
Jonas Kaiser

MERGEMERGE FBY1 ham

MUL 2

MUL 3

MUL 5

Reconsidering Lucid

a modern approach

Computer Science Part II

Churchill College

May 12, 2010

The cover diagram shows a dataflow graph which computes the Hamming sequence. These

numbers are also known as 5-smooth, i.e. they have no prime divisors greater than 5.

Proforma

Name: Jonas Kaiser

College: Churchill College

Project Title: Reconsidering Lucid – a modern approach

Examination: Computer Science Part II, May 2010

Word Count: ca. 117001 (to the nearest 100)

Project Originator: Jonas Kaiser

Supervisor: Dominic Orchard

Original Aims of the Project

To implement a modern, high-level interpreter for a subset of the dataflow pro-

gramming language Lucid. The implementation language of choice is Scala due

to its actor based concurrency model.

Work Completed

The simLucid interpreter as required by the proposal, plus two proposed exten-

sions (caching and a timing evaluation) and one extension that was not initially

planned (going from one- to multi-dimensionality, using declarations).

Special Difficulties

Eyjafjallajökull

1This word count was computed by detex <texfiles> | tr -cd ’0-9A-Za-z \n’ | wc -w

i

Declaration

I, Jonas Kaiser of Churchill College, being a candidate for Part II of the Computer

Science Tripos, hereby declare that this dissertation and the work described in it

are my own work, unaided except as may be specified below, and that the disser-

tation does not contain material that has already been used to any substantial

extent for a comparable purpose.

Signed

Date

ii

Contents

1 Introduction 1

1.1 Background and Motivation . 1

2 Preparation 5

2.1 Getting started . 5

2.1.1 Notation . 5

2.1.2 Language Research . 5

2.1.3 Work Environment . 6

2.1.4 Methodology . 6

2.1.5 Success Criteria . 7

2.2 The Dataflow Language Lucid . 7

2.2.1 How to make Iteration Declarative 7

2.2.2 From Algebra to Programming Language 8

2.2.3 Operators and Operands 8

2.2.4 Laziness . 10

2.2.5 Definitions and Declarations 10

2.2.6 Input and Output . 11

2.2.7 Example – The Hamming Problem 12

2.2.8 Finite Sequences . 13

2.3 Scala . 13

2.3.1 Parser Combinators . 14

iii

2.3.2 Actor Concurrency Model 15

3 Implementation 17

3.1 The Abstract Syntax Tree . 17

3.1.1 Constructing and Disassembling ASTs 18

3.2 The Front End . 19

3.3 The Back End . 21

3.3.1 Actor-based Dataflow Networks 21

3.3.2 Dataflow Nodes . 26

3.3.3 Mapping from ASTs to Networks 29

3.4 Extension: Caching . 33

4 Evaluation 35

4.1 Expressiveness . 35

4.2 Correctness . 37

4.2.1 Running Average . 37

4.2.2 Fibonacci . 37

4.2.3 Howfar . 38

4.2.4 Running Total . 39

4.2.5 Factorials . 39

4.2.6 Primes . 40

4.2.7 Hamming . 41

4.3 Performance . 41

4.3.1 Machine used for Testing 41

4.3.2 Absolute Runtime . 42

4.3.3 Scaling Behaviour . 46

4.4 Non-deterministic Input Requests 52

5 Conclusion 53

5.1 Further Work . 53

iv

5.2 Key Findings . 54

Bibliography 55

A The simLucid Grammar 57

B simLucid Source 59

B.1 File: SimLucid.scala . 59

B.2 File: RTE.scala . 62

C Microsecond Timestamping 63

D Project Proposal 64

v

List of Figures

3.1 The high-level system layout. 17

3.2 FE layout . 20

3.3 The overall layout of the BE at runtime 22

3.4 The basic communication pattern of BE nodes 24

3.5 The BaseNode class on the inside 25

3.6 The Hierarchy of the various node types in the BE 26

4.1 Performance results for the running total program 42

4.2 Performance results for the running average program 43

4.3 Performance results for the howfar program 43

4.4 Performance results for the hamming program 44

4.5 Performance results for the Fibonacci program 45

4.6 Performance results for the factorial program 45

4.7 Normalised performance results for the running total program . . 46

4.8 Normalised performance results for the running average program . 47

4.9 Normalised performance results for the howfar program 47

4.10 Normalised performance results for the hamming program 48

4.11 Normalised performance results for the Fibonacci program 48

4.12 Normalised performance results for the factorial program 49

4.13 Scaling behaviour of the hamming program with respect to the

number of cores . 50

vi

4.14 Scaling behaviour of the factorial program with respect to the num-

ber of cores . 51

4.15 Scaling behaviour of the runavg program with respect to the num-

ber of cores . 51

4.16 A diamond-shaped demand pattern 52

vii

List of Tables

2.1 Overview of Scala parser combinators 14

4.1 Summary of expressiveness . 36

4.2 Summary of correctness results 36

4.3 Scaling comparison . 50

viii

Acknowledgements

I would like to express my gratitude to Dominic Orchard who supervised this

project and supported me with extensive feedback and the ability to use his

machine for the core-scaling evaluation.

ix

x

Chapter 1

Introduction

For my project I successfully developed a parallel interpreter for the dataflow

language Lucid, called simLucid. simLucid implements a core subset of the Lu-

cid language using the high-level programming language Scala. Its correctness is

demonstrated by comparing the implementation against the existing pLucid in-

terpreter, as well as comparing against operational semantics outlined in various

publications. This satisfies the core requirements of my project proposal. Fur-

thermore three extensions, namely a simple caching system, extension to multi-

dimensionality, and a performance evaluation have been developed.

1.1 Background and Motivation

At the end of the last century, single-core processor designs hit a wall of dimin-

ishing performance returns due to engineering and physical constraints. To keep

up with Moore’s law, manufacturers began to design dual core and later quad

core architectures. Processors with higher numbers of cores are becoming pre-

dominant, with heterogeneous designs also appearing [9]. Each separate core in

these many-core machines tends to be weaker than their single-core counterparts,

primarily to reduce power consumption.

