
J. LOGIC PROGRAMMING 1994:19, 20:1{679 1SMALLEST HORN CLAUSE PROGRAMS
P. DEVIENNE, P. LEB�EGUE, A. PARRAIN,J.C. ROUTIER, AND J. W�URTZ. The simplest non{trivial program pattern in logic programming is the fol-lowing one : 8<:p(fact) :p(left) p(right) : p(goal) :where fact , goal , left and right are arbitrary terms. Because the wellknown append program matches this pattern, we will denote such programs\append{like".In spite of their simple appearance, we prove in this paper that termina-tion and satis�ability (i.e the existence of answer{substitutions, called theemptiness problem) for append{like programs are undecidable. We alsostudy some subcases depending on the number of occurrences of variablesin fact , goal , left or right .Moreover, we prove that the computational power of append{like programsis equivalent to the one of Turing machines ; we show that there existsan append{like universal program. Thus, we propose an equivalent of theB�ohm{Jacopini theorem for logic programming. This result con�rms theexpressiveness of logic programming.The proofs are based on program transformations and encoding of prob-lems, unpredictable iterations within number theory de�ned by J.H. Con-way or the Post correspondence problem. /This paper is a survey which covers the results of [19], [20], [21] and [28].Address correspondence to P. Devienne, P. Leb�egue, A. Parrain, J.C. Routier, Lab-oratoire d'Informatique Fondamentale de Lille. CNRS URA 369. Universit�e des Sci-ences et Technologies de Lille, Cit�e Scienti�que, 59655 Villeneuve d'Ascq c�edex, France.fdevienne,lebegue,parrain,routierg@lifl.fr.J. W�urtz, Deutsches Forschungszentrum f�ur K�unstliche Intelligenz. Stuhlsatzenhausweg 3, 66123Saarbr�ucken 11, Germany. wuertz@dfki.uni-sb.de.THE JOURNAL OF LOGIC PROGRAMMINGc
 Elsevier Science Inc., 1994655 Avenue of the Americas, New York, NY 10010 0743-1066/94/$7.00

21. INTRODUCTIONThe study of minimal patterns of programming languages allows� to extract useful properties for improving larger programs (for example newtechnics of compilation),� to strengthen the power of the language.In Horn clause languages, the simplest non{trivial pattern is built with one fact,one two-literal recursive Horn clause (in the following we will say binary) and onegoal : 8<:p(fact) :p(left) p(right) : p(goal) :where fact , left , right and goal are arbitrary terms.We will use this pattern many times in this paper, sometimes with a simplereference to fact, left, right, or goal. We will refer to such programs as append{likeprograms according to the most famous program matching this pattern :Example 1.1.8<:append([],L,L) :append([HjL],LL,[HjLLL]) append(L,LL,LLL) : append(?,?,?) : �While for simple examples good intuition on the behaviour (halting and existenceof solutions) of an append{like program is possible, the non{linearity of the termsmay cause high complexity phenomena. Indeed, as we will see here, in spite of theirstructural simplicity, the computational power of append{like programs is the sameas that of Turing machines.The two �rst important problems are the halting problem and the emptinessproblem, that is the problem of the existence of at least one solution (answer{substitution). Di�erent behaviours of append{like programs are possible dependingon the goal : �nite or in�nite computation ; empty, �nite or in�nite set of solutions.M. Schmidt{Schau� [47] has shown that the two problems are decidable whengoal and fact are ground1. This result is a corollary of his work on the implicationof clauses, or equivalently on the decision problem of clause sets consisting of oneclause and some ground units (one-literal clause) (see also [36]). M. Dauchet, P.Devienne and P. Leb�egue [11, 17] studied the linear2 case and proved it decidable aswell. They used a new technic based on weighted directed graph (an extension of thedirected graphs). W. Bibel, S. H�olldobler and J. W�urtz [2] considered the emptinessproblem and proved it decidable for some particular cases3. They denoted thisproblem as the cycle uni�cation problem, that is a uni�cation of the goal { which1A term t is said to be ground when it does not contain any variable occurrence [34].2A term t is said to be linear when each variable occurs at most once.3They consider cases where there exists a substitution � such that �left = right or left =�right, called left (resp. right) matching cycle.

3begins the cycle, and the fact { which terminates the cycle, through the binary Hornclause { which de�nes the cycle. For particular cycle uni�cation classes see [45, 51].In this paper we will show that the two problems are undecidable for append{like programs. The proof technic of [19, 20] is based on an original encoding ofthe unpredictable iterations of J. Conway within number theory [8] which are closeto Minsky machines [39]. An alternative proof of undecidability of the emptinessproblem can be found in [28]. It has been made independently and it is based on anencoding of the Post correspondence problem. We will present both proofs. We alsostudy some particular subcases de�ned by the number of occurences of variables interms (linearity).Another crucial question is the computational power of append{like programs.M. Dauchet [10] proved that it is possible to simulate any Turing machine withonly one regular4 left{linear rewrite rule. In [49], it is shown that every computablefunction is characterizable by a program consisting only of facts and binary Hornclauses. Another encoding of Turing machines using binary programs can be foundin [4]. And in [41], a meta{interpreter has been written using only one fact, onegoal and two binary recursive clauses. In pure Datalog, O. Shmueli has proved thata single recursive predicate (not clause) is su�cient [46].In this paper, we establish that all computation on Minsky machines can beexpressed by an append{like program [21]. The class of append{like programs isTuring{complete. The proof uses the encoding of Conway functions and logicalreductions on meta{programs.This theorem is equivalent to the B�ohm{Jacopini theorem for declarative lan-guages. The B�ohm{Jacopini theorem establishes that for imperative languages,every
owchart is equivalent to a while{program with one occurrence of while-do,provided additional variables are allowed (for more details see [27]). This proofis constructive and usually cited as the mathematical justi�cation for structuredimperative programming.We will show that in Horn clause languages, any program can be automaticallytransformed into another one composed of one binary Horn clause and two unitclauses. This transformation preserves both termination and solutions (answer{substitutions on the original variables). This shows the expressive power of a singleHorn clause and can be used as a theoretical tool for decision problems in theoremproving.The paper is organized as follows : Section 2 states the main results. In Sec-tion 3, we introduce binary Horn clauses and resolution. In Section 4, the Minskymachine formalism and the unpredictable iterations of J.H. Conway are presented.In the next section, it is shown how they can be simulated by binary clauses. Wepresent the halting and emptiness problems and some subcases in Sections 6 and 7,respectively. Section 8 is about meta{interpreters and the computational power ofappend{like programs. Some results about ternary (three-literal) programs, closeto clause implication problem, are presented in Section 9. A conclusion summarizesthe results.4A rule is regular i� it is left-linear and nonoverlapping (i.e. there are no nontrivial criticalpairs).

42. MAIN RESULTSThe main result of this paper is about the computational power of append{likeprograms.Main Result (Theorem 8.1, page 32) There exists a meta{interpreter for Hornclauses in the form of a program with only one binary Horn clause, a fact and goal,which, given as input a Horn clause program P , has the same solutions as P andterminates if and only if P terminates.The two other main results are in fact consequences of this theorem :Result 1 (Theorem 6.2, page 17) There exists an explicitly constructable right{linear binary Horn clause, for which the halting problem, according to SLD resolu-tion, is undecidable. The resolution can be applied with or without occur{check.Result 2 (Theorem 7.1, page 20) For a program of the form8<:p(fact) :p(left) p(right) : p(goal) :where fact and right are linear, the emptiness problem is undecidable.Due to the used proof technics, we wil prove Result 1 and Result 2 �rst. Theproof of the Main Result will use the principles introduced before.3. PRELIMINARIESWe assume the reader to be familiar with the notions of uni�cation and resolutionintroduced in [34].The goal of this section is to present indexation of variables and how to express,in term of equations, the resolution of append{like program.3.1. Binary Horn ClauseLet F be a set of function symbols (which contains at least two constants and onesymbol whose arity is greater than 1), V ar an in�nite countable set of variables.We denote by T (F ;Var) the set of terms built from F and Var.De�nition 3.1. Binary recursive Horn clauses have the following form :p(l1; :::; ln) p(r1; :::; rn) :where li and ri are any terms of T (F ;Var).In the following, we will often abbreviate \binary recursive Horn clause" by\binary clause", we refer also to it as the rule.A binary clause l r is said to be right{linear (resp. left{linear) if eachvariable occurs at most once in the body part r (resp. the head part l).For example, \append([X | L], LL, [X | LLL]) append(L,LL,LLL)." isa right{linear binary clause.

53.2. Variable IndexationIt is well known that during resolution formal variables of a clause are renamed tofresh variables. We introduce fresh variables by adding a subscript to the formalvariables. This subscript will denote the number of the inference.ith inference : append([Xi j Li]; LLi; [Xi j LLLi]) append(Li; LLi; LLLi) .The sequence of inferences using the clause, \left right", can be drawn in theform of a series of dominoes :� � � left1 right1 left2 right2 � � � leftn�1 rightn�1 leftn rightn � � �The ith domino can be followed by an (i+ 1)th one, if the terms lefti+1 and rightican be uni�ed (and this is compatible with those of the other iterations). Hence,applying n times this binary clause is equivalent to solve the following system ofequations : f lefti+1 = righti j i 2 [1; n� 1]g :Example 3.1. Applying n times the append clause is equivalent to solve the system :fappend([Xi+1 j Li+1]; LLi+1; [Xi+1 j LLLi+1]) =append(Li; LLi; LLLi) j i 2 [1; n� 1]g,that is in solved form :8 i 2 [1; n� 1]8<:Li = [Xi+1 j Li+1]LLi = LLi+1LLLi = [Xi+1 j LLLi+1] �To express the whole resolution, the goal and the fact must be taken into account.Thus applying n times the rule \left right:" starting with the goal \ goal:"and checking whether there exists a solution at the nth iteration with the fact\fact :", it is equivalent to solve :8<: goal = left1lefti+1 = righti ; i 2 [1; n� 1]rightn = factThis indexation of variables and the modeling of resolution through equationswill be one of the basic notions in the following sections.4. MINSKY MACHINES AND CONWAY ITERATIONSIn the following, the expression \It is undecidable whether or not..." stands for\There exists no algorithm that always decides, whether or not...".

