
GIFT: A Generic Interface for reusing Filtering

Algorithms

Ka Boon Ng1, Chiu Wo Choi1, Martin Henz1, Tobias Müller2

1 School of Computing, National University Of Singapore, Singapore
{ngkaboon,choichiu,henz}@comp.nus.edu.sg

2 Programming Systems Lab, Universität des Saarlandes, Germany
tmueller@ps.uni-sb.de

Abstract. Many different constraint programming (CP) systems exist today. For
each CP system, there are many different filtering algorithms. Researchers and
developers usually choose a CP system of their choice to implement their filtering
algorithms. To use these filtering algorithms on another system, we have to port
the code over. This situation is clearly not desirable. In this paper, we propose
a generic C++ interface for writing filtering algorithms called GIFT (Generic
Interface for FilTers). By providing the generic interface on different CP systems,
we can reuse any filtering algorithms easily. A case study on reusing scheduling
filtering algorithms between Mozart and Figaro further highlights the feasibility
of this approach.

1 Introduction

Today many programming systems and libraries make extensive use of the constraint
programming technology. Examples include ILOG [ILO97b], CHIP [BSKC97], GNU
Prolog [DC00], CLAIRE [CJL99], Mozart [Moz99]. A central theme of these recent
CP systems is that they provide the capability for users to program their own con-
straints [MW97,PL95].

Meanwhile, researchers have proposed many filtering algorithms to improve constraint
propagation. Examples include the all different constraints [Rég94], the task intervals
constraint [CL94] and some scheduling constraints that incorporate Operations Research
techniques [BPN95]. Usually, as a proof of concept, they implement these algorithms as an
extension of a specific CP system. When other researchers/developers wish to implement
the algorithms, they often have to program the algorithms from scratch.

As a result, we have the scenario that many programmers implement similar filtering
algorithms in different CP systems. What we really like to have is a single implementation
of a filtering algorithm that runs on any CP system. Figure 1 shows graphically our
intention.

In Nicolas Beldiceanu and Warwick Harvey and Martin Henz and François Laburthe
and Eric Monfroy and Tobias Müller and Laurent Perron and Christian Schulte,
editors, Proceedings of the Workshop on Techniques for Implementing Constraint
Programming Systems - TRICS, pages 86–100, Singapore, September 2000.



Fig. 1 Before GIFT and after GIFT

Filtering
Algorithm

CP System

Mozart

ILOG

Figaro

Filtering
Algorithm

CP System

ILOG GIFT

Figaro

Mozart

Clearly, we can have better code reuse if everyone implements filtering algorithms
for a single CP system. Unfortunately, many CP systems exist for different purposes.
Yet, this thought provides us with the key idea to this work. Most CP systems are
extensible by C/C++ and by relying on a generic C++ interface, we can implement
filtering algorithms through the use of the interface. We do not need to concern themselves
with system-specific issues. What we need to do is to implement the interfaces on different
CP systems.

In this paper, we review the important functionalities that a filtering algorithm will
need from a CP system in the context of finite domain constraints. By extracting these
functional requirements, we identify a suitable interface between the CP system and the
filtering algorithms. Instead of providing everything using one thick interface, we define a
set of thin interfaces, namely CP Service Interface, CP Constraints Interface, CP Finite
Domain Interface, CP Variables Interface. Filtering algorithms are mostly concerned
with the latter two to help achieve local-consistency by domain reduction. The difference
between finite domains and variables is that a variable links a finite domain to the actual
variable in the store. Constraints and filtering algorithms have an analogous relationship
in that the constraints represent meta-information about the filtering algorithms. The CP
Service is an interface use for communicating information between the filtering algorithms
and the CP System.

Building on the interface, we show the design of an interface for ILOG and Mozart.
The interface can be extended to other CP systems readily. Despite the differences be-
tween ILOG and Mozart, both represent constraints as objects in their systems. To
program our own constraints, we can extend from the pre-defined constraint classes on
both systems. Thus, it means that our interface class can be a member of the extended
constraint class.



As a concrete proof of concept, we present a case study on the sharing of filtering
algorithms between Mozart and Figaro [HMN99]. Although the two CP systems have
significant differences, we show that both systems can share filtering algorithms through
our generic interface. Moreover, experimental evaluation shows that the overhead for our
generic interface is minimal for solving constraint problems.

