
Terminating Tableau Systems
for Hybrid Logic with

Difference and Converse

Mark Kaminski and Gert Smolka

Saarland University

October 2008

To appear in Journal of Logic, Language and Information, 2009.

This paper contributes to the principled construction of tableau-based

decision procedures for hybrid logic with global, difference, and con-

verse modalities. We also consider reflexive and transitive relations. For

converse-free formulas we present a terminating control that does not rely

on the usual chain-based blocking scheme. Our tableau systems are based

on a new model existence theorem.

1 Introduction

This paper contributes to the principled construction of terminating tableau sys-

tems for modal logic with nominals and difference modalities [4, 1, 8, 11]. We

also consider global and converse modalities and reflexive and transitive rela-

tions. Nominals and difference enrich modal logic with equational constraints,

and handling these constraints in a terminating tableau system is the main chal-

lenge of this paper. We work with tableau-based decision methods since they

may be realized with gracefully degrading performance even if the worst-case

complexity of the decision problem is prohibitive. This is witnessed by the suc-

cess of tableau-based decision procedures for description logics [2, 16], which

are modal logics adapted to knowledge representation.

Modal logic with nominals is better known as hybrid logic [1, 4]. With nomi-

nals one can say that the current state equals some given state. The difference

modalities [12, 8, 11, 4] are the modalities for the complement of the equality

relation. With the existential difference modality one can say that there is a state

1

different from the current state that satisfies a given property. The difference

modalities can express nominals and global modalities [11].

The construction of terminating tableau systems for hybrid logic is a recent

activity. Bolander and Braüner [7] devise a terminating tableau system for hybrid

logic with global modalities. Bolander and Blackburn [6] extend their work to con-

verse modalities. Horrocks and Sattler [18] present a tableau decision procedure

for the description logic SHOIQ, which subsumes hybrid logic with global and

converse modalities. Balbiani and Demri [3] give a sound and complete tableau

system for modal logic with difference. Although claimed, their system does not

terminate on all inputs. Our previous work [20, 21], which is updated by the

present paper, presents the first terminating tableau systems for hybrid logic

with difference, first without [20] and then with [21] converse modalities.

To handle nominals and difference, equational constraints must be treated.

We distinguish between the declarative and the procedural approach. The declar-

ative approach used in [7, 6, 21] adds formulas but never deletes formulas (e.g.,

if x=y is known and px is present, py is added). The procedural approach

found in [18, 20] replaces formulas so that state variables can be eliminated

(e.g., if x=y is known and px is present, replace px with py). The procedural

approach encompasses algorithmic decisions that are not present in the more

abstract declarative approach. Given the high complexity of the correctness ar-

guments, we will follow the simpler and more transparent declarative approach

in this paper. A procedural system may then be obtained by refinement.

In our view, a tableau system should be based on a model existence theorem.

The independent formulation of such a theorem provides an abstract base for in-

sights and avoids preoccupation with algorithmic details. The closure conditions

of the theorem yield the expansion rules of the tableau system. To obtain a de-

cision procedure, a terminating control for the rules is needed. This introduces

a design loop since a terminating control will only be possible if the closure con-

ditions of the theorem do not require too much. So in the end, a tableau-based

decision procedure is obtained with a suitable model existence theorem and a

concomitant terminating control.

We base our tableau systems on a novel model existence theorem whose clo-

sure conditions suggest a simple “pattern-based” control that terminates for

converse-free formulas. Only for formulas with converse modalities we have

to resort to the usual chain-based blocking scheme [22, 17, 16]. The pattern-

based control yields a smaller search space than chain-based blocking, and this

shows in the performance of a first implementation. Pattern-based control first

appeared in our paper [20].

In contrast to previous work [7, 6, 21], the closure conditions of our model

existence theorem do not require the presence of equationally entailed formulas.

2

Instead, they refer to an equational closure whose representation is left open.

The equational closure is also used by the tableau rules. This way we obtain

simpler correctness proofs and avoid premature algorithmic commitments.

The paper is organized as follows. We first formalize the modal language we

consider as a fragment of simple type theory. This way we have an expressive

base for our model existence theorem, which we develop in three steps. We

start with a syntactic characterization of satisfiability (Herbrand semantics), then

obtain a first model existence theorem (evident sets), and then formulate the final

model existence theorem (quasi-evident sets), which we prove by reduction to

the first one. We then present the concomitant tableau system and show that it

terminates for converse-free formulas if we prioritize box propagation. The next

two sections present a revised system with chain-based blocking that decides

the satisfiability of all formulas of our modal language. Finally, we discuss some

design decisions and conclude.

2 Modal Logic in Simple Type Theory

Following [20, 21], we formalize modal logic as a fragment of simple type theory

(see [9] to get started). This way we can make use of a rich syntactic and semantic

framework and modal logic does not appear as an isolated formal system. We

start with a quick review of type theory and then model the linguistic primitives

of modal logic as defined constants.

2.1 Types and Terms

Types (σ , τ) are obtained from two base types B and I according to σ ::= B | I |
σσ . The elements of B are the two truth values, and the elements of I are called

individuals. The elements of a functional type στ are the total functions from σ
to τ . Terms (s, t, u) are obtained from names (x, y , z, p, q, r , b) according to

s ::= x | λx.s | ss. We assume a typing relation s : σ satisfying the following

properties:

1. For every term s there is at most one type σ such that s : σ .

2. For every type σ there are infinitely many names x such that x : σ .

3. For all x, s, σ , τ : λx.s : στ ⇐⇒ x : σ ∧ s : τ .

4. For all s, t, σ : s t : σ ⇐⇒ ∃τ : s : τ σ ∧ t : τ .

A term σ is well-typed if there is a type σ such that s : σ . We only consider well-

typed terms. We omit parentheses according to στρ� σ(τρ) and stu� (st)u.

3

2.2 Formulas and Logical Constants

Terms of type B are called formulas. The logical constants are provided through

the following names:

⊥,� : B false, true

¬ : BB negation

∧,∨,→ : BBB conjunction, disjunction, implication

=σ : σσB identity

∀σ ,∃σ : (σB)B universal and existential quantification

We write ∀x.s and ∃x.s for ∀σ (λx.s) and ∃σ (λx.s). As usual, we employ infix

notation for the binary logical constants. Parentheses are omitted according to

the precedence order =σ , ¬, ∧, ∨, →, where =σ binds strongest. Formulas of the

form s=σ t are called equations and are usually written without the type index as

s=t. It is well known that the logical constants can be defined with the identities.

For instance:

� = ((λx.x) =B λx.x)
∀σ = λf . f =σB λx.�

2.3 Basic Modal Logic

The linguistic primitives of modal logic can be expressed with constants that

can be defined with the classical logical constants. Figure 2.1 shows the defi-

nitions of the modal constants we are going to use. We start our explanation

with the modal constants � and ♦. They represent higher-order functions of the

type (IIB)(IB)IB. Their first argument is a binary relation between individuals

modeled as a function IIB. Their second argument is a property of individuals

modeled as a function IB. Their third argument is an individual. Given these

arguments, � and ♦ return a truth value. Informally, the semantics of � and ♦
can be stated as follows:

• ♦rpx holds iff there exists an r -successor of x that satisfies p.

• �rpx holds iff every r -successor of x satisfies p.

Formally, this is expressed with the equations defining � and ♦ in Figure 2.1.

The expressions of modal logic describe properties of individuals (usually

called worlds or states). Hence we represent modal expressions as terms of

type IB. The modal constants ⊥̇, �̇, ¬̇, ∧̇, ∨̇, →̇ defined in Figure 2.1 provide

lifted versions of the propositional constants. We employ infix notation for the

binary modal constants and omit parentheses according to the precedence order

4

♦ = λrpx. ∃y. rxy ∧ py ♦ : (IIB)(IB)IB

� = λrpx. ∀y. rxy → py � : (IIB)(IB)IB

⊥̇ = λx.⊥ ⊥̇ : IB

�̇ = λx.� �̇ : IB

¬̇ = λpx.¬px ¬̇ : (IB)IB

∧̇ = λpqx. px ∧ qx ∧̇ : (IB)(IB)IB

∨̇ = λpqx. px ∨ qx ∨̇ : (IB)(IB)IB

→̇ = λpqx. px → qx →̇ : (IB)(IB)IB

{} = λbx. b {} : BIB

D = λpx. ∃y. ¬x=y ∧ py D : (IB)IB

D̄ = λpx. ∀y. x=y ∨ py D̄ : (IB)IB

R = λr .∀x. rxx R : (IIB)B

T = λr .∀xyz. rxy ∧ ryz → rxz T : (IIB)B
− = λrxy. ryx − : (IIB)IIB

Figure 2.1: Modal constants

¬̇, ∧̇, ∨̇, →̇, where ¬̇ binds strongest and all modal constants bind stronger than

the classical constants. We can now write the equation

�r(p ∧̇q) = �rp ∧̇�rq

which happens to be valid. The expressions of basic multimodal logic can be

obtained with the grammar

t ::= p | ⊥̇ | �̇ | ¬̇t | t ∧̇ t | t ∨̇ t | t →̇ t | ♦rt | �rt

where the syntactic variables p and r range over names of type IB and IIB,

respectively.