6 4.1. Minsky MachinesPresentation.The Minsky machines [39, 8] are deterministic machines with registers and in-structions. Registers (�nitely many of them) can hold arbitrary large non{negativeintegers. A machine executes a program composed of instructions sequentially. In-structions are labeled by Q1, Q2, � � �, Qn (for a program of n instructions). Threekinds of instructions are possible :� \Halt" : stop the machine.� \Successor" : at step Qi, add 1 to some register a and proceed to next stepQj (where (a) denotes the value of the register a) :���� - ����Qi Qj(a) + 1� \Decrement or jump" : at step Qi, if (a) > 0 then subtract 1 from registera and proceed to next step Qj , else simply go to step Qk :
���� -�����*HHHHHj��������Qi QjQk(a) > 0 yes(a)� 1noThese machines have the same computational power as Turing machines (two reg-isters are su�cient [39]). For any partial recursive function f , there exists a Minskymachine which, started with register contents n; 0; 0; � � � (n will be called the input ofthe machineM) reaches the \Halt" instruction with register contents f(n); 0; 0; � � �,if f(n) exists and does not halt otherwise.If the computation is �nite, M(n) denotes the content of the �rst register (i.e.f(n)), which we call the result of the Minsky machine's computation for initialregister values (the input of the machine) n; 0; 0; � � �. Otherwise (the computationdoes not terminate),M(n) will be in�niteLet us state some usual de�nitions and properties :� The domainDom(M) of a Minsky machineM is : fn 2 IN j M(n) is �niteg.� A Minsky machineM is said to be total i� its domain is IN .� Given a Minsky machine it is undecidable whether or not this machine istotal.� Given a Minsky machine M, it is undecidable whether or not a given nbelongs to Dom(M).A particular class of Minsky machines.In the proofs of further sections, we use a particular class of Minsky machinesgiven by the following de�nition.De�nition 4.1. Given a Minsky machine M?, a new machine M, with � a �xednatural number, and n 2 IN� as input, can be constructed as follows :1. Compute �� n and put it into a new register r.2. if (r) = 0 then goto 5 else subtract one from r

73. Execute one instruction of M?(0)4. IfM?(0) has reached the \Halt" instructionthen go into \an in�nite loop" else goto 25. put zero in all the registers and halt.Moreover we force M(0) is �nite and equal 0. M is called a linear and nullMinsky machine.Property 1. Let M be a linear and null Minsky machine, the two following asser-tions stand :� null : 0 2 Dom(M) and all the registers contains 0 at the �nal computa-tion step (after the \Halt" instruction), in particular, the associated partialfunction, f , satis�es : 8 n 2 Dom(f); f(n) = 0� linear : for all input n 2 Dom(M), if n > 0 thenM(n) is computed in lessthan �� n steps.It is straightforward that such Minsky machines do exist. Simply consider themachine with one register, which decrements it until it reaches 0. It is clearly linear(with � = 2) and null.Theorem 4.1. It is undecidable whether or not a linear and null Minsky machineM is total.Proof.5 LetM? be the Minsky machine from whichM is constructed.A natural integer n belongs to the domain of M i� the \in�nite loop" is notreached, that is, M?(0) needs more than � � n steps to be computed. By con-struction this null Minsky machine is total i� M?(0) does not terminate. This isundecidable. It remains to prove thatM is linear.Let us compute the complexity ofM for any n 2 Dom(M). Step 1 can be donein ((�+1)�n) instructions. M reaches step 5 after (2��n) instructions. Once inthis step, the sum of all the contents of the k registers ofM? is, by construction, atmost (��n). Consequently it takes at worst (��n+k) instructions to put 0 in allthe registers ofM? then ofM. Hence the complexity ofM is ((4�+ 1)� n+ k).Thus by construction, the linear null Minsky machineM is total i�M?(0) doesnot stop, but this is undecidable. �De�nition 4.2. A set � is said to be recursively enumerable i� it is the domain ofa Turing machine (or a Minsky machine).From de�nitions, we can deduce the following property :Property 2. Every recursively enumerable set containing f0g is the domain of a nullMinsky machine.5We would like to thank Prof. Jean{Paul Delahaye for the basic idea of this proof and previousde�nition.

8 De�nition 4.3. A recursively enumerable set � is said to be linear if there exists alinear and null Minsky machine the domain of which is �.Corollary 4.1. It is undecidable whether a linear recursively enumerable set is equalto IN .Proof. By application of Theorem 4.1. �4.2. Conway Unpredictable IterationsIn the previous section, we have considered the Minsky machines that can be seenas an arithmetization of Turing machines, since the tape is replaced by registerswith integer values. This section deals with the work of the mathematician J.H.Conway. He proposed a encoding in terms of numeric functions of the Minskymachines. It results from the study of a generalization of the Collatz conjecture.Including the characterization of recursively enumerable sets, the results obtainedfor the Minsky machines can be extended to Conway functions.The Collatz conjecture. This conjecture asserts that, given a positive integern, the program below always terminates :While n > 1 DoIf n is evenThen n n2Else n 3n+ 1EndIfEndWhileThe exact origin of this conjecture { also called \Syracuse conjecture" or \3x+1problem" [30, 31] { is not clearly known.This problem is credited to Lothar Collatzat the University of Hamburg in the 30's.Nabuo Yoneda at the University of Tokyo has checked the conjecture for alln < 240. The behaviour of the Collatz's series, that is the sequence of all thenumbers successively obtained during the execution of the above program, seemsto be random. While it takes only 10 steps to meet 1 from 26, it takes 111 stepsfrom 27 : 26! 13! 40! 20! 10! 5! 16! 8! 4! 2! 127! 82! 41! :::! 4! 2! 1| {z }111 stepsThe conjecture may be formulated as follows :Conjecture 4.1. (Collatz) Let g be the function de�ned as follows :g(n) = � 12n (n � 0 mod 2)3n+ 1 (n � 1 mod 2)for every natural n, there exists k 2 IN such that g(k)(n) = g(g � � � (g| {z }k (n)) � � �) = 1.

9J.H. Conway has considered the more general functions, that we will call in thefollowing \Conway functions"6 :g(n) = 8>>>><>>>>:a0n+ b0 (n � 0 mod p)� � � � � �akn+ bk (n � k mod p)� � � � � �ap�1n+ bp�1 (n � p� 1 mod p)where p is a positive integer and ak and bk are rational numbers greater than 0 suchthat g(n) is always a natural number. He studies the iterates g(m)(n). J.H. Conwayproved that even if the bk are all equal zero, the behaviour of such functions isunpredictable. This was achieved by a translation of the Minsky machines into theConway functions. We will also de�ne by analogy with the null Minsky machinesso called null functions.Presentation.J.H. Conway considered the class of periodically piecewise linear functions g :IN ! IN having the structure :8k; 0 � k � p� 1; g(n) = akn (n � k mod p)where a0; � � � ; ap�1 are rational numbers such that g(n) 2 IN . These are exactlythe functions g : IN� ! IN such that g(n)n is periodic (IN� denotes IN n f0g).Theorem 4.2. (Conway, see [8]) If f is any partial recursive function, there existsa function g such that :1. g(n)n is periodic mod p for some p and takes rational values.2. 8 n 2 IN; n 2 Dom(f) i� 9(m; j) 2 IN� � IN , such that g(m)(2n) = 2j .3. g(m)(2n) = 2f(n) for the minimal m � 1 such that g(m)(2n) is a power of 2.The �rst point expresses that g is a Conway function. The second point showshow to characterize a member of the domain of a partial recursive function f fromthis function. The last explains how it is possible to compute the value of f(n)through iterations of g. This means that, the Conway functions are as expressiveas the Turing or Minsky machines. This is not a surprise since, as we will see now,the Conway functions are a direct translation of the Minsky machines.The following proof shows explicitly the connection between Minsky machinesand Conway functions, and this connection is important in the following.Principle of Proof. J.H. Conway showed that with every Minsky machine, it ispossible to associate such a function g which simulates step by step the behaviourof this machine. In fact, he explains how to construct this g from the Minskymachine :� with register ri, we associate a prime number pi and characterize the value(ri) of this register by p(ri)i ,� with each step Qj , we associate a prime number Pj ,� the current situation of the machine, characterized by the contents ki of theregisters ri and by the current step Qj , is expressed by an integer of the6In the following, g will denote a Conway function.

10 following form : p(r1)1 � p(r2)2 � � � � � p(rn)n � PjNow let us consider how to express the instructions. This can be done in a verynatural way if the above encoding of the current situation by a number is wellunderstood :� for the \Successor" instructions :���� - ����Q1 Q2(ra) + 1If step Q1 is characterized by prime number P1, step Q2 by P2 and registerra by pa, this instruction may be translated as the multiplication of thecurrent situation of the machine by the factor :P2P1 � pawhich means \From step Q1 (� 1P1), proceed to Q2 (�P2) and add one toregister ra (�pa)".� for the \Decrement or jump" instructions :
���� -�����*HHHHHj��������Q1 Q2Qk(ra) > 0 yes(ra)� 1noWith the above conventions and if the prime number Pk is associated withQk, these instructions can be expressed by the factors :P2P1 � 1pa or PkP1The choice between these two factors corresponds respectively to the cases(ra) > 0 and (ra) = 0. It will be achieved by the \mod p" in the de�nitionof the g functions. It will be similar for the detection of \Am I at step Pj ?".For every instruction of the Minsky machine to be coded, we have to create theassociated factors, then from these factors, to determine the period p (which is justp1 � � � � � pn � P1 � � � � � Pq) such that g(n) always remains an integer and �nallyto compute all the ak.We can see that to each iteration of the function corresponds an instruction ofthe associated Minsky machine. �Since there exists a direct translation between Minsky machines and Conwayfunctions. We will speak in the following about a Conway function associated witha Minsky machine (and conversely).As an example of encoding of a recursive function into a Conway machine, in[26], J.H. Conway and R.K. Guy have detailed how to produce a prime numbergenerator Conway functions from a machine.

11Remark 4.1. By construction, the number of iterations required from g(2n) to reach2f(n) is equal to the number of elementary instructions used by the associatedMinsky machine to produce f(n) from n.Conway Relations.We have seen that Minsky machines and Conway functions are strongly con-nected. Then it is natural to extend some de�nitions for Minsky machines toConway funtions.De�nition 4.4. Let g be a Conway function, the domain of g is :Dom(g) = nn 2 IN j 9(k; p) 2 IN� � IN; g(k)(2n) = 2poA Conway function g is said to be total if its domain is IN .Considering the Conway function associated to the null Minsky machines, wede�ne the null Conway functions as follows :De�nition 4.5. A Conway function g is said to be null if� 0 belongs to its domain,� for every n in the domain of g, the �rst power of 2 reached by iterationsfrom g(2n) is 20.Since we have seen that to each instruction of a machine there correspondsone iteration (see Remark 1), it is reasonable to measure the \complexity" of thefunctions as the number of iterations :De�nition 4.6. A null Conway function is said to be linear if there exists a naturalinteger � such that for every n 2 Dom(g), 20 is reached from 2n in less than�� n iterations of g.We will going to study these null functions more precisely and extract someproperties to de�ne so called Conway relations. We will �rst analyse the behaviourof the negative iterations of Conway functions.De�nition 4.7. Let g be a Conway function, the kth negative iterate of g on n isde�ned as : 8k 2 IN; g(�k)(n) = nm 2 IN jg(k)(m) = no :Comment 4.1. g(�1)(n) (and therefore g(�k)(n) for any k 2 IN) may be a set, sincen can be the range of many m for g.Proposition 4.1. Let g be a null Conway function and n an arbitrary integer, theonly power of 2 reachable (if any) from 2n by iterative applications of g is 20. Bynegative iterations of g from 20, exactly the 2i, for all i 2 Dom(g) are reached.