The rest of the paper is organized as follows. Section 2 reviews the filtering algorithms’
design requirements of the generic interface. Section 3 outlines the interface declaration
given in C++. Section 4 shows how the interface can be implemented in ILOG and
Mozart. Section 5 gives an example of the implementation of a filtering algorithm. Sec-
tion 6 provides a case study illustrating the reuse of scheduling propagators between
Mozart and Figaro. Section 7 discusses how we can handle differences among different
CP systems and sheds some light on our future work.

2 Design Requirements

This section explains how a filtering algorithm can interact with the CP system. By
identifying the operations, we can provide an interface to such operations in a generic
way. In addition, the interface should ensure that the filtering algorithms are loosely
coupled with the underlying CP system so as to achieve platform independence.

The requirements of a filtering algorithms are as follows:

1. A filtering algorithm needs to identify variables and manipulate their respective do-
mains. Manipulation usually comes in the form of domain reduction.

2. A filtering algorithm needs to communicate its state to the CP system. It needs to
tell the CP system whether it is entailed or failed.

3. A filtering algorithm may need to communicate changes to the CP system. There
may be advanced filtering algorithms that can replace the current constraint with a
better constraint when they meet a certain condition or when other constraints unify
two variables in the filtering algorithm.

4. A filtering algorithm may need to get information from the CP system. For example,
it may want to query if two variables in the filters are referring to the same variable.

5. A filtering algorithm should be stateful. Some filter algorithms need to maintain a
support graph in order to speed up filtering. For system independence, we should
construct these graphs and keep them in the filtering algorithms.

6. A filtering algorithm must be able to create a copy of itself. This requirement al-
lows search algorithm to restore the state of the store, which includes the individual
filtering algorithms, to a previous state, during a backtracking search.

3 Generic Interface

This section describes the important parts of the interface, especially with respect to the
requirements listed out in the previous section. We represent this set of interfaces using
the following C++ classes, namely, CP Service, CP Constraint, CP Variable and CP
Finite Domain.



Program 1 The CP FiniteDomain interface

class CPFD {

public:

// constructors to be defined...

int getMin() const; // returns minimum value

int getMax() const; // returns maximum value

int getValue() const; // return a singleton value or -1

int operator >=(const int v); // filter off values less than v

int operator <=(const int v); // filter off values greater than v

int operator &=(const int v); // set domain to v

int operator -=(const int v); // takes away v from FD

~CPFD(); // destructor

};

Program 1 shows a basic interface for CP Finite Domain. Programmers can use the
interface to access the domain and modify the domain. To provide backward compatibility
to Mozart’s propagators, we kept the overloaded operators for domains manipulation.

Program 2 shows the interface of CP Variable. These variables hold the finite domain
and the identity of the variables themselves. In this simple setup, the CP Variable needs
only to return its CP Finite Domain for domain accesses and modifications. Thus, the
CP Variable and CP Finite Domain classes help to encapsulate system-specific details
about the variables from the programmers.

Program 2 The CP Variable interface

class CPFDVar {

public:

// constructor : to be defined...

CPFD& operator * (void) { return (*fd); } // for accessing

CPFD* operator -> (void) { return (fd); } // finite domains

~CPFDVar(); // destructor

};

There are four types of operations in CP Service. From the filtering algorithm point
of view, it allows communicating information to and from the CP system. Similarly, from
the CP system point of view, it allows an additional channel to communicate information
to and from the filtering algorithm. Using an interface class allows more expressivity in
passing arguments and returning values. This interface fulfills requirements (2), (3) and
(4) described in the previous section. By implementing the filtering algorithm as an
object, we achieve (5). C++ provides an interface known as a copy constructor for every



class. A copy constructor allows the programmers to create a copy of an existing object.
The copy constructor naturally fulfills (6).

Program 3 illustrates an interface that can communicate the propagation result to
the CP system. We use an enumerated type, CPState, to reflect the state of the filtering
algorithms. The filtering function must return the CPService reference pointing to itself
(i.e. *this). In this way, we can write more concise code without declaring any additional
variables to store the return CPService object.