High performance on many-core systems can be achieved through parallel pro-

gramming which matches the underlying architecture. Most mainstream imper-

ative languages are grounded in single-core von Neumann architectures, designed

to deal with a single thread of execution. The parallelism requirement prompted

the addition of threads as new primitives. However, threads introduced trouble

into the well-behaved world of sequential execution [13]. The most severe prob-

1

2 CHAPTER 1. INTRODUCTION

lem with this approach is that parallelism has to be expressed and dealt with

explicitly by the programmer.

Firstly, this dramatically increases the complexity of the programming task.

Secondly, it can introduce errors which arise from non-deterministic interaction.

Such bugs are hard, or even impossible, to cover with exhaustive testing. Thirdly,

the degree of achievable parallelism using existing tools seems to be limited. So

far it has been difficult to demonstrate reasonable gains beyond four cores for

wide sets of applications [4, 18, 14].

The obvious question then is: What can we do better? One option is a

paradigm shift from imperative to declarative languages. The latter tend to hide

possible parallel execution of programs in their semantics and implement it in

a runtime system, taking that burden away from the programmer. In many

declarative programming languages, parallelism may be possible because of the

absence of side-effects which gives freedom in the order of evaluation. Apart from

functional (ML, Haskell) and logic (Prolog) languages there is a further member

in this class which is often overlooked: dataflow languages.

Dataflow languages expose parallelism by removing unnecessarily strict con-

trol flow constructs where they are not needed to express the essence of an al-

gorithm or data structure. A program written in one of these languages can be

interpreted as a network of processes, with data tokens travelling along channels

and nodes performing computations [11]. One such language is Lucid [19].

If we consider the growing number of cores on a chip it might become feasible

to dynamically rewire a chip to form a dataflow network as an execution strategy.

To investigate this option, we need a framework which is modular and flexible,

that can ideally mimic various many-core designs and accept a generic dataflow

network representation of a program.

The only Lucid implementation to date is pLucid [6, 7], which is unfortunately

unsuitable for the proposed approach. pLucid, albeit fast, was not developed with

extension or parallelism in mind. The source code is written in low-level C with

complicated optimisations. Each compiler stage sits in a separate executable with

significant code duplication and subtle dependencies. Additionally, documenta-

tion is next to non-existent. Furthermore, pLucid forces the dataflow language

into the sequential von Neumann world using concepts of data warehousing and

eduction [19, 7]. Another issue was revealed during evaluation: for some programs

pLucid outputs incorrect results (details in Chapter 4).

In this project, I propose to take a first step in the direction of the framework

1.1. BACKGROUND AND MOTIVATION 3

suggested by building a new interpreter that honours the dataflow nature of

the language with a back-end that is based on parallel dataflow networks. The

eduction concept is maintained but the single warehouse of pLucid is distributed

over the set of computation nodes to allow parallel execution.

The simLucid implementation is far from a full many-core simulator, but it

serves as a proof of concept for this investigation, and a stepping stone for future

research.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Preparation

2.1 Getting started

2.1.1 Notation

Throughout this dissertation, all Lucid code is typeset as

X = 0 fby X + 1

and Scala code is presented as

Console.println("Hello, World!")

Inline typesetting is similar: Lucid and Scala.

2.1.2 Language Research

Before I could start I had to acquaint myself with both the target language,

Lucid, and the intended implementation language, Scala. For Lucid, this in-

volved comprehending a lot of (fairly old) research literature. To get a feel for

the language I obtained a copy of the pLucid system and experimented with the

example programs illustrated in the well-known Lucid Book [19]. Sources on

multi-dimensional programming [2], early publications on the language specifica-

tion [3] and a presentation of modern trends in the field [16] were also very helpful

5

6 CHAPTER 2. PREPARATION

to grasp the underlying principles. I also came across GLU [10], which takes Lu-

cid as a metalanguage to join together fragments of C code in a dataflow oriented

way. This was not directly relevant to this project but helped to establish the

wider picture and gives credence to further parallel investigations.

For Scala the case was slightly different. I had worked with the language

before on small projects and hence was aware of, but not proficient with, the

actor concurrency library and the parser combinator framework. Hence, most

of my preparation went into writing a command line calculator using parser

combinators and the development of a standalone, actor-based implementation

of the howfar Lucid program (see Chapter 4 for details). The latter confirmed

the suitability of my ideas for the back-end of simLucid.

2.1.3 Work Environment

I used my home machine for most parts of the development, while data was kept

in an svn repository located in my PWF home directory for backup. Since most

Scala IDE plugins still occasionally exhibit major glitches I decided to work in

a shell-only environment (editor: vim). In retrospect I would opt for a different

code management system (probably git1) as the shell interface of svn is at times

cumbersome to use, especially if something goes wrong in the directory tree. For

diagrams I decided to use the open source vector graphics program Inkscape2

due to its wide range of image formats. For performance curves I used gnuplot.

Along the way I learned a fair amount of shell scripting and learnt the use of sed

and dc to simplify the evaluation process.

2.1.4 Methodology

At the beginning I was not sure what amount of Lucid’s language specification

I would be able to complete, hence I decided to adopt an iterative development

methodology (the Spiral Model). I started with as minimal a grammar as possible

for a working front-end and linked it to a very early version of a network based

back-end. After that I could add more features, alternating between these two

major aspects of the system. Overall that approach worked reasonably well. At

two points I had to perform a large-scale refactoring of the system layout due to

difficulties in accommodating particular features. Such reorganisations throttled

1http://git-scm.com
2http://www.inkscape.org

2.2. THE DATAFLOW LANGUAGE LUCID 7

progress somewhat, but the effect was not too severe, thanks to well organised

code. To ensure that newly added features did not break the work achieved so

far I set up a sequence of integration tests based on sample Lucid programs of

increasing feature richness.

2.1.5 Success Criteria

I defined the requirement for success to be a working simLucid interpreter with

a semantically correct front- and back-end (Appendix D). The system should

implement a first order subset of the Lucid language specification with integers

and the two basic, but fundamental, intensional operators (see below). Multi-

dimensionality using declarations is not required, but was added as an extension.