12 Proof. Since g is null, 0 belongs to its domain. Then there exists k > 0 such thatg(k)(20) = 2f(0) = 20, and k is the smallest positive integer such that g(k)(20) is apower of 2. So it follows that no other power of 2 can be reached by iterations ofg from 20.Now, let us consider the de�nition of a null Conway function. For a given n, if itdoes not belong to the domain of g, no power of 2 will be reached. Conversely, if nbelongs to it, since the �rst power of 2 reached by iterations from 2n is 2f(n) = 20,then it is the only possible one.The second part of the proposition follows immediately from the de�nitions 4.4and 4.7. �Thus, if an integer n belongs to the domain of a null function g, then there existsonly one path between 2n and 20 using positive or negative iterates (we will neglectthe loops on 20 since they do not contain other powers of 2). The existence of sucha path is fully determined by n being in the domain of g.Thus we can de�ne the Conway relation :De�nition 4.8. Let g be a null Conway function, we de�ne the Conway relationassociated to g, and we denote it by �g, the relation such that :2m �g 2n if and only if there exists k 2 ZZ such that g(k)(2m) = 2n (m;n 2IN�).It is easy to check that �g is really an equivalence relation : transitivity, re
ex-ivity and symmetry of �g are straightforward.Now it is possible to characterize the recursively enumerable sets containing 0,that are the domains of null functions, with these relations.Proposition 4.2. For every recursively enumerable set � containing 0, there existsa Conway relation �g such that : � = fn 2 IN j 2n �g 20gProof. The recursively enumerable sets containing 0 are the domains of the nullMinsky machines and consequently of the null Conway functions. If g is the functionthe domain of which is �, then �g satis�es the proposition. �This proposition is crucial for the following. In many proofs, we will create somerecursively enumerable sets from 20 and use the negative iterations of null Conwayfunctions in order to enumerate all the elements of these sets. Then we will useknown undecidable properties concerning these sets.5. RECURSIVELY ENUMERABLE SETS AND BINARY HORN CLAUSESIn this section, we will establish the relationship between binary Horn clauses,and the Conway functions. A Conway function g is expressed by relations likeg(n) = akn with n = �p + k and 0 � k � p � 1, and such that akn is always aninteger. So a function g associates, with a given number of the form �p+k, anothernumber of the form (ak�)p+ (akk) with �, k, ak� and akk in IN .We will �rst prove that it is possible to express with a binary clause and a goalevery relation that associates a number ai + b with another number ci + d wherea; b; c; d are integers. We will then prove that an encoding of the Conway functions

13with a binary clause is possible. This encoding will be described explicitely. We willdeduce a characterization of recursively enumerable sets through a binary clause.5.1. The EncodingExample 5.1. Let us consider the following program :�p(s(X); s(s(Y))) p(X;Y) : p(U;U) :It creates the following equalities between indexed variables :Xi = si(Yi) and Yi = X2i:The size of Y increases by 2 while the size of X increases only by 1. �In general, we will establish that any relation of the formXai+b = Ya0i+b0 ;can be obtained with a binary clause and a non{linear goal. The encoding will bevery similar to the one of the example : it requires the use of one function symbol.However, in order to improve the reading, we will use the list constructor insteadof the function s() of the example.In fact, we will only consider relations likeXai+b = Xa0i+b0 ;since they are su�cient in the following. The production of relations between twodistinct variables X and Y will be obvious from the following.Proposition 5.1. For every natural integer a; a0; b; b0, there exist a variable X, aright{linear binary clause \p(left) p(right)" and a goal \ p(goal)" suchthat :(fgoal = left1g[frighti = lefti+1 j 8 i > 0g)"X � fXai+b = Xa0i+b0 j i > 0g :where S "X is the projection onto the Xi of the equations expressed in S.Proof. Let us consider �rst the case where a0 = 1 and b = b0 = 0.8<: p([az }| {Z; ; � � � ; jL]; [X jLL]) p(L;LL) : p(L;L) :As in the previous example, the size of the �rst argument of the Horn clausedecreases by a while the one of the second decreases by 1.The equal arguments in the goal generates the equality of the two arguments.So we deduce the relation Zi = Xai.Let us assume now that we want to establish a relation such as Zi = Xai+b. Wehave to shift the equality between the previous terms. This can be achieved by the

14 goal : p([; � � � ;| {z }b j L]; L):The relations will in this case a�ect the Zi only from i � b.Now, if we combine two relations Zi = Xai+b and Zi = Xa0i+b0 . The transi-tive closure of these relations and the projection onto the variable X provides theintended relations : Xai+b = Xa0i+b0obtained by the program :8>>>><>>>>:p([az }| {Z; ; � � � ; jL1]; [X jL2]; [a0z }| {Z; ; � � � ; jL3]; [X jL4]) p(L1; L2; L3; L4) : p([; � � � ;| {z }b jL]; L; [; � � � ;| {z }b0 jLL]; LL) : �Remark 5.1. Another encoding of the relation Xai+b = Xa0i+b0 , when b < a andb0 < a0 is possible :8>>>><>>>>: p([az }| {; � � � ; Z| {z }b ; ; � � � jL1]; [X jL2]; [a0z }| {; � � � ; Z| {z }b0 ; ; � � � jL3]; [X jL4]) p(L1; L2; L3; L4) : p(L;L; LL;LL) :The encoding of the Conway functions by a binary recursive clause is nowstraightforward.Proposition 5.2. For every Conway function g, there exist a variable X, a right{linear binary clause \p(left) p(right)", and a goal \ p(goal)" such that :(fgoal = left1g [frighti = lefti+1 j 8 i > 0g)"X � �Xn = Xg(n) j 8 n > 0	 :Proof. Let g be a Conway function. It is de�ned by some a0; a1; � � � ; ap�1. As itwas previously discussed, g can be decomposed into a �nite number of relations ofthe form (Xai+b = Xa0i+b0)i>0, where a; b; a0 and b0 are integers. From the previousproposition, it is possible to associate with each of these relations a binary Hornclause and goal. All these can be merged in only one clause and one goal whichsatisfy the proposition. �Example 5.2. The Collatz program can be translated into equivalence relations onV ar � IN : 8 k 2 IN If k is even Then Xk = X k2 Else Xk = X3k+1 :

15Let f be the function such that 8 i > 0; f(2i) = i and f(2i+ 1) = 6i+ 4. Sincethere does not exist some k 2 IN such that f (k)(1) = n (8 n > 4), we can extendthe previous relation to the following system of equations :�Xi = X2iX2i+1 = X3(2i+1)+1But, we have seen that such relations can be expressed through a binary recursiveclause. The following clause is constructed in a way slightly di�erent than thedescribed before since we have grouped two arguments into one.8<:p(L1z }| {[X j U]; L2z }| {[Y;X j V]; L3z }| {[; ; ; Y; ; jW]) p(U; V;W): p(Z;Z; Z):From the general goal \ p(L1; L2; L3):", through the inferences the solved sys-tems of equations increases as :1: L1 = [X1jU1] L2 = [Y1; X1jV1]2: L1 = [X1; X2jU2] L2 = [Y1; X1; Y2; X2jV2]...n: L1 = [X1; X2; � � � ; XnjUn] L2 = [Y1; X1; Y2; X2 � � � ; Yn; XnjVn]1: L3 = [; ; ; Y1; ; jW1]2: L3 = [; ; ; Y1; ; ; ; ; ; Y2; ; jW2]... ...n: L3 = [; ; ; Y1; ; ; � � � ; ; ; ; Yn; ; jWn]Therefore, after n iterations, we have :L2 =[Y1; X1;Y2; X2;Y3; X3;� � � ; Yn; XnjVn]L1 =[X1;X2;X3;X4;X5;X6;� � � ; Xn�1; XnjUn]L3 =[; ; ; Y1; ; ; � � � ; ; Yn; ; jWn]Then, with the goal p(Z;Z; Z), we force the equalities :1. L1 = L2) X2i+1 = Yi and X2i = Xi2. L1 = L3) X6i+4 = Yi.that is Xi = X2i and X2i+1 = X6i+4With a goal of the form : p([]; ; � � � ; ; [| {z }n j L]; []; ; � � � ; ; [| {z }n j L]; []; ; � � � ; ; [| {z }n j L]) :we obtain that X1 =] and Xn = [. Therefore, the resolution is �nite if and only ifa uni�cation fails because of Xn 6= X1, that is, if the Collatz program with the inputn terminates. In other words, the Collatz conjecture is equivalent to the assertionthat, given any n, if the goal is of the above form, then the resolution is �nite. �

16
5.2. A Binary Clause and Recursively Enumerable SetsIn Section 4.2 we have de�ned the notion of Conway relations. We have shownthat they allow to characterize the recursively enumerable sets containing 0. Now,according to the previous paragraph, we are going to associate with each such seta program consisting of one binary right{linear recursive clause and one goal.Theorem 5.1. Let] be a special symbol. For every recursively enumerable set �containing 0, there exist a right{linear binary clause and a goal such that anatural integer n belongs to � i� after a certain number of SLD resolution steps,the �rst argument of the initial goal becomes instantiated to a list where the(2n)th element is].Proof. According to the two previous propositions, let X be the variable whichcodes the Conway relation associated with � (as in Proposition 4.2). The list Lis built linearly as [X1; X2; � � � ; Xn; � � �] with all the Xi connected by the relationsXi = Xg(i). Consequently, according to Proposition 4.2, we deduce that :� = fn 2 IN j X2n �g X1gIf variable X1 is instantiated to], then this mark will be propagated to all X2nsuch that n belongs to �. �Remark 5.2. Let � be a recursively enumerable set, the above theorem associatesa clause and a goal with �. By construction (see Proposition 5.2) because somevariable (a list in this case) is written many times in the goal, the same list iseaten on all arguments (for each generated equality Xai+b = Xa0i+b0). Then thespeed of eating is linear (for each argument). But we can insure that when theslowest eater has eaten the k �rst variables of the list, then all the pathes, usingequations Xi = Xg(i) which do not use number bigger than k, have been built.The previous theorem and remark are crucial for the following results. Theclause associated with a recursively enumerable set can be considered as a processof enumeration of this set. It su�ces to init X1 to] as explained and to applyiteratively this clause. Thus we will build sets and use some results about them. Theremark explain that the \construction" of the set is linear, since the constructionof the Conway relation �g, associated with �, is so.6. THE HALTING PROBLEMIn this section, we will provide the answer to the �rst problem : does the resolutionof a binary recursive Horn clause when given a goal halt ? While it has beenestablished decidable in the ground [47] and linear [17] goal case, we will establishhere the undecidability in the general case [19]. Already a right{linear rule issu�cient. In order to complete the answer, we will show the decidability if the ruleis left{linear.

