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1 IntroductionWe investigate concurrency as unifying computational paradigm in the spirit of Milner[Mil92] and Smolka [Smo94, Smo95b]. Whereas the motivations for both approaches arequite distinct, the resulting formalisms are closely related: The �-calculus [MPW92] modelscommunication and synchronisation via channels, whereas the �-calculus [NS94, Smo94,NM95]1 uses logic variables or more generally constraints as inspired by [Mah87, SRP91].Our motivation in concurrent calculi lies in the design of programming languages. Con-currency enables us to integrate multiple programming paradigms such as functional[Mil92, Smo94, Nie94, Iba95, PT95b], object-oriented [Vas94, PT95a, HSW95, Wal95],and constraint programming [JH91, SSW94]. All these paradigms are supported by theprogramming language Oz [Smo95a, Smo95b].In this paper, we model the time complexity of eager and lazy functional computation ina concurrent calculus. The importance of complexity is three-fold:1. Every implementation-oriented model has to reect complexity. In the case of lazyfunctional programming, the consideration of complexity leads to a call-by-need mod-el in contrast to a call-by-name model.2. A programmer has to reason about the complexity of his programs. In particular forfunctional programs, denotational semantics are too coarse [San95].3. Based on the notion of uniform conuence, complexity arguments provide for powerfulproof techniques.Our main technical result is that call-by-need complexity is dominated by call-by-valueand call-by-name complexity, i.e. for all closed �-expressions M :Cneed(M) � minfCvalue(M); Cname(M)gThese two estimations can be interpreted as follows: Call-by-need reduction shares theevaluation of functional arguments and evaluates only needed arguments.As a formal basis, we use a uniformly conuent applicative core of a concurrent calculusthat we call �0-calculus. This is a proper subset of the polyadic asynchronous �-calculus[Mil91, HT91, Bou92] and of the �-calculus [NM95, Smo94], the latter being a foundationof higher-order concurrent constraint programming. The choice of �0 has the followingadvantages:1. Delay and triggering mechanisms as needed for programming laziness are expressiblewithin �0.1Originally, Smolka's -calculus [Smo94] and the �-calculus [NS94] have been technically distinct. In[NM95], they have been combined in a re�ned version of the �-calculus. We note that Smolka's -calculusand Boudol's -calculus [Bou89] are completely unrelated.3



2. Mutually recursive de�nitions are expressible in a call-by-value and a call-by-needmanner.3. Cyclic data structures and the corresponding equality relations are expressible in anextension of �0 with constraints, the �-calculus.The �0-calculus is de�ned via expressions, structural congruence, and reduction. Expres-sions are formed by abstraction, application, composition, and declaration:E; F ::= x:y=E jj xy jj EjF jj (�x)EIn the terminology of the �-calculus, abstractions are replicated input-agents and applica-tions are output-agents. Once-only input-agents as in the �-calculus are not provided, norconstraints or cells as in the �-calculus.We identify expressions up to the structural congruence of the �-calculus. Reduction in �0is de�ned by the following application axiom:(x:y=E) j xz ! (x:y=E) j E[z=y]We do not allow for reduction below abstraction. In terms of the �-calculus, this meansthat we consider standard reduction only.We embed the call-by-value and the call-by-name �-calculus into �0, the latter with call-by-need complexity. This is done in two steps: We �rst extend �0 by adding mechanismsfor single assignment, delay, and triggering. We obtain a new calculus that we call �-calculus. Surprisingly � can be embedded into �0 itself. The idea is to express singleassignment by forwarders. In the second step, we encode the above mentioned �-calculiinto �. Formulating these embeddings into � rather than into �0 is motivated by our beliefthat the abstraction level of � is relevant for programming, theory, and implementation.The notion of single assignment we use in � is known from a directed usage of logic variables[Pin87], as for instance in the data-ow language Id [ANP89, BNA91]. Alternatively, wecould express single assignment via equational constraints, but these are not available inthe �-calculus. In fact, the directed single assignment mechanism in this paper is motivatedby a data-ow discussion for polymorphic typing a concurrent constraint language [M�ul96].The approach of this paper is based on the idea of uniform conuence [Nie94, NS94].This is a simple criterion that ensures complexity is independent of the execution order.Unfortunately, we can not even expect conuence for �0. This is due to expressions suchas x:y=E j x:y=F that we consider inconsistent. Inconsistencies may arise dynamically.We can however exclude them statically by a linear type system. In fact, the restrictionof �0 to well-typed expressions is uniformly conuent and su�ciently rich for embedding�-calculi. We note that a well-typed �rst-order restriction of �0 has been proved conuentin [SRP91].We base all our adequacy proofs for embeddings on a novel technique that combines uni-form conuence and shortening simulations [Nie94, NS94]. Shortening simulations are more4



powerful than bisimulations, once uniform conuence is available. Nevertheless, the de�-nitions of concrete shortening simulations in this paper are strongly inspired by Milner'sbisimulations in [Mil92].We are able to compare the complexities of call-by-need and call-by-value in �, since up toour embeddings, every call-by-need step is also a call-by-value step. In particular, we do notrequire in � that a call-by-value function evaluates its arguments before application. Thisadditional freedom compared to the call-by-value �-calculus does not a�ect complexity.This is a consequence of the uniform conuence of the well-typed restriction of �. We notethat the call-by-let �-calculus introduced in [MOTW95] provides the same kind of freedom.Related Work. Many call-by-need models have been proposed over the last years butnone of them has been fully satisfactory.Our call-by-need model is closely related to the call-by-need �-calculus of Ariola et al.[AFMOW95]. We show how to embed the call-by-need �-calculus into � such that com-plexity is preserved (but not vice versa). The main di�erence between both approaches isthe level on which lazy control is de�ned. In the case of the call-by-need �-calculus, lazinessis de�ned on meta level, by evaluation contexts. In the case of the �-calculus, laziness isexpressible within the language itself. In other words, the call-by-need �-calculus is moreabstract, or, the �-calculus is more general. The disadvantage of the abstraction level ofthe call-by-need �-calculus is that mutual recursion and cyclic data structures are di�cultto de�ne. On the other hand side, � is abstract enough for hiding most implementationdetails. We illustrated this fact by simple complexity reasoning based on shortening simu-lations and uniform conuence. This technique is again more general than the specialised�-calculus technique in [AFMOW95].The setting of the call-by-need �-calculus is quite similar to Yoshida's �f -calculus [Yos93].She proves that a call-by-need reduction strategy is optimal for weak reduction, but shedoes not compare call-by-need to call-by-name.Embeddings of the call-by-value and the call-by-name �-calculus into the �-calculus havebeen proposed and proved correct by Milner [Mil92]. An embedding of the call-by-need �-calculus into the �-calculus is proved correct in [BO95]. The advantage of the embeddingspresented here is that they do need not make use of once-only input channels, which areincompatible with uniform conuence.Embeddings of the call-by-value and the call-by-name �-calculus into the �-calculus arepresented in [Smo94], the latter with call-by-need complexity. These embeddings motivatedthose presented here. The di�erence lies in the usage of constraints for single assignmentand triggering. In [Smo94] no proofs are given, but the call-by-value embedding is provedcorrect in [Nie94]. There, most of the proof techniques presented in this paper have beenintroduced.An abstract big-step semantics for call-by-need has been presented by Launchbury [Lau93].It is complexity sensitive, since computation steps are reected in proof trees. Launchbury's5



S (2�3)S 66�636 (�y)(syz j y=2�3)(�y)(syz j y=6) (�y)(z=y�y j y=2�3)(�y)(z=y�y j y=6)! �z=36 2Figure 1: Square Function: Call-by-Valuecorrectness result however does not cover complexity. This is a consequence of using a prooftechnique based on denotational semantics.Many other attempts for call-by-need have been presented. To our knowledge, all of themare quite implementation oriented such that they su�er from low-level details. We notethe approaches based on explicit substitutions [PS92, ACCL91] and on graph reduction[Jef94].Structure of the Report. As a �rst example we discuss the square function in a concur-rent setting. We de�ne �0 in Section 3. We then introduce the notion of uniform conuenceand discuss its relationship to complexity and conuence. In Section 5, we prove uniformconuence for a subset of �0. In Section 6, we de�ne the �-calculus. Following, we discussuniform conuence for �. In Sections 8 and 9, we embed the call-by-value, the call-by-name,and the call-by-need �-calculus into �. We introduce a linear type system in Section 10and prove that our embeddings fall into the uniformly conuent subset of �. In Section11, we show how to encode single assignment and triggering in �0. We introduce the sim-ulation proof technique in Section 12 and apply it for proving the adequacy our calculusembeddings in Sections 13 { 18.2 The Square Function: An ExampleWe informally introduce the �-calculus by representing the square function in call-by-valueand call-by-need manner. This motivates our embeddings of �-calculi into � and indicatesthe adequacy results we can expect.We assume a in�nite set of variables ranged over by x, y, z, s, and t. Sequences of variablesare written as x, y, : : : and integers are denoted with n, m, and k.6



In a concurrent setting, we consider functions as relations with an explicit output argument,for example: S = �x:x�x versus s:xz=z=x�xThe expression on the right-hand side is a call-by-value de�nition of the square functionin the �-calculus. The formal parameter z is the explicit output argument. The expressionz=x�x is syntactic sugar for an application of a prede�ned ternary relation �. We assumethe following application axiom for all integers n, m, k and variables x:x=n�m ! x=k if k = n �mFor forwarding values in equations x=n, we copy them into those positions where they areneeded. This kind of administration is de�nable in many di�erent manners, for instance:(�y)(y=n j E) ! E[n=y]Figure 1 (commented by footnotemark 2) illustrates the call-by value evaluation of thesquare of 2�3 in the �-calculus and the �-calculus. If we ignore forwarding steps, then allpossible computations in Figure 1 have length 3. In other words, our call-by-value embed-ding of the square function preserves time complexity measured in terms of applicationsteps. Ignoring forwarding is correct in the sense that the number of forwarding steps incomputations of functional expressions is linearly bounded by the number of applicationsteps. We do no prove this claim formally.It is interesting that call-by-value evaluation in � is more exible than in the �-calculus, asshown by an additional call-by-value computation in our example. This is in the rightmostcomputation in Figure 1, where the square function is applied before its argument has beenevaluated.For de�ning a call-by-need square function in a concurrent setting, we need a delay and atriggering mechanism. For this purpose, we introduce two new expressions t:E and tr(t).We say that E is delayed in t:E until t is triggered. This behaviour can be provided byfollowing triggering axiom: t:E j tr(t) ! E j tr(t)Note that multiple triggering is possible. A call-by-need version of the square function canbe de�ned as follows: s0:xtz=(z=x�x j tr(t))This function can be applied with a delayed argument x waiting on t to be triggered.Figure 2 (commented by the footnotemarks 2 and 3) presents call-by-name and call-by-need computations of the square of 2�3. Both call-by-name computations have length 4,since the functional argument 2�3 is evaluated twice. If we ignore triggering and forwardingsteps, then our call-by-need computation has length 3. This illustrates that call-by-need2Here, !� stands a forwarding step followed by an application step: (�y)(z=y�y j y=6) ! z=6�6 !z=36. 7