Program 3 A CP Service interface

enum {FAIL, ENTAIL, SLEEP} CPState;

class CPService {

public:

// constructor : to be defined...

CPService(const CPService &rhs); // copy constructor

CPService& entail(); // mark state to entail

CPService& fail(); // mark state to fail

CPService& sleep(); // mark state to sleep

// advance services omitted ...

CPState getResult(); // gets the propagation result

};

4 Implementing Interface

This section gives some pointers on the actual implementation of the interface in ILOG
and Mozart.

4.1 ILOG

In ILOG, the finite domains are represented using the IlcIntExp class. For most op-
erations, there should be a one-to-one correspondence between the interface functions’
declaration and ILOG’s IlcIntExp member functions. Program 4 gives an example of
the implementation of accessing and modifying the finite domain.

In this setup, the identity of the variable is not necessary. Although this interface
class seems redundant in ILOG’s context, it can be useful for other systems. Program 5
shows a straightforward implementation of this additional wrapper code for ILOG. It is
important that the copy constructor must be properly defined because by default, the
copy constructor of C++ does a member-wise copy of the class. In other words, we must
copy the content of the pointer and not just the pointer only.

In ILOG, they represent the solver using the IlcManager class. Thus, the CP Service
interface should contain IlcManager. In addition, to remove a constraint from the man-
ager, we must remember the constraint object. Program 6 shows the implementation of
what we just described.



Program 4 Simple ILOG’s Implementation CP Finite Domain interface

class CPFD {

IlcIntExp fd;

public:

CPFD(IlcIntExp i) : fd(i) { }

int getMin() const { return fd.getMin();} // get min value

int operator >=(const int v) { // filter off values

fd.setMin(v); // less than v

return fd.getSize();

}

};

Program 5 ILOG’s Implementation CP Variable Interface

class CPFDVar {

CPFD* fd;

public:

CPFDVar(IlcIntExp var) { fd = new CPFD(var); }

// copy constructor must be properly defined

~CPFDVar() { delete fd; } // destructor

CPFD& operator * (void) { return (*fd); } // for getting

CPFD* operator -> (void) { return (fd); } // back Finite Domains

};

4.2 Mozart

In Mozart, they represent the finite domains using a OZ_FiniteDomain object. As before,
there should be a one-to-one correspondence with the interface functions’ declaration and
the Mozart’s OZ_FiniteDomain member functions. Program 7 gives an example of the
implementation of accessing and modifying the finite domain. The striking similarity
between the CP Finite Domain interface and the OZ_FiniteDomain should not be sur-
prising. CP Finite Domain was originally modeled using OZ_FiniteDomain class as the
base.

Like in ILOG, the CP Variable interface class is redundant in our simple setup.
Program 8 shows an almost equivalent implementation of Mozart CP Variable interface.

Mozart’s CP Service interface is slightly simpler than the ILOG’s version because
many things are handled directly by the Mozart’s constraint solver. Program 9 is just
another fancy way to return the filtering results. Though this way seems overweight in
this context, this interface is useful for the ILOG system.

5 Programming Filters

This section illustrates how to write a simple inequality filter, i.e. x 6= y. In addition, it
shows how the whole setup should work under Mozart and ILOG.

The simple inequality filter (x 6= y) rules are:



Program 6 ILOG’s Implementation CP Service interface

class CPService {

CPState state;

IlcManager M;

IlcConstraint currCon;

public:

CPService(IlcManager m,IlcConstraint c)

: currCon(c), M(m) { }

CPService& entail() {

M.remove(currCon);

state = ENTAIL; return *this;

}

CPService& fail() { state = FAIL; return *this; }

CPService& sleep() { state = SLEEP; return *this; }

CPState getResult() { return state; }

};

Program 7 Mozart’s Implementation CP Finite Domain interface

class CPFD {

OZ_FiniteDomain fd;

public:

CPFD(const OZ_FiniteDomain &i) : fd(i) { }

int getMin() const { return fd.getMinElem();} // get min value

// filter off values less than v

int operator >=(const int v) { return fd >= v; }

};

1. If x’s domain is disjoint to y’s domain, filter is entailed.
2. If x and y are both singletons,

(a) and if x’s singleton value 6= y’s singleton value , filter is entailed. (Note this step
is already subsumed by step 1)

(b) Otherwise, filter is failed.