2.2 The Dataflow Language Lucid

2.2.1 How to make Iteration Declarative

Lucid is a pure, definitional language with lazy evaluation. The main design

objective was to preserve the concept of iteration whilst still being declarative.

A crucial concept used in Lucid is the distinction between extensions which

are ordinary values and intensions which are maps from contexts to extensions.

intension : context → extension

Such a map models entities which have a context-dependent meaning. In the case

of iterative programs one can observe that a single variable can take on multiple

values and whenever the variable is used, its value (or extension) depends on the

point in the dynamic execution trace, i.e. variables are intensional entities. A

comprehensive presentation of the concept of intensionality is given in [17].

A dynamic execution trace is a linear sequence of instructions: so, without loss

of generality, we can assign each position a discrete “time” context, represented

using natural numbers.

The designers of Lucid made this intensional nature of variables explicit by

creating an algebra of histories. A history is a map from natural numbers to

elements of a different algebra. A history is conceptually identical to an infinite

stream.

8 CHAPTER 2. PREPARATION

We take an existing algebra where the elements are integers, reals, booleans,

etc. and use a stream functor to give an algebra where the elements are streams

of integers, reals, booleans, etc. Literals from the underlying algebra are lifted

to streams that have the given extension at every context, i.e. constant streams

that will be denoted syntactically by the same literal. Finally, operators from the

base algebra are lifted to operators of the same arity which work pointwise on

streams. Operators generated in this way are extensional, i.e. they produce result

streams whose extension at a particular timestamp (context) t only depends on

the extensions of all operands at the same time t. Operators with this property

are also called synchronic or pointwise in previous Lucid literature [19].

In Lucid the set of extensional operators is augmented with two intensional

operators. Their result at time t can depend on the whole (or partial) history of

an operand. They give sufficient control over the relative positioning of streams

without exposing time indices directly as first class values.

2.2.2 From Algebra to Programming Language

Lucid is a member of Landin’s ISWIM family of languages [12] parameterised by

the continuous algebra we have constructed above. Lucid does not use the full

ISWIM framework and makes the following changes: only the first order subset

of ISWIM is used (functions are not first class values). Also ISWIM distinguishes

where clauses that do not allow for mutual recursion (introduced using the where

keyword) and those which do (whererec). In Lucid all where clauses can contain

mutually recursive definitions, and for brevity only the where keyword is used.

2.2.3 Operators and Operands

In Lucid all operands, constants and variables alike, denote infinite streams of

values. Accordingly all operators produce new streams. Here are some examples.

42 = 〈42, 42, 42, 42, 42, . . .〉
x = 〈x0, x1, x2, x3, x4, . . .〉

index = 〈0, 1, 2, 3, 4, . . .〉

2.2. THE DATAFLOW LANGUAGE LUCID 9

Lucid’s extensional operators work pointwise,

a = 〈a0, a1, a2, . . .〉
b = 〈b0, b1, b2, . . .〉

a OP b = 〈a0 op b0, a1 op b1, a2 op b2, . . .〉

where OP and “op” are the lifted and base versions respectively of operators

such as addition, multiplication, modulo, equality or less than. A conditional

if-then-else-fi construct is treated as such an operator, albeit a ternary one.

The two core intensional operators mentioned above are the binary fby (pro-

nounced ‘followed by’) and the unary next which conceptually allow shifting a

sequence one step to the right or the left respectively. While the latter drops the

leading element, the former must fill the empty slot at time 0 and hence requires

two operands:

x = 〈x0, x1, x2, . . .〉
y = 〈y0, y1, y2, . . .〉

x fby y = 〈x0, y0, y1, y2, . . .〉
next x = 〈x1, x2, x3, . . .〉

There are several other useful intensional operators that can be derived from fby

and next using function definitions.3

The unary first operator returns a constant stream that has everywhere the

extension its argument has at time 0. The binary asa (short for ‘as soon as’)

works similarly, but the value picked depends on the time when the guard (the

second operand) is true for the first time. The remaining two are whenever

(sometimes aliased as wvr) which is the sequence of only those values from the

first operand for which the corresponding guard value is true (i.e. a simple filter)

and upon which delays its first operand and only advances it when the guard is

true, otherwise the previous value is repeated.

x = 〈x0, x1, x2, x3, x4, . . .〉
g = 〈F, T, T, F, T, F, F, T, F . . .〉

x upon g = 〈x0, x0, x1, x2, x2, x3, x3, x3, x4, x4, . . .〉
3However since recursive functions tend to be a bad choice in a dataflow environment, these

are normally implemented directly, using recursive stream equations.

10 CHAPTER 2. PREPARATION

2.2.4 Laziness

To highlight the difference between lazy and eager semantics consider this exam-

ple:

next X
where
X = X fby 1;

end

Here X and next X have different denotations depending on whether the seman-

tics are eager or lazy:

[[X]]eager = ⊥ [[X]]lazy = 〈⊥, 1, 1, 1, . . .〉
[[next X]]eager = ⊥ [[next X]]lazy = 〈1, 1, 1, . . .〉

A lazy evaluator will never ask for X at time 0, so the diverging case is not

exposed, as required by Lucid’s semantics.

2.2.5 Definitions and Declarations

The body of a where clause consists of a set of definitions. Definitions are the

backbone of Lucid programs. They express intensional equality, i.e. pointwise

equality between sequences. The lhs of such an equation can either be a variable

name or a function symbol with formal parameters, while the rhs can be an

arbitrary Lucid term.

From a declarative point of view this method specifies, in a single equation, a

property that will always be true for a particular variable. From an operational

perspective they give a recipe to compute the value for a particular timestamp.

Consider the following definition of the inbuilt sequence index that strongly

resembles the inductive mathematical definition of natural numbers:

index = 0 fby index + 1

There are a few definitions which, albeit being well formed, will not yield any

useful computational result, since any demand will cause the program to diverge.