S (2�3)(2�3)�(2�3)6�(2�3) (2�3)�66�636
(�y)(�t)(s0ytz j t:y=2�3)! �(�y)(z=y�y j y=2�3) 3(�y)(z=y�y j y=6)! �z=36 2Figure 2: Square Function: Call-by-Name versus Call-by-Needcomplexity is dominated by call-by-name and by call-by-value complexity. In this example,the �rst estimation is proper (raised by sharing), whereas the second is not (since theargument of the square function is needed).We note that our call-by-need computation in Figure 2 has a direct relative in the call-by-value case, the rightmost computation in Figure 1. This statement holds in general andenables us to compare call-by-need and call-by-value complexity in the �-calculus.3 The Applicative Core of the �-CalculusWe de�ne �0 as the applicative core of the polyadic asynchronous �-calculus [Mil91, HT91,Bou92] and the �-calculus [NM95, Smo94]. Interestingly, �0 as formulated here is part ofthe Oz computation model [Smo94] and the Pict computation model [PT95b], which havebeen developed independently.We de�ne the calculus �0 via expressions, structural congruence, and reduction. The de�-nition is given in Figures 3 and 4. Expressions are abstractions, applications, compositions,or declarations. An abstraction x:y=E is named by x, has formal arguments y and body E.An application xy of x has actual arguments y. In the standard �-notation, abstractionsare replicated input-agents and applications asynchronous output-agents.Bound variables are introduced as formal arguments of abstractions and by declaration.The set of free variables of an expression E is denoted by V(E). We write E =� F if E3Here, !� consists of an application and a triggering step: (�t)(s0ytz j t:y=2�3) !(�t)(z=y�y j tr(t) j t:y=2�3) ! z=y�y j y=2�3 j (�t)(tr(t)). The garbage expression (�t)(tr(t)) in isomitted in Figure 2: 8



Variables x; y; z; s; t ::=Expressions E; F ::= x:y=E jj xy jj E j F jj (�x)EReduction x:y=E j xz !A x:y=E j E[z=y]Figure 3: The �0-Calculus.Structural CongruenceE j F � F j E E1 j (E2 j E3) � (E1 j E2) j E3(�x)(�y)E � (�y)(�x)E (�x)E j F � (�x)(E j F ) if x =2 V(F )E � F if E =� FContextual RulesE ! E 0E j F ! E 0 j F E ! E 0(�x)E ! (�x)E 0 E1 � E2 E2 ! F2 F2 � F1E1 ! F1Figure 4: Structural Congruence and Contextual Rulesand F are equal up to consistent renaming of bound variables. As usual for �-calculi, weassume all expressions to be �-standardised and omit freeness conditions throughout thepaper.The structural congruence � of �0 coincides with that of the �-calculus. It is the leastcongruence on expressions satisfying the axioms in Figure 4. With respect to the structuralcongruence, bound variables can be renamed consistently, composition is associative andcommutative, and declaration is equipped with the usual scoping rules.The reduction!, synonymously denoted by!A, is de�ned by a single axiom for application.The application axiom uses the simultaneous substitution operator [z=y], which replacesthe components of y elementwise by z. In case of application of [z=y], we implicitly assumethat the sequence y is linear and of the same length as z. Note that reduction is invariantunder structural congruence and closed under weak contexts. This means that reductionis applicable below declaration and composition, but not inside of abstraction. In terms of�-calculi, this means that we consider standard reductions only.Example 3.1 (Continuation Passing Style) The identity function I = �x:x can bede�ned in �0 in continuation passing style: i:xy=yx. An application let i=I in ii referredto by z is de�nable as follows:(�i)(i:xy=yx j (�y0)(iiy0 j y0:c=zc))9



In composition with i:xy=yx we obtain the following computation:(�y0)( iiy0 j y0:c=zc) !A (�y0)( y0i j y0:c=zc)!A zi j (�y0)(y0:c=zc)Example 3.2 (Explicit Recursion) The computation of the following recursive expres-sion does not terminate: xy j x:y=xy !A xy j x:y=xy !A : : :Compared to the asynchronous �-calculus [Mil91, Bou92, HT91], �0 does not provide fornon-replicated input-agents. These are not needed for functional computation and areincompatible with uniform conuence if not restricted linearly [KPT96]. In absence ofonce-only inputs, it is not clear if the unary restriction of �0 is Turing complete.4 Uniform ConuenceWe formalise the notions of a calculus, complexity, and uniform conuence as in [Nie94,NS94] and discuss their relationships. These simple concepts will prove extremely usefulin the sequel.The notion of a calculus that we will de�ne extends Klop's abstract rewrite systems [Klo87]by the concept of a congruence: A calculus is a triple (E ; �; !), where E is a set, � anequivalence relation, and! a binary relation on E . Elements of E are called expressions, �congruence, and ! reduction of the calculus. We require that reduction is invariant undercongruence, i.e., (� � ! � �) � !, where � stands for relational composition4. Typicalcalculi are: �0, �, �, �-calculi, abstract rewrite systems, Turing machines, etc.A derivation in a calculus is a �nite or in�nite sequence of expressions such that Ei ! Ei+1holds for all subsequent elements. A derivation of an expression E is a derivation, whose�rst element is congruent to E. A computation of E is a maximal derivation of E, i.e. anin�nite derivation or a �nite one, whose last element is irreducible. The least transitiverelation containing ! and � is denoted with !�.The length of a �nite derivation (Ei)ni=0 is n and the length of in�nite derivation is 1.We call an expression E uniform with respect to complexity (and termination), if all itscomputations have the same length. We de�ne the complexity C(E) of a uniform expressionE by the length of its computations. We call a calculus uniform if all its expressions areuniform.We call a calculus uniformly conuent, if its reduction and congruence satisfy the followingcondition (visualised in Figure 5):( � !) � ((!�  ) [ �)4If !1 and !2 are two binary relations on some set E and E, E00 2 E, then E !1 � !2 E00 if and onlyif there exists E0 2 E such that E !1 E0 and E0 !2 E00.10



E EE1 E2 or E1 � E2FFigure 5: Uniform ConuenceTypically, �-calculi equipped with standard reductions are uniformly conuent, subject toweak reduction.Proposition 4.1 A uniformly conuent calculus is conuent and uniform with respect tocomplexity.Proof. By a standard inductive argument [Nie94] as for the notion of strong conuence[Hue80] (which is weaker than uniform conuence). 25 Uniform Conuence for �0In this Section, we distinguish a uniformly conuent subcalculus of �0 that is su�cient forfunctional computation. We call a �0-expression inconsistent, if it is of the form:x:y=E j x:z=Fwhere x:y=E 6� x:z=F 5. A typical example for non-conuence in the case of inconsistenciesis to reduce the expression xz in composition with x:y=sy j x:y=ty :sz A xz !A tzThese results are irreducible but not congruent under the assumption s 6= t.We call E admissible, if there exists no expression F containing an inconsistency andsatisfying E !� F . The advantage of this condition is that it is very simple. Unfortunately,it is undecidable if a given expression E is admissible, since admissibility may depend onthe termination of a Turing complete system. This failure is harmless, since we can proveadmissibility for all functional expression of � with the help of the linear type system inSection 10.5The exibility provided by the side condition x:y=E 6� x:z=F is needed for encoding multiple triggeringin �0. Consider for instance [[tr(t) j tr(t)]] � t:y=y j t:y=y as introduced in Section 11.11



ExpressionsE; F ::= x:y=E jj xy jj E j F jj (�x)E jj x=y jj tr(t) jj t:EReductionx:y=E j xz !A x:y=E j E[z=y]x=y j y:z=E !F x:z=E j y:z=E tr(t) j t:E !T tr(t) j EFigure 6: The �-CalculusTheorem 5.1 The restriction of �0 to admissible expressions is uniformly conuent.Together with Proposition 4.1 this implies that all admissible expressions E of �0 are uni-form with respect to complexity such that C(E) is well-de�ned.Proof of Theorem 5.1.Let E be an admissible �0-expression. Every application step on E can be performed onan arbitrary prenex normal form of E (compare [Nie94] for details). Since declarationsare not involved during application, we can assume that E is a prenex normal form withan empty declaration pre�x. On such E, reduction amounts to rewriting on multisets ofabstractions and applications.Let F1 and F2 be expressions such that F1 A E !A F2. There exists an applicationx1z1 reduced during the application step E !A F1 and an application x2z2 reduced duringE !A F2. If these applications are distinct, then we can join F1 and F2 by reducingthe respective other one. If both applications coincide then x1 = x2. Hence, the appliedabstractions have to be congruent by admissibility such that F1 � F2. 26 Single Assignment and TriggeringWe extend �0 with directed single assignment and triggering. The resulting calculus iscalled �. We do not exclude multiple assignment syntactically. This is a matter of thelinear type system in Section 10.For our extension, we need three new types of expressions and two additional reductionaxioms. A directed equation6 x=y is used for single assignment directed from the right tothe left. A synchroniser x:E delays the computation of E until t is triggered. A triggerexpression tr(t) triggers a delayed computation waiting on t.6The original version of the �-calculus [Nie94] uses symmetric equations instead of directed ones. Thischoice does not matter for well-typed expressions. 12



The structural congruence of � coincides with that of �0. Its reduction ! is a union ofthree relations, application !A, forwarding !F , and triggering !T :! = !A [ !F [ !TEach of these relations is de�ned by the corresponding axiom in Figure 6 and the contextualrules in Figure 4.Example 6.1 (Single Assignment Style) The identity function I = �x:x can be ex-pressed in � by i:xy=y=x. Compared to Example 3.1 we use single assignment instead ofcontinuation passing. An application let i=I in (ii)i referred to by z is represented in � asfollows: (�i)(i:xy=y=x j (�y0)(iiy0 j y0iz))In composition with i:xy=y=x we obtain the following computation:(�y0)( iiy0 j y0iz) !A (�y0)( y0=i j y0iz)!F (�y0)(y0:xy=y=x j y0iz )!A z=i j (�y0)(y0:xy=y=x)!F z:xy=y=x j (�y0)(: : :)Example 6.2 (Call-by-Need Selector Function) The call-by-need selector functionF = �xy:x can be represented in � by the abstraction f :xtxyty z=(z=x j tr(tx)). The sym-bols tx and ty stand for ordinary variables. Their usage is for triggering the computationsof x and y respectively. A call-by-need application f (ii)(ii) has the form:(�x)(�tx)(�y)(�ty)(fxtxyty z j tx :iix j ty :iiy)In composition with the abstractions named i and f , we obtain the following computation:(�x)(�tx)(�y)(�ty)( fxtxyty z j tx :iix j ty :iiy)!A (�x)(�tx)(z=x j tr(tx) j tx :iix ) j (�y)(�ty)(ty :iiy)!T (�x)(�tx)( z=x j tr(tx) j iix ) j (�y)(�ty)(: : :)!� z:xy=y=x j (�y)(�ty)(�x)(�tx)(: : :)The resulting expression is irreducible. We note that only the needed �rst argument hasbeen evaluated. The synchroniser ty :iiy for the second argument suspends forever.7 Uniform Conuence for �For proving a uniform conuence result for �, we have to consider how uniform conuencebehaves with respect to a union of calculi. We �rst present a variation of the Hindley-RosenLemma [Bar84] for uniform conuence and then apply it to the �-calculus. But the general13