We only consider type-theoretic interpretations that satisfy the defining equa-

tions for the modal constants (see Figure 2.1). We also require that the logical

constants are interpreted as usual and that functional types are interpreted as

sets of total functions.

It should now be clear how we obtain modal logic as a fragment of simple

type theory. No translation is necessary since modal expressions are directly

obtained as terms built with higher-order modal constants. The definition of

the modal constants in terms of the classical logical constants generalizes the

Kripke semantics of modal logic. The well-known first-order translation of modal

5

expressions amounts to the fact that for every modal expression t there is a

first-order formula s (expressed as a formula of simple type theory) such that

the equation t = λx.s is valid. The term λx.s can be obtained by replacing the

modal constants in t with their definitions and applying β-reduction, possibly

followed by an η-expansion.

2.4 Variables and Nominals

We distinguish between constants and variables. The constants are exactly the

names that we have introduced as classical logical constants or modal constants

(see Figure 2.1). All other names are called variables. Variables of type I are

called nominals.1 We reserve the following letters for variables of the given

types:

x,y, z : I

p, q : IB

r : IIB

b : B

We use Nom to denote the set of all nominals.

2.5 Lifting and Global Quantification

We can use the formula ∀t where t is a modal expression to say that all individ-

uals satisfy the property t. To allow such global quantification within the modal

syntax, we provide a lifting operator {} : BIB and extend the syntax for modal

expressions with the forms {∀t} and {∃t} (note that {s} is notation for the ap-

plication of {} to s). The lifting operator is defined such that the formula {b}x
holds iff b is true.

2.6 Basic Hybrid Logic

The expressions of basic hybrid logic extend the expressions of basic modal

logic with the forms (=x) and {tx}. The term (=x) represents the property that

holds exactly for the individual x, and the term {tx} represents the property

that holds iff the individual x satisfies the property t. Syntactically, a term (=x)
is obtained as the application of the logical constant =I to a name x, and a term

{tx} is obtained as the application of the lifting operator {} to a formula tx,

1 Note that we deviate from the familiar terminology used in the introduction of the paper. There
variables of type I are called state variables and the singleton predicates (=x) introduced

in § 2.6 are called nominals.

6

which is obtained as the application of a modal expression t to a name x. The

usual hybrid logic notation for {tx} is @xt. Note that the equation

{tx} = {∃((=x) ∧̇ t)}
is valid. Thus the form {tx} doesn’t add expressivity in a hybrid logic with global

quantification.

2.7 Difference

The difference modalities are the modal constants D and D̄. Their type is (IB)IB
and their semantics can be stated as follows:

• Dpx holds iff there is an individual different from x that satisfies p.

• D̄px holds iff all individuals different from x satisfy p.

Modal logic with difference has modal expressions of the forms Dt and D̄t. The

following equations are valid:

¬̇Dp = D̄¬̇p
{∃p} = p ∨̇Dp

{∀p} = p ∧̇ D̄p

(∀xy. px ∧ py → x=y) = ∀(p →̇ D̄¬̇p)
The first equation says that D and D̄ are dual to each other. The second and third

equation say that modal logic with difference can express global quantification.

The fourth equation says that modal logic with difference can express that a

property holds for at most one individual. Taken together, this means that modal

logic with difference subsumes basic hybrid logic with global quantification.

2.8 Converse

The modal constant − : (IIB)IIB called converse yields the inverse of a relation.

Modal logic with converse has modal expressions of the forms ♦r−t and �r−t.
The new forms can be characterized as follows:

• ♦r−px holds iff there exists an r -predecessor of x that satisfies p.

• �r−px holds iff every r -predecessor of x satisfies p.

2.9 Reflexivity and Transitivity

Reflexivity and transitivity of relations can be expressed with the modal con-

stants R and T, which have the type (IIB)B:

• Rr holds iff r is reflexive.

• Tr holds iff r is transitive.

7

ρ ::= r | r−

t ::= p | ρx | (=x) | ¬̇t | t ∧̇ t | t ∨̇ t | {s} | ♦ρt | �ρt | Dt | D̄t

s ::= tx | ∃t | ∀t | Rr | Tr

x, p, and r range over variables of type I, IB, and IIB, respectively

Figure 3.1: Modal expressions (t) and modal formulas (s)

¬̇¬̇p = p

¬̇(p ∧̇q) = ¬̇p ∨̇ ¬̇q ¬̇(p ∨̇q) = ¬̇p ∧̇ ¬̇q
¬̇♦rp = �r ¬̇p ¬̇�rp = ♦r ¬̇p
¬̇Dp = D̄¬̇p ¬̇D̄p = D¬̇p
¬̇{b} = {¬b}
¬px = (¬̇p)x
¬∃p = ∀¬̇p ¬∀p = ∃¬̇p
rx = ♦r−(=x)
r−x = ♦r(=x)

Figure 3.2: Negation laws

3 Modal Expressions and Modal Formulas

The grammar in Figure 3.1 defines a class of modal expressions and a class of

modal formulas. We will mainly be concerned with normal modal expressions

and formulas, which are obtained by restricting the use of ¬̇ to expressions of

the forms p and (=x). Figure 3.2 shows some valid equations we refer to as

negation laws. Note the duality between ∧̇ and ∨̇, ♦ and�, D and D̄, and ∃ and∀.

With the negation laws modal expressions using negation freely can be translated

into normal modal expressions as long as there are no negative occurrences of

the formulas Rr and Tr . The last two equations are needed to translate modal

terms of the form ¬̇ρx. For instance, we obtain ¬̇♦r(rx) = �r(�r−¬̇(=x)) by

applying the negation laws.

We say that a set of formulas is satisfiable if there exists a type-theoretic

interpretation that satisfies every formula in the set. We will develop a tableau-

based decision procedure that decides the satisfiability of finite sets of normal

modal formulas. If the set is satisfiable, the procedure will construct a finite

model satisfying it (finite meaning that I is interpreted as a finite set).

8

4 Herbrand Semantics

Our modal language receives its semantics through the interpretations of simple

type theory. We will now define a second semantics, which we call Herbrand

semantics since it has much in common with the respective notion for first-order

logic. As it turns out, Herbrand semantics provides an excellent foundation for

the development of tableau systems. Herbrand semantics also provides a direct

connection with the Kripke semantics of modal logic. We will show that the

general type-theoretic semantics and the special purpose Herbrand semantics

yield the same notion of satisfiability for modal formulas.

We start with some definitions. The letter A will always denote a set of modal

formulas. We use NA to denote the set of all nominals that occur in at least

one formula s ∈ A. A modal formula is primitive if it has one of the forms px,

rxy , or x=y . An equation x=y is trivial if the nominals x and y are identical.

A set A is straight if every equation s ∈ A is trivial. We write x≠y for a formula

(¬̇(=x))y . This is justified since the equation (¬̇(=x))y = (¬x=y) is valid.

A base is a set H of primitive modal formulas such that NH is nonempty.

A straight base can be seen as a transition system: The nominals in NH act

as states, a formula px ∈ H gives x the label p, and a formula rxy yields an

r -transition from x to y . For instance, the base {r1xy, r2yz, r3zx, py, qy,pz}
yields the following transition system:

y ; p, q

x z ; p

r1 r2

r3

Since straight bases can be seen as transition systems, they can also be seen as

Kripke structures.

Let us now consider bases with nontrivial equations. The nontrivial equa-

tions of the base yield an equivalence relation on the nominals occurring in the

base. We now consider the transition system where the equivalence classes act as

states and the formulas px and rxy yield labels and transitions for the respec-

tive states. For instance, the base {rxy, rzu, rvx, pz, q1u, q2v, y=z, u=v}
describes the following transition system:

y, z ; p

x u,v ; q1, q2

r r

r

Note that different non-straight bases may yield the same transition system.

Bases that yield the same transition system will turn out to be semantically equiv-

alent.