3. If only x is singleton,

(a) take out x’s singleton value from y’s domain
(b) Filter is entailed if y’s domain size is not zero. Otherwise, filter is failed.

4. If only y is singleton,

(a) take out y’s singleton value from x’s domain
(b) Filter is entailed if x’s domain size is not zero. Otherwise, filter is failed.

Program 10 implements the filter rules. Recall that *x and *y are for getting the
finite domains’ representation of variable x and y, and the -= – operator takes away the
right-hand side value from the left-hand side finite domain. The & – operator intersects



Program 8 Mozart’s Implementation CP Variable interface

class CPFDVar {

CPFD* fd;

public:

CPFDVar(const OZFiniteDomain &f) { fd = new CPFD(f); }

// copy constructor must be properly defined

~CPFDVar() { delete fd; } // destructor

CPFD& operator * (void) { return (*fd); } // for getting back

CPFD* operator -> (void) { return (fd); } // Finite Domains

};

Program 9 Mozart’s Implementation CP Service interface

class CPService {

public:

CPService() { }

CPService& entail() { state = ENTAIL; return *this; }

CPService& fail() { state = FAIL; return *this; }

CPService& sleep() { state = SLEEP; return *this; }

CPState getResult() { return state; }

};

two finite domains whereas function getSize() returns the number of elements in the
domain produced by the & – operator.

To call the filter from ILOG, we can call the filtering function as follows.

void IlcDiffConstraint::propagate() {

CPFDVar x(_x), y(_y);

CPService s(_x.getManager(),*this);

diffFilterObject->filter(s,x,y);

}

The _x and _y are IlcIntExp objects. After initializing the CP Variable, we can in-
stantiate a service object with a manager and the identity of the current constraint.
Finally, we can execute the filtering function by passing in the CP Service object and the
CP Variable objects. There is no need to take care of the propagation result because in
ILOG, when the domain of a variable becomes empty, a failure will be triggered in the
manager [ILO97a].

To call the filter from Mozart, we implement the following.

OZ_Return DiffProp::propagate() {

CPFDVar x(*_x), y(*_y);

CPService s;

diffFilterObject->filter(s,x,y);



Program 10 The x 6= y filtering member function

CPService& diffFilter::filter(CPService &svc, CPFDVar &x, CPFDVar &y)

{

if ((*x & *y).getSize() == 0) // rule 1

return svc.entailed();

if (x.isSingleton() && y.isSingleton()) // rule 2

if (x.getSingleElem() != y.getSingleElem())

return svc.entailed();

else

return svc.failed();

if (x.isSingleton()) // rule 3

if ((*y -= x.getSingleElem())==0)

return svc.failed();

else

return svc.sleep();

if (y.isSingleton()) // rule 4

if ((*x -= y.getSingleElem())==0)

return svc.failed();

else

return svc.sleep();

}

switch (s.getResult()) {

FAIL : return OZ_FAIL;

ENTAIL : return OZ_ENTAIL;

SLEEP : return OZ_SLEEP;

}

}

The _x and _y are OZ_FDIntVar objects. The implementation is similar to ILOG except
that we need to postprocess the propagation result.

6 Case Study: Sharing Scheduling Filters between Mozart and

Figaro

This section shows a case study for sharing scheduling filters between Mozart and Figaro.
First, the differences between the two CP systems: Mozart and Figaro, is observed. Then,
we show how common scheduling filters can be shared between the two different CP
systems through our generic interface.

The constraint store abstraction of Figaro is know as store [HMN99]. It contains
variables and propagators as data. Moreover, it differs from the standard way of using a
direct reference to the objects of the constraint store. It uses an indirection mechanism
which allows greater flexibility to describe the relation between propagators and variables.
Each variable has a unique identity assigned by the store during creation. The variable
Id together with a store uniquely identifies the variable that is being accessed. This is
called indirect addressing of variables.