176.1. The General CaseTheorem 6.1. The halting problem, according to SLD{resolution, of a right{linearbinary recursive Horn clause is undecidable. The resolution can be applied withor without occur{check.Proof. It is a direct consequence of Theorem 5.1 using a similar principle as inthe example with the Collatz problem encoding in the previous section.By initializing L in the goal to [];X2; � � � ; X2n�1; [j LL] where the mark [is puton the (2n)th position of L, then the resolution will stop if and only if equationX1 = X2n , that is] = [, is generated during SLD{resolution. That is, if and only ifn is an element of �. Since it is undecidable for a given integer n and a recursivelyenumerable �, whether or not n belongs to �, the result is proved. It is easy toverify that the occur{check does not play any role in the proof. �Let us observe that the constructed clause depends only on � ; it is only thegoal that depends on n. So if we �x any non{recursive � we get :Theorem 6.2. There exists an explicitly constructable right{linear binary Hornclause, for which the halting problem, according to SLD resolution, is undecid-able. The resolution can be applied with or without occur{check.6.2. ConsequencesSome corollaries can be immediately established. In each case, it is possible to givea general version and an \explicitly constructable" version. We will give only thesecond one (since it includes the �rst one).Finite Number of Solutions.Corollary 6.1. There is a particular program in the following form :�p(fact) :p(left) p(right):where fact, left, right are terms, such that it is undecidable whether or not, fora given goal, \ p(goal):", there exists a �nite number of answer{substitutions.Proof. If we consider the program built with :� the binary Horn clause and the goal de�ned in the previous proof,� a fact \p(X) .", where X is a variable.Each time that the fact is considered, we obtain a solution. This program will havea �nite number of solutions if and only if the binary Horn clause stops for the givengoal. This has been proven to be undecidable in Theorem 6.2. �Occur{Check.The previous results have been established over and above the occur{check. Fromthis, we can assert that it is undecidable whether or not, when given a program,this occur{check must be applied during the resolution.Corollary 6.2. There exists an explicitly constructable right{linear binary Hornclause for which it is undecidable whether or not, when given a goal, the occur{check will be necessary during the resolution.

18 Proof. In the proof of Theorem 6.2, we replace the equalities :X1 =] and X2n = [of the goal, by : X1 = h(Y; s(Y)) and X2n = h(Z;Z) :where h and s are function symbol of arity 2 and 1, respectively. It is undecid-able whether or not the program will stop because of the equalities Z = Y andZ = s(Y), that is because of the occur{check. �\Total Decoration".Here follows the last result which is a consequence of the undecidability of thehalting problem. It concerns the property of \total decoration" [5] in the resolutionof logic program. This property is used to optimize the step from logic programmingto attribute grammars. The SLD resolution of a program is said to be totallydecorated if and only if at each step of the resolution all Horn clauses of the programare applicable. The decidability of this problem was stated as open in [5]. In ourcase, there is only one clause. The property is then equivalent to the haltingproblem, or better to the non{halting problem, of this clause.Corollary 6.3. There exists an explicitly constructable right{linear binary Hornclause for which it is undecidable whether or not, when given a goal, its res-olution will be totally decorated.Proof. See the paragraph above. �6.3. The Left{Linear Clause CaseAt this point, we know that the halting problem is decidable if the goal is linearand undecidable if the rule is right{linear. We now consider the case where the ruleis left{linear. The proof of the following result uses a completely di�erent methodfrom the previous one. It is based on the weighted graphs. We refer the reader to[16, 17, 32, 22].Theorem 6.3. The halting problem of a left{linear binary Horn clause, when givena goal, is decidable.6.4. ConclusionWe conclude that for a program of the following pattern :� p(left) p(right) : p(goal) :the halting problem is decidable as soon as one of the terms left or goal is linear.These results are summarized in the following table :

19goal left right Terminationground any any decidable [47]linear any any decidable[11]any linear any decidableany any linear undecidable7. THE EMPTINESS PROBLEMThe second problem concerns the existence of at least one solution, also called theemptiness problem. Although it has been shown to be decidable in the ground [47]and linear [17] case, we will show in this section that it is undecidable in the generalcase. Two proofs will be presented. The �rst one is based on the Conway functionencoding [20]. The second is based on the Post problem [28]. They have beenestablished simultaneously and independently. The second proof is more elegantbut the �rst works also for a syntactical de�ned class of programs that is of someinterest for us.7.1. Preliminary RemarkConcerning the existence of solutions, the programs8<: p(fact) :p(left) p(right) : p(goal) : and 8<:p(goal) :p(right) p(left) : p(fact) :are equivalent.In the �rst case, the system of equationsfgoal = left1; lefti+1 = righti(1 � i � n� 1); rightn = factgmust be solved, in the second :fgoal = leftn; lefti = righti+1(1 � i � n� 1); right1 = factgAccording to a renaming of the variables (8 1 � j � n, Xj renamed in Xn�j+1),the two systems are equivalent. The existence of solutions for the one providesthe existence of solutions for the other. Then, when a result will be establishedfor some properties of the 4{tuple (fact; left; right; goal), the same result with the4{tuple (goal; right; left; fact) can be deduced.7.2. The Proof via ConwayIt is probably the most complex proof in this paper. It requires a good understand-ing of how the encoding of the Conway functions into Horn clauses works. Theprinciple is as follows : assume we have a linear Conway function (or its associatedrelation). In the associated program, the propagation of the mark] in the list of thegoal will be linear too. It is possible to write a program for which a solution at the(2n)th step is equivalent to the fact that n does not belong to the linear recursive

20 set. Then we can deduce, from Corollary 4.1 the undecidability of the emptinessproblem.Let us examine the detailed proof. A less formal presentation is given in thenext �gure.�1 builds the list :L1 = [];]; [;]; [; � � � ;]; � � � ; [; � � �]" "n = 2pn 6= 2p the (n = 2p)th element is instantiated to]in less than 2p iterations.�2 builds the list :L2 = []; ; � � � ;]; � � �]"n = 2p and p 2 � the (n = 2p)th element is instantiated to] in less than 2p iterations if and only ifp 2 �.In �, the fact impose at the nth iteration to unify the nth element of L1 with] and the nth of L2 with [. At this step, three kinds of uni�cation may occurn 6= 2p) n]L1 = [];]; [;]; � � � ; [; � � �]L2 = [[;X2; � � � ; ? ; � � �][�! fail
n = 2p and p 2 �)]L1 = [];]; [;]; � � � ;] ; � � �]L2 = [[;X2; � � � ;] ; � � �][�! failn = 2p and p 62 �)]L1 = [];]; [;]; � � � ;] ; � � �]L2 = [[;X2; � � � ; X2p ; � � �][�! successWe will have a solution if and only if :9p; n = 2p and p 62 �and no solution i� � is total, which is undecidable (see Corollary 4.1)FIGURE 7.1. Theorem *** : Principle of ProofTheorem 7.1. For a program of the form8<:p(fact) :p(left) p(right) : p(goal) :where fact and right are linear, the emptiness problem is undecidable.

21For the proof of Theorem 7.1, we need the following lemma.Lemma 7.1. For every linear recursively enumerable set � (containing 0), there ex-ists a right{linear binary clause and a goal such that a natural integer, n, belongsto � if and only if after at most 2n SLD resolution steps, the �rst argument ofthe initial goal becomes instantiated to a list, the (2n)th element of which is].Proof. Let � be a linear recursively enumerable set. By De�nition 4.3 and itsnatural counterpart, there exists a linear and null Conway function whose domainis �. According to Theorem 5.1 there exists a clause C and a goal G that can beassociated to �. As told in Remark 5.2 the associated Conway relation is linearlycomputed by (C) and (G), with a linear coe�cient equal to some �. In other words,mark] is linearly propagated in the �rst list{argument of the goal. It is now easyto de�ne a linear clause (C0) and a goal (G0), with linear coe��cient equal to 1, suchthat each resolution step of C0 corresponding to � steps of C. �Proof of Theorem 7.1. Consider the following program :� p([X jL]; [; X jLL]) p(L;LL) : p([]jL]; []jL]) :It puts a mark] to all the (2n)th positions of the list []jL] of the goal. It ispossible to modify it slightly such that it marks the other positions with anothersymbol [: �1 �p([X jL]; [Y;X jLL]; [[; ZjLLL]) p(L;LL;LLL) : p([];]jL]; [];]jL]; L) :The clause generates the equality Xi = X2i for all i � 1, the goal producesX1 =] and X2i+1 = [for all i � 1 because of the L found three times. Hence, aftern resolution steps the �rst argument of the goal, L, becomes instantiated to :L = [X1; X2; � � � ; Xn; :::]where 8 k < n; Xk =] if k is a power of 2 and Xk = [otherwise.We now de�ne a class of programs for which the existence of solutions is unde-cidable. Let � be any linear recursively enumerable set, the associated clause andgoal de�ned in the previous lemma are denoted as follows :�2 � p(l1; l2; � � � ; lk) p(r1; r2; � � � ; rk) : p(g1; g2; � � � ; gk) :Now, by merging �1 and �2, follows our particular class of programs :� 8>><>>: p(Y1; Y2; � � � ; Yk; [; Z; []jL]; LL; LLL) :p(l1; l2; � � � ; lk;W; [U jV]; [X jL]; [Y;X jLL]; [[; ZjLLL]) p(r1; r2; � � � ; rk; U; V; L; LL;LLL) : p(g1; g2; � � � ; gk; X; g1; [];]jL]; [];]jL]; L) :The k �rst arguments codify �. The (k + 1)th argument allows to extract, atthe nth iteration, the nth argument of the list which characterizes �. The (k+2)thargument is the list itself (because of the uni�cation with g1 in the goal) with its n�rst elements deleted at the nth iteration. Finally, the three last arguments codifythe list of powers of 2. Because there is a solution at the nth step if and only if :