results of this Section are also applicable to other unions of calculi such as the call-by-need�-calculus [AFMOW95] and the �-calculus [NM95].The union of two calculi (E ; �; !1) and (E ; �; !2) is de�ned by (E ; �; !1 [ !2). Wesay that the relations !1 and !2 commute, if(1 � !2) � (!1 � 2 ) :Lemma 7.1 (Reformulation of the Hindley-Rosen Lemma) The union of two uni-formly conuent calculi with commuting reductions is uniformly conuent.Proof. The proof is straightforward. 2Note that Lemma 7.1 implies the classical Hindley-Rosen Lemma, since a relation is con-uent, if and only if its reexive transitive closure is uniformly conuent. The next lemmaallows us to ignore administrative steps such as forwarding and triggering in the case of �:Lemma 7.2 (Administrative Steps) Let (E ; �; !1) be a uniformly conuent calculusand (E ; �; !2) a conuent and terminating calculus such that !1 and !2 commute. IfE 2 E, then every computation of E in the union (E ; �; !1 [ !2) contains the samenumber of !1 steps.Proof. The idea is to apply Proposition 4.1 to (E ; �; !�2 � !1 � !�2). This calculus isuniform but not uniformly conuent. This de�ciency can be remedied by replacing � with(2 [ !2)�. The details can be found in [Nie94]. 2Next, we apply the above results to the �-calculus. We �rst note that the notion ofadmissibility carries over from �0 to � without change.Proposition 7.3 The relations !F and !T terminate. The relation !T is uniformlyconuent and !F is uniformly conuent when restricted to admissible expressions. Therelations !A, !F , and !T commute pairwise.Proof. Termination is trivial, since !F decreases the number of directed equations and!T the number of synchronisers. All other properties can be established by the normalform technique used in the proof of Theorem 5.1. 2Theorem 7.4 The restriction of the �-calculus to admissible expressions is uniformly con-uent.Proof. Follows from Theorem 5.1, Proposition 7.3, and Lemma 7.1. 214



ExpressionsM;N ::= x jj V jj MN V ::= �x:MReduction(�x:M)V !value M [V=x] (�x:M)N !name M [N=x]Contextual RulesM !value M 0MN !value M 0N N !value N 0MN !value MN 0 M !name M 0MN !name M 0NFigure 7: The Call-by-Value and the Call-by-Name �-CalculusTheorem 7.5 If E is admissible, then all computations of E contain the same number ofapplication steps.Proof. Follows from Theorem 5.1, Proposition 7.3, and Lemma 7.2. 2De�nition 7.6 We de�ne the A-complexity CA(E) of an admissible �-expression E as thenumber of !A steps in computations of E.Theorem 7.5 ensures that A-complexity is well de�ned. We consider forwarding and trig-gering steps as administrative steps and ignore them in favour of simpler complexity state-ments and adequacy proofs. However, we could prove for all functional expressions (butnot in general) that the number of administrative steps is linearly bound by the numberof !A steps. This would require showing stronger invariants in adequacy proofs.8 Functional Computation in �We embed the call-by-value and the call-by-name �-calculus into the �-calculus, the latterwith call-by-need complexity.The call-by-value and the call-by-name �-calculus are revisited in Figure 7. Note that weconsider standard reduction only. A congruence allowing for consistent renaming of boundvariables is left implicit as usual.Proposition 8.1 The call-by-value and the call-by-name �-calculus are uniformly conu-ent. 15



z=vMN def� (�x)(x=vM j (�y)(xyz j y=vN))z=v�x:M def� z:xy=y=vMz=vx def� z=xFigure 8: Call-by-Value in the �-Calculusz=nMN def� (�x)(x=nM j (�y)(�ty)(xytyz j ty :y=nN))z=n�x:M def� z:xtxy=y=nM [x�tx=x]z=nx�tx def� z=x j tr(tx)Figure 9: Embedding the Call-by-Name �-Calculus with Call-by-Need ComplexityProof. The statement for call-by-name is trivial, since call-by-name reduction is determin-istic. The proof for call-by-value can be done by a simple induction on the structure of�-expressions. 2Proposition 8.1 allows us to de�ne the call-by-value complexity Cvalue(M) and the call-by-name complexity Cname(M) of a �-expression M by the length of its computations in therespective �-calculus.Given an arbitrary variable z, Figure 8 presents an embedding M 7! z=vM of the call-by-value �-calculus into �. The de�nition of z=vM is given up to structural congruence. Allvariables introduced during this de�nition are supposed to be fresh.Theorem 8.2 For all closed �-expressions M and variables z the call-by-value complexityof M and the A-complexity of z=vM coincide: Cvalue(M) = CA(z=vM) :Proof. A proof simpli�es it's predecessor in [Nie94] is presented Section 14. It is based on acomplexity simulation introduced in Section 12 and makes heavy use of uniform conuencefor covering the additional freedom provided by call-by-value reduction in �. We de�ne ourcomplexity simulation in the style of [Mil92] using explicit substitutions. 2An embedding z 7! z=nM of the call-by-name �-calculus into � is given in Figure 9.It is symmetric to our call-by-value embedding and provides for call-by-need complexity.Our de�nition of a �-expression x=nM makes sense for closed M only and goes throughintermediate �-expressions containing pairs y�ty . For instance:z=n�x:x � z:xtxy=y=nx�tx � z:xtxy=(y=x j tr(tx))16



As we will show in the next Section, our embedding of the call-by-name �-calculus providesin fact for call-by-need complexity. In this sense, the next theorem states that call-by-needcomplexity is dominated by call-by-value and by call-by-name complexity.Theorem 8.3 Let M be a closed �-expression and z a variable. Call-by-name reductionof M terminates if and only if �-reduction of z=nM terminates. Furthermore:CA(z=nM) � minfCvalue(M); Cname(M)g :Proof. Preservation of termination and the estimation CA(z=nM) � Cname(M) are provedin Section 15. These are the most di�cult results to prove in this paper. The proof isbased on a shortening simulation introduced in Section 12. It factorises into Theorem 12.2and Corollary 15.2.The proof of the estimation CA(z=nM) � Cvalue(M) is given in Section 16. ApplyingTheorem 8.2 it is su�cient to compare the A-complexities of z=nM and z=vM . This canbe done with a lengthening simulation introduced in Section 12 and is stated in Corollary16.5.We note that our simulation technique makes use of uniform conuence such that we needthe admissibility of embedded expressions as proved in Section 10. 2Extension 8.4 It is straightforward to express mutual recursion in �, both in a call-by-value and in a call-by-need manner:z=v letrec x=M inN def� (�x)(x=vM j z=vN)z=nletrec x=M inN def� (�x)(�t)(t:x=nM� j z=nN�)where � = [x�t=x]. We do not claim a correctness result for mutual recursion in this paper.9 Embedding the Call-by-Need �-CalculusWe show that the A-complexity of z=nM equals the complexity of M in the call-by-need�-calculus.The de�nition of the call-by-need �-calculus [AFMOW95] is revisited in Figure 10. Again,we only consider standard reduction. The reduction !need of the call-by-need �-calculusis a union of four relations: !need = !I [ !V [ !Ans [ !CThe latter three relations are of administrative character, whereas !I steps correspond to�-reduction steps. 17



ExpressionsL ::= x jj V jj L1L2 jj let x=L2 in L1 V ::= �x:LAnswersA ::= V jj let x=L in AEvaluation ContextsE ::= [ ] jj EL jj let x=L in E jj let x=E2 in E1[x] L! L0E[L]! E[L0]Reduction(�x:L1)L2 !I let x=L2 in L1let x=V in E[x] !V let x=V in E[V ]let y=(let x=L in A) in E[y] !Ans let x=L in (let y=A in E[y])(let x=L1 in A)L2 !C let x=L1 in AL2Figure 10: The Call-by-Need �-CalculusProposition 9.1 The call-by-need �-calculus is deterministic and hence uniformly conu-ent.Proof. Evaluation context determine a unique term position where reduction may happen.2By Proposition 9.1, it makes sense to de�ne the call-by-need complexity Cneed(L) of anexpression the call-by-need �-calculus by the number of!I steps in the computation of L.We extend the mapping M 7! z=nM to an embedding L 7! z=nL of the call-by-need�-calculus into �, de�ning:z=nlet x=L2 in L1 � (�x)(�t)(t:x=nL2 j z=nL1[x�t=x])The following Theorem states the adequacy of the extended embedding, and that ourembedding of the call-by-name �-calculus into � yields in fact call-by-need complexity:Theorem 9.2 If L is a closed �-expression and z a variable, then Cneed(L) = CA(z=nL).Proof. The proof is presented in Section 18, Corollary 18.3. If is based on a complexitysimulation again. 218



�; I > E�; Infxg > (�x)E �; I1 > E1 �; I2 > E2�; I1 [ I2 > E1 j E2 I1 \ I2 = ;�; t: tr; I > E�; t: tr; I > t:E �; y: �; I > E�; x: ((��)); fxg > x:y=E I � O(y: ��)�; x: ((�)); y: ((�)); fxg > x=y �; t: tr; ; > tr(t)�; x: ((��)); y: �; I > xy ; O(y: ��) � IFigure 11: Linear Type Checking10 Linear Types for ConsistencyWe de�ne a linear type system for � that statically excludes inconsistencies. It tests forsingle assignment and determines the data ow of a �-expression via input and outputmodes.We assume an in�nite set of type variables denoted by � and use the following recursivetypes � internally annotated with modes �:� ::= ((�)) jj ��:� jj � jj tr ; � ::= �� ; � ::= in jj outOur type systems distinguishes two classes of variables, trigger and single assignment vari-ables. We use tr as type for trigger variables. A single assignment variable has a proceduraltype ((�)), where � is a sequence of argument types. For instance, the variable z in z=vMis typed by ��:((�in �out)). This recursive type expresses that a call-by-value function isa binary relation, which inputs a call-by-value function in �rst position and outputs acall-by-value function in second position.A type environment � is a sequence of type assumptions x: � with scoping to the right.A variable x has type � in �, written �(x) = �, if there exists �1 and �2 such that� = �1; x: �;�2 and x does not occur in �2. The domain of an environment � is the setof all variables typed by �. We identify environments �1 and �2 if they have the samedomain and �1(x) = �2(x) for all x in this domain.If y = (yi)ni=1, � = (�i)ni=1, and � = (�i)ni=1, then we write �� for the sequence of annotatedtypes (�i�i)ni=1 and y: � for the sequence of type assumptions y1: �1; : : : ; yn: �n. The outputvariables O(y: ��) in a sequence of type assumptions are de�ned as follows:O(y: ��) = fyi j 1 � i � n; �i = out; and �i 6= trgA judgement for E is a triple �; I > E, where � is an environment and I is a set ofvariables. An expression E is well-typed, if there exists a judgement for E derivable withthe rules in Figure 11. If �; I > E is derivable, then I contains those single assignmentvariables, to which an abstraction may be assigned during a computation of E. Suchvariables correspond to input channels in the �-calculus.19