9

H � px ⇐⇒ ∃x′ : x′ ∼H x ∧ px′ ∈ H
H � rxy ⇐⇒ ∃x′, y′ : x′∼H x ∧ y′ ∼H y ∧ rx′y′ ∈ H
H � x=y ⇐⇒ x∼H y
H � (¬̇t)x ⇐⇒ H �� tx

H � (t1 ∧̇ t2)x ⇐⇒ H � t1x ∧ H � t2x
H � (t1 ∨̇ t2)x ⇐⇒ H � t1x ∨ H � t2x

H � r−xy ⇐⇒ H � ryx
H � {s}x ⇐⇒ H � s
H � ∃t ⇐⇒ ∃x ∈NH : H � tx
H � ∀t ⇐⇒ ∀x ∈NH : H � tx

H � ♦ρtx ⇐⇒ ∃y ∈NH : H � ρxy ∧ H � ty
H � �ρtx ⇐⇒ ∀y ∈NH : H � ρxy �⇒ H � ty
H � Dtx ⇐⇒ ∃y ∈NH : H � x≠y ∧ H � ty
H � D̄tx ⇐⇒ ∀y ∈NH : H � x=y ∨ H � ty
H � Rr ⇐⇒ ∀x ∈NH : H � rxx
H � Tr ⇐⇒ ∀x,y, z ∈NH : H � rxy ∧H � ryz �⇒ H � rxz

Figure 4.1: Definition of H � s

We use∼A to denote the least equivalence relation on Nom such that x∼A y
for every equation (x=y) ∈ A. We refer to∼A as the equivalence relation induced

by the equations in A.

Given a base H, we can interpret every modal formula s as a statement about

the transition system described by H, provided N{s} ⊆ NH. Figure 4.1 pro-

vides a recursive definition of the respective satisfaction relation H � s. The

definition is computational in that it yields a model checking algorithm that de-

cides H � s for finite H. The reader familiar with modal logic will notice that for

straight H and ordinary modal formulas s the definition of H � s agrees with the

standard Kripke semantics.

It remains to make the connection with the type-theoretic semantics. A (type-

theoretic) interpretation I agrees with a base H if the following holds:

1. II = {Ix | x ∈NH }.
2. I � s ⇐⇒ H � s for every primitive modal formula s such that N{s} ⊆ NH.

Proposition 4.1 For every base there exists an interpretation that agrees with it.

10

Proof LetH be a base. For every∼A equivalence class we choose a representative.

We then choose an interpretation I such that II is the set of all representatives

that are in NH and Ix yields the representative of x if x ∈ NH. Moreover, we

require that I interprets all variables p and r such that I agrees with H. �

Proposition 4.2 Let I be an interpretation and X be a set of nominals such that

II = {Ix | x ∈ X }. Then the following holds for every term t of type IB:

1. I � ∃t ⇐⇒ ∃x ∈ X : I � tx
2. I � ∀t ⇐⇒ ∀x ∈ X : I � tx

Proposition 4.3 Let the interpretation I agree with the base H. Then I � s �
H � s for all modal formulas s such that N{s} ⊆ NH.

Proof By induction on the size of s. We show the reasoning for diamond formu-

las. Let s = ♦ρtx such that N{s} ⊆ NH. Then:

I � ♦ρtx
⇐⇒ I � ∃y.ρxy ∧ ty definition of ♦, y ∉N t ∪ {x}
⇐⇒ ∃y ∈NH : I � (λy. ρxy ∧ ty)y Proposition 4.2

⇐⇒ ∃y ∈NH : I � ρxy ∧ ty β-law

⇐⇒ ∃y ∈NH : I � ρxy ∧ I � ty
⇐⇒ ∃y ∈NH : H � ρxy ∧ H � ty induction hypothesis

⇐⇒ H � ♦ρtx definition of H� �

LetH be a base and A be a set of modal formulas. We say thatH is a Herbrand

model of A if NA ⊆NH and H satisfies every formula s ∈ A. Moreover, we say

that A is (finitely) Herbrand satisfiable if it has a (finite) Herbrand model.

Proposition 4.4 If a set of formulas is (finitely) Herbrand satisfiable, then it is

(finitely) satisfiable.

Proof Follows with Propositions 4.1 and 4.3. �

We will eventually show that a finite set of normal modal formulas is satisfi-

able if it is finitely Herbrand satisfiable.

5 Evident Sets

The definition of H � s is such that the satisfaction of larger formulas depends

on the satisfaction of smaller formulas. This suggests a completion process that

11

constructs a Herbrand model by recursively adding smaller formulas that are

required for the satisfaction of larger formulas. The smaller formulas can be

chosen such that satisfiable sets stay satisfiable and unsatisfiable sets stay un-

satisfiable. If the initial set is satisfiable, the process will lead to a self-justifying

set where larger formulas are justified by smaller formulas and the primitive

formulas constitute a Herbrand model. Self-justifying sets where first explored

by Jaakko Hintikka [15] for pure first-order logic, and it is common to call them

Hintikka sets. We will refer to our basic version of self-justifying sets as evident

sets.

We define the base HA of a set A as follows:

HA := { s ∈ A | s primitive } ∪ {x=x | x ∈NA }

The trivial equations are added so that NHA = NA holds. The definition of

evidence will be such that the base of an evident set is a Herbrand model of the

set.

The presence of equality (through (=x) and the difference modalities) com-

plicates the definition of evidence. We start by defining the equational closure Ã
of a set A of modal formulas as follows:

Ã := A ∪ { tx | ∃x′ : x′∼A x ∧ tx′∈ A }
∪ { rxy | ∃x′, y′ : x′∼A x ∧ y′∼A y ∧ rx′y′ ∈ A }

Note that the closure adds formulas that can be deduced with the equations in A.

Also note that NA =N Ã and that Ã is finite if A is finite. Moreover, Ã = A if A
is straight. It is possible to define the closure smaller or larger than we do it here

(cf. § 12). However, the following property must be maintained.

Proposition 5.1 Let s be a primitive formula of the form px or rxy and let A
be a set of modal formulas. Then HA � s ⇐⇒ s ∈ Ã.

We define the notation |ρxy| as follows: |rxy| = rxy and |r−xy| = ryx.

An evident set is a set A of normal modal formulas that contains at least one

nominal and satisfies the evidence conditions listed in Figure 5.1. The evidence

conditions are derived from the equivalences defining the satisfaction relation

H � s (see Figure 4.1).

Theorem 5.2 If A is an evident set, then HA is a Herbrand model of Ã.

Proof Let A be an evident set. We show by induction on the size of s that HA � s
for all s ∈ Ã. We show the reasoning for diamond formulas. Let ♦ρtx ∈ Ã. Then

x∼A x′ and ♦ρtx′ ∈ A

12

(¬̇p)x ∈ A �⇒ px ∉ Ã

x≠y ∈ A �⇒ x �∼A y
(t1 ∧̇ t2)x ∈ A �⇒ t1x ∈ Ã ∧ t2x ∈ Ã
(t1 ∨̇ t2)x ∈ A �⇒ t1x ∈ Ã ∨ t2x ∈ Ã

r−xy ∈ A �⇒ ryx ∈ Ã
{s}x ∈ A �⇒ s ∈ Ã
∃t ∈ A �⇒ ∃x ∈NA : tx ∈ Ã
∀t ∈ A �⇒ ∀x ∈NA : tx ∈ Ã

♦ρtx ∈ A �⇒ ∃y ∈NA : |ρxy| ∈ Ã ∧ ty ∈ Ã
�ρtx ∈ A �⇒ ∀y ∈NA : |ρxy| ∈ Ã �⇒ ty ∈ Ã

Dtx ∈ A �⇒ ∃y ∈NA : x �∼A y ∧ ty ∈ Ã
D̄tx ∈ A �⇒ ∀y ∈NA : x∼A y ∨ ty ∈ Ã

Rr ∈ A �⇒ ∀x ∈NA : rxx ∈ Ã
Tr ∈ A �⇒ ∀x,y, z ∈NA : rxy ∈ Ã∧ ryz ∈ Ã �⇒ rxz ∈ Ã

Figure 5.1: Evidence conditions

for some x′. Since A is evident, we have

y ∈NA and |ρx′y| ∈ Ã and ty ∈ Ã

for some y . Thus |ρxy| ∈ Ã. By the induction hypothesis we obtain

HA � |ρxy| and HA � ty

Since NHA =NA, we have HA � ♦ρtx. �

6 Quasi-Evident Sets

The terminating tableau systems we are aiming at require a stronger model ex-

istence theorem than the one we just established for evident sets. This theorem

will assert the satisfiability of a class of quasi-evident sets, which is obtained by

weakening the closure conditions for diamond formulas. Moreover, the closure

condition for formulas Tr is modified. Quasi-evident sets can always be made

evident by adding so-called safe edges. Edges are formulas of the form rxy . To

get the idea behind safe edges, consider the evident set {�rpx, py}. We can

add the edge rxy without destroying evidence. The notions of quasi-evidence

and safe edges will be such that

13

1. a quasi-evident set remains quasi-evident if a safe edge is added.