The following is an example of such a definition:

x = next x

2.2. THE DATAFLOW LANGUAGE LUCID 11

Its denotation is a stream of ⊥s. One might say that this is obviously ill-defined

since x is expressed in terms of its own future but this statement is not true in

general and leads to one of the more interesting features of Lucid. Chapter 4 will

show how one can make use of such future references.

With the constructs presented so far, all streams vary in one dimension only.

There are, however, many useful algorithms which rely on a notion of subcompu-

tation, i.e. for each step in an outer iteration there is a whole sequence of inner

iterations. In Lucid this is accomplished with a construction called a declaration

of the form:

X is current y

As soon as declarations are present in a clause the internal computations progress

in a time dimension nested inside that used by the subject of the clause.4 Now

in this inner time dimension X is a constant sequence, having everywhere the

extension y had at the current outer time dimension.

y =〈y0, y1, y2, . . .〉
X is current y = 〈〈y0, y0, y0, . . .〉,

〈y1, y1, y1, . . .〉,
〈y2, y2, y2, . . .〉,
. . .〉

Thus is current provides streams of streams, or equivalently streams varying

in more than one dimension. See Chapter 4 for an illustration of this feature in

calculating factorials.

2.2.6 Input and Output

A well-formed Lucid program consists of a top-level term, which might be a

simple expression or a where clause with nested terms. The values of the stream

generated by this top-level term are considered as the output of the program.

A term may use variables which are not defined in its scope. These variables

are called the globals of the term and are considered to be inputs of the program.

These variables are globally unique, i.e. multiple occurrences refer to the same

stream of input values. Input requests are directed to the user.

4Note that this is a non-local effect on the meaning of the whole program, with all compli-

cations that this may entail.

12 CHAPTER 2. PREPARATION

2.2.7 Example – The Hamming Problem

Dijkstra attributes the problem of generating all numbers of the form

(2i3j5k|i, j, k ≥ 0) in ascending order and without duplication to Hamming [5]. It

is commonly used to demonstrate the power of lazy and/or functional languages

based on how gracefully they deal with infinite data structures. Imperative im-

plementations on the other hand usually cannot match such elegance.

He observed that if H is the sequence we are looking for, then H ∗2, H ∗3 and

H ∗ 5 (using pointwise multiplication) are all subsequences, and their ordered,

duplicate-free merge recreates H, apart from the leading element: 1.

This description can be translated into the following Lucid code:

h
where
h = 1 fby merge(merge(2 * h, 3 * h), 5 * h);
merge(x, y) = ...

end

The merge function is assumed to maintain the invariant that if both operands

are sorted in ascending order and they are duplicate-free then so is the result of

the merge. In Haskell on could write a recursive definition:

merge :: [Int] -> [Int] -> [Int]

merge [] ys = ys

merge xs [] = xs

merge (x:xs) (y:ys) = if x < y then x : merge xs y:ys

else if x > y then y : merge x:xs ys

else x : merge xs ys

The use of recursive functions, however, often leads to poor performance in

dataflow systems. The following alternative is a better choice.

Given streams X and Y , take values from stream X while they are smaller

than the leading value of Y , then take values from Y until they exceed X again

and repeat ad infinitum, i.e. one stream is “held up”, while the other is consumed.

This yields the following definition of merge where the upon operator delays

the two inputs as appropriate:

2.3. SCALA 13

merge(x, y) = if xx <= yy then xx else yy fi
where
xx = x upon xx <= yy;
yy = y upon yy <= xx;

end

The complete program is used in Chapter 4 for correctness and performance tests

and a more detailed discussion can be found in ([19], Page 121).

2.2.8 Finite Sequences

We need to consider that when we implement Lucid, users will usually only

provide a finite sequence of data tokens. To unify this idea with the notion

of infinite histories Lucid implementations usually define an eod token, which

indicates the “end of data”. Semantically, all values following this token in a

particular stream have the denotation ⊥. The token propagates through most

operations and can be intercepted at the output of a Lucid implementation to

terminate the program.

2.3 Scala

Scala is a modern, hybrid language, being both fully object oriented and higher-

order functional. Functions are first class values, encoded as objects. Furthermore

there are so called case classes which provide functionality similar to algebraic

datatypes and pattern matching. Currying and partially applied functions are

available and the inbuilt concept of generics is closer to proper parametric poly-

morphism than what can be found in most major object oriented languages.

Scala compiles to pure Java bytecode and can run on existing JVMs, which

makes it highly portable. A further advantage is that Scala is fully compati-

ble with existing Java libraries and can import them seamlessly. Finally, most

compiled Scala class files can be imported into new Java projects.

All of these features make Scala a promising language in its own right but the

reason for its use as the implementation language in this project is the existence

of two core libraries. The first is the parser combinator library and the second is

the native concurrency abstraction based on the asynchronous Actor Model [8].

14 CHAPTER 2. PREPARATION

Function CFG symbol Combinator

literal terminal ‘lit’ "..."

regular expression terminal n/a "...".r

sequential composition P Q P ∼ Q

sequential composition, keep left/right only n/a P <∼ Q, P ∼> Q

alternatives P | Q P | Q

option [P] opt(P)

repetition {P} rep(P)

interleaved repetition n/a repsep(P, Q)

result conversion with function f n/a P ˆˆ f

Table 2.1: Overview of Scala parser combinators, P and Q range over parsers

2.3.1 Parser Combinators

When using parser combinators, parsers are first class values. In Scala they

are encoded as functions from input readers to parsing results. A result can

be a success, optionally carrying some value that was extracted along the way,

e.g. a calculated number or an AST, a failure or an error, both with respective

diagnostic messages.

A library of combinators then provides a set of algebraic operators which take

parsers as operands and produce new and more sophisticated parsers as results.

These operators are designed to mirror the connectives found in the formalism

of Context Free Grammars (CFG) plus a few more as shown in Table 2.1 (which

will appear in some code samples later).