Lemma 10.1 (Subject Reduction Property) If E is well-typed and E !� F , then Fis well-typed.Proof. By induction on derivations of judgements. 2Lemma 10.2 An inconsistent expression is not well-typed.Proof. An expression x:y=E j x:z=F is not well-typed (even if E � F ). A potential typejudgement would have to be of the following form:� � ��; fxg > x:y=E � � ��; fxg > x:z=F�; fxg > x:y=E j x:z=FThis is impossible by the side condition fxg \ fxg = ; of the typing rule for composition.2Corollary 10.3 A well-typed expression is admissible.Proof. Immediate from Lemmata 10.1 and 10.2 2Proposition 10.4 All expressions z=vM and z=nL are well-typed and hence admissible.Proof. For all closed expressions M and L the following judgements are derivable with therules in Figure 11, where � is arbitrary:z: ��:((�in �out)); fzg > z=vM z: ��:((�in tr� �out)); fzg > z=nLThis can check by induction on the structure of M resp L. A slightly stronger invariantis needed for non-closed subexpressions, where all variables are substituted by pairs via[x�t=x]. 211 Encoding � in �0Directed single assignment and triggering can be expressed in �0. For technical simplicity,we formalise this statement for n-ary �-expressions, i.e. those containing n-ary abstractionsand applications only. This is su�cient to carry over our �-calculus embeddings from �to �0, since z=vM and z=nL are binary and ternary respectively. An embedding of n-ary�-expressions into �0 is given in Figure 12.We have to be quite careful when formulating a correctness result for the embeddingE 7! [[E]]. The reason is that the translation of cyclic reference chains does not preservetermination. For instance, the expression E def� xy j x=x is terminating whereas [[E]] �xy j x:y=xy is not.We call E locally cyclic, if there exists a sequence (xi)ni=1 such that E contains a subex-pression of the form x1=x2 j : : : j xn�1=xn. We call E cyclic if there exists F , which islocally cyclic and satis�es E !� F , and acyclic otherwise.20



[[t:E]] def� (�y)(ty j y:=[[E]]) [[tr(t)]] def� t:y=y[[x=y]] def� x:z=yz ; length(z) = n[[E j F ]] def� [[E]] j [[F ]] [[(�x)E]] def� (�x)[[E]][[x:y=E]] def� x:y=[[E]] [[xy ]] def� xyFigure 12: Embedding n-ary �-expressions in �0Theorem 11.1 If E is a well-typed, acyclic, and n-ary �-expression, then [[E]] is admissibleand terminates if and only if E terminates.Proof. This is proved in Section 17, Corollary 17.12. The simulation technique of Section12 is applicable again. 2Proposition 11.2 For all z, closed M and L, the expressions z=vM and z=nL areacyclic.Proof. We can show acyclicity by extending linear type checking in Figure 11. In theextended system, we derive judgements of the form �; O; < > E, where < is some acyclicordering on the set of variables. Typical examples for type checking rules of the extendedsystem are: �; x: ((�)); y: ((�)); fxg; � > x=y x � y�; y: �; O; �0 > E�; x: ((��)); fxg; � > x:y=E �0 = � hO(y: ��)iO � O(y: ��)The ordering � hO(y: ��)i consists of all pairs (y; z) such that y 2 O(y: ��) andz =2 O(y: ��)g, or y � z but not y 2 O(y: ��). It is not di�cult to verify that locallycyclic expressions are not well-typed in the extended system. Since the subject reductionproperty holds as before, cyclic expressions are not well-typed. On the other hand side theexpressions z=vM and z=nL are well-typed and hence acyclic. 2We note that the embedding E 7! [[E]] does not preserve complexity in an obvious way.The main problem is about forwarding, which is illustrated by the following examples,where we assume that u1; u2; x; y denote distinct variables:E1 def� xu j x=y C(E1) = 0 C([[E1]]) = 1E2 def� x=y j y:z=zz C(E2) = 1 C([[E2]]) = 0E3 def� xu1 j xu2 j x=y j y:z=zz C(E3) = 3 C([[E3]]) = 421



12 Simulations and UniformityMilner [Mil92] uses bisimulations for proving the adequacy of �-calculus embeddings intothe �-calculus. We show that simulations are su�cient for uniform calculi.Let (E ; �E ; !E) and (G; �G ; !G) be two uniform calculi with expressions ranged over byE and G respectively. We omit the indices E and G whenever they are clear from thecontext. We call a function � : E ! G an embedding of E into G, if � is invariant undercongruence.De�nition 12.1 Let S be a relation on E � G and � be an embedding from E into G. Wecall S a shortening simulation for � if it satis�es the following conditions for all E, E 0,and G:(Sim1) (E; �(E)) 2 S.(Sim2) If E is irreducible and (E; G) 2 S, then G is irreducible.(Sim3) If E !E 0 and (E; G) 2 S, then exists E 00 and G0 with C(E 0) � C(E 00), (E 00; G0) 2S, and G!G0. E ! E 0 � E 00S SG ! G0Theorem 12.2 Let � : E ! G be an embedding between uniform calculi. If there existsa shortening simulation for �, then � preserves termination and shortens complexity, i.e.C(�(E)) � C(E) for all E.Proof. We assume a shortening simulation S for � and (E; G) 2 S. At �rst, we claimC(G) � C(E) if C(E)<1. This can be proved by induction on C(E). If C(E) = 0 then Eis irreducible such that G is irreducible by (Sim2) . Hence C(G) = 0. If C(E) = n � 1 thenthere exists E 0 such that E !E 0. By uniformity C(E 0) = n� 1 follows. Condition (Sim3)implies the existence of E 00 and G0 such that G ! G0, C(E 0) � C(E 00), and (E 00; G0) 2 S.By induction hypothesis we obtain C(G0) � C(E 00). The uniformity of both calculi implies:C(G) = C(G0) + 1 � C(E 00) + 1 � C(E 0) + 1 = C(E)The theorem follows from both claims and condition (Sim1) . 2De�nition 12.3 Let S be a relation on E � G and � be an embedding from E into G. Wecall S a lengthening simulation for � if it satis�es (Sim1) and the following condition forall E, E 0, and G: 22



(Sim4) If E !E 0 and (E; G) 2 S, then exists G0; G00 2 G such that (E 0; G00) 2 S, G!G0and C(G0) � C(G00). E ! E 0S SG ! G0 � G00We call S a complexity simulation for � if S is a shortening and a lengthening simulationfor �.Proposition 12.4 Let � be an embedding between uniform calculi. If there exists a length-ening simulation for �, then � lengthens complexity, i.e. C(E) � C(�(E)) for all E.Proof. Let S be a lengthening simulation for � and (E; G) 2 S. By induction on n we canshow that if there exists a derivation of E of length n, then there exists a derivation of Gof length � n. 2Corollary 12.5 Let � be an embedding between uniform calculi. If there exists a complex-ity simulation for �, then � preserves complexity (and termination).Proof. Immediate from Theorem 12.2 and Proposition 12.4. 213 NotationWe need several notations for de�ning simulations and proving them correct. We introducenotations for explicit substitutions, sequences, and specialised reduction relations.We use the following notation for explicit substitutions ([Mil92, ACCL91]). If y = (yi)ni=1and L = (Li)ni=1, then let y=L in L0 represents a �-term:let y=L in L0 def� L0[Ln=yn] : : : [L1=y1]We will freely make use of some further sequent notation. If furthermore x = (xi)ni=1,t = (ti)ni=1, z = (zi)ni=1, and E = (Ei)ni=1, then we write:z=L def= z1=L1 : : : zn=Ln xytz def� x1y1t1z1 j : : : j xnyn tnznt:E def� t1 :E1 j : : : j t1 :En (�y)E def� (�y1): : :(�yn)EE def� E1 j : : : j En z=vM def� z1=vM1 j : : : j zn=vMnz=nL def� z1=nL1 j : : : j zn=nLn V(x) def= fx1 : : : xng23



If � = (�j)nj=1 is a sequence of variables or expressions then we write �<i for the sequence(�j)i�1j=1 and �>i for the sequence (�j)nj=i+1. The concatenation of two sequences � and �is denoted by ��.Let (E ; �; !) be a calculus, E;E 0 2 E , and n a natural number. We write E !n E 0 orE !�n E 0, if E reduces in exactly (resp less than) n steps to E 0. Formally, we de�ne therelations !n and !�n as follows:!0 = � ; !n+1 = !n � ! ; !�n = [f!ij 0 � i � ngWe note that !�= [f!ij 0 � i <1g.For reecting A-complexity, we de�ne the relation ,!= (!F [ !T )�. Let �0 be the variantof � with the reduction ,!� !A � ,! instead of !.Proposition 13.1 The restriction of �0 to admissible expressions is uniform. For all ad-missible expressions E the complexity of E in �0 and the A-complexity of E (which is de�nedrelative to �) coincide: C�0(E) = CA(E) .Proof. This is an immediate consequence of Theorem 7.5. 2In expression of the �-calculus, top-level declarations do not matter for complexity andtermination considerations. We write E � F if there exists x and y such that (�x)E �(�y)F . The next two Lemmata justify ignoring top-level declarations in the sequel.Lemma 13.2 If F � E !A E 0 then there exists F 0 such that F !A F 0 � E 0. If F �E !F E 0 then there exists F 0 such that F !F F 0 � E 0. If F � E !T E 0 then there existsF 0 such that F !T F 0 � E 0.E !A E 0� �F !A F 0 E !F E 0� �F !F F 0 E !T E 0� �F !T F 0Lemma 13.3 The relation � is closed under weak context and invariant under structuralcongruence, i.e. it satis�es the contextual rules in Figure 4 (with ! replaced by �).14 A Complexity Simulation for Call-by-ValueWe proof the adequacy of the embedding M 7! z=vM from the call-by-value �-calculusinto � as stated in Theorem 8.2.Our goal is to establish the equation CA(z=vM) = Cvalue(M) for all closed �-expressionsM . By Proposition 13.1 it is su�cient to show C�0(z=vM) = Cvalue(M) . We will apply24