The computational architecture of Mozart is called a space and consists of a number
of propagators connected to a constraint store. One particular feature is Mozart allows a
tree of spaces. Spaces host threads that can concurrently run at the same time. However,
variables in a space are not easily accessible as compared to a store of Figaro. The only
place to gain access to these variables in a space is through the root variable. Another
important difference is that Figaro’s stores are accessed explicitly. On the other hand,
Mozart’s spaces are embedded in the Oz virtual machine and are accessed through a
space register [Sch97].

The two scheduling filtering algorithms that we share between Mozart and Figaro
are used for solving the disjunctive scheduling problems. Specifically, these filtering algo-
rithms model unary resource constraints. The first one is called disjunctive filter. Given
a set of tasks that requires a unary resource (i.e. resource of capacity one), disjunctive
filter reasons that no two tasks in the set can overlap in time. The second one is called
task intervals filter [CL94]. It adopts a concept taken from Operations Research called
edge-finding which performs stronger propagation than the first one.

Program 11 shows the declaration for the disjunctive filter which is shared between
Mozart and Figaro. We can also declare task intervals filter in the same way. The start

variable is a vector of CP Variable objects that represent the start time of each task.
Class CPVectorVar is a template parameter like CPService, because it is CP System
dependent. The filter has an attribute duration to represent the duration of each task.
The details on the implementation of the two filtering algorithms are beyond the scope
of this paper. Basically, we reuse the source code of Mozart in implementing the two
filtering algorithms with minor modifications. These minor modification allows us to run
the two filtering algorithms on any CP system that implements our interface.

Program 11 Declaration for Scheduling Filtering Algorithms
template<class CPService, class CPVectorVar>

class DisjunctiveFilter : public filter {

private:

int *duration;

public:

diffFilter(int *dur) : duration(dur) {}

CPService& filter(CPService &svc, CPVectorVar &start)

{

// ... implementation of disjunctive filter

}

}

Program 12 shows how to call the disjunctive filter from Mozart. We can call the task
intervals filter in the same way. The _xs and _n are space registers which contain the
array of variables and its length. As we have mentioned earlier, this is the way for Mozart
to gain access to the space and the variables. The class OZ_FDIntVarVector is a vector
class for collecting variables into start. Class OZ_Service implements CP Service. The
FDIntVarIterator object makes it possible for the OZ_Service object to iterate over



the finite domain variables in start, e.g. to automatically write back domain reductions
to the spaces.

Program 12 Mozart Interface To Call Disjunctive Filter

OZ_Return DisjunctivePropagator::propagate(void)

{

OZ_FDIntVar _start[_n];

for (int i = _n; i--; )

_start[i].read(_xs[i]);

OZ_FDIntVarVector start(_n, _start, &_xs);

FDIntVarIterator P(_n, _start);

OZ_Service svc(this, &P);

DisjunctiveFilter->filter(svc,start);

switch (s.getResult()) {

FAIL : return OZ_FAIL;

ENTAIL : return OZ_ENTAIL;

SLEEP : return OZ_SLEEP;

}

}

Program 13 shows how to call the disjunctive filter from Figaro. We can call the task
intervals filter in the same way. Figaro uses the Standard Template Library (STL) [SL95]
extensively. The STL vector class is used for start, rather than defining another new
class. In constructing each CPFDVar element, we need to have both the store and variable
Id due to indirect addressing of variables in Figaro.

Program 13 Figaro Interface To Call Disjunctive Filter

State DisjunctivePropagator::propagate() {

vector<CPFDVar> start;

vector<varId>::iterator it = _start.begin();

while (it != _start.end()) {

start.push_back(CPFDVar(store,*it)); it++;

}

CPService svc;

DisjunctiveFilter->filter(svc,start);

switch (s.getResult()) {

FAIL : return FAIL;

ENTAIL : return ENTAIL;

SLEEP : return SLEEP;

}

}



The experimental evaluation uses four scheduling benchmark problems: house prob-
lem, bridge problem, ABZ6 and MT10. We measure the overhead incurred by the generic
interface. Table 1 shows the results of the experiment. The label (Disj) means disjunc-
tive propagator is used, while (TI) means task intervals propagator is used. We take the
average user time of five runs as the runtime (in seconds). We run the problems on a 256
MB 400MHz Pentium II PC running Linux.

