethods Ogexists AllMethods inAllMethods =fAdjoinAll Ancestors NewMethodsgfAllMethods. createcreate(AllMethods IMessage O) gendThe underscore \ " denotes an anonymous variable oc-curring only once.Like an organism, an object can inherit the way itand its heirs are created, and the basic structure how itcommunicates with its environment.We can further modularize the object protocol suchthat, e.g., each method call is performed by a call tothe meta-method methodCall. Assume that the meta-methods create and methodCall are de�ned in theobject MetaObject. In this case, a VisibleObjectthat sends a message containing its current state to aDisplay whenever it executes a method, can be createdas follows:create VisibleObject from MetaObjectmeth methodCall(InS Meth Mess OutS)fMeth InS Mess OutSgDisplay ^ show(OutS)endendAcknowledgementsWe thank all members of the Programming Systems Labat DFKI for countless fruitful discussions on all kindsof subjects and objects; particularly many suggestionscame from Michael Mehl and Ralf Scheidhauer.

References[Chen et al., 1993] W. Chen, M. Kifer, and D. S. Warren.Hilog: A foundation for higher-order logic programming.Journal of Logic Programming, pages 187{230, 1993.[Clark and Gregory, 1981] K.L. Clark and S. Gregory. A re-lational language for parallel programming. In Proc. of theACM Conference on Functional Programming Languagesand Computer Architecture, pages 171{178, 1981.[Colmerauer and Benhamou, 1993] A. Colmerauer and F.Benhamou, editors. Constraint Logic Programming: Se-lected Research. 1993. To appear.[Colmerauer et al., 1983] A. Colmerauer, H. Kanoui, andM. Van Caneghem. Prolog, theoretical principles andcurrent trends. Technology and Science of Informatics,2(4):255{292, 1983.[Goldberg et al., 1992] Y. Goldberg, W. Silverman, and E.Shapiro. Logic programs with inheritance. FGCS, pages951{960, 1992.[Ja�ar and Lassez, 1987] J. Ja�ar and J.-L. Lassez. Con-straint logic programming. In Proceedings of the An-nual ACM Symposium on Principles of Programming Lan-guages, pages 111{119, 1987.[Janson and Haridi, 1991] S. Janson and S. Haridi. Pro-gramming paradigms of the Andorra kernel language. InLogic Programming, Proceedings of the 1991 InternationalSymposium, pages 167{186, 1991.[Kiczales et al., 1991] G. Kiczales, J. des Rivi�eres, andD. Bobrow. The Art of the Metaobject Protocol. 1991.[Kahn, 1989] K.M. Kahn. Objects: A fresh look. In Pro-ceedings of the European Conference on Object OrientedProgramming, pages 207{223, 1989.[Maher, 1987] M. J. Maher. Logic semantics for a classof committed-choice programs. In Logic Programming,Proceedings of the Fourth International Conference, pages858{876, 1987.[Milner, 1991] R. Milner. The polyadic �-calculus: A tuto-rial. ECS-LFCS Report Series 91-180, University of Edin-burgh, 1991.[Nadathur and Miller, 1988] G. Nadathur and D. Miller. Anoverview of �Prolog. In Logic Programming: Proceedingsof the Fifth International Conference and Symposium, Vol-ume 1, pages 810{827, 1988.[Saraswat and Rinard, 1990] V.A. Saraswat and M. Rinard.Concurrent constraint programming. In Proceedings of the7th Annual ACM Symposium on Principles of Program-ming Languages, pages 232{245, 1990.[Shapiro and Takeuchi, 1983] E. Shapiro and A. Takeuchi.Object oriented programming in Concurrent Prolog. NewGeneration Computing, 1:24{48, 1983.[Shapiro, 1989] E. Shapiro. The family of concurrentlogic programming languages. ACM Computing Surveys,21(3):413{510, 1989.[Smolka and Treinen, 1992] G. Smolka and R. Treinen.Records for logic programming. In Proceedings of the 1992Joint International Conference and Symposium on LogicProgramming, pages 240{254,1992.[Smolka, 1993] G. Smolka. A calculus for higher-order con-current constraint programming. Research report, DFKI,1993. Forthcoming.