22 � n is a power of 2 (because of the three last arguments and the uni�cationwith []jL] in the goal)� the nth element of the list which characterizes � is not marked by], becauseit must be uni�able with [(the (k+1)th argument of the fact and the variableU of the rule)In other words, since we know that the marking (by]) is linear (with �=1), there isa solution at the (2n)th step if and only if the (2n)th element of the list associatedto � is not marked by] that is if and only if n does not belong to �. Therefore, �has no solution if and only if � is equal to IN . According to Corollary 4.1, this isundecidable. This proves the result. �By symmetry of the problem, according to section 7.1, we deduce immediatelyan equivalent theorem with the terms goal and linear and any right and fact terms.7.3. An Important CorollaryAn important consequence of this theorem is that it allows to solve one open prob-lem in �rst order logic concerning the satis�ability of formulas. Indeed, for the �rstorder formulas with four subformulas like8Xi; (P (t1) ^ (Q(t2) _ R(t3)) ^ S(t4))where P , Q, R and S are literals and the Xi are the variables occuring in t1, t2,t3 and t4, a particular instance of this problem is :8Xi; (P (t1) ^ (P (t2) _ :P (t3)) ^ :P (t4))for which the non{satis�ability problem is equivalent to the existence of solutionsfor the program 8<:p(t1) :p(t2) p(t3) : p(t4) :where t1, t2, t3 and t4 are any terms. Then we can assert :Corollary 7.1. The satis�ability of the class of �rst order formulas with four sub-formulas is undecidable.Proof. From theorem 7.1 �This result can be connected to an old open problem : the satis�ability of for-mulas in pure quanti�cation theory (that is without function symbol and with aneventually in�nite number of constants) :8t9u8v � � � 8w(A1 ^ A2 _ � � � ^ An)where the Ai are atomic positive or negative formulas, the satis�ability of the5{subformula case has been shown to be undecidable in [23]. It is established thatthis problem is equivalent to the halting problem of 2{counter machines (which isundecidable). The 3{ and 4{subformula problems remain open.

237.4. The Proof via PostThis proof [28] is not based on the Conway functions but on the better known Postproblem [42].The Post Problem. Let us consider a �nite alphabet �. A Post correspondencesystem over � is a non{empty �nite set S = f(li; ri) j i 2 [1; � � � ;m]g where the li,ri are words over �. A non{empty sequence of indices 1 � i1; � � � ; in � m is calleda solution of S if and only if li1 � � � lim = ri1 � � � rimIt is well known that the Post correspondence problem, that is \Does there existsa solution for a given system ?", is in general undecidable if the alphabet containsat least two symbols.Encoding of the Post Problem. Elements ai of the alphabet � will be rep-resented as unary function symbols and a word w = a1 � � �an over � thus becomesa term a1(a2(: : : (an(�)) : : :)) where � is a constant corresponding to the emptyword. So, composition of words is associative since composition of functions is as-sociative. For convenience we also write w(�) instead of (a1(a2(: : : (an(�)) : : :))) andu(v(�)) = uv(�) where u and v correspond to words over �. For instance, if w1 = ab,w2 = ba, v1 = a, and v2 = bba, then w1(w2(t)) = a(b(b(a(t)))) = abba(t) = v1v2(t)for any term t.To append something to a list using uni�cation we use the concept of di�erencelists. To explain the encoding of a Post correspondence problem we adopt SLDresolution as an operational semantics for the logic program. The search spaceof possible sequences of indices inherent to a Post correspondence problem is notencoded in the and/or tree of the logic program. Instead we encode it in two(di�erence) lists L and R. At the beginning of the computation L and R are[l1(�); � � � ; lm(�)jX] � X and [r1(�); � � � ; rm(�)jY] � Y , respectively. This encodesall possible sequences of indices of length 1 (i.e., 1; 2; : : : ;m). In the next step weselect the sequence 1 and replace it by all sequences that have length 2 and assu�x 1. In terms of the lists L and R : we remove l1(�) and r1(�) (representing thesequence 1 of length 1) and append [l1(l1); � � � ; lm(l1)jX] and [r1(r1); � � � ; rm(r1)jY],respectively (representing the sequences 11, 12, : : : , 1m of length 2).In the general case we select in each step a sequence i1 : : : ij of indices and replaceit by all sequences that have length j+1 and i1 : : : ij as su�x. Always selecting theheads of L and R and appending the extensions is a fair strategy. I.e., it ensuresthat successively all possible sequences appear as heads of the two di�erence lists.Given a Post correspondence problem as above, the following binary programhas a SLD refutation, i� the Post correspondence problem has a solution.8>>>><>>>>: P ([EjH1]�H2; [EjH3]�H4) :P ([CjL]� [l1(C); � � � ; lm(C)jX];[DjR]� [r1(D); � � � ; rm(D)jY] P (L�X;R� Y): P ([l1(�); � � � ; lm(�)jX]�X;[r1(�); � � � ; rm(�)jY]� Y):The fact checks whether the heads of the lists in the current goal are equal, i.e.,encode a solution of the Post correspondence problem. In Figure 7.2 the sequenceof goals is depicted that is induced by SLD resolution with a search rule always

24 taking the binary rule for the next SLD resolution step. P ([l1(�); � � � ; lm(�)jX0]�X0 , [r1(�); � � � ; rm(�)jY0]� Y0) P ([l2(�); � � � ; lm(�); l1l1(�); � � � ; lml1(�)jX1]�X1 , [r2(�); � � � ; rm(�); r1r1(�); � � � ; rmr1(�)jY1]� Y1) P ([l3(�); � � � ; lm(�); l1l1(�); � � � ; lml1(�); l1l2(�); � � � ; lml2(�)jX2]�X2 , [r3(�); � � � ; rm(�); r1r1(�); � � � ; rmr1(�); r1r2(�); � � � ; rmr2(�)jY2]� Y2): : : P ([l1l1(�); � � � ; lml1(�); l1l2(�); � � � ; lml2(�); � � �; l1lm(�); � � � ; lmlm(�)jXm]�Xm , [r1r1(�); � � � ; rmr1(�); r1r2(�); � � � ; rmr2(�); � � �; r1rm(�); � � � ; rmlm(�)jYm]� Ym) P ([l2l1(�); � � � ; lml1(�); l1l2(�); � � � ; lml2(�); � � �; l1lm(�); � � � ; lmlm(�); l1l1l1(�); � � � ; lml1l1(�)jXm+1]�Xm+1 , [r2r1(�); � � � ; rmr1(�); r1r2(�); � � � ; rmr2(�); � � �; r1rm(�); � � � ; rmlm(�); r1r1r1(�); � � � ; rmr1r1(�)jYm+1]� Ym+1): : : FIGURE 7.2. A goal sequence induced by the logic programSince the Post correspondence problem is undecidable, the existence of solutionsfor this program is undecidable too. �7.5. Some Particular CasesFirst we will establish the decidability of the emptiness problem in the cases wherethree characteristic elements of our programs are linear and where only one isground. Then we will prove that the result remains undecidable if the clause is(left and right) linear.Decidability. The proofs of the following theorems will appear in [22].

25Theorem 7.2. The emptiness problem for the class of programs :8<:p(fact) :p(left) p(right) : p(goal) :where three of the terms left, right, fact and goal are linear, is decidable.Theorem 7.3. The emptiness problem for the class of programs :8<:p(fact) :p(left) p(right) : p(goal) :is decidable as soon as one of the terms left, right, goal or fact is ground.Undecidability. Here we will consider the case where the left and right terms ofthe rule are linear. We shall transform the non{linear clauses that code the Conwayfunctions, into linear to show that the proof of Theorem 7.1 can be applied. Nowwe are no longer able to use two occurences of the same variable in \left" to ensurethat two elements of the list L are equal. Instead, we built out of the elements ofL new lists LLU and LLV such that their corresponding elements are supposed tobe equal. For the linearity reasons we can not force the equality of LLU and LLVduring the resolution, so we postpone it, and check the equality while unifying withthe fact.Theorem 7.4. For the class of programs :8<:p(fact) :p(left) p(right) : p(goal) :where left, right are linear and fact, goal are arbitrary, the emptiness problem isundecidable.Proof. Let us consider the following program :8>><>>:p([X jLX]; [az }| {U; ; � � � ; jLU]; [cz }| {V; ; � � � ; jLV]) p(LX;LU;LV) : p(L; [; � � � ;| {z }b jL]; [; � � � ;| {z }d jL]) :It produces the equalities : �Xai+b = UiXci+d = ViIf we slightly modify this program and add a fact as in :8>>>>>><>>>>>>:p(; ; ; L; L) :p([X jLX]; [az }| {U; ; � � � ; jLU]; [cz }| {V; ; � � � ; jLV]; LLU;LLV) p(LX;LU;LV; [U jLLU]; [V jLLV]) : p(L; [; � � � ;| {z }b jL]; [; � � � ;| {z }d jL]; []; []) :

26 The two last arguments become instantiated to the lists [U1; � � � ; Unj] and[V1; � � � ; Vnj]. Then because of the non{linearity of the fact, we add the equal-ity Ui = Vi, and deduce that we have for X :Xai+b = Xci+dAnd no other di�erent relation on X is de�ned.It is easy to create n other equalities on X . For example if n is 2 :8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:
p (; X; ; ; L1; L1; ; ; L2; L2) :p ([X jLX]; Y; [a1z }| {U1; ; � � � ; jLU1]; [c1z }| {V 1; ; � � � ; jLV 1]; LLU1; LLV 1;[U2; ; � � � ;| {z }a2 jLU2]; [V 2; ; � � � ;| {z }c2 jLV 2]; LLU2; LLV 2) p(LX;X;LU1; LV 1; [U1jLLU1]; [V 1jLLV 1];LU2; LV 2; [U2jLLU2]; [V 2jLLV 2]) : p([]jL1]; ; [b1z }| {; � � � ; ;]jL1]; [d1z }| {; � � � ; ;]jL1]; []; [];[; � � � ;| {z }b2 ;]jL2]; [; � � � ;| {z }d2 ;]jL2]; []; []) :In the same way as previously, this program produces the equalities :Xa1i+b1 = Xc1i+d1 and Xa2i+b2 = Xc2i+d2Let us note that in the fact, after p iterations X is Xp. The extension for anyn � 2 is now obvious, then we can code any Conway function, that is any linearrecursive set � (containing f0g). Indeed, if p = 2k, then in the fact, X = Xp =X2k =] if and only if k 2 �. Let us call �� such a program associated with �.Now we consider another program �0 :8<:p(; ; L; L):p([X jLX]; [; Y; [jLLY]; LLX;LLY) p(LX; [[jLY]; [X jLLX]; [Y jLLY]): p([];]jL]; [];]jL]; []; []):It is the linear equivalent to the program � in proof of Theorem 7.1. It builds thelist L = [X jLX] = [X1; X2; � � � ; Xp; � � �]with the relations Xp =] if p is a power of two and Xp = [otherwise.As in the general case (see proof of Theorem 7.1), by merging the Horn clausesand goals of the above program and of some ��, and by choosing a fact such as :p(; [; ; ; L1; L1; � � � ; ; ; LN;LN| {z }�� part ; ; ; []jL]; []jL]| {z }�0 part) :We obtain a program with one linear binary rule which will have at least onesolution if and only if � is not equal to IN . This property is undecidable. �

277.6. Conclusion.We have established the undecidability of the emptiness problem in the generalcase. Moreover we have proven that the emptiness problem is decidable as soon asthree characteristic terms are linear or as soon as only one is ground.goal left right fact Emptinessground any any ground decidable [47]linear any any linear decidable [11]ground any any anyany any any ground decidablelinear linear linear anyany linear linear linear decidableany any linear linearlinear linear any any undecidableany linear linear any undecidable8. COMPUTATIONAL POWERIn this section, we will prove the main result. We prove that append{like programshave the same computational power as Turing machines [21].We will use the principles of the two previously presented proofs of the existenceof solutions. Roughly speaking, the following proof consists in building a Prologmeta{interpreter with only one binary Horn clause. First we will build a wordgenerator, then a pseudo meta{interpreter which never stops and last we will addthe termination. The only di�cult point is the technical one which uses the Conwayfunctions in order to guarantee the termination of our meta{interpreter.8.1. A Word GeneratorIn this section we show how to build a one binary Horn clause program whichgenerates all words over the alphabet fa; bg. These words are represented by alist (e.g. [a; b; b; a; b] stands for abbab). The encoding is similar to these previouslypresented to encode the Post Correspondence Problem :8>><>>: gen([Word j R]�RR ;Word) :gen([Word j R]� [[a jWord]; [b jWord] j RR]; AWord) gen(R� RR;AWord): gen([[] j R]�R;Word):The behaviour of the di�erence list is the following :[Word; Rz }| {; � � � ; ; [ajWord]; [bjWord]| {z }R�RR ; ; ; � � �| {z }RR]Consider the �rst steps of this program. By unifying the goal and the fact weobtain the solution Word = [] . Using the binary clause once, results in the new

28 goal : gen([[a]; [b] j RR1]�RR1; AWord1)producing by uni�cation with the fact the solution Word = [a]. Resolving this newgoal with the binary clause instead of the fact results in the goal :gen([[b]; [a; a]; [b; a] j RR2]�RR2; AWord2)resulting in the solution Word = [b] etc. Observe that a and b serve as pre�xes oftwo new words such that the su�x of these words is the �rst element of the list.These two words are concatenated to the tail of the list generated so far. In otherwords, the di�erence{list can be seen as a FIFO (First In First Out) pipe.The principle is strictly similar to the one of the Post problem encoding. It isclear that this generator can be easily extended for any �nite alphabet.8.2. A First Meta{InterpreterLet us begin with the study of a meta{program. It is made of one fact, two binaryrecursive rules and one goal [41]. An equivalent form, with two facts, one ternaryrule and one goal, can be established.Let � be the set of Horn clauses� = fclause1; clause2; � � � ; clauseng ;and g1; � � � ; gk a goal. The following meta{program generates the sameanswer{substitutions in the same order as a standard breadth{�rst SLD interpreter :8>>>><>>>>: solve([]; []) :solve([Goal j RestOfGoals]; [[Goal j Body]�RestOfGoals j L]) solve(Body;P):solve(Goals; [Clause j Rest]) solve(Goals;Rest): solve(G;P):G denotes the list [g1; g2; � � � ; gn] and P the list of di�erence lists which encodethe clauses of the program �, P = [clause1; � � � ; clausen]. A clause a b1; : : : ; bmof � is encoded by the di�erence list [a; b1; : : : ; bm j R]�R . In this meta{program,the �rst binary clause is used to chose the �rst clause in the current clause list andchecks if its head part can be uni�ed with the current goal. The second clausediscards the �rst clause in the current clause list. It is easy to check that SLDresolution is achieved.7This meta{program is studied in detail in [40]. The proof of its equivalence withthe object program � with respect to standard SLD-resolution (through a depth{�rst, left to right, traversal of the SLD-tree) is presented in [22]. Its complexity{ as de�ned below { is shown to be linearly dependent on the one of the originalprogram �.Let us call the complexity of a solution{node soln the number of crossed nodesof the SLD tree (through a depth{�rst, left to right, traversal) before reaching soln.7Note that the fact can not be simpli�ed into solve([];), because in this case, any goal solve([];Prog) could unify with either the fact or the second binary clause. So each solutionin P would produce n solutions for solve(G;P).

29We will note 'p the complexity function of program p, and Np its number of rules.p will take the values o for the object program, and m for the meta{program.At best, the goal uni�es with the �rst rule of the original program, and this ruleis a fact. At worst, it uni�es with the last one. We obtain :'o(soln) +No � 'm(soln) � ('o(soln)�No) +NoExample 8.1. The code of the meta{program associated to the \append" program isas follows :1. solve([],[]).2. solve([Goalj L1],[[Goalj L3]-L1jList of Rules]) :-solve(L3,[[append([],Lapp1,Lapp1)j L]-L,[append([XjLapp2],Lapp3,[Xj Lapp4]),append(Lapp2,Lapp3,Lapp4)jLL]-LL]).3. solve(List of Goals,[RulejList of Rules]) :-solve(List of Goals,List of Rules).For the initial goal append([1],[2,3],L), the corresponding goal in the meta{program will be ::- solve([append([1],[2,3],L1)],[[append([],Lapp1,Lapp1)jL]-L,[append([Xj Lapp2],Lapp3,[XjLapp4]),append(Lapp2,Lapp3,Lapp4)jLL]-LL]). �For the encoding of an arbitrary program � , both the �rst binary clause andthe goal have to be adapted in an appropriate way.Now, assume that � is a meta{interpreter. Then this encoding allows to de�nethe explicitly constructible meta{interpreter MI with the right pattern. In orderto interpret any program with the help of �, we just have to encode the appropriategoal for � therefore for MI .To summarize, we have built a meta{interpreter, for Horn clause languages withone fact, two binary recursive clauses and one goal.8.3. A SLD Tree GeneratorAssume a program � consists of the two binary clauses \ left1 right1 " and\ left2 right2 ", one goal \ goal ", and one fact \ fact ". Consider theword{generator where A = right1; left1 and B = right2; left2 .8>><>>:meta([W j R]�RR ;W) :meta([W j R]� [[A jW]; [B jW] j RR]; [H j RRR]) meta(R�RR; [H;X;X j RRR]): meta([[goal j L] j R]�R; [fact j LL]):After n times using the binary clause for resolving we obtain asm the secondargument of the new goal the list :[fact;X1; X1; X2; X2; : : : ; Xn; Xn j T]:

30 Furthermore, according to what we have seen concerning the word generator, weobtain after some iterations as the head of the �rst argument :[rightim ; leftim ; : : : ; righti1 ; lefti1 ; goal j T]:The ij are either 1 or 2 and the variables are renamed before each resolutionstep. By resolving a current goal with the fact of the above program we obtain theuni�cation problem :[rightim ; leftim ; rightim�1 ; � � � ; righti1 ; lefti1 ; goal;]l l l � � � l l l l[fact; X1; X1; � � � ; Xm�1; Xm; Xm; � � � ; Xn; Y j]which has a solution i� the following system has one.8<: fact = rightimleftik = rightik�1; 2 � k � mgoal = lefti1It is important to note that by construction it is assured that the list containingthe fact has a su�cient length to obtain these equations. All the possible lists[rightim ; leftim ; � � � ; righti1 ; lefti1 ; goal j Q0]are selected, therefore SLD resolution is complete. This system will be solvable ifand only if there exists a corresponding refutation of the original program � usingthe resolution order imposed by the equations (i.e. by the ik).Indeed, this program works as a SLD tree generator and achieves the resolutionrelative to this tree with a breadth{�rst strategy as described in Figure 8.1.Each time a node is selected, the two new nodes corresponding to the inferenceswith the rules A and B are added at the end of the \to be examined nodes" list(that is at the end of the \R � RR list"). Then the following node is considered,etc.8.4. A Binary Non{Stopping Meta{InterpreterIn this section the results of the two previous sections are combined.Our meta{interpreter MI of Section 8.2 satis�es the pattern of the program �of the previous section. Hence, it is possible to encode it as above. Therefore,one can associate with any logic program an equivalent program (i.e., with thesame solutions) containing a binary clause, one fact and one goal. Unfortunately,this encoding does not preserve termination. Thus we have a \never stopping"meta{interpreter, sayMnS .In a next section we will show how to construct from this non{terminating in-terpreter a terminating one. This requires a technical preliminary.8.5. The Technical PreliminaryOur aim is to cause the termination ofMnS. As in the proof of the halting problem,the termination will be caused by a failing uni�cation. But here we need that

31

6 current node 13 new added nodes����1 already examined nodes 9 to be examined nodes

����1����2 ����3����4 ����5 6����
!!!!!!JJJJJ ���� SSSS���� BBBBB ���� BBBB

����
HHHHHH

78 10 11 139 12
A BA B A BA B A B A B
FIGURE 8.1.the halting happens after a certain number of resolution steps since we want theprogram to produce the answer{substitutions �rst.Remark 8.1. In the following, the term \program" corresponds to the intuitivemeaning. The reader can consider it also to denote \a machine (in sense ofTuring machine) which computes a partial recursive function".Proposition 8.1. For every program � with input I, there exist a binary Horn clauseR� and a goal, depending on I, such that R� stops after at least n iterativeapplications if � stops after n elementary steps with input I, and does not stopotherwise.Proof. Let � be given, let g be the Conway function associated with � (or withthe Minsky machine related to �). g is characterized by its \period" p (in fact theperiod of g(n)n) and the rational numbers a0; a1; � � � ; ap�1. Let R be the associatedbinary Horn clause as in Proposition 5.1. By construction, at each iteration, Rbuild p new equalities Xi = Xg(i). In fact at the ith iteration the program buildthe equalities : 8 0 � k � d� 1; Xp(i�1)+k+1 = Xak�(p(i�1)+k+1)According to section 4.2, since g is a null Conway function, there is only onepath from 2n to 20 if any. The Horn clause produces as well positive and negativeiterates. Then at each iterations, R creates pi positive and ni negative equalitiesof the series : �Xg(i)(2n) = Xg(i+1)(2n)�i2IN