Corollary 12.5 once we have constructed a complexity simulation for the above embeddingconsidered into �0 instead of �. The necessary application conditions for Theorem 12.2 areveri�ed by Propositions 13.1, 10.4, and Proposition 8.1.Example 14.1 Before formally de�ning a complexity simulation, we illustrate it by a sim-ple example. Let C = �x:xx be a �-abstraction copying its argument and I = �x:x theidentity. C(CI ) !value let y1=C z1=I in C(z1z1)� let y1=C z1=I in C(II )In the �rst step, we have reduced the redex CI . Both involved abstractions have been movedinto an environment. Note that only abstractions are moved into the environment. In thesecond step, we have forwarded abstractions into the next actual application. These twosteps reect the general scheme.z=vC(CI ) !A � � y1=vC j z1=vI j z=vC(z1z1)!2F y1=vC j z1=vI j z=vC(II )Reduction in the �-calculus behaves very similar. The environment is represented by con-texts built up with composition and declaration. Forwarding amounts to explicit !F steps.De�nition 14.2 (v-Representation) A v-representation for (M; E) is a triple(n; y; M), where y = (yi)ni=1 and M = (Mi)ni=1. We require the following properties for alli 2 f1 : : :ng:(Sv1) V(Mi) � fy1 : : :yi�1g and y is linear.(Sv2) M � let y=M in yn.(Sv3) E � y1=vM1 j : : : j yn=vMn.(Sv4) If i < n then Mi is an abstraction.Lemma 14.3 (Closedness) If n, M , y, and M satisfy (Sv1) and (Sv2), then M is closed.Proof. By induction on n. If n = 1 then M � let y1=M1 in y1 such that V(M) � V(M1) �;. If n > 1, then we can apply the induction hypothesis to the following representation ofM : M � let y<n�1=M<n�1 yn=Mn[Mn�1=yn�1] in yn 2De�nition 14.4 (Relation Sv) The relation Sv is the set of all pairs (M; E) for whicha v-representation exists. 25



Proposition 14.5 (Sv is a Complexity Simulation) The relation Sv is a relation be-tween closed �-expressions and admissible �-expressions. It satis�es the following propertiesfor all M , z, and E:1. If M is closed then (M; z=vM) 2 S.2. If M is irreducible with respect to !value and (M; E) 2 S, then E is irreducible withrespect to !A [ !F [ !T .3. If (M; E) 2 S and M !value M 0, then there exists E 0 such that E !�2F � !A E 0 and(M 0; E 0) 2 S7 . M !value M 0S SE !�2F !A E 0Proof.1. The triple (n; (z); (M)) is a v-representation of (M; z=vM). Property (Sv1) followsfrom the closedness of M and (Sv2)-(Sv4) are trivial.2. Let M be closed and irreducible with respect to !value. Hence M is an abstractionsuch that z=vM is an abstraction and therefore irreducible with respect to!A [ !F[ !T .3. Let (n; y; M) be a v-representation of (M; E) and M !value M 0. Applying thefollowing Lemma 14.7, there exists sequences x and V of length m, and an expres-sion E 0 such that (n+m; y<nxyn; M<nVM 0n) is a v-representation for (M 0; E 0) andE !�2F � !A E 0. 2Corollary 14.6 The relation Sv is a complexity simulation for the mapping M 7! z=vMconsidered as embedding from the call-by-value �-calculus restricted to closed expressionsinto �0.Proof. Immediate from Proposition 14.5. 27This invariant is strong enough for proving that the number of !F steps in computations of expressionsz=vM is bounded by 2 times the number of !A steps. If we would embed a �-calculus with n-ary insteadof unary function, then we would obtain a factor of n+ 1 instead of 2.26



Lemma 14.7 Let (n; y; M) be a v-representation of (M; E) andM !value M 0. Then thereexists fresh variables x, abstractions V , and a �-expression M 0n such that E !�2F � !A E 0,V(V ) � V(y<n), V(M 0m) � V(y<nx), and:M 0 � let y<n=M<n x=V yn=M 0n in ynE 0 � y<n=vM<n j x=vV j yn=vM 0nProof. Since (n; y; M) is an v-representation, we know M � let y=M in yn and E �y=vM . SinceM can not be an abstraction, property (Sv4) implies thatMn is an applicationN1N2 for some N1 and N2. Hence M � P1P2 and:P1 � let y<n=M<n in N1 ; P2 � let y<n=M<n in N21. Case: M !value M 0 is an instance of the �-axiom, i.e. P1 � �x: ~P1 and:M � (�x: ~P1)P2 !value ~P1[P2=x] � M 0Since P1 and P2 are abstractions, N1 and N2 have to be either variables or abstrac-tions. This leads to four very similar subcases. We only consider the case where N1and N2 are both variables. In this case there exists yl1 and yl2 such that N1 = yl1and N2 = yl2 . Furthermore:P1 � let y<n=M<n in Ml1 ; P2 � let y<n=M<n in Ml2If Ml1 � �x: ~Ml1 then ~P1 � let y<n=M<n in ~Ml1 . Let x1 and x2 be fresh.M 0 � (let y<n=M<n in ~Ml1)[P2=x]� let y<n=M<n in ~Ml1 [P2=x]� let y<n=M<n in ~Ml1 [yl2=x]� let y<n=M<n x1=Ml1 x2=Ml2 yn= ~Ml1 [x2=x] in ynReduction of E may proceed with two forwarding steps followed by an applicationstep. E � y<n=vM<n j yn=vyl1 yl2� y<n=vM<n j x1=yl1 j x2=yl2 j x1x2yn!2F y<n=vM<n j x1=Ml1 j x2=Ml2 j x1x2yn!A y<n=vM<n j x1=Ml1 j x2=Ml2 j yn=v ~Ml1 [x2=x]This proves the inductive assertion with M 0n � ~Ml1 [x2=x] and V equals the sequence(Ml1; Ml2).2. Case: The last rule in the derivation ofM !value M 0 allows for reduction in functionalposition: P1 !value P 01M � P1P2 !value P 01P2 � M 027



Let z1 and z2 be fresh variables and de�ne:E1 def� y<n=vM<n j z1=vN1By induction hypothesis there exists fresh variables x, abstractions V , N 01, and E 01such that E1!�2F � !A E 01 and:P 01 � let y<n=M<n x=V yn=N 01 in ynE01 � y<n=vM<n j x=vV j yn=vN 01Additionally, we obtain some conditions on variables occurences, which imply:M 0 � P 01P2 � (let y<n=M<n x=V in N 01) (let y<n=M<n in N2)� let y<n=M<n x=V yn=N 01N2 in ynFurthermore:E � y<n=vM<n j yn=vN1N2� y<n=vM<n j z1=vN1 j z2=vN2 j z1z2yn!�2F � !A y<n=vM<n j x=vV j z1=vN 01 j z2=vN2 j z1z2yn� y<n=vM<n j x=vV j yn=vN 01N2This proves the inductive assertion with M 0n � N 01N2 .3. Case: The last rule in the derivation ofM !value M 0 allows for reduction in argumentposition: P2 !value P 02M � P1P2 !value P1P 02 � M 0This case is symmetric to the previous one. 215 Shortening Call-by-Name to Call-by-NeedAs stated in Theorem 8.3, we prove that the embedding M 7! z=nM from the call-by-name �-calculus into � preserves termination such that CA(z=nM) � Cname(M) for allclosed �-expressions M .By Proposition 13.1 the above complexity estimation is implied by the following one:C�0(z=nM) � Cname(M)for all closed M . For proof, we will apply Theorem 12.2 to a shortening simulation forthe above embedding considered into �0 instead of �. This is su�cient to establish ourtermination statement as well, since termination in �0 and � are equivalent (since !F and!T terminate). As in the case of our call-by-value embedding, the necessary applicationconditions for Theorem 12.2 are veri�ed by Propositions 13.1, 10.4, and Proposition 8.1.28



15.1 ExampleBefore formally de�ning a shortening simulation, we illustrate it by a simple example. We�rst consider a call-by-name reduction step of (II) I with I � �x:x:(II) I � let y1=I z1=I y2=y1z1 z2=I y3=y2z2 in y3!name let y1=I z1=I y2=z1 z2=I y3=y2z2 in y3� let y1=I z1=I y2=I z2=I y3=y2z2 in y3First, the �-term (II)I is attened. Second, an application is executed. Third, the value Iis forwarding to the variable y1. The corresponding �-reduction sequence is quite similar:y3=n(II) I � y1=nI j t1 :z1=nI j y1z1t1y2 j t2 :z2=nI j y2z2t2y3!A y1=nI j t1 :z1=nI j y2=nz1�t1 j t2 :z2=nI j y2z2t2y3!T y1=nI j z1=nI j y2=z1 j tr(t1) j t2 :z2=nI j y2z2t2y3!F y1=nI j z1=nI j y2=nI j tr(t1) j t2 :z2=nI j y2z2t2y3The third step - triggering a needed argument - is not visible in the above �-calculusderivation. Apart from this aspect, both computations are very similar.15.2 PropertiesAn appropriate shortening simulation has to cover more aspects than illustrated in theprevious example. In this subsection, we formulate su�ciently strong properties for anappropriate candidate.An interesting example comes with sharing, when comparing call-by-name and call-by-need reduction for the expression (�x:(x�y:x))(II ). In this case, we can formulate therelationship via strong call-by-name reduction. We write M )name M 0 if M reduces to M 0by application of the �-axiom at any position in M .Proposition 15.1 (Shortening Call-by-Name to Call-by-Need) There exists a re-lation S between closed �-expressions and admissible �-expressions satisfying the followingproperties for all M , z, and E:1. If M is closed then (M; z=nM) 2 S.2. If M is irreducible with respect to !name and (M; E) 2 S, then E is irreducible withrespect to !A, !F , and !T .3. If (M; E) 2 S and M !name M 0, then there exists M 00 and E 0 such that M 0 )�name29



M 00, E ,!� !A � ,!E 0, and (M 00; E 0) 2 S8.M !name M 0 )�name M 00S SE ,! !A ,! E 0Proof. The relation S is de�ned in Section 15.3 and proved correct in Section 15.4. 2Corollary 15.2 There exists a shortening simulation for the mapping M 7! z=nM con-sidered as embedding from the call-by-name �-calculus restricted to closed expressions into�0.Proof. This is a consequence of Proposition 15.1. For proving property (Sho3) we addi-tionally need Lemma 15.3. 2Lemma 15.3 (Reformulation of Plotkin's [Plo75] Standardisation Theorem) IfM )�name M 0, then Cname(M) � Cname(M 0).Proof. It is su�enct to consider M )name M 0. For proof, we de�ne M �)name M 0 i�M )name M but not M !name M 0. Trivially, )name = �)name [ !name. In the caseM !name M 0 the lemma follows from uniform conuence of the call-by-name �-calculus.If M �)name M 0, then it is implied by �)�name being a shortening simulation for the identityembedding from the call-by-name �-calculus into itself.(Sim1) The relation M �)�name M holds trivially.(Sim2) An expression M is irreducible with respect to!name i� it is an abstraction or anapplication of the form ((xQ1) : : :Qn). The relation �)�name preserves these formsof terms.(Sim3) For all M , M 0, and N , there exists M 00 and N 0 such that following diagram holds:M !name M 0 !�name M 00�)name �) �nameN !name N 08Ignoring !F and !T steps is correct in the sense that the number of!F and !T steps in computationsof y3=nM is bounded by 3 times the number of !A steps. This can be proved with a simulation for anamortised cost analysis by formulating a stronger invariant than in Proposition 15.1. As in the call-by-valuecase, an application invokes at most 2 forwarding steps. Additionally, every application step may raise theneed for 1 triggering step. 30