2. a quasi-evident set that contains all safe edges is evident.

Let us first explain quasi-evidence for sets that contain neither converse modal-

ities nor T-formulas (i.e., Tr). In this case we call an edge rxy safe in A if

either rxy ∈ Ã or the names r , x, y occur in A and ty ∈ Ã for all �rtx ∈ Ã.

Quasi-evidence is defined like evidence, except that the condition for diamond-

formulas is weakened to

♦rtx ∈ A �⇒ ∃y ∈NA : ty ∈ Ã ∧ rxy safe in A

It is now easy to verify that a quasi-evident set remains quasi-evident if safe

edges are added (recall that we assume the absence of converse modalities and T-

formulas), and that a quasi-evident set that contains all its safe edges is evident.

It is easy to extend the definition of safe edges to converse modalities. What is

more difficult is the extension to transitive relations. The evidence condition for

T-formulas requires that certain edges are present, which conflicts with the addi-

tion of safe edges. For instance, consider A = {�rpx, py, ryz, Tr}. According

to what we said so far, this set is quasi-evident and rxy is safe. However, quasi-

evidence is lost once we add rxy since the evidence condition for Tr requires

the presence of rxz, which is neither present nor safe.

We solve the problem by modifying the evidence condition for T-formulas so

that it requires the presence of box formulas rather than edges. The idea is that

once the box formulas are present the edges needed for transitivity can be added

as safe edges. The validity of the following formulas justifies the addition of the

necessary box formulas:

• Tr ∧�rpx ∧ rxy → �rpy

• Tr ∧�r−px ∧ ryx → �rpy

We are now ready for the final definition of safe edges. An edge rxy is safe

in A if either rxy ∈ Ã or the following holds:

1. The names r , x, y occur in A.

2. For all �rtx ∈ Ã : ty ∈ Ã ∧ (Tr ∈ A �⇒ �rty ∈ Ã).
3. For all �r−ty ∈ Ã : tx ∈ Ã ∧ (Tr ∈ A �⇒ �r−tx ∈ Ã).
A quasi-evident set is a set A of normal modal formulas such that:

1. NA is nonempty.

2. A satisfies the quasi-evidence conditions in Figure 6.1.

3. A satisfies the evidence conditions in Figure 5.1 except those that apply to

formulas of the forms ♦ρtx and Tr .

An evident set not containing T-formulas is always quasi-evident. However, ev-

ident sets with T-formulas may fail to be quasi-evident since they may lack box

14

♦ρtx ∈ A �⇒ ∃y : ty ∈ Ã ∧ |ρxy| safe in A

Tr ∈ A �⇒ ∀x,y, t : rxy ∈ Ã ∧ �rtx ∈ Ã �⇒ �rty ∈ Ã
Tr ∈ A �⇒ ∀x,y, t : rxy ∈ Ã ∧ �r−ty ∈ Ã �⇒ �r−tx ∈ Ã

Figure 6.1: Quasi-evidence conditions

formulas that are required by the quasi-evidence conditions for T-formulas.

Example 6.1 Let A = {rxy, py, �rpx, Tr}. Then A is evident but not quasi-

evident. Note that the edges ryy and ryx are safe in A, and that the edge rxx
is not safe in A. �

Example 6.2 The set {♦rpx, py, ♦rqy, qz, Tr} is quasi-evident. Since there

are no box formulas, all r -edges between x, y , and z are safe. �

Proposition 6.3 Let A be a quasi-evident set such that {Tr , rxy, ryz} ⊆ Ã.

Then rxz is safe in A.

Lemma 6.4 (Safe Edges) Let A be a quasi-evident set and E be the set of all edges

that are safe in A. Then:

1. rxy safe in A ⇐⇒ rxy ∈ A∪ E ⇐⇒ rxy safe in A∪ E
2. A∪ E is quasi-evident.

3. A∪ E is evident.

Proof Claim (1) is easy to verify. For (2) we have to show that A∪ E satisfies the

evidence conditions for box formulas and the quasi-evidence conditions for ♦-

and T-formulas. For �- and T-formulas this follows from the definition of safe

edges and the quasi-evidence of A. For ♦-formulas the claim follows from the

quasi-evidence of A since we know by (1) that edges that are safe in A are safe

in A∪ E.

For (3) we have to show that A ∪ E satisfies the evidence conditions for ♦-

and T-formulas. This suffices since by (2) we know that A ∪ E is quasi-evident.

Since A∪ E satisfies the quasi-evidence conditions for ♦-formulas and we know

by (1) that A ∪ E contains all edges that are safe in A ∪ E, A ∪ E satisfies the

evidence conditions for ♦-formulas. That A∪ E satisfies the evidence condition

for T-formulas follows by Proposition 6.3 and (1). �

Theorem 6.5 (Model Existence) Every (finite) quasi-evident set is (finitely)

Herbrand satisfiable.

15

Proof Let A be a quasi-evident set. By Lemma 6.4 we obtain an evident set A′

such that A ⊆ A′. Now the claim follows with Theorem 5.2. For the finiteness

claim it suffices to show that a finite A has only finitely many safe edges. This is

the case since safe edges contain only names that occur in A. �

7 A Tableau System Based on Quasi-Evidence

The notion of quasi-evidence yields a tableau system. The main intuition is that

the tableau rules add formulas to a satisfiable set so that it eventually becomes

quasi-evident. We start with some general definitions to put the notion of a

tableau system on a firm ground.

A clause is a finite set A of normal modal formulas such that NA ≠ �. Think

of a clause as the set of formulas that are on a branch of a tableau. A proof step

is a tuple 〈A1, . . . , An〉 of clauses such that n ≥ 1 and Ã1 ⊊ Ãi for all i ∈ [2, n]; we

call A1 the head and A2, . . . , An the alternatives of the proof step. A proof step is

sound if the head is satisfiable if and only if one of the alternatives is satisfiable.

A proof step is refuting if it has no alternatives (n = 1) and branching if it has

at least two alternatives (n ≥ 3). Note that the head of a refuting proof step is

unsatisfiable.

A tableau system is a set of sound proof steps. The expansion relation of a

tableau system T is defined as follows:

A→T A′ :⇐⇒ 〈A〉 ∉ T ∧ ∃〈A1, . . . , An〉 ∈ T : A = A1 ∧ ∃i ∈ [2, n] : A′ = Ai
Note that A ⊊ A′ and Ã ⊊ Ã′ if A →T A′. A clause A is refuted in T if 〈A〉 ∈ T .

A refuted clause corresponds to a closed branch. A clause A is terminal in T if

there is no clause A′ such that A→T A′. A clause is verified in T if it is terminal

and not refuted in T . Note that a clause that is terminal in T is either refuted or

verified in T . A clause A is verifiable in T if there exists a clause A′ such that

A →∗
T A′ and A′ is verified in T . Let T be a tableau system and S be a set of

clauses. We say that

• T is verification sound for S if every clause A ∈ S that is verified in T is

satisfiable.

• T is verification complete for S if every satisfiable clause A ∈ S is verifiable

in T .

• T respects S if A′ ∈ S for all A ∈ S and all A′ such that A→T A′.

• T terminates on S if the expansion relation of T terminates on every clause

A ∈ S.

Proposition 7.1 Let S be a set of clauses and T be a tableau system. If T re-

spects S, terminates on S, and is verification sound for S, then T is verification

16

R¬̇
(¬̇p)x
�

px ∈ Ã R¬̇
x≠y

�
x∼A y

R∧̇
(t1 ∧̇ t2)x
t1x , t2x

R∨̇
(t1 ∨̇ t2)x
t1x | t2x

R−
r−xy

ryx
R{}

{s}x
s

R∃
∃t
tx

x ∉NA and ∃t not evident in A R∀
∀t
tx

x ∈NA

R♦

♦ρtx

|ρxy| , ty y ∉NA and ♦ρtx not quasi-evident in A R�

�ρtx

ty
|ρxy| ∈ Ã

RD

Dtx

x≠y , ty
y ∉NA and Dtx not evident in A RD̄

D̄tx

x=y | ty y ∈NA

RR

Rr

rxx
x ∈NA

RT

Tr

�rty
rxy ∈ Ã and �rtx ∈ Ã RT

Tr

�r−tx
rxy ∈ Ã and �r−ty ∈ Ã

Figure 7.1: Tableau system T

complete for S and yields a decision procedure for the satisfiability of the clauses

in S.

We are now ready to define the quasi-evidence-based tableau system T . The

proof steps of the system are described by the rules in Figure 7.1. The formula

above the horizontal line of a rule must appear in the head of the proof step,

and the formulas below the line are added to the head to obtain the alternatives.