CFGs are common for defining syntax and the source code of an implementa-

tion with parser combinators often looks similar to the original definition (in some

cases it can be achieved by only a simple textual substitution). The advantage

of this congruence is that the implementing source code directly documents the

language grammar. This simplifies maintenance and later extension. Another

advantage of parser combinators over external tools like Yacc5, Flex6 or Bison7

is that there is no need to learn another tool-specific mark-up language.

In Scala, a combinator-based parser is a backtracking, recursive descent sys-

tem with lazy evaluation. As a consequence we do not need lookaheads and

recursively defined parsers are possible (e.g. parenthesis matching). We still need

to avoid leftrecursion though.

5http://invisible-island.net/byacc/byacc.html
6http://flex.sourceforge.net/
7http://www.gnu.org/software/bison/

2.3. SCALA 15

A detailed discussion of this framework can be found in ([15], Chapter 31).

2.3.2 Actor Concurrency Model

The decision to use actors is based on the strong congruence between a demand-

driven dataflow network and the actor concurrency model, where nodes send data

tokens along channels.

Scala’s actor library layers over Java’s thread model and hides the threading

primitives. The underlying philosophy is that while Java threads are sufficiently

powerful and expressive they are difficult to program with and reason about, and

hence rather error prone.

Java threads are based on a share-everything-and-use-locks concept. Actors

on the other hand favour a share-nothing approach. Due to its backwards com-

patibility with Java, sharing cannot completely be eradicated by the language8

but when one only uses the actor abstractions and adheres to a few best-practice

rules it becomes much easier to reason about the correctness and thread safety

of the program.

In this model actors represent concurrently operating entities. They have

some private data structures and a so-called mailbox. Furthermore actors can

search their mailbox for particular messages and then trigger the sequential ex-

ecution of a message handler. Each actor also exports a method which allows

other entities of the system to put a message into that actor’s mailbox. When

messages are sent to an actor the sending method ensures safe publishing, i.e. the

message appears atomically in the receivers mailbox. Most such systems provide

a FIFO ordering between any two actors, while messages from multiple actors

can be arbitrarily interleaved.

Scala provides two implementations of this concurrency abstraction. The first

allocates one thread per actor. Its act() is a thin wrapper around the thread’s

run() method. The behaviour is implemented using a loop that continuously calls

receive() which takes a partial function to walk the mailbox, picking out the first

appropriate message using pattern matching. This triggers the invocation of the

associated handler. When the extraction fails, the thread blocks until the next

message arrives.

Java is fairly limited in the number of supportable threads, which led to

the second implementation in the actor library. Here actors are detached from

8See languages like Erlang [1] which have chosen a pure actor model.

16 CHAPTER 2. PREPARATION

threads and allocated onto a fixed size thread pool. To obtain this behaviour, a

special looping construct is used together with the react() method. This method

will always cause an exception which the subsystem intercepts. At that point a

closure of the actor state is taken and the call stack can be dismantled to free

the thread for another actor. A detailed discussion is given in [8].

With the latter approach a single thread could theoretically run a program of

arbitrarily many actors, given that no actor is ever calling receive(). To increase

performance on a system that “has several processor cores, the actors subsystem

will use enough threads to utilize all cores when it can” (page 590, [15]). This

property is key to simLucid’s scalability to multi-cores.

Chapter 3

Implementation

In this section I will present the implementation and operation of the simLucid

interpreter. From a high level point of view (Figure 3.1) the system consists of a

Front End (FE) and a Back End (BE), including an integrated runtime system

(RTS). The FE lexes and parses a well-formed Lucid program into an Abstract

Syntax Tree (AST). This AST is then passed to the BE which transforms the

tree into a parallel, demand-driven dataflow network. The major components of

the implementation will now be discussed in detail.

3.1 The Abstract Syntax Tree

The AST is the interface between the FE and the BE. Its implementation captures

the full grammar shown in Appendix A.

The design mainly builds on two core features in Scala, case classes and the

sealed keyword, which support Scala’s pattern matching facilities.

FE BE
AST -> network
translation

network-based RTS

source.luc AST
dataflow
network

Figure 3.1: The high-level system layout.

17

18 CHAPTER 3. IMPLEMENTATION

ASTs do not contain any mutable state to enable safe passing between threads

and simple deconstruction.

3.1.1 Constructing and Disassembling ASTs

I will use the encoding of binary operators to demonstrate the basic design of the

data structure. The relevant type of tree node is defined like this:

...

sealed abstract class Expr() extends LuTerm

...

case class BinOp(op: String, l: Expr, r: Expr) extends Expr

...

The parent class Expr is marked abstract to prevent direct instantiation and the

sealed keyword tells the compiler that all descendants of this class in the inheri-

tance hierarchy can be found in the same file. This additional static information

allows the compiler to perform exhaustiveness checks during a pattern match.

The inheritors of Expr are marked with the case keyword, which adds a few

syntactic components implicitly to an ordinary class declaration. The only data

a tree node should contain are the parameters passed in the constructor which

should be immutable. The case keyword implicitly adds the syntactic constructs

to achieve this. Most importantly though, the method unapply is added to the

class which is used in a pattern match to get the actual parameters out of the

object (i.e. a deconstructor).

Since Scala does all the groundwork the second line above is all we need to

encode binary operators. Other components are treated similarly.

The following code demonstrates how nodes are deconstructed in the BE using

pattern matching on the AST. Details will be given later but the crucial point

here is that e is downcast to a BinOp and structurally disassembled

3.2. THE FRONT END 19

...

private def mapExpr(e: Expr,

envls: List[Environment],

log: mutable.Set[BaseNode]): BaseNode = {
e match {
...

case BinOp("+", l, r) =>

val n = intAdd(log)

n.leftInput = mapExpr(l,envls,log)

n.rightInput = mapExpr(r,envls,log)

n

case BinOp("-", l, r) =>

val n = intSub(log)

n.leftInput = mapExpr(l,envls,log)

n.rightInput = mapExpr(r,envls,log)

n

case ...

}
}
...