For proving property (Sim3) , we need in fact a sligthly stronger property, whereM �)name N is replaced by M �)�name N . This is implied by the above diagram andthe inclusion �)name � !name � !name � �)�name.The above diagram can be shown by structural induction on M . For illustration,we consider the case M � (�x: ~M1)M2 where the �)name step is applied inside ofM2. Hence, M2 )name M?2 , N � (�x: ~M1)M?2 , and M 0 � ~M1[M2=x].There are 4 possible subcases to consider: Either ~M1 � ((xQ1) : : :Qn) for someQ1; : : : ; Qn or not, and either M2 !name M?2 or M2 �)name M?2 . If we choose bothtimes the �rst possibity, then we obtain:(�x: ~M1)M2 !name ~M1[M2=x] !name ((M?2Q1) : : :Qn)[M2=x]�)name �) �name(�x: ~M1)M?2 !name ~M1[M?2 =x]Otherwise, we obtain the required diagram in the form:(�x: ~M1)M2 !name ~M1[M2=x]�)name �) �name(�x: ~M1)M?2 !name ~M1[M?2=x] 215.3 De�nitionWe base our de�nition of a shortening simulation on the notion of needed variables.De�nition 15.4 (Needed Variables) Let n be an integer, y = (yi)ni=1, M = (Mi)ni=1and 1 � j � n. The variable yj is needed in let y=M inN , if the judgementN (yj ; let y=M in N) is derivable by the following rules:N (x; x) N (x; N1)N (x; N1N2) N (x; N)N (x; let y=M in N)N (yj ; let y=M in Mi) N (yi; N)N (yj ; let y=M in N) j < i � nExample 15.5 The variables y3 and y1 are needed in let y1=I y2=y1y1 y3=y1y2 in y3 ,whereas y2 is not needed. The neededness of y3 is shown by the following derivation:N (y1; y1)N (y1; y1y2)N (y1; let y1=I y2=y1y1 y3=y1y2 in y1y2) N (y3; y3)N (y1; let y1=I y2=y1y1 y3=y1y2 in y3)31



De�nition 15.6 (n-Representation) A n-representation for (M; E) is a �ve-tuple(n; y; M; t; D), where M = (Mi)ni=1, y = (yi)ni=1, t = (ti)ni=1, and D � fy1; : : :yng calledthe delay set. We require the following properties for all i 2 f1 : : :ng:(Sn1) V(Mi) � fy1 : : :yi�1g and the composed sequence yt is linear.(Sn2) M � let y=M in yn.(Sn3) There exists (Ei)ni=1, �, and � such that E � E1 j : : : j En j � , where � is a possiblyempty composition of trigger expressions in ftr(tj) j yj =2 Dg, � = [y�t=y], and:Ei = 8>>><>>>: ti :yi=nMi� if yi 2 Dyj yk tkyi if yi =2 D and Mi = yj yk for some j; kyi=yj if yi =2 D and Mi = yj for some jyi=nMi� if yi =2 D and Mi is an abstraction(Sn4) If yi =2 D and Mi is an application then Mi is an application of variables.(Sn5) If yi is needed in let y=M in yn, then yi =2 D.(Sn6) If yi is not needed in let y=M in yn, then yi 2 D or Mi is an abstraction.De�nition 15.7 (Relation Sn) We de�ne the relation Sn as the set of all pairs (M; E)for which a n-representation exists.Proposition 15.8 (Sn is a Shortening Simulation) The relation Sn satis�es the con-ditions of Proposition 15.1.Proof. This is the content of the Lemmata 15.11, 15.15, and 15.17. 215.4 Correctness ProofWe prove Proposition 15.8, which states the correctness of our shortening simulation Sn.We have to validate three properties reconsidered in Propositions 15.11, 15.15, and 15.17.15.4.1 Property (Sim1)Lemma 15.9 For every M there exists m � 0, (Pi)mi=1 and Q such that M �(: : :(QPm) : : :)P1 and Q is not an application.Proof. By structural induction on M . If M is an abstraction or a variable, then we choosem = 0 and Q � M . If M � M1M2 then there exists m � 0 and (Pi)mi=2 such that:M1 � (: : :(QPm) : : :)P2If we set P1 � M2, then we obtain M � M1M2 � (: : :(QPm) : : :)P1 : 232



Lemma 15.10 (Flattening) IfM � (: : : (QPm) : : :)P1 for somem � 0 and u = (ui)m+1i=1 ,v = (vi)mi=1, s = (si)mi=1 are variables not contained in V(M), then the following represen-tations are valid: M � let u1=Q v=P u>1=u<m+1v in um+1um+1=nM � u1=nQ j s:v=nP j u<m+1vsu>1Proof. By induction on m. In the case m = 0 there is nothing to show. If m > 0 thenM � M1M2 where M1 � (: : : (QP1) : : :)Pm�1, and M2 � Pm. Applying the inductionhypothesis to um=nM1 we obtain:M1 � let u1=Q v<m=P<m u2=u1v1 : : : um=um�1vm�1 in umum=nM1 � u1=nQ j s<m :v<m=nP<m j u1v1s1u2 j : : : j um�1vm�1sm�1umSince M = M1Pm , this implies:M � let u1=Q v<m=P<m u2=u1v1 : : : um=um�1vm�1 in umPm� let u1=Q v=P u2=u1v1 : : : um+1=umvm in um+1� let u1=Q v=P u>1=u<m+1v in um+1The expression um+1=nM satis�es:um+1=nM � um=nM1 j sm :vm=nPm j umvmsmum+1Replacing um=nM1 in um+1=nM by its above representation yields:um+1=nM � u1=nQ j s<m :v<m=nP<m j u1v1s1u2 j : : : j um�1vm�1sm�1umj sm :vm=nPm j umvmsmum+1� u1=nQ j s:v=nP j u<m+1vsu>1 2Proposition 15.11 The relation Sn satis�es (Sim1) .Proof. Let M be a closed �-expression and z a variable. We have to construct a n-representation for (M; z=nM). Lemma 15.9 yields the existence of m and (Pi)mi=1 suchthat M = (: : : (QPm) : : :)P1. Let (ui)mi=1, (vi)mi=1, (si)mi=1 be sequence of fresh variablesand de�ne um+1 = z. Applying the attening Lemma 15.10 yields:M � let u1=Q v=P u>1=u<m+1v in um+1z=nM � u1=nQ j s:v=nP j u<m+1vsu>1These properties essentially verify (Sn2) and (Sn3) where E � z=nM . In order to for-malise this statement, we have to de�ne a n-representation (n; y; M; t; D) for (M; E)appropriately. y = u1 s u>1 ; n = 2m+ 1M = Q P (u<m+1v) ; D = V(v)t = v 33



In these de�nitions, each occurences of the symbol stands for a fresh variable. We haveto verify the conditions of De�nition 15.6. Property (Sn1) follows from the closedness ofM . (Sn2) and (Sn3) have already been discussed. (Sn4) holds trivially. For (Sn5) we notethat the needed variables in let y=M in yn are those in V(u). For (Sn6) we note that thenot needed variables are those in V(v). 215.4.2 Property (Sim2)Lemma 15.12 (Forwarding) If (M; E) 2 Sn then there exists E 0 with E !�F E0 andthere exists a n-representation (n; y; M; t; D) of (M; E 0) complete under forwarding, i.e.satisfying the property:(Sn7) If j; k 2 f1 : : :ng, yj =2 D, and Mj = yk, then Mk is not an abstraction.Proof. Let (n; y; M; t; D) be a n-representation of (M; E). We have to construct a n-represent ion of (M; E) satisfying (Sn7) . Suppose there exists a pair of indices j; k 2f1 : : :ng such that yj =2 D, Mj = yk , and Mk is an abstraction. We show how to eliminatethis index pair by forwarding!F . Our elimination procedure terminates, since it decreasesthe number of such index pairs. By assumption and (Sn1) we obtain:M � let : : : yk=Mk : : : yj=yk : : : in yn� let : : : yk=Mk : : : yj=Mk : : : in ynProperty (Sn6) implies that yj is needed in let y=M in yn (since yj =2 D and Mj is notan abstraction). By de�nition of neededness, yk is also needed in let y=M in yn such that(Sn5) implies yk =2 D. Hence:E � : : : j yk=nMk j : : : j yj=yk j : : :!F : : : j yk=nMk j : : : j yj=nMk j : : : 2De�nition 15.13 Let (n; M; y) and M satisfy (Sn1) and (Sn2). A reference chain fromyn to y�(1) is a sequence (y�(i))pi=1, if p � 1 is an integer, the �(i)'s are indices such that1 � �(1) < : : : < �(p) = n, and M�(i) = y�(i�1) for all 1 < i � p. In this case, we write:M � let : : : y�(1)=M�(1) : : : y�(2)=y�(1) : : : yn=y�(p�1) in ynLemma 15.14 (Reference Chains) Let (n; y; M) and M satisfy (Sn1) and (Sn2).Then there exists 1 � j � n and a reference chain from yn to yj such that Mj is nota variable.Proof. By induction on n. If n = 1, then M1 may not be a variable since M is closed(Lemma 14.3). If n > 0 and Mn is not a variable then there is nothing to prove. Otherwise,we use M � let y<n=M<n in Mn and apply the induction hypothesis. 234



Proposition 15.15 The relation Sn satis�es (Sim2) .Proof. Let (M; E) 2 Sn and M be irreducible with respect to !name. We have to showthat E is irreducible with respect to ,! � !A � ,!. Instead, we prove that E is irreduciblewith respect to !A, !F , and !T .Without less of generality, we can assume that Sn is complete under forwarding (Lemma15.12). Since M is closed (Lemma 14.3) it has to be an abstraction (Lemma 15.9). Lemma15.14 implies of the existence of 1 � j � n such that there exists a reference chain from ynto yj and Mj is not an variable. Since M is an abstraction Mj has to be an abstraction.Completeness under forwarding (Sn7) implies j = n such that:M � let : : : yn=Mj in ynHence, yn is a unique needed variable in let : : : yn=Mj in yn such that (Sn6) implies forall i 2 f1 : : :n�1g that yi 2 D or Mi is an abstraction.Let E1, : : :, En, and � be de�ned as in (Sn3). This implies E � E1 j : : : j En j �. Since noneof the Ei's may be an application, E is irreducible with respect to !A. It is irreduciblewith respect to !F because none of the Ei's may an directed equation, and irreduciblewith respect to !T because none of the delayed Ei's is triggered in �. 215.4.3 Proof of the InvariantLemma 15.16 (Shared Redexes) Let (n; y; M; t; D) be a n-representation of (M; E)satisfying (Sn7) and y = (yi)ni=1, M = (Mi)ni=1, t = (ti)ni=1. For all M 0 with M !name M 0,there exists j, k, l and x, ~Mk such that Mj = ykyl, yj is needed in let y=M in yn, Mk =�x: ~Mk, and: M 0 )�name let y<j=M<j yj= ~Mk [yl=x] y>j=M>j in ynProof. By induction on derivations of M !name M 0. We have to consider two cases:1. In the �rst case, the M !name M 0 is an instance of the �-axiom: There exists P1,P2, x such that: M � (�x: ~P1)P2 !name ~P1[P2=x] � M 0Applying Lemma 15.14, there exists a 1 � j � n and a reference chain from yn toyj such that Mj is not a variable. Since M is an application, Mj is an application.(Sn6) implies Mj = ykyl for some k, l and (Sn1) yields k; l < j. Hence:�x: ~P1 � let y<j=M<j in yk ; P2 � let y<j=M<j in ylApplying Lemma 15.14 there exists 1 � k0 � k and a reference chain from yk to yk0 inlet y<k=M<k in yk there such that Mk0 is not a variable, i.e. Mk0 is an abstraction.35