32 with pi + ni � d. This is depicted as follows :2n g�p1 : � � � : g(�1)�n1 20Consequently if it takes kn iterations from g(2n) to 1, the equality X2n = X1will be generated in at least knp iterative applications of the Horn clause. By addingsome extra variables, it is possible to slow down R p times such that the speed (thecomplexity) of R is at best the same of the one of g The resulting clause is calledR�.Now, like in the proof of the undecidability of the halting problem, for any valueI , we can choose a goal forR� such that it stops if and only if the relationX2I = X20occurs. And we can guarantee that the number of iterations before termination isgreater than the number of elementary steps of � with input I before halting. �Now let us build a particular program from MnS. We will apply Proposition 8.1to program �, which takes a Horn clause program P as input, and is de�ned asfollows :1. read P2. evaluate P by a breadth{�rst strategy and keep the solutions in S13. computeMnS(P) and keep the solutions in S2, stop as soon as S2 = S1 andwrite 0It is clear that � stops if and only if P stops. The stopping time (that is thenumber of steps before termination) with input P is greater than the time used byMnS(P) to produce all the solutions of P .Now, according to the previous proposition, there exists a clause R�. By addinga general fact and a goal depending on the input, we can build the programMS :MS 8<: stop(factS) :stop(leftS) stop(rightS): (R�) stop(goalS):MS stops with input a program P (in goalS) (based in fact on the G�odel numberof P for example.), if and only if P stops. The stopping time ofMS is greater thanthe one required byMnS(P) to produce all solutions.8.6. The Meta{InterpreterConbiningMnS andMS we can state :Theorem 8.1. There exists a meta{interpreter for Horn clauses in the form of aprogram with only one binary Horn clause, a fact and goal, which, given as inputa Horn clause program P , has the same solutions as P and terminates if andonly if P terminates.Proof. Let us denoteMnS as follows :MnS : 8<:meta(factnS) :meta(leftnS) meta(rightnS): meta(goalnS):

33We mergeMnS andMS in a new meta{interpreter :MI : 8<:TheMeta(factnS ,factS) :TheMeta(leftnS ,leftS) TheMeta(rightnS ,rightS): TheMeta(goalnS ,goalS):such that, with input a Horn clause program P , it produces all the solutions of P(because of theMnS part) and then will stop if and only if P terminates (becauseof theMS part).Thus we have a meta{interpreter, with one binary recursive clause, one factand one goal, which preserves the solutions (produced in the same order as in abreadth{�rst strategy) and the termination of any Horn clause program given asinput. �This result can be seen as the equivalent of the B�ohm{Jacopini theorem for logicprogramming.Corollary 8.1. The class of programs with only one binary Horn clause and twounit clauses has the same computational power as Turing machines.Proof. Since we have a meta{interpreter for Horn clauses containing only onebinary recursive clause, we can assert that this class of programs has the samecomputational power as Horn clause programs and consequently as Turing ma-chines. �The previous two main results (Theorems 6.2 and 7.1) are of course corollariesof this result.Corollary 8.2. For append{like programs halting and emptiness problems are unde-cidable.We recall brie
y the notations of p. 28. 'p denotes the complexity function forprogram p and Np its number of rules. p will take the value u for the universalprogram (the one of Theorem 8.1), m for the meta-interpreter MI of subsection8.2, and o for the meta-interpreter � encoded in MI . Since the universal meta-interpreter u achieves the resolution of the SLD-tree of m as described in �gure 8.1with a breadth-�rst strategy, its complexity 'u is bounded by :'u(soln) � 2'm(soln) � 2('o(soln)�No)+No'u is the complexity of the universal program for obtaining the solutions. Forhalting, the bound of the number of crossed nodes is greater since we add the com-plexity due to the halting technique with the Conway functions. Hence, when thecomplexity of the �rst meta-interpreter is only linearly dependent, the complexityof the universal program is at least exponential with respect to the complexity ofthe original program.9. DISCUSSION: TERNARY CLAUSES AND IMPLICATION9.1. Horn Clause Implication\The solution of the implication A) B of two clauses A and B is usually inter-preted as the formula (8x1; : : : ; xn A)) (8y1; : : : ; ym B), where fx1; : : : ; xng are

34 the variables occurring in A and fy1; : : : ; ymg are the variables in B (where, by hy-pothesis, the clauses A, B are variable disjoint). Clause implication is equivalent tothe non-satis�ability problem of a clause set consisting of clause A and ground unitclauses that are obtained from the negation of the clause B. Hence the undecidabilityresult holds also for the satis�ability problem of such clause sets" [47].In particular in the case of the Horn clauses, let us explain the equivalencebetween Horn clause implication and the satis�ability problem of logic programs.First, assume that A = A _ :A1 _ : : : _ :Anand B = B _ :B1 _ : : : _ :Bmand we shall denote by ~x variables occuring in A, and ~y variables in B.8~x(A _ :A1 _ : : : _ :An)) 8~y(B _ :B1 _ : : : _ :Bm), :(:(9~x:(A _ :A1 _ : : : _ :An) _ 8~y(B _ :B1 _ : : : _ :Bm))), :(8~x(A _ :A1 _ : : : _ :An) ^ 9~y(:B ^B1 ^ : : : ^ Bm)), :(8~x(A _ :A1 _ : : : _ :An) ^ 9�(:�B ^ �B1 ^ : : : ^ �Bm))where � is a ground substitution on ~y, 8� (ground) :0BBBBB@8>>>>><>>>>>: �B1:...�Bm:A A1; : : : An: �B: has a solution1CCCCCALet us note that in the case where n = m = 1, we are back to our small binaryprogram scheme, where the goal and the fact are ground. This case was consideredby M. Schmidt{Schau�, who proved also it to be decidable. He had also shown thatit becomes undecidable if A is a four{literal clause [47].Later, J. Marcinkowski and L. Pacholski proved the three{literal case (n = 2) tobe undecidable as well. They proved this result for Horn clauses [36, 35].Now let us consider that n = 2 and m = 1. Then the class of programs to besatis�ed becomes : 8<: �B1 :A A1; A2 : �B :which is clearly close to the studied structure.We are optimistic that the results and/or methods of the previous sections canhelp to establish the status of the satis�ability of this pattern. Thus we will provideanother proof of the result in [36] with a restriction on the size of B (m = 1).In the following section, we give a �rst step in this direction. The proof isestablished through program transformations.

359.2. Results on Ternary ProgramsTheorem 9.1. There is a particular explicitly constructible program in the followingform : 8<: p(fact1) :p(fact2) :p(left) p(right1), p(right2) :where fact1 is ground, and, either :� left and right1 are linear;� left and right2 are linear;� right2 and fact2 are linear;for which it is undecidable, if, for a ground goal \ goal.", the program haltsand if there are some answer-substitutions.Proof. We show that any append{like program (so, in particular, we can chosethe smallest meta{interpreter of Section 8):8<:p(fact) :p(left) p(right) : p(goal) :can be encoded by8>><>>: p(fact; [1]; []) :p(goal2; []; []) :p(left; [X jL]; [Y jLL]) p(right; [X]; LL); p(goal; L; Z) : p(goal1; [1; 1]; [1]) :where1. goal2 is a ground instance of goal;2. goal does not share any variable with left and right;3. X;Y; Z; L; LL are new variables not appearing in left, right, goal;4. goal1 is a ground instance of left by the substitution �, such that � uni�esright and fact : since we consider the emptiness problem, we do not carewith the trivial case where fact and right do not unify (this case does notalter the halting problem). Since we can assume that there exists a mostgeneral uni�er � for fact and right, � is chosen as an instance of � whichmakes left ground.Clearly, the �rst three conditions are syntactical ones.Now we show that from the third step of resolution (p(goal; [1]; Z)) the derivationof both programs can be the same until the �rst success : the second program willstop i� the �rst will, and the second program will stop with a success i� the �rstone has at least one solution.After the second derivation step, we obtain the goal p(goal; [1]; Z) which hasthe same derivation as p(goal) in the binary program, except that at each uni�-cation with the third clause (the ternary one), a new atom p(goal; [];) is generated.But these atoms will unify only with the second fact (p(goal2; []; [])) because of thesecond argument. If during the resolution, there is a uni�cation of the �rst goalatom with the �rst clause, all other goal atoms will be removed after a uni�cation

36

@@@@@
p(�right; [1]; []); p(goal; [1]; Z)

p(goal1; [1; 1]; [1])
p(goal; [1]; Z)

p(�1right; [1]; Z1); p(goal; []; Z2)8<: �1goal = �1leftX = 1; L = []Z = [Y j LL]

8<:goal = �leftX = 1; L = [1]Y = 1; LL = []f�right = �fact
�1goal = �1fact ����� ����� @@@@@p(goal; []; Z2): : : : : :p(�2right; [1]; Z4); p(goal; []; Z3);p(goal; []; Z2)...