3.2 The Front End

While classical parsers factor out two stages for lexical and syntactical analysis

which are pipelined to process a stream of characters and later tokens, the layout

of a combinator-based parser is quite different. The horizontal composition in

classical systems is based on a separation of technologies, regular automata for

lexing and context free grammars (CFG) for syntax analysis. This helps in dealing

with ambiguity in the input language and reduces the size of parsing tables in

the second stage. Combinator parsing libraries on the other hand merge the two

technologies into one framework. The abstraction from characters to tokens is

not lost but hidden in the implementation of the various combinators.

Consequently, combinator-based parsers tend to be vertically composed in

an inheritance relation, where each class provides a collection of parser objects

which are composed from smaller, more primitive parsers in the parent classes.

I followed this approach and created two such classes,Lexer and Parser, which

are related to the basic traits Parsers and RegexParsers as shown in Figure 3.2.

20 CHAPTER 3. IMPLEMENTATION

<trait>
Parsers

<trait>
RegexParsers

<class>
Lexer

<class>
Parser

Figure 3.2: The classes Lexer and Parser extend the basic Parser hierarchy

The latter of the two traits provides regular expressions as parsers and handles

skipping of whitespace in the input.

I distributed the various parsers over the two classes based on the following

rule: the parsers for identifiers, integers, index and eod which only wrap around

simple regular expressions and represent leaves in the AST have been placed in

the Lexer class while everything else went into the Parser class. The split only

serves readability purposes.

The core functionality sits in the Parser class and will be demonstrated with

the following example fragment which deals with the binary, right associative,

infix operator fby.

class Parser extends Lexer {

def pred6_stream: Parser[Expr] = {
(rep(pred5_stream∼"fby")∼pred5_stream) ˆˆ reduceRightAssocList

}

val reduceRightAssocList: List[Expr ∼ String] ∼ Expr => Expr = {
case ps ∼ i => (ps :\ i)(reduceRightAssoc)

}

def reduceRightAssoc(l: Expr ∼ String, r: Expr) = BinOp(l._2, l._1, r)

}

For clarity I have removed debugging constructs.

3.3. THE BACK END 21

At some point the FE will try to use the pred6 stream parser to consume

some input. During the call the parser will be expanded to the body of the

definition, which effectively asks for a sequence of pred5 stream non-terminals,

separated by the literal “fby” (recall from Table 2.1 that ∼ means sequen-

tial composition). Note that an equivalent expression for the body could be

pred5 stream∼rep("fby"∼pred5 stream). The choice is based on the associativity

of the operator. The encoding used for fby lends itself to right associativity while

the alternative is better for left associative operators.

If this process succeeds, we have extracted a construct of type

List[Expr∼String]∼Expr. However, we require a single Expr (or more concretely

a BinOp) node. This is achieved through two helper functions which establish

the correct associativity. The type A∼B is the infix notation for ∼[A,B] which is

operationally equivalent to pairs, providing standard projection methods . 1 and

. 2.

It is irrelevant whether we use val or def for defining function values.

The reduceRightAssoc function combines two Exprs and a string label into a

single BinOp node. Meanwhile reduceRightAssocList performs a structural split

of its argument to obtain the trailing Expr node and use that as the base case for

right-folding reduceRightAssoc over the remaining list of (node, label) pairs. The

:\ operator is Scala’s symbol for a right-fold.

For left associative operators, mirrored versions of these functions are used.

3.3 The Back End

The BE of the simLucid interpreter uses demand-driven dataflow networks to

evaluate a Lucid program. The following section discusses the two main facets of

this approach. Firstly, how are Lucid’s lazy dataflow semantics realised on top of

Scala’s actor-based concurrency abstraction using demand-driven dataflow? And

secondly, how can we systematically construct such networks from an AST?

3.3.1 Actor-based Dataflow Networks

Data-driven vs Demand-driven

There are two types of dataflow networks. Firstly, there are data-driven systems

where inputs and source nodes are pushing values into the network and internal

22 CHAPTER 3. IMPLEMENTATION

Driver

user@host $ |

shell

UI

stdin

stdout

stderr

OutPrint()

Input
Node

Dataflow
network

Request Response

Figure 3.3: The overall layout of the BE at runtime

nodes perform their operation whenever a token is available on each incoming

channel. Secondly, there are demand-driven networks where computations are

initiated at the output, which send demands upstream and pull tokens back

downstream. The latter approach corresponds to lazy dataflow semantics since

demands are only generated for tokens which are actually needed. This approach

is referred to as eduction in Lucid literature [19, 7], as is the approach taken here.

Overall layout

Figure 3.3 presents the overall layout of the dataflow networks constructed in

the BE. There are two special nodes in the setup, the UI and the Driver1 which

together form the backbone of the RTS.

The UI node is the only entity in the whole system that interacts with the shell.

This, obviously, is a bottleneck in the design, especially when the interpreter is

run inside an OS pipeline. I tried a distributed approach first but discovered that

Scala’s read and write streams connected to the shell are not thread safe.

The Driver node generates a sequence of demands which are sent to the node

inside the network that represents the top-level Lucid term. Each reply obtained

1Some publications would refer to this entity as the educer, but I prefer the term Driver

since it “drives” the evaluation process.

3.3. THE BACK END 23

is forwarded to the UI for printing. The demands are generated one at a time

and when one demand has been answered the next one is dispatched.

A network may also contain zero or more input nodes (only one is shown

in the figure), which correspond to free variables in the Lucid program. Any

demands received at these nodes are redirected via the UI to the user or pipeline

feeding the interpreter.

Not shown in the figure above is a Debugger object which is known to all

components in the system and serves as a central switchboard for error handling.

Communication

Each node in the network is represented by an actor for which the Scala concur-

rency library provides methods for asynchronous sends and also a single primi-

tive for a synchronous two-way communication. Since a synchronised handshake

severely limits the opportunities for concurrent execution I almost exclusively

used the asynchronous paradigm. The only exception to this is the modification

of the network at runtime, where a limited degree of serialisation is unavoidable.