The variables yk and yk0 are needed in let y=M in yn (by induction on the lengthof reference chains) such that k = k0 follows from completeness with respect toforwarding (Sn7) . Hence, Mk is an abstraction such that there exists M 0k withMk � �x:M 0k. Furthermore: ~P1 � let y<j=M<j in ~MkThe following equality justi�es the Lemma with � instead of )�name.M 0 � ~P1[P2=x]� let y<j=M<j in ~Mk[P2=x]� let y<j=M<j in ~Mk[yl=x]� let y<j=M<j yj= ~Mk [yl=x] y>j=M>j in yj� let y<j=M<j yj= ~Mk [yl=x] y>j=M>j in ynThe last step uses the reference chain from yn to yj backwards.2. In the second case, the �-axiom is applied in functional position. There exists P1, P 01,P2 such that the last step in the derivation of M !name M 0 has the following form:P1 !name P 01M � P1P2 !name P 01P2 � M 0Yet another argumentation with reference chains implies the existence of j 0, k0, l0such that: M � let y<j0=M<j0 yj0=yk0 yl0 y>j0=M>j0 in yj0P1 � let y=M in jk0P2 � let y=M in yl0By induction hypothesis applied to P1 !name P 01 there exists j, k, l, and x, ~Mk suchthat: Mj = ykyl , yj is needed in let y=M in yk0 , Mk = �x: ~Mk, and:P 01 )�name let y<j=M<j yj= ~Mk [yl=x] yj=M>j in yk0P2 reduces to a similar expression than P 01 does:P2 � let y<j=M<j yj=ykyl y>j=M>j in yl0)�name let y<j=M<j yj= ~Mk[yl=x] y>j=M>j in yl0Sticking both reductions together concludes the Lemma:M 0 � P1P2)�name let y<j=M<j yj= ~Mk [yl=x] y>j=M>j in yk0 yl0� let y<j=M<j yj= ~Mk [yl=x] y>j=M>j in yk� let y<j=M<j yj= ~Mk [yl=x] y>j=M>j in ynThe second step uses Mk = ykyl and the last step a reference chain from yn to ykbackwards that we left implicit at the beginning of this case. 236



Proposition 15.17 (The Invariant) Let (M; E) 2 Sn and M !name M 0. Then thereexists M 00 and E 0 such that M 0 )�name M 00, E ,!� !A � ,!E 0, and (M 00; E 0) 2 Sn.Proof. Let (n; y; M; t; D) be a n-representation of (M; E). We assume without loss ofgenerality that E is complete under forwarding (Lemma 15.12). Let y = (yi)ni=1, M =(Mi)ni=1, t = (ti)ni=1, and D � V(y). Let (Ei)ni=1 and � be de�ned as in (Sn3) and � =[y�t=y]. Since M !name M 0, we can apply Lemma 15.16 such that there exists j, k, l andx, ~Mk, M 00 with the following properties:(1) Mj � ykyl .(2) yj is needed in let y=M in yn.(3) Mk = �x: ~Mk.(4) M 0 )�name M 00(5) M 00 � let y<j=M<j yj= ~Mk [yl=x] y>j=M>j in ynApplying Lemma 15.9 there exists m � 0, P = (Pi)mi=1, and Q such that:(6) ~Mk = (: : :(QPm) : : :)P1(7) Q is not an application.For all i 2 f1 : : :mg let ui, vi, si be fresh variables. We de�ne um+1 = yj , u = (ui)m+1i=1 ,v = (vi)mi=1, and s = (si)mi=1. Flattening ~Mk (Lemma 15.10) yields:(8) ~Mk � let u1=Q v=P u>1=u<m+1v in yj(9) yj=n ~Mk � u1=nQ j s:v=nP j u<m+1vsu>1Since yj is needed in let y=M in yn (2), yk is needed in let y=M in yn as well. (Sn5)implies yj ; yk =2 D such that:(10) E � E1 j : : : j En j �(11) Ej � ykyl tlyj(12) Ek � yk=n�x: ~Mk� (3)For fresh variables t and z this implies:(13) Ek � yk :xtz=z=n ~Mk�[x�t=x] 37



If � = [yl=x], then applying yk in the context of Ek yields:Ej !A (yj=n ~Mk�[x�t=x])[yl=x][tl=t] (13)� yj=n ~Mk��� u1=nQ�� j s:v=nP�� j u<m+1vsu>1 (9)Combining this result with (10) we obtain:(14) E !A E 0(15) E 0 def� E<j j u1=nQ�� j s:v=nP�� j u�mvsu�2 j E>j j �Next, we construct a �ve-tuple R = (n0; y0; M 0; t0; D0), which satis�es all properties of theLemma except one.y0 = y<j u1 v u�2 y>j ; n0 = n+ 2mM 0 = M<j Q� P� (u�mv) M>j ; D0 = D [ V(v)t0 = t<j tj s t>j ;Property (4) implies M 0 )�name M 00. We even obtain E !�F � !A E 0 from (14) and thefact that we completed E under forwarding at the beginning. It remains to show that Ris a n-representation for (M 00; E 0). R satis�es all required properties except (Sn5): (Sn1)is simple, (Sn2) follows from (10), (Sn3) is covered by (15). (Sn4) follows from (8) (thevariables in V(y0) nD0 are those in V(u)). Property (Sn6) holds, since V(v) � D0 and allother non-needed variables have also been non-needed in the original n-representation.The tuple R does not necessary satisfy (Sn5), because Q might be a variable, say yp. Inthis case, u1=nyp� � u1=yp j tr(tp). This means that the expression Ep is delayed, even ifyp is needed. We have to use !T for triggering the computation in Ep waiting on tp. SinceMp may again be a variable, more triggering steps may be needed.The failure of R being a n-representation for (M 00; E 0) is harmless, since R is a least anuncompletely triggered n-representation for (M 00; E 0) in the sense of De�nition 15.18. Thisis su�cient to accomplish the actual proof by applying Lemma 15.19. 2De�nition 15.18 A �ve-tuple (n; y; M; t; D) is called uncompletely triggered n-representation of (M; E), if it satis�es (Sn1)-(Sn4), (Sn6), and (S0n5) , where:(S0n5) If yi is needed in let y=M in yn, then either yi =2 D or there exists a referencechain (y�(j))pj=1 such that y�(1) = yi, fy�(i) j 1 � i < pg � D and tr(t�(p)) iscontained in E.Lemma 15.19 (Triggering) If there exists an uncompletely triggered n-representation of(M; E), then there exists E 0 such that E !�T E0 and (M; E 0) 2 Sn.38



Proof. Let R = (n; y; M; t; D) be a uncompletely triggered n-representation on (M; E).We call a variable yi critical for R and (M; E), if yi is needed in let y=M in yn, andyi 2 D.If there exists no critical variable for R and (M; E), then R is a n-representation for(M; E). Hence it is su�cient to de�ne a procedure that given a uncompletely triggeredn-representation R for (M; E) computes some E 0 and R0 such that:1. R0 is an uncompletely triggered n-representation for (M; E 0) and E !T E 0.2. The number of critical variables forR0 and (M; E 0) is strictly smaller than the numberof critical variables for R and (M; E).Let R = (n; y; M; t; D) be a uncompletely triggered n-representation on (M; E). If thereexists a critical variable for R and (M; E) then by condition (S0n5) there also exists acritical variable yi 2 D such that tr(ti) is contained in E. Let E1, : : :, En, and � bede�ned as in (Sn3). Since tr(ti) is contained in E, there exists �0 such that � � tr(ti) j �0.We can reduce E and de�ne E 0 as follows:E � E1 j : : : j ti :yi=nMi j : : : j tr(ti) j �0!T E1 j : : : j yi=nMi j : : : j tr(ti) j �0def� E 0If we set D0 = D n fyig then (n; y; M; t; D0) is a uncompletely triggered n-representationof (M; E 0) in which the variable yi no more critical. 216 Relating Call-by-Value to Call-by-NeedIn this Section, we prove the estimation CA(z=nM) � CA(z=vM) for all closed �-expressions M as stated in Theorem 8.3. For proof, we will de�ne a lengthening simulationfor the embedding z=nM 7! z=vM and apply Proposition 12.4.The correspondence between an expression z=nM and an expression z=vM is very sim-ple. We de�ne a projection function p between ternary and binary �-expressions, whicheliminates all triggering information in expressions such as z=nM :p(x:ytz=E) def� x:yz=E p(xytz) def� xyz p(E j F ) def� p(E) j p(F )p((�x)E) def� (�x)p(E) p(tr(t)) def� 0 p(t:E) def� p(E)In this de�nition, we use a new expression 0 that we require to be nilpotent in the sense0 j E � E for all E. Being a little bit less restrictive we could also de�ne 0 in � itself, forexample by 0 def� (�x)(xx).Let �1 be the smallest congruence on �-expressions (with 0) containing the structuralcongruence and satisfying the axiom:(�x)E �1 E if x =2 V(E)39



Lemma 16.1 For all closed M and variables z the relation p(z=nM) �1 z=vM holds.Proof. By induction on the structure of M . 2Lemma 16.2 Let R be one of the letters in fA; F; Tg. If E !R E 0 and E �1 F then thereexists F 0 such that F !R F 0 and E 0 �1 F 0.E !A E 0�1 �1F !A F 0 E !F E 0�1 �1F !F F 0 E !T E 0�1 �1F !T F 0Proof. By induction on derivations of E !A E 0, E !F E0, and E !T E 0 respectively. 2Lemma 16.3 Let E ternary, E 0 a �-expression, and R one of the letters in fA; Fg. IfE !R E 0 then p(E)!R p(E 0). If E !T E 0 then p(E)!T p(E 0).E !A E 0p pp(E) !A p(E 0) E !F E 0p pp(E) !F p(E 0) E !T E0p pp(E) � p(E 0)Proof. By induction on derivation of E !A E0, E !F E 0, and E !T E 0 respectively. 2Let Snv be a the binary relation on �-expressions that contains all pairs (E; F ) such thatF �1 p(E) and E ternary and admissible.Proposition 16.4 The relation Snv is a lengthening simulation for the mapping z=nM 7!z=vM considered as embedding from the restriction of �0 to admissible, closed, and ternaryexpressions into itself.Proof. Lemma 16.1 implies (Sim1) and the Lemmata 16.2 and 16.3 ensure (Sim4) . 2Corollary 16.5 The estimation CA(z=nM) � CA(z=vM) is valid for all closed M andvariable z.Proof. Immediate from Propositions 12.4 and 16.4. 240