The letter A in the side conditions always refers to the head of the proof step.

Refuting rules have an “�” below the rule, and branching rules separate their

alternatives with “|”. We say that a rule applies to a clause A if the rule yields a

proof step whose head is A.

Note that the tableau rules correspond closely to the conditions defining

quasi-evidence. We call the rules R∃, R♦, and RD generative since they in-

troduce fresh nominals. Besides a freshness constraint (e.g., x ∉ NA) needed

17

for soundness, the generative rules come with a blocking constraint (e.g., ∃t not

evident in A). The blocking constraint prevents unnecessary applications since

it requires that the formula the rule is applied to doesn’t already satisfy the re-

spective evidence or quasi-evidence condition. For the other non-refuting rules

this holds without an explicit blocking constraint since every proof step must

produce alternatives whose closure is larger than the closure of the head.

Let us be precise about the meaning of the formulations “s is not evident in A”

or “s is not quasi-evident in A” in the blocking constraints of the generative rules.

The formulations refer to the evidence condition that applies to the formula s.
For instance, “∃t evident in A” means that there is a nominal x ∈NA such that

tx ∈ Ã. Moreover, “♦ρtx quasi-evident in A” means that there is a nominal

y ∈NA such that ty ∈ Ã and |ρxy| is safe in A. Note that a diamond formula

that is evident in A is also quasi-evident in A.

Proposition 7.2 The proof steps obtained with the rules in Figure 7.1 are sound.

Proposition 7.3 A clause is verified in T iff it is quasi-evident.

Proposition 7.4 Every clause that is verifiable in T is finitely Herbrand satisfi-

able.

Proof Follows with Proposition 7.3 and Theorem 6.5. �

Example 7.5 The blocking constraint of the ruleR♦ prevents superfluous appli-

cations. Here is an example where a verified clause is reached after one expan-

sion step.

∀(♦rp), px initial clause

♦rpx R∀

Note that R♦ does not apply since rxx is safe in the final clause. If the blocking

constraint of R♦ would be changed from quasi-evident to evident, the modified

rule would be applicable and the clause would not be verifiable in the modified

tableau system. �

Example 7.6 Here is a closed tableau that refutes an unsatisfiable clause.

Tr , �r(p ∧̇q)x, ♦r(♦r ¬̇p ∨̇♦r ¬̇q)y, x=y initial clause

ryz, (♦r ¬̇p ∨̇♦r ¬̇q)z R♦

�r(p ∧̇q)z RT

♦r(¬̇p)z R∨̇ ♦r(¬̇q)z R∨̇

rzu, (¬̇p)u R♦ rzu, (¬̇q)u R♦

(p ∧̇q)u R� (p ∧̇q)u R�

pu, qu R∧̇ pu, qu R∧̇ �

18

Example 7.7 The following derivation exhibits a satisfiable and converse-free

clause for which T does not terminate.

∀(♦rp), ∀(�rq), x=x initial clause

♦rpx, �rqx R∀

rxy, py R♦

♦rpy, �rqy R∀

ryz, pz R♦

. . .

The problem is that R� is not applied. Once R� is applied, there is a safe edge

from the newest nominal z to y or z, andR♦ does not apply anymore due to the

blocking constraint. �

Example 7.8 The following derivation exhibits a satisfiable clause for which T
does not terminate even ifR� is prioritized overR♦. The non-termination is due

to the presence of the converse box expression �r−p.

∀(♦r(�r−p)), x=x initial clause

♦r(�r−p)x R∀

rxy, �r−py R♦

px R�

♦r(�r−p)y R∀

ryz, �r−pz R♦

py R�

. . .

The problem is that the expression �r−p renders edges from the most recently

introduced nominal z to x and y unsafe since pz is missing.

Note that once py is added, the edge ryy becomes safe. This means that the

edge ryz is no longer needed for the quasi-evidence of ♦r(�r−p)y . In fact, if we

delete the formulas that contain z, we obtain a quasi-evident clause that contains

the initial clause. Thus the tableau system does construct a quasi-evident clause

that contains the initial clause. �

Example 7.9 The following derivation illustrates the application of RD̄. The

derivation constructs an evident set that describes a one-node Herbrand model.

♦rpx, D̄(¬̇p)x initial clause

rxy, py R♦

x=y RD̄ �

19

Remark 7.10 (Rule RD̄) Given that D̄tx is a universal quantification, it is some-

what surprising that RD̄ is a branching rule (R∀ and R� are not). It turns out

that a non-branching version of RD̄ is not possible. The natural candidate for a

non-branching rule for D̄ would be

D̄tx

ty
(x≠y) ∈ Ã

The proof steps obtained with this rule are sound but the resulting tableau sys-

tem is not verification sound, as the unsatisfiable clause {px, (¬̇p)y, D̄px}
shows. �

8 Termination for Diamond-Free Clauses

Our tableau system T terminates for clauses that don’t contain modal expres-

sions of the form ♦ρt. To show this fact, we look carefully at the type of formulas

that are added by the tableau rules. We start with some definitions.

We say that a term occurs in a clause A if it occurs as subterm in at least

one formula s ∈ A. For instance, the terms occurring in the clause {rxy} are

the following: r , x, y , rx, rxy . We say that a clause contains a term if the

term occurs in the clause. A clause is diamond-free if it doesn’t contain the

constant ♦.

The height of a clause is the size of the largest formula that is an element

of the clause. The breadth of a clause is the number of formulas the clause

contains as elements. The vocabulary of a clause is the set of all variables x, p,

and r that occur in the clause. The universe of a clause A is the set of all modal

formulas s such that the size of s is at most the height of A and s contains only

variables in the vocabulary of A. Note that the vocabulary and the universe of a

clause are finite (since clauses are finite). The slack of a clause A is the number

of formulas s such that s is an element of the universe of A but not of A.

A modal expression is auxiliary if it has the form rx, (=x), or ¬̇(=x). A

modal formula is auxiliary if it has the form tx where t is a modal expression.

The stock of a clause is the set of all modal expressions and all modal formulas

that occur in the clause but are not auxiliary. For an example, consider the clause

{♦rpx, �r(=x)y, ♦r(ry)x, ∃q, y≠z}

The stock of this clause consists of the terms ♦rp, p, �r(=x), ♦r(ry), ∃q,

and q. The modal expressions (=x), ry , and ¬̇(=y) occur in the clause but are

not in the stock. We exclude auxiliary terms from the stock since they may be

added by the tableau rules.

We say that a clause A′ is obtained from a clause A by expansion if A→T A′.

20

Proposition 8.1

1. Expansion preserves the height of a clause.

2. Expansion preserves the stock of a clause.

3. Expansion increases the breadth of a clause.

4. Expansion with a non-generative rule

• preserves the vocabulary of a clause.

• preserves the universe of a clause.

• decreases the slack of a clause.

A infinite derivation is an infinite sequence A1, A2, . . . of clauses such that

A1 →T A2 →T · · · .

Proposition 8.2 Every infinite derivation employs a generative rule.

Proof By contradiction. Suppose there is an infinite derivation that doesn’t em-

ploy a generative rule. By Proposition 8.1 we know that every step of the deriva-

tion decreases the slack of the clause. Contradiction. �

Proposition 8.3

1. Expansion preserves evidence of formulas of the form ∃t.
2. Expansion with R∃ increases the number of evident formulas of the form ∃t

in the stock.

To show termination of clauses with D, we need two definitions.

• Dt is instantiated in A if there exists a nominal x such that tx ∈ Ã.

• Dt is doubly instantiated in A if there exist nominals x, y such that

{x≠y, tx, ty} ⊆ Ã.

Proposition 8.4

1. Expansion preserves instantiation and double instantiation of modal expres-

sions of the form Dt.

2. Expansion withRD increases either the number of instantiated or the number

of doubly instantiated modal expressions of the form Dt in the stock.

Proposition 8.5 Let c be one of the constants ∧̇, ∨̇, {}, ♦, �, D, D̄, ∃, ∀, R, and T.

Then c occurs in a clause if and only if it occurs in the stock of the clause. Hence

the presence or absence of these constants is preserved by expansion.

Proposition 8.6 Every infinite derivation employs R♦.

21

Proof By contradiction. Suppose there is an infinite derivation that doesn’t em-

ployR♦. Since expansion preserves the stock of a clause, we know by the propo-

sitions 8.3 and 8.4 that only finitely many steps of the derivation employ R∃ or

RD. Hence there exists an infinite derivation that employs no generative rule.

This contradicts Proposition 8.1. �

Theorem 8.7 T terminates on diamond-free clauses.