The basic, underlying communication paradigm used in the BE is a Request-

Response scheme as shown in Figure 3.4. Based on Lucid’s semantics, each node

in the network corresponds to a whole (possibly multi-dimensional) sequence of

values and the node receiving a Request has to know which of those values it is

supposed to serve. For this purpose, the incoming Request carries a Tag (e.g. tag C

or tag D in Figure 3.4) which can be understood as an index into the receiving

node’s data space. A tag contains two stacks of numbers, implemented with

linked lists. The first is used for the time indexing. Most components will only

look at the head. The only exception are where clauses containing declarations.

For these a new timestamp is pushed onto the stack when the clause is entered

and a timestamp is popped when a request leaves via a declared variable. The

second stack is currently unused (see “Further Work” in Chapter 5).

Since communication is based on asynchronous (i.e. non-blocking) message

sends, nodes require a way to match responses to requests. This is achieved

with the second Request parameter. The locId is a unique number generated by

the downstream node and enclosed in the request. The number is recorded by

the receiving node and used to label the response when the desired data token

becomes available. In the meantime, the downstream node sets up internal data

structures specifying call-back hooks to deal with the response.

In Scala, any object can be sent as a message, but following best-practice

24 CHAPTER 3. IMPLEMENTATION

upstream downstream

C

current
node

Request(locId_D, tag_D)Request(locId_C, tag_C)

Response(locId_C, val_U) Response(locId_D, val_C)

DU

Figure 3.4: The basic communication pattern of BE nodes

design rules, I set up an abstract sealed Message class and derived a set of case

classes from it2, mainly to ensure thread safety. Apart from the two mentioned

above (Request, Response) there is also a Control message carrying an integer

control code (e.g. for node shutdown), the OutPrint message used by the Driver

and two unused messages (Diag, Status) which were designed for later extension.

Basic Functionality

A lot of the functionality of the various types of network nodes is shared. To avoid

code duplication this was implemented in the abstract BaseNode which extends

Scala’s Actor class and from which the more specific implementations inherit. A

schematic representation is given in Figure 3.5.

A node starts executing in the act() method (bottom left) and first invokes

onStartUp, followed by a construction of the runtime action stack. The stack is

the partial function used to examine the mailbox. The main loop then repeatedly

tries to extract and handle a message. Most nodes will need to perform some

amount of work before being able to respond. To keep track of the progress

of such a job an ID generator and a lookup table are provided as bookkeeping

facilities. When a token can be served directly (e.g. cached, known at compile

time) nodes bypass this job record mechanism. The four methods enclosed in

dashed here lines are intended to be overwritten in concrete node classes. Some

nodes also override the finishJob method.

The empty versions of these methods allow us to use the design pattern of

stackable modifications ([15], Section 12.5). These modifications hook into the en-

try and exit communication pathways of a node and will later enable the modular

implementation of caching and request aggregation.

2Similar to the AST data structure

3.3. THE BACK END 25

Request

Request

Response

Request

Control(0)

Request(dsID,dsTag)

Response(localID,usValue)

MailboxbasicActionStack

handleStop
exit()

onStartUp

handleRequest

handleResponse

buildActionStack

finishJob
lookup

send

Counter

jobID jobs

jobAgendaujidGenerator

extract message
from Mailbox

execute
assigned
action

act()

Figure 3.5: The BaseNode class on the inside

Figure 3.6 shows the upper section of the node inheritance graph and gives an

overview of the various node types provided. Nodes are constructed in a factory,

which can augment them with modifications and provide more specific subclasses

where required (e.g. an adder derived from IntegerArithmeticNode).

The overall composition makes heavy use of Scala’s traits which provide a

limited degree of multiple inheritance. Traits encapsulate functionality, rather

than representing an entity. When a trait is mixed into a class, its functionality

is added to all objects derived from this composition. I moved the capability to

request one, two or three inputs from upstream nodes into three separate traits.

Apart from the ports itself those traits come with ID generators and lookup

tables to implement the Request-Response matching system described above.

Additionally, requests can be assigned to slots of a job. Each node can use these

slots as it sees fit, e.g. to distinguish left and right operand inputs.

The supervisor trait enables a node to be in charge of a subnetwork (create,

launch, stop, destruct). This is used by the driver which constructs the full

network, starting from the top level node. The other type of node that makes

use of this capability is the function node.

26 CHAPTER 3. IMPLEMENTATION

scala.actors.Actor

BaseNode

DriverNode

FunNode

IntegerIfThenElseNode

WvrNode

IntegerArithmeticNode

UponNode

FbyNode

AsaNode

parent class

AggregatedRequests

UnaryInput

BinaryInput

TernaryInput

SimpleLinearTimeCache

SimpleTagCache

Supervisor

mixin

ConstNode

UserInterface

IndexNode

EodNode

VarNode

DeclaredVarNode

ClauseHeadNode

TimeShiftNode

InputNode

Figure 3.6: The Hierarchy of the various node types in the BE

3.3.2 Dataflow Nodes

Driver

At the time of creation the Driver node uses its capabilities as a supervisor to

turn the full program AST provided into a network. Next the driver augements

its action stack with an additional control method used in a simple shutdown

protocol. Finally, the onStartUp method activates all the child nodes and then

generates the first Request for time 0: Tag([0],nil). This request is sent to the

top-level node of the generated dataflow network.

When a response for time t is received, the node checks if the contained data

is the special TokEOD token which indicates the end of the top-level data stream. If

that is the case, the Driver initiates the shutdown protocol, which is just a ping-

pong exchange with the UI to ensure that all outstanding OutPrint messages have

drained. When the pong (Control(10)) comes back the Driver simply shoots the

JVM.

Otherwise the data is wrapped into an OutPrint message, together with some

header data and send to the UI. Meanwhile, a fresh tag for time t+1 is generated

and a new demand is sent to the top-level node.

3.3. THE BACK END 27

Constants

There are three types of nodes that serve values which are fixed at compile time.

The first is the Index node which serves the sequence 〈0, 1, 2, 3, 4, 5, . . .〉 and

is implemented by just returning the demanded timestamp as an integer token.