17 Adequacy of the Embedding of � into �0We prove that the embedding E 7! [[E]] restricted to well-typed expressions preservestermination as stated in Theorem 11.1. Of course, we again apply the simulation technique.It is however not possible to use a simulation immediately. One reason is that referencechains are shortened in di�erent order when expressing !F via !A. Forwarding !Fshortens reference chains from the right to the left. For instance:xu j x=y j y:z=E !F xu j x:z=E j y:z=E!A E[u=z] j x:z=E j y:z=EAfter encoding, chains are traversed from the left to the right:[[xu j x=y j y:z=E]] � xu j x:z=yz j y:z=[[E]]!A yu j x:z=yz j y:z=[[E]]!A [[E]][u=z] j x:z=yz j y:z=[[E]]Note that !F provides for path compression, which is not preserved by encoding. Weformally handle the e�ect of path compression to complexity by an appropriate shorteningsimulation (compare Lemma 17.4).Instead of simulating single forwarding steps, we will simulate sequences of forwardingsteps followed by application. For all n � 0 we de�ne the relation !FnA by the followingaxiom and the contextual rules in Figure 4:x1z j x1=x2 j : : : j xn�1=xn j xn:y=E !FnA E[z=y] j x1:y=E j : : : j xn:y=Ewhere we assume the sequence (xi)ni=1 to be linear.Lemma 17.1 If E !FnA E 0, then E !nF � !A E0.Proof. By induction on derivations of E !FnA E 0. The axiom case is by induction on n.2Lemma 17.2 If E is reducible with respect to !nF � !A, then there exists m � n suchthat E is reducible with respect to !FmA.Proof. By induction on n. 2We de�ne � to be the smallest binary relation on �-expressions, which is reexive andtransitive, satis�es the contextual rules of Figure 4, and the axiom:(x1:y=x2y) j x2:y=E � (x1:y=E) j x2:y=E41



Lemma 17.3 If E !FnA E 0 then [[E]]!n+1A � � [[E 0]].E !FnA E 0[[ ]] [[ ]][[E]] !n+1A � [[E 0]]Proof. By induction on derivations of E !FnA E 0. We only consider the axiom case:F1 def� x1z j x1=x2 j : : : j xn�1=xn j xn:y=E!FnA E[z=y] j x1:y=E j : : : j xn:y=E def� F2After translation, we obtain:[[F1]] � x1z j x1:y=x2y j : : : j xn�1:y=xny j xn:y=[[E]]!n+1A [[E]][z=y] j x1:y=x2y j : : : j xn�1:y=xny j xn:y=[[E]]� [[E]][z=y] j x1:y=E j : : : j xn�1:y=E j xn:y=[[E]]� [[F2]] 2Lemma 17.4 The relation � is a shortening simulation for the identity function on �0restricted to admissible expressions.Proof.(Sim1) The relation � is required to be reexive.(Sim2) We show that � preserves termination with respect to !A, !F , !T , which im-plies that it also preserves termination in �0. It is su�cient to prove the previousstatement for expressions E without top-level declarations. For !A, we note thatthe set of variables naming abstractions in E is invariant under �. The same holdsfor the set of applications in E. For !F , note that the set of directed equations inE is preserved under �. Triggering is completely una�ected by �.(Sim3) We can establish the following diagrams. For all E, E 0, and F there exists E 00and F such that:E !A E0 !�A E 00� �F !A F 0 E !F E0� �F !F F 0 E !T E 0� �F !T F 0The proofs are rather simple for expressions without top-level declarations and thisis su�cient. 242



Lemma 17.5 The relation � restricted to admissible expressions preserves terminationand shortens complexity. If E and E 0 are admissible and E � E 0, then C(E) � C(E 0).Proof. This is an immediate consequence of Lemma 17.4 and Theorem 12.2. 2We next consider the encoding of triggering. We consider the following example:[[t:E j tr(t)]] � (�y)(ty j y:=[[E]]) j t:y=y!A (�y)(y j y:=[[E]]) j t:y=y!A [[E]] j t:y=y j (�y)(y:=E)� [[E j tr(t)]] j (�y)(y:=E)This illustrates that every triggering step is encoded by two application steps. The corre-spondence is quite direct up to garbage expressions such as (�y)(y:=E). To keep track ofthese, we de�ne the relation �2 as the least congruence on �-expressions, which is invariantunder congruence and satis�es the following axiom:E j (�x)(x:y=E) �2 ELemma 17.6 If E !T E 0 then [[E]]!2A � �2 [[E0]].E !T E 0[[ ]] [[ ]][[E]] !2A �2 [[E0]]Lemma 17.7 The relation �2 is a complexity simulation for the identity function on �.Proof. Omitted, but not di�cult. 2Lemma 17.8 The relation �2 restricted to admissible expressions preserves complexityand termination.Proof. This is an immediate consequence of Lemma 17.7 and Corollary 12.5. 2In the last part of this Section, we combine the above results in order to prove the adequacyof the embedding E 7! [[E]] restricted to well-typed expressions.Lemma 17.9 If E is well-typed then [[E]] is admissible.43



Proof. We can introduce new typing rules that type [[E]] symmetrically to E. With respectto this new system [[E]] is well-typed. This implies the admissibility of [[E]] in the samemanner than for the original type system. We note that [[tr(t) j tr(t)]] is not inconsistentby de�nition. In other words, multiple triggering does not lead to an inconsistency. 2Lemma 17.10 If E is well-typed, acyclic, and irreducible with respect to !T and !�F� !A, then [[E]] terminates with respect to !A.Proof. Since E is irreducible with respect to !T , applications of a variable t of type tr�can not be executed in [[E]]. Otherwise, there would exist any application of t in [[E]] whichin not derived form [[tr(t)]]. This would contradict well-typedness of E.An applications [[xy ]] can be executed in [[E]], if a translated equation [[x=y]] is availablein [[E]]. This can happen �nitely many times, since E is acyclic. Applying an abstractionnot derived from a directed equation is never possible, since E is irreducible with respectto !�F � !A. 2Proposition 17.11 If E is well-typed and acyclic, then E terminates if and only if [[E]]terminates.Proof. First, we consider the case that E terminates in � and proof that [[E]] terminatesin �0. This proof is by induction on CA(E) <1.If CA(E) = 0, then E is irreducible with respect to ,! � !A � ,!. Applying Lemmata17.6 and 17.8, we can assume that E is irreducible with respect to !T . This implies thatE is irreducible with respect to !�F � !A. Well-typedness of E and Lemma 17.10 yieldstermination of [[E]] in �0.Let CA(E) > 0. Applying the Lemmata 17.6 and 17.8, we can assume that E is irreduciblewith respect to !T . This implies that E is reducible with respect to !�F � !A. ApplyingLemma 17.2, there exists n � 0 and E 0 such that E !FnA E 0. Lemma 17.1 impliesCA(E) = CA(E 0) + 1 such that CA(E 0) < CA(E). Applying the induction hypothesis to E 0yields termination of [[E]]. From Lemma 17.3, we obtain [[E]]!�A � � [[E 0]]. Termination of[[E0]] implies termination of [[E]] by Lemma 17.5.It remains show that if E does not terminate then [[E]] does not terminate. This can bedone with a similar inductive argument, which proves that CA(E) � n implies C([[E]]) � nfor all n � 0. 2Corollary 17.12 If E is well-typed, then [[E]] is admissible and terminates if and only ifE terminates.Proof. Immediate from Lemmata 17.11 and 17.9. 244



18 Simulating the Call-by-Need �-CalculusIn this Section, we sketch the proof that our embedding of the call-by-need �-calculus into� preserves complexity as stated in Theorem 9.2.Syntactically, the call-by-need �-calculus and the �-calculus di�er in attening �-terms.We de�ne a attening functions f mapping an expression L of the call-by-need �-calculusto an expression of the form let y=M in N with explicit substitutions:f(x) = let z=x in z f(�x:L) = let z=�x:L in zf(L1) = let y=M in yn f(L2) = let y0=M 0 in y0nf(L1L2) = let y=M y0=M 0 z=yny0n in zf(L1) = let y=M in yn f(L2) = let y0=M 0 in y0nf(let x=L1 in L2) = let y=M y0=M 0 in y0nDe�nition 18.1 We de�ne the relation S�n as the set of all pairs (L; E) such that thereexists a pair (M; F ) and a n-representation (n; y; M; t; D) for (M; F ) such that f(L) �M , E �2 F , and f(L) = let y=M in yn.Proposition 18.2 The relation S�n is a complexity simulation for the embedding L 7!z=nL from the call-by-need �-calculus restricted to closed expressions into �0.Proof. The conditions of a complexity simulation will be checked by the following Lemmata.Property (Sim1) is implied by Lemma 18.4, (Sim2) by Lemma 18.5, and (Sim3) and(Sim4) by Lemmata 18.6, 18.7, and 18.8. 2Corollary 18.3 For all closed L the equality Cneed(L) = CA(z=nL) is valid.Proof. Immediate consequence of Proposition 18.2 and Corollary 12.5. 2Lemma 18.4 If L is closed, then (L; z=nL) 2 S�n.Proof. By induction on the structure of L. 2Lemma 18.5 If L is irreducible in the call-by-need �-calculus and (L; E) 2 S�n, then E isirreducible in �0.Proof. If L is irreducible in � and (M; F ) justi�es (L; E) 2 S�n. Since M � f(L), Mis an abstraction and hence irreducible with respect to !name. Since Sn is a shorteningsimulation (Proposition 15.8) F is irreducible in �0. Since �2 is a complexity simulation(Lemma 17.7), E is also irreducible in �0. 245



Lemma 18.6 If L!I L0 and (L; E) 2 S�n, then there exists E 0 such that E !A � �2 � !�TE0 and (L0; E 0) 2 S�n. L !I L0S�n S�nE !A �2 !�T E0Proof. By induction on derivations of L!I L0. 2Lemma 18.7 If L!V L0 and (L; E) 2 S�n, then there exists E 0 such that E !F � !�T E 0and (L; E 0) 2 S�n. L !V L0S�n S�nE !F !�T E 0Proof. By induction on derivations of L!V L0 2Lemma 18.8 If L!Ans L0 or L!C L0, then f(L) � f(L0).L !Ans L0f ff(L) � f(L0) L !C L0f ff(L) � f(L0)Proof. By induction on derivations of L!V L0 and L!C L0 respectively. 219 ConclusionWe have presented a simple execution model for eager and lazy functional computation. Wehave applied concurrency for integration of programming paradigms. We have presentedthe concurrent �-calculus, which features useful abstractions for programming, implemen-tation, and theory. We have worked out a powerful proof technique based on uniformconuence and simulations. We have formally related the complexities of call-by-value,call-by-need, and call-by-name.Acknowledgements. I am deeply in debt to Gert Smolka, who initiated this work andcontributed ideas during many discussions. It's my pleasure to thank Martin M�uller fordaily comments on concepts and related work, and for extremely helpful discussions onnotations and details. I would like to thank Kai Ibach, Martin M�uller, Peter Van Roy,Christian Schulte, and Gert Smolka, for their comments on the �nal version and the com-plete Oz team for continuous support and interest.46
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