Mozart Mozart w/ GIFT Figaro w/ GIFT

House (1000×) (Disj) 11.5s 12.4s 22.1s

Bridge (100×) (TI) 13.8s 14.2s 23.4s

ABZ6 (TI) 31.98s 31.98s 65.24s

MT10 (TI) 278s 279s 629.98s
Table 1. Results of Scheduling Benchmark Problem

From the results, we can observe that the overhead incurred by the generic interface
is minimal. As for Mozart, the overhead incurred is almost negligible. At the time of
the experiment, Figaro is still in its experimental stage. No fine tuning have been done
yet. We observe that Figaro runtime is about twice of Mozart implementation based
on the results of ABZ6 and MT10. From this observation, we conclude that there is no
increasing blown up in runtime when we use our generic interface. The results affirms
that our generic interface approach is practical in facilitating reuse of filtering algorithms
among different CP Systems.

7 Discussion

This section discusses the design issues for implementing advanced propagators. It dis-
cusses also the related work and future work.

In this paper, we presented a simple interface between the CP system and the filtering
algorithms. The interface cannot handle advanced filtering algorithms that can perform
constraint reasoning [HS98,Mül00]. Such filtering algorithms can impose new constraints,
replace itself with another constraint or even transform a set of constraints into another
set of constraints. In addition, it can drop old variables from a constraint and add new
variables to a constraint. In Mozart, constraints can unify two variables making them
equal by reference.

Not all constraint reasoning can be implemented in this interface, but we are able
to handle imposing and replacing of constraints. To do that, we can use the CP Con-
straint interface. This interface class consists of a number of static member functions that
when called return a pointer to a new constraint object containing a particular filtering
algorithm. To impose an all-different constraint, we can code:

svc.impose(CPConstraint::makeAllDiffConstraint())

We define void dropVar(varId v) and void addVar(varId v) for dropping and adding
variables respectively. The member function void equatevar(varId x, varId y) al-
lows us to unify the variables.



Having a specific operation like unification of variables can have subtle effects on
the implementation of filtering algorithms. In Mozart, variables equality is represented
directly. Such representation may not exists on other CP systems. In that case, when
equatevar is called, the implementation can either issue a no-op or introduce an equality
constraint. Doing so may decrease the strength of the propagation. More importantly,
programmers should be aware of such differences and ensure that the filtering algorithms
end result must be consistent in different CP systems.

By making the interface as generic as possible, we omitted some system specific
features. For example, a CP system may wish to enquire information about the domain
reduction rate of a filtering algorithm. Although it is easy to include this additional
communicating interface between filtering algorithms and the CP system, it is clearly not
desirable because of its specific nature. Moreover, nothing is stopping the programmer
to modify the GIFT interface to suit her particular needs.

Although this particular work is new to the constraint programming community, the
ideas of interfacing has a long history. Some recent work includes Simplified Wrapper
Interface Generator(SWIG) [Bea96], which wraps C/C++ code and extend it to differ-
ent scripting languages, and Java Database Connectivity (JDBC) [Sli00], which lets the
user access different relational database systems using a common interface. Furthermore,
[GHJV94] mentions the use of the adapter design pattern which is another name for
interface and wrapper.

The future direction of this work is to focus more on the advanced filtering algorithms
and identify the functionalities that these filtering algorithms need. Another problem is
that even with a generic interface, extending the predefined constraint class is unnecessary
tedious. It may be worthwhile to implement stub generation tools based on a simplified
class definition.

8 Conclusion

There is a many-to-many relationship between CP systems and filtering algorithms. To
achieve a higher degree of reuse, we should only need to implement the filtering algorithms
once and be able to run it on any CP system.

The key idea to achieve this goal is to use the idea of an interface. Instead of just
providing a single thick interface, we made the interface more organized and manageable
by decomposing the interface into a set of interfaces, namely CP Service, CP Constraint,
CP Variable and CP Finite Domain.

Based on this idea, we identified the important requirements of the filtering algorithms
and designed the different interface classes. Following that, we implemented the interface
in Mozart and showed how a filtering function can be called from Mozart. We also showed
the design of the interface using ILOG. The case study further proved the practicality
of this approach. We expect reuse of filtering algorithms will speed up development time
and allow us to concentrate on other aspects of constraint programming.