Proof By contradiction. Suppose there is an infinite derivation that issues from

a diamond-free clause. Then we know by Proposition 8.5 that all clauses of the

derivation are diamond-free. Hence the derivation doesn’t employ R♦. This

contradicts Proposition 8.6. �

Corollary 8.8 T decides the satisfiability of diamond-free clauses.

Proof Follows with Theorem 8.7, Proposition 7.4, and Proposition 4.4. �

9 Termination for Converse-Free Clauses

A clause is converse-free if it doesn’t contain the modal constant − that yields

the inverse of a relation. Example 7.7 provides us with a converse-free clause for

which T does not terminate. Nevertheless, it is easy to obtain termination for

converse-free clauses. All we have to do is to prioritize the box-propagating rules

R� andRT overR♦. This proviso introduces safe edges that prevent superfluous

applications of R♦.

A clause is box-propagated if it cannot be expanded with one of the rules

R� or RT. We use Rp
♦ to denote the tableau rule that is obtained from R♦ by

imposing “A is box-propagated” as additional constraint, and T p to denote the

resulting tableau system.

Proposition 9.1 A clause is verified in T p if and only if it is verified in T .

A pattern is a set {♦rt, �rt1, . . . , �rtn} of modal expressions such that

n ≥ 0. A pattern is realized in a clause A if there are nominals x and y such

that {rxy, ty, �rt1x, . . . , �rtnx} ⊆ Ã.

Proposition 9.2 Let A be a box-propagated and converse-free clause. Then a

formula ♦rtx ∈ A is quasi-evident in A if the pattern {♦rt} ∪ {�ru | �rux ∈
Ã } is realized in A.

Proof Let {♦rt} ∪ {�ru | �rux ∈ Ã } be realized in A. Then there exist nom-

inals y , z such that {ryz, tz} ∪ {�ruy | �rux ∈ Ã } ⊆ Ã. Since A is box-

propagated and converse-free, rxz is safe in A. Hence ♦rtx is quasi-evident

in A since tz ∈ Ã. �

22

Proposition 9.3

1. Expansion preserves realization of patterns.

2. Expansion of a converse-free clause withRp
♦ increases the number of realized

patterns that are subsets of the stock of the clause.

Proof The first claim is obvious. The second claim follows with Proposition 9.2.�

Theorem 9.4 T p terminates on converse-free clauses.

Proof By contradiction. Suppose there is an infinite derivation in T p that issues

from a converse-free clause. Then we know by Proposition 8.5 that all clauses

of the derivation are converse-free. By Proposition 9.3 we know that only finitely

many steps of the derivation employRp
♦ (since the stock does not change). Hence

there exists an infinite derivation in T p that doesn’t employ Rp
♦. Such a deriva-

tion is also a derivation in T that doesn’t employ R♦. This contradicts Proposi-

tion 8.6. �

Corollary 9.5 T p decides the satisfiability of converse-free clauses.

Proof Follows with Theorem 9.4, Proposition 9.1, Proposition 7.4, and Proposi-

tion 4.4. �

10 Chain-Based Blocking

To obtain a tableau system that terminates for all clauses, we have to resort to

an old idea we call chain-based blocking. Chain-based blocking first appears in

Kripke [22] with a terminating tableau system deciding modal logic with a reflex-

ive and transitive relation. In Hughes and Cresswell [19], chain-based blocking

appears as rule of repeating chains. Horrocks and Sattler [17] adapt chain-based

blocking to a modal logic with converse, and Bolander and Blackburn [6] use it for

a hybrid logic with converse (they refer to chain-based blocking as loop-checks).

One characteristic feature of tableau systems that employ chain-based block-

ing is overgeneration. Overgeneration means that the system may stop with a

final clause that is neither refuted nor quasi-evident. In this case the final clause

contains a quasi-evident clause that contains the initial clause. This suffices for

the Herbrand satisfiability of the initial clause.

We use Example 7.8 to motivate chain-based blocking. The example gives a

clause with converse for which T and T p do not terminate, and it shows that

after a few steps a clause is reached that contains a quasi-evident subclause that

contains the initial clause.

23

Recall that the stock of a clause is finite and is preserved by expansion

(see § 8). We use StkA to denote the stock of a clause A. Based on the stock

of a clause we define the following sets:

LabA := {�ρt | �ρt ∈ StkA } ∪ { t | ∃ρ : ♦ρt ∈ StkA ∨ �ρt ∈ StkA }
LAx := { t ∈ LabA | tx ∈ Ã }

We refer to the modal expressions in LabA as the labels of A and call LAx the

label set of x in A. For every clause A the set LabA is finite and is preserved

by expansion (since the stock is preserved). Moreover, if we have a derivation

A1 →T A2 →T · · · , all sets LAix are subsets of the initial set LabA1. We say that

two nominals x, y are modally equivalent in a clause A if LAx = LAy .

Chain-based blocking records the ancestors of the nominals introduced with

the diamond rule R♦ through a relation ≺ such that x ≺ y holds if and only if

the nominal y was introduced to expand a diamond formula ♦ρtx. So for ev-

ery nominal y we know the complete ancestor chain x ≺ · · · ≺ y . An ancestor

chain is repeating if it contains two different nominals that are modally equiva-

lent. Chain-based blocking now disallows the expansion of formulas ♦ρtx if the

ancestor chain of x is repeating. Since there is only a finite supply of labels, the

diamond rule can add nominals only up to a certain ancestor depth. This suffices

for termination.

Formally, we model the ancestor relation through an a priori given binary re-

lation ≺ on the set of all nominals. If x ≺ y , we say that x is a predecessor of y ,

and that y is a successor of x. A nominal is initial if it doesn’t have a predeces-

sor. We assume that the ancestor relation satisfies the following conditions:

1. Every nominal has at most one predecessor.

2. There are no infinite chains · · · ≺ x3 ≺ x2 ≺ x1.

3. There are infinitely many initial nominals.

4. Every nominal has infinitely many successors.

Note that the first two conditions require that the graph given by the set of all

nominals and the ancestor relation is a forest. An ancestor chain is a tuple

(x1, . . . , xn) of nominals such that x1 ≺ · · · ≺ xn. The ancestor chain of a nom-

inal x is the ancestor chain of maximal length that ends at x. An ancestor chain

is repeating in A if it contains two different nominals that are modally equiva-

lent in A. A nominal x is repeating in A if its ancestor chain is repeating in A. A

nominal x is relevant in A if there exists a nominal x′ that is not repeating in A
such that x∼A x′. We write RepA for the set of all nominals that are repeating

in A, and RelA for the set of all nominals that are relevant in A. A formula s ∈ A
is relevant in A if it contains only relevant nominals. The kernel of a clause A

24

is the set of relevant formulas in A:

KerA := { s ∈ A | N {s} ⊆ RelA }

Our final tableau system T c employs chain-based blocking and terminates on

all clauses. It has the property that the kernel of a verified clause that is obtained

from an initial clause is always quasi-evident. Since the kernel contains the ini-

tial clause (the formulas of the initial clause don’t contain repeating nominals),

the Herbrand model of the kernel also satisfies the initial clause. The develop-

ment of T c is considerably complicated by the presence of equations. Thus we

recommend that the reader first understands the equation-free case. In the ab-

sence of nontrivial equations we have Ã = A and a nominal is relevant iff it is

non-repeating.

Proposition 10.1 For every clause A:

1. Stk Ã = StkA, Lab Ã = LabA, and LÃx = LAx.

2. For all x,y ∈ RelA: x∼KerA y ⇐⇒ x∼A y .

3. �KerA = Ker Ã.

A diamond formula ♦ρtx is ancestor-evident in a clause A if there exists

a nominal y such that x ≺ y and |ρxy|, ty ∈ Ã. A diamond formula ♦ρtx
is chain-evident in a clause A if there exists a nominal x′ ∼A x such that x′

is non-repeating in A and ♦ρtx′ is ancestor-evident in A. Note that a diamond

formula is evident if it is ancestor-evident or chain-evident. The diamond rule of

T c will be defined such that it can only be applied to non-chain-evident diamond

formulas, and such that it renders the diamond formula it is applied to chain-

evident. The next lemma formulates the key property of chain-evidence.

Lemma 10.2 Let A be a box-propagated clause and ♦ρtx ∈ KerA be chain-

evident in A. Then ♦ρtx is quasi-evident in KerA.

Proof Let x′, y be nominals such that x′∼A x, x′ is non-repeating in A, x′ ≺ y ,

and |ρxy|, ty ∈ Ã. We show that ♦ρtx is quasi-evident in KerA. Case analysis.

Let y be non-repeating in A. Then |ρxy|, ty ∈ Ker Ã and hence |ρxy|, ty ∈
�KerA by Proposition 10.1. Thus ♦rtx is evident in KerA, which means that it is

also quasi-evident in KerA.