FIGURE 9.1. Beginning of the resolutionwith the second clause. This is shown in Figure 9.1.As there is no condition for the original program, our proof is correct in particularfor all the classes of programs for which the halting and emptiness problem isundecidable. �If we consider only the halting problem, we have just to encode a program like :� p(left) p(right) : p(goal) :The coding, for a standard Prolog selection rule (depth �rst, leftmost atom), is :8<:p(fact1; [1; 1]; []) :p(left; [X jL]; [Y jLL]) p(right; [X jL]; LL); p(goal; L; Z) : p(goal1; [1; 1]; [1]) :where

37� goal1 and fact1 are ground instances of respectively left and right;� goal does not share any variable with left and right;� X;Y; L; LL;Z are new variables not appearing in left, right, and goal.The di�erence between these two programs is that, in the �rst case, the secondatom (of the ternary clause) will be derived only when the �rst will have beenremoved. At the second step of resolution, if the �rst atom is selected, it will onlyunify with fact1 : it will not alter the rest of the resolution. If the second atom ischosen, it will be the start of a derivation similar to that of the original program,except that an atom p(goal; [];) will be generated at each step of derivation. If theseatoms are not selected before the �rst atom (standard computation rule), then theywill not : the program never stops (left always uni�es with right), or stops witha failure (because of the second argument, right can not unify with fact1). If anyother computation rule is used, then these atoms must be removed (uni�ed witha success) : so a second fact must be added to the program to ensure that theseatoms will not prune an in�nite derivation. Thus, the coding is :8>><>>:p(fact1; [1; 1]; []) :p(fact2; []; [1; 1]) :p(left; [X jL]; [Y jLL]) p(right; [X jL]; LL); p(goal; L; Z) : p(goal1; [1; 1]; [1]) :where fact2 is a ground instance of goal.
10. CONCLUSIONThe two tables below summarize the known results about the halting and emptinessproblems depending on the form of the characteristic elements goal, fact, left andright of append{like programs :8<:p(fact) :p(left) p(right) : p(goal) :goal left right Terminationground any any decidable[47]linear any any decidable[11]any linear any decidableany any linear undecidable

38 goal left right fact Emptinessground any any ground decidable [47]linear any any linear decidable [11]ground any any anyany any any ground decidablelinear linear linear anyany linear linear linear decidableany any linear linearlinear linear any any undecidableany linear linear any undecidableLinearity seems to state the border between decidability and undecidability. Forboth problems, the groundness of one term ensures decidability. The halting prob-lem becomes decidable as soon as goal or left are linear. The emptiness problem isdecidable if three terms are linear.The technic based on our encoding of the Conway functions provides a consistentframework for the study of the binary recursive Horn clauses. Indeed, it allows tosolve the halting and emptiness problems and a lot of other properties.The main consequence of the undecidability of the emptiness problem is thatthe satis�ability for the class of �rst order formulas containing four subformulas isundecidable too.We have shown in this paper that append{like programs have the same com-putational power as Turing machines since we prove that there exists a universalappend{like program. This result can be seen as an extension of the B�ohm{Jacopinitheorem [3] to logic programming. Like in imperative languages, the simplest non{trivial program scheme can express any partial recursive function. Like in theB�ohm{Jacopini proof, the transformation can be done automatically.The results on undecidability justify pragmatic or heuristic approaches to logicprogramming analysis, like in abstract interpretation or type inference. There isno way to de�ne formal and complete methods to control the most basic recur-sive pattern. Even in such restrictive classes of programs, most of the interestingproperties to provide more e�cient compilation technic are undecidable.Finally, the proof method based on Conway functions appears to be a powerfuland e�cient tool for encoding hard problems. As an example, consider [37, 38].Therein, Jurek Marcinkowski proves (among many other results) that uniformboundedness is undecidable for single rule Datalog programs by using Conwayfunctions.Acknowledgment : We thank the anonymous referees for their careful readingand helpful remarks. We also gratefully thank Jurek Marcinkowski for all his rele-vant and fruitful comments.REFERENCES1. Abramson H. and Rogers M.H., editors. \Meta-Programming in Logic Program-ming". Logic Programming serie. MIT Press, 1989.2. Bibel W., H�olldobler S., W�urtz J. \Cycle Uni�cation." CADE pp. 94{108. June1992.

393. B�ohm C., Jacopini G. \Flow diagrams, Turing machines and languages with onlytwo formation rules." Communications of the ACM, Vol.9, pp. 366{371. 1966.4. Blair H.A. \The Recursion{Theoretic Complexity of Predicate Logic as a Program-ming Language."Information and Control no54. pp. 25{47. 1982.5. Bouquard J.L. \Logic programming and Attribute grammars." Ph.D. Thesis, Or-l�eans 1992.6. Bratko I. \Prolog Programming for Arti�cial Intelligence." Addison{Wesley Pub-lishers. 1986.7. Chen H., Hsiang J. \Recurrence Domains : their Uni�cation and Application toLogic Programming.", Technical Report, Stony Brook (available by anonymous ftpon \sbcs.sunysb.edu"). July 1991.8. Conway J.H. \Unpredictable Iterations." Proc. 1972 Number Theory Conference.University of Colorado, pp 49{52. 1972.9. Courcelle B. \Fundamental Properties of In�nite Trees." Journal of TCS, no17,pp. 95{169. 1983.10. Dauchet M. \Simulation of Turing Machines by a regular rewrite rule." Journal ofTheoretical Computer Science. no103. pp. 409{420. 1992.11. Dauchet M., Devienne P., Leb�egue P. \Weighted Graphs : a Tool for Logic Pro-gramming." 11th CAAP86. 1986.12. Dauchet M., Devienne P., Leb�egue P. \Weighted Systems of Equations." Infor-matika 91, Grenoble, Special issue of TCS. 1991.13. Delahaye. J.-P. \S�emantique logique et d�enotationnelle des interpr�eteurs Prolog."Informatique Th�eorique et Applications, 22(1). pp. 3{42. 1988.14. De Schreye D., Verschaetse K., Bruynooghe M. \A practical technique for de-tecting nonterminating queries for a restricted class of Horn clauses, using directedweighted graphs." Proceedings ICLP'90, MIT Press, Jerusalem. pp. 649{663. June1990.15. De Schreye D., Decorte S. \Termination of Logic Programs : the Never{EndingStory." to appear in Journal of Logic Programming. 1994.16. Devienne P. \Les Graphes orient�es pond�er�es : un outil pour l'�etude de la termi-naison et de la complexit�e dans les syst�emes de r�e�ecritures et en programmationlogique." Ph. D. Thesis. Lille. 1987.17. Devienne P. \Weighted graphs { tool for studying the halting problem and timecomplexity in term rewriting systems and logic programming." Journal of Theo-retical Computer Science, no75, pp. 157{215. 1990.18. Devienne P., Leb�egue P., Routier J.C. \Weighted Systems of Equations revisited"Analyse Statique, Actes WSA'92, Bordeaux, BIGRE 81{82. pp. 163{173. Septem-ber 1992.19. Devienne P., Leb�egue P., Routier J.C. \Halting Problem of One Binary Horn Clauseis Undecidable." Proceedings of STACS'93. Springer{Verlag. W�urzburg. February1993.20. Devienne P., Leb�egue P., Routier J.C. \The Emptiness Problem of One BinaryRecursive Horn Clause is Undecidable" Proceedings of ILPS'93, Vancouver. MITPress. pp. 250{265. November 1993.21. Devienne P., Leb�egue P., Routier J.C., W�urtz J. \One Binary Horn Clause isEnough." Proceedings of STACS'94, Springer{Verlag, Caen. pp. 21{32. February1994.22. Devienne P., Leb�egue P., Parrain A., Routier J.C., W�urtz J. \Smallest Horn ClausePrograms (extended)". Technical Report, LIFL. To appear, September 95.23. Goldfarb W., Lewis H.R. \The decision problem for formulas with a small numberof atomic subformulas" J. Symbolic Logic 38(3), pp.471{480, 1973.24. Gaifman H., Mairson H., \Undecidable Optimisation Problems for Database LogicPrograms." Symposium on Logic in Computer Science, New{York, pp. 106{115.

40 1987.25. Gallagher J., Bruynooghe M. Some low-level source transformations for logic pro-grams. In Bruynooghe Proceedings of the second workshop on Meta-programmingin Logic, Leuven, Belgium, April 1990, pages 229{244.26. Guy R.K. \Conway's Prime Producing Machine" Mathematics Magazine. no56.pp. 26{33. 1983.27. Harel D. \On folk theorems" CACM, vol. 23, no7. pp. 379{389. 1980.28. Hanschke P., W�urtz J. \Satis�ability of the Smallest Binary Program." InformationProcessing Letters, vol. 45, no5. pp. 237{241. April 1993.29. Hansson �A, T�arnlund S.�A. \Program Transformation by Data Structure Map-ping"in \Logic Programming" K.L. Clark and S.�AT�arnlund editors. APIC Studiesin Data Processing. Academic Press. pp. 117{122. 1982.30. Lagarias J.C. \The 3x+ 1 problem and its generalizations." Amer. Math Monthly92, pp. 3{23. 1985.31. Lagarias J.C. \Annoted Bibliography on Collatz Problem". Private Communica-tion. 1992.32. Leb�egue P. \Contribution �a l'Etude de la Programmation Logique par les GraphesOrient�es Pond�er�es" Ph. D. Thesis. Lille. 1988.33. Lewis H.R. \The decision Problem for Formulae with a Bounded Number of AtomicSubformulae." Notices of the American Mathematical Society. vol. 20. 1973.34. Lloyd J.W. \Foundations of Logic Programming." Second, Extended EditionSpringer{Verlag. 1987. Springer Verlag35. Marcinkowski J. \ A Horn Clause that Implies an Undecidable Set of HornClauses." private communication. 1993.36. Marcinkowski J., Pacholski L. \Undecidability of the Horn{Clause ImplicationProblem." FOCS 1992.37. Marcinkowski J. \The 3 Frenchmen Method Proves Undecidability of the UniformBoundedness for Single Recursive Rule Ternary Datalog Programs." Submitted.1995.38. Marcinkowski J. \Unidecidability of Uniform Boundedness for Single Rule DatalogPrograms." Submitted. 1995.39. Minsky M. \Computation : Finite and In�nite Machines." Prentice{Hall. 1967.40. Parrain A. \Transformations de Programmes Logiques et S�emantique Op�era-tionnelle" Ph. D. Thesis. Lille. February 199441. Parrain A., Devienne P., Leb�egue P. \Prolog programs transformations and Meta{Interpreters." Logic program synthesis and transformation, Springer{Verlag, LOP-STR'91, Manchester, pp. 228{241. 1991.42. Post E.M. \A Variant of a Recursively Unsolvable Problem" Bulletin of AmericanMathematics Society. no46. pp. 264{268. 1946.43. Rogers H. \Theory of Recursive Functions and E�ective Computability." The MITPress. 1987.44. Routier J.C. \Termination, Satis�ability and Computational Power of One BinaryHorn Clause." Ph. D. thesis. Lille. February 1994.45. Salzer G. \Solvable Classes of Cycle Uni�cation Problems." IMYCS, Smolenice(CSFR). 1992.46. Shmueli O. \A Single Recursive Predicate is Su�cient for Pure Datalog." Infor-mation and Computation, vol. 117, pp. 91{97.47. Schmidt{Schau� M. \Implication of clauses is undecidable." Journal of TheoreticalComputer Science, no59, pp. 287{296. 1988.48. Tamaki H., Sato. T. Unfold/fold transformation of logic programs. In Sten-�AkeT�arnlund, editor, Second International Logic Programming Conference, pages 127{138, Uppsala, 1984.49. T�arnlund S.�A. \Horn Clause Computability" BIT 172, pp. 215{226. 1977.

4150. Vardi M., \Decidability and Undecidability Results for Boundedness of LinearRecursive Queries." Symposium on Principles of Database Systems, Austin, pp.341{351. 1988.51. W�urtz J. \Unifying Cycles." Proceedings of the European Conference on Arti�cialInteligence. pp. 60{64. August 1992.