Acknowledgments

We would like to thank Ong Kar Loon for implementing some of the filters.



References

[Bea96] David M. Beazley. SWIG: An Easy to Use Tool for Intergrating Scripting Languages
with C and C++. In 4th Annual Tcl/Tk Workshop, Monterey, July 1996.

[BPN95] P. Baptiste, C. Le Pape, , and W. Nuijten. Incorporating efficient operations research
algorithms in constraint-based scheduling. In Proceedings of the First International
Joint Workshop on Artificial Intelligence and Operations Research, 1995.

[BSKC97] Nicolas Beldiceanu, Helmut Simonis, Philip Kay, and Peter Chan. The CHIP system.
White paper, COSYTEC SA, 1997. Ref: COSY/WHITE/002, Ver: 1.2, Rev: A.

[CJL99] Yves Caseau, François-Xavier Josset, and François Laburthe. CLAIRE: Combining
sets, search and rules to better express algorithms. In Danny De Schreye, editor,
Proceedings of the International Conference on Logic Programming, pages 245–259,
Las Cruces, New Mexico, USA, 1999. The MIT Press, Cambridge, MA.

[CL94] Yves Caseau and Fran cois Laburthe. Improved CLP scheduling with task intervals.
In Proceedings of the International Conference on Logic Programming, pages 369–383,
1994.

[DC00] Daniel Diaz and Philippe Codognet. The GNU prolog systems and its implementation.
In ACM Symposium on Applied Computing, Como, Italy, 2000.

[GHJV94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-Wesley,
Reading, MA, 1994.

[HMN99] Martin Henz, Tobias Müller, and Ka Boon Ng. Figaro: Yet another constraint pro-
gramming library. In Proceedings of the Workshop on Parallelism and Implementation
Technology for Constraint Logic Programming, 1999. held in conjunction with ICLP’99.

[HS98] Warwick Harvey and Peter Stuckey. Constraint representation for propagation. In
Jean-François Puget and Michael Maher, editors, Proceedings of the Fourth Interna-
tional Conference on Principles and Practice of Constraint Programming(CP98), Lec-
ture Notes in Computer Science, pages 235–249, Pisa, Italy, October 1998. Springer-
Verlag.

[ILO97a] ILOG Inc., Mountain View, CA 94043, USA, http://www.ilog.com. ILOG Solver
4.0, Reference Manual, 1997.

[ILO97b] ILOG Inc., Mountain View, CA 94043, USA, http://www.ilog.com. ILOG Solver
4.0, User Manual, 1997.

[Moz99] Mozart Consortium. The Mozart Programming System. Documentation and system
available via WWW from http://www.mozart-oz.org, 1999.

[Mül00] Tobias Müller. Promoting constraints to first-class status. In First International
Conference on Computational Logic, London, UK, 2000. to appear.

[MW97] Tobias Müller and Jörg Würtz. Extending a concurrent constraint language by prop-
agators. In Jan Ma luszyński, editor, Logic Programming: Proceedings of the 1997 In-
ternational Symposium, pages 149–163, Long Island, NY, USA, 1997. The MIT Press.

[PL95] Jean-François Puget and Michel Leconte. Beyond the Glass Box: Constraints as Ob-
jects. In Proceedings of the International Symposium on Logic Programming, pages
513–527, 1995.

[Rég94] Jean-Charles Régin. A filtering algorithm for constraints of difference in CSPs. In
Proceedings of the AAAI 12th National Conference on Artificial Intelligence, pages
362–367. AAAI Press, 1994.

[Sch97] Christian Schulte. Programming constraint inference engines. In Gert Smolka, editor,
Principles and Practice of Constraint Programming—CP97, Proceedings of the Third
International Conference, Lecture Notes in Computer Science 1330, pages 519–533,
Schloss Hagenberg, Linz, Austria, October/November 1997. Springer-Verlag, Berlin.

[SL95] Alexander Stepanov and Meng Lee. The Standard Template Library. Hewlett Packard,
1995. STL has since been incorporated into the C++ standard, ISO/IEC 14882-1998.



[Sli00] Carol Sliwa. Java databse connectivity. ComputerWorld, 2000. Available at
http://www.computerworld.com/home/features.nsf/all/991213qs.