Let y be repeating in A. Since x′ ≺ y and x′ is not repeating in A, there is

an ancestor z of x′ that is not repeating in A and satisfies LAz = LAy . Since

t ∈ LabA and ty ∈ Ã, we have tz ∈ Ã. Since tz is relevant, we have tz ∈ �KerA
by Proposition 10.1. It remains to show that |ρxz| is safe in KerA. By our

assumptions |ρxz| contains only names that occur in KerA. We show the claim

for ρ = r . The case ρ = r− follows analogously.

25

Let �rux ∈ �KerA. We show uz ∈ �KerA. Since A is box-propagated and

rxy ∈ Ã, we have uy ∈ Ã. Since LAz = LAy , we have uz ∈ Ã. Since u and z
are relevant, we have uz ∈ Ker Ã. The claim follows with Proposition 10.1.

Let �r−uz ∈ �KerA. We show ux ∈ �KerA. Since LAz = LAy , we have

�r−uy ∈ Ã. Since A is box-propagated and rxy ∈ Ã, we have ux ∈ Ã. Since u
and x are relevant, we have uz ∈ Ker Ã. The claim follows with Proposition 10.1.

If Tr ∈ A, the additional proof obligations can be shown with arguments

analogous to the above. �

We now define the chain-based tableau system T c . The rules of T c are ob-

tained from the rules of T as follows:

• The rules R� and RT remain unchanged.

• R¬̇, R∧̇, R∨̇, R−, R{} are constrained such that they apply only to relevant

formulas.

• R∃ is constrained such that it introduces fresh nominals that are initial.

• R∀ and RR are constrained such that they add only relevant formulas.

• RD is constrained such that it applies only to relevant formulas and intro-

duces fresh nominals that are initial.

• RD̄ is constrained such that it applies only to relevant formulas and adds only

relevant formulas.

• For diamond formulas T c has the following rule:

Rc
♦

♦ρtx

|ρxy| , ty x∼A x′, x′ ∉ RepA, y ∉NA, x′≺y

provided ♦ρtx is not chain-evident in A and not quasi-evident in KerA

The blocking constraint “♦ρtx not quasi-evident in KerA” of Rc
♦ reduces the

search space but is not needed for termination. The blocking constraint “♦ρtx
not chain-evident in KerA” and the side condition “x′ ∉ RepA” are essential for

termination.

Proposition 10.3 The proof steps of T c are sound.

Proof Except for the proof steps obtained with Rc
♦, all proof steps of T c are

proof steps of T and hence are sound by Proposition 7.2. The soundness of the

proof steps obtained with Rc
♦ is easy to verify. �

Proposition 10.4 Let A be a clause that is verified in T c such that KerA contains

at least one nominal. Then KerA is quasi-evident.

26

Proof Most of the evidence and quasi-evidence conditions follow with Proposi-

tion 10.1 (3) from the non-applicability of the respective tableau rule. For R∃
and RD it is essential that the introduced fresh nominals are initial. The argu-

mentation for the quasi-evidence condition for diamond formulas is as follows.

Let ♦ρtx ∈ KerA and suppose ♦ρtx is not quasi-evident in KerA. Then

there exist nominals x′ and y such that x ∼A x′, x′ ∉ RepA, y ∉ NA, and

x′≺y . Since A is verified in T c , Rc
♦ does not apply and hence ♦ρtx must be

chain-evident in A. Since A is box-propagated, it follows with Lemma 10.2 that

♦ρtx is quasi-evident in KerA. Contradiction. �

The proof exploits that the box-propagating rules R� and RT are not con-

strained to relevant formulas. This makes sure that the entire clause is even-

tually box-propagated, which is needed so that Lemma 10.2 can be used in the

proof.

Example 10.5 Here is a verifying T c-derivation for the clause of Example 7.8:

∀(♦r(�r−p)), x=x initial clause

♦r(�r−p)x Rc
∀

rxy, �r−py, px Rc
♦, R�

♦r(�r−p)y Rc
∀

ryz, �r−pz, py Rc
♦, R�

♦r(�r−p)z Rc
∀

rzu, �r−pu, pz Rc
♦, R�

The nominal x is initial and x ≺ y ≺ z ≺ u holds. The final clause A if verified

since LAy = LAz = {�r−p, ♦r(�r−p), p} and thus the nominals z and u are re-

peating. Rc
∀ does not add the instance ♦r(�r−p)u since it is not relevant. KerA

consists of all formulas that don’t contain the repeating nominals z and u. �

11 Termination of the Chain-Based System

The ancestor relation organizes the nominals in a clause into a finite forest. Since

new initial nominals are only introduced by Rc
∃ and Rc

D, we know from § 8 that

the number of initial nominals in a derivation is bound by the initial clause. Since

successors are only introduced by Rc
♦ and only for non-repeating nominals, the

depth of the derived clause forests is bound by the initial clause. Moreover,

we will show that the breadth of the derived clause forests (i.e., the maximal out-

degree) is bound by the stock of the initial clause. Hence the number of nominals

in a derived clause is bound by the initial clause, which means that the generative

27

rules can only be applied finitely often. Thus T c terminates on all clauses that

contain only initial nominals.

Let us argue more formally. We define the depth of a nominal as the length

of its ancestor chain and write depthx for the depth of x.

Proposition 11.1 Let x be a nominal that is non-repeating in a clause A. Then

depthx ≤ |P(LabA)|.

Proof Follows from the fact that the label sets LAx are subsets of LabA. �

We define the breadth of a nominal x in a clause A as follows:

breadthA x := |{y ∈NA | x ≺ y }|

A clause A is chain-admissible if for every nominal x ∈ NA the following con-

ditions are satisfied:

1. depthx ≤ |P(LabA)| + 1

2. breadthA x ≤ |{♦ρt ∈ StkA | ♦ρtx is ancestor-evident in A }| ≤ |StkA|

Proposition 11.2 T c-expansion preserves ancestor-evidence of diamond formu-

las and chain-admissibility of clauses.

Proof The preservation of ancestor-evidence is obvious. Moreover, StkA and

LabA are preserved by T c-expansion. Thus it suffices to consider Rc
♦ since this

is the only rule that introduces non-initial nominals. Consider an application of

Rc
♦ to ♦ρtx ∈ A and let A′ be the clause obtained. Then there is some x′ ∼A x

such that x′ is non-repeating in A and x′ ≺ y for the new nominal y . The depth

bound for y follows with Proposition 11.1 and the fact that x′ is non-repeating

in A. For the breadth bound of x′ it suffices to show that ♦ρtx′ is not ancestor-

evident in A. This is the case since otherwise ♦ρtx would be chain-evident in A,

which contradicts the assumption that Rc
♦ is applicable. �

Together with the results of § 8, our informal termination argument given at

the beginning of this section now rests on firm ground. Thus we have:

Theorem 11.3 (Termination) T c terminates on chain-admissible clauses.

Corollary 11.4 T c decides the satisfiability of clauses and constructs finite

Herbrand models for satisfiable clauses.

Proof Let a clause A be given. First we rename the nominals of A so that the

renamed clause A′ contains only initial nominals. Clearly, A is satisfiable iff A′

is satisfiable and Herbrand models of A′ can be renamed into Herbrand models

28

of A. The renamed clause A′ is chain-admissible. If T c does not produce a

verified clause for A′, termination (Theorem 11.3) and the soundness of the proof

steps yield that A′ is unsatisfiable. Otherwise, let T c produce a verified clause

A′′. Since A′ ⊆ KerA′′, KerA′′ contains at least one nominal and we know by

Proposition 10.4 that KerA′′ is quasi-evident. Hence we know by Theorem 6.5

that KerA′′ is finitely Herbrand satisfiable. Thus A′ and A are finitely Herbrand

satisfiable. �

12 Remarks

Equational Closure

The way we have defined the equational closure Ã is not the only possibility. We

could also work with a smaller equational closure adding only primitive formu-

las:

Ã := A ∪ {px | ∃x′ : x′∼A x ∧ px′ ∈ A }
∪ { rxy | ∃x′, y′ : x′∼A x ∧ y′∼A y ∧ rx′y′ ∈ A }

Working with a smaller closure has the consequence that the tableau

rules have to add more formulas. For instance, the quasi-evident set

{(p ∨̇(q1 ∨̇q2))x, (q1 ∨̇q2)y, q2y, x=y} would not be quasi-evident with

the smaller closure.

We could also work with a larger closure that contains formulas that can be

obtained by replacing nominals within non-auxiliary modal expressions. Con-

sider the clause {♦r(�r(=x))x, ♦r(�r(=y))x, �r(=y)x, x=y}. It is not

quasi-evident with our definition of the closure, but with the larger closure that

contains �r(=x)x it would be.

We have chosen to not work with the larger closure since implementing the

medium-sized closure seems easier (due to term indexing).

Difference

Fitting [10] gives tableau rules for the difference modalities that assume that

all prefixes denote different states (we model prefixes as nominals). This way

he can handle difference without primitive equational constraints. However, he

overlooks that the assumption that all prefixes denote differently renders his

diamond rule unsound (since it always introduces a new prefix). For instance,

Fitting’s rules can refute the satisfiable expression ♦rp ∧̇ D̄¬̇p (cf. our Exam-

ple 7.9). Soundness of Fitting’s system can be recovered by a nondeterministic

diamond rule that admits already present prefixes as witnesses. We don’t follow

this approach since a nondeterministic diamond rule would reduce refutation

performance even if no difference modalities are present.

29

Safe Edges

A model existence theorem for a terminating tableau system for a modal logic

that has transitive relations or global or difference modalities must add safe

edges to the set of formulas obtained with the tableau rules. For transitive rela-

tions this is already done in Kripke [22]. Safe edges may introduce cycles into the

forest structure obtained with the tableau rules. The idea to block individual di-

amond formulas that are justified by safe edges first appeared in our paper [20].

Transitive Relations

There are two ways one can obtain a tableau rule for transitive relations: Either

one adds edges as required by the evidence condition or one adds box formu-

las as required by the quasi-evidence condition. While Kripke [22] adds edges,

recent systems [13, 17, 10] add boxes. The advantage of adding boxes is that

it combines well with safe edges and is more flexible as it comes to model con-

struction.

Symmetric Relations

Our approach extends to formulas that assert the symmetry of a relation. If a

relation is symmetric, ordinary modalities also express converse modalities. For

symmetric relations the definition of safe edges must be adapted. Moreover,

chain-based blocking is needed for termination.

Simple Type Theory

We have used simple type theory as logical base throughout the paper. This way

we can use the notions of classical logic and the modal operators can be defined

with the classical operators. The type-theoretic base has the advantage that the

formulas used with a tableau system appear as formulas of the object language.

This is not the case with basic modal logic, since it cannot express prefixed modal

expressions and accessibility formulas. For difference and nominals it is natural

to work with equations and disequations, which again are not available in basic

modal logic. Hybrid logic does have enough syntax to express all tableau formu-

las (see the internalized tableau system in [6]), but the way prefixed expressions

and equations have to be expressed is far from natural.

Search Space

We have tried to keep the search space for the diamond rule as small as possible.

Our main workhorse is quasi-evidence, that is, diamond formulas that are quasi-

evident (in the kernel) must not be expanded. The blocking condition based on

chain-evidence avoids further diamond expansions. These search space prunings

are not provided by the systems in [6, 21].

30

13 Conclusion

This paper updates and extends results of two preliminary papers [20, 21]. In

our view, our main contributions are as follows.

• Model existence theorem. The model existence theorem for quasi-evident sets

explains how edges can be safely added after the tableau system has done

its work. Before, this important technique was buried in opaque model exis-

tence proofs for particular tableau systems. In our case, the model existence

theorem precedes the tableau systems, not vice versa. Our basic system T
corresponds directly to the model existence theorem for quasi-evident sets,

and the refined systems T p and T c are obtained from T by adding blocking

constraints.

• Pattern-based control. The basic tableau system terminates for converse-free

formulas if box propagation is prioritized. We speak of pattern-based block-

ing to distinguish this new control from the established control obtained

with chain-based blocking. Pattern-based blocking has great potential for ef-

ficient implementation since in total at most |P(LabA)| diamond expansions

are needed, where A is the initial clause. In contrast, chain-based blocking

achieves the same bound only per ancestor chain.

• Treatment of equality. The main technical difficulty we had to overcome

for this paper is the transparent treatment of the equational constraints

that come with nominals and difference. After exploring several possibili-

ties [14, 20, 21], we finally arrived at the treatment employed in this paper.

The construction is now such that the treatment of equational constraints

comes as a transparent refinement of an underlying equality-free system. This

is achieved with an equational closure whose representation is left open.

• Difference. We present the first terminating tableau systems for the differ-

ence modalities. Given the general approach of this paper, the treatment of

difference is no big deal. But it were difficulties with the difference modalities

that led us to the abstract treatment of equality with∼A and Ã.

References

[1] Carlos Areces and Balder ten Cate. Hybrid logics. In Blackburn et al. [5],

pages 821–868.

[2] Franz Baader and Carsten Lutz. Description logic. In Blackburn et al. [5],

pages 757–820.

[3] Philippe Balbiani and Stéphane Demri. Prefixed tableaux systems for modal

31

logics with enriched languages. In Anca L. Ralescu and James G. Shanahan,

editors, Proc. 15th Intl. Joint Conf. on Artificial Intelligence (IJCAI’97), pages

190–195. Morgan Kaufmann, 1997.

[4] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic. Cam-

bridge University Press, 2001.

[5] Patrick Blackburn, Johan van Benthem, and Frank Wolter, editors. Hand-

book of Modal Logic, volume 3 of Studies in Logic and Practical Reasoning.

Elsevier, 2006.

[6] Thomas Bolander and Patrick Blackburn. Termination for hybrid tableaus.

J. Log. Comput., 17(3):517–554, 2007.

[7] Thomas Bolander and Torben Braüner. Tableau-based decision procedures

for hybrid logic. J. Log. Comput., 16(6):737–763, 2006.

[8] Maarten de Rijke. The modal logic of inequality. J. Symb. Log., 57(2):566–

584, June 1992.

[9] William M. Farmer. The seven virtues of simple type theory. J. Appl. Log.,

6(3):267–286, 2008.

[10] Melvin Fitting. Modal proof theory. In Blackburn et al. [5], pages 85–138.

[11] George Gargov and Valentin Goranko. Modal logic with names. J. Philos.

Log., 22:607–636, 1993.

[12] George Gargov, Solomon Passy, and Tinko Tinchev. Modal environment for

Boolean speculations (preliminary report). In Dimiter G. Skordev, editor,

Mathematical Logic and Its Applications: Proceedings of an Advanced Inter-

national Summer School and Conference in honor of the 80th anniversary of

Kurt Gödel’s birth, pages 253–263. Plenum Press, 1987.

[13] Joseph Y. Halpern and Yoram Moses. A guide to completeness and com-

plexity for modal logics of knowledge and belief. Artif. Intell., 54:319–379,

1992.

[14] Moritz Hardt and Gert Smolka. Higher-order syntax and saturation algo-

rithms for hybrid logic. Electr. Notes Theor. Comput. Sci., 174(6):15–27,

2007.

[15] K. Jaakko J. Hintikka. Form and content in quantification theory. Two papers

on symbolic logic. Acta Philosophica Fennica, 8:7–55, 1955.

32

[16] Ian Horrocks, Ullrich Hustadt, Ulrike Sattler, and Renate Schmidt. Compu-

tational modal logic. In Blackburn et al. [5], pages 181–245.

[17] Ian Horrocks and Ulrike Sattler. A description logic with transitive and in-

verse roles and role hierarchies. J. Log. Comput., 9(3):385–410, 1999.

[18] Ian Horrocks and Ulrike Sattler. A tableau decision procedure for SHOIQ. J.

Autom. Reasoning, 39(3):249–276, 2007.

[19] George E. Hughes and Maxwell J. Cresswell. An Introduction to Modal Logic.

Methuen, 1968.

[20] Mark Kaminski and Gert Smolka. Hybrid tableaux for the difference modal-

ity. In 5th Workshop on Methods for Modalities, 2007. To appear in ENTCS

2009.

[21] Mark Kaminski and Gert Smolka. Terminating tableaux for hybrid logic

with the difference modality and converse. In Alessandro Armando, Peter

Baumgartner, and Gilles Dowek, editors, IJCAR 2008, volume 5195 of LNCS

(LNAI), pages 210–225. Springer, 2008.

[22] Saul A. Kripke. Semantical analysis of modal logic I: Normal modal proposi-

tional calculi. Z. Math. Logik Grundlagen Math., 9:67–96, 1963.

33

	Introduction
	Modal Logic in Simple Type Theory
	Types and Terms
	Formulas and Logical Constants
	Basic Modal Logic
	Variables and Nominals
	Lifting and Global Quantification
	Basic Hybrid Logic
	Difference
	Converse
	Reflexivity and Transitivity

	Modal Expressions and Modal Formulas
	Herbrand Semantics
	Evident Sets
	Quasi-Evident Sets
	A Tableau System Based on Quasi-Evidence
	Termination for Diamond-Free Clauses
	Termination for Converse-Free Clauses
	Chain-Based Blocking
	Termination of the Chain-Based System
	Remarks
	Conclusion