Next there is the Const node which is given a data value at the time of con-

struction and always responds with this value at runtime.

Finally, as a special form of the preceding node, there is the EodNode which

always serves a TokEOD.

Extensional Operators

There are two base classes for extensional operators for the binary and the ternary

case respectively: IntegerArithmeticNode and IntegerIfThenElse3. Unary exten-

sional operators could be implemented similarly but were not required for the

targeted subset of Lucid.

The if-then-else-fi construct is straight forward. It first asks the input guard

stream for the current value and when the response comes back the data token is

evaluated and a second request is send to the correct branch of the conditional.

The result of that second request directly triggers the job completion routine and

the data is piped straight through.

For all other extensional, binary operators the operation is handed down as

a constructor parameter of the node (this specialisation is hidden in the factory)

and stored inside each job. The jobs used for this purpose have two data slots

and a query function that indicates whether a job is ready to compute a result.

Intensional Operators

At the moment the system provides native implementations for the two core

intensional operators fby and next and also for the four most common derived

ones: first, asa, upon and wvr. For all six the main task is to compute the

correct timestamp to use on the data operand. After that, the resulting data

value is piped straight through.

3The names are a slight misnomer since both classes are more general than the names

suggest. They are there for legacy reasons only.

28 CHAPTER 3. IMPLEMENTATION

The TimeShiftNode implements next by simply incrementing the head of the

timestamp stack by one, before forwarding the request to its input stream. first

is implemented in the same way, but the shift function always sets the timestamp

to 0.

The FbyNode checks if the timestamp in question is zero, in which case the

left data operand will be asked to serve the value. Otherwise, the timestamp is

decremented by one and the request goes to the right data operand.

The AsaNode comes with an internal loop that asks for guard tokens one at a

time starting from t = 0 and keeps track of the current timestamp. As soon as

the guard becomes true for the first time, the required timestamp is known and

the data input can be queried.

The WvrNode and UponNode have similar internal loops and a persistent data

structure to remember information obtained on previous requests. The first

queries the guard until n true tokens have been seen (where n is the timestamp

that was initially demanded) and keeps track of how far it got to provide a data

time stamp. The second counts how many true tokens have been seen between 0

and n− 1 and uses that values as the data timestamp.

The operators wvr, upon and asa were implemented at a very late point in

the design cycle. Slotting them in was easy and demonstrates the advantage of

a well structured, modular design.

Definitions

VarNodes implement variable definitions and simply forward incoming requests

unmodified to the top-level node representing the body of the definition. Results

are equally piped through in the other direction.

Free Variables / User Inputs

InputNodess are very similar to VarNodes. The only difference is that they do not

have a core network node as their upstream neighbour but instead the UI. Since

free variables are supposed to be globally unique, all such nodes are managed by

the UI and allocated at demand, using synchronous communication between the

constructing entity and the UI.

Furthermore, input streams are one dimensional thus input nodes use the top

of the timestamp stack as an index, rather than the whole stack.

3.3. THE BACK END 29

User Defined Functions

There are two ways to implement user defined functions. The simple approach

constructs function applications as nodes with a single loose input. The node

encapsulates a fragment of an AST and an environment. On the first demand

a boolean flag ensures that the AST is converted into a section of a dataflow

network, which is then tied to the loose input. When a function application node

is created, the mapping between formal and actual parameters is encoded in the

environment. This design is currently implemented but has one major drawback:

recursive functions will generate a network that dynamically grows at runtime.

This can quickly degrade performance.

The alternative (not implemented due to time constraints) is to assign a

unique label to each static call site. The function body is then only mapped

to a network once, but special nodes are required for each formal parameter.

These formal parameter nodes have to be able to take in an arbitrary number of

inputs and make routing decisions based on call site labels. The final requirement

would be to ensure that downstream nodes are aware that their upstream peer

is a function node and hence push the correct call site label into their tags.

Declarations

Declarations are implemented using the DeclaredVarNode which ensures transition

from the inner to outer time dimension by popping one timestamp. At the

other end, the top-level node of the subject of a where clause is prefixed with a

ClauseHeadNode that simply duplicates the top of the timestamp stack and hence

moves the evaluation into the inner time domain. These nodes are omitted if a

clause does not contain any declarations.

3.3.3 Mapping from ASTs to Networks

The BE must translate the AST of a well-formed Lucid program into a network

based on the components presented above. This is achieved through a Factory

object which is in charge of the node construction and a Mapper object which

enables the traversal of the tree.

30 CHAPTER 3. IMPLEMENTATION

Preliminary Setup

The top-level application extends the FE Parser class and tries to convert the

source file into an AST. Assuming that this was successful, a runtime environment

(RTE) is created. The RTE creates and launches a UI node, adjusts debugging

and printing behaviour based on flags provided by the user, and then builds a

DriverNode which triggers the first call into the Mapper. The subsequent activation

of the driver will in turn activate the whole network4.

The Factory Object

As we have seen in the previous section there is a wide variety of nodes, but most

of them require initialisation. Furthermore, the initialisations are diverse, e.g.

the arithmetic nodes need to obtain the function they are supposed to compute

and Input nodes need to be told what input type they should be expecting. The

latter involves minor parsing functions since users can only provide strings on

stdin, and we need to extract integers, reals, booleans or chars.

Another thing that needs to be done is to plug in the stackable modification

traits which equip the nodes with a limited degree of caching (see below) and

more importantly the capability to aggregate multiple requests for a single tag

behind a single job. This avoids redundant computations for requests which

arrive between the start and completion times of an identical job.

The Factory hides all this behind a unified interface. The construction meth-

ods exported expect only a minimal number of parameters. It provides one

further functionality: logging of newly constructed nodes. Whenever it is asked

to produce a new node, it expects to be given a log (basically a mutable set of

BaseNodes) to which the new node is added. The purpose of this log is to allow

the supervisor that called into the Mapper, and thereby triggered a sequence of

factory calls, to be aware of which nodes it is supposed to manage. A supervisor

creates an empty log for this purpose and is guaranteed that all its children are

recorded in the log when the construction call returns.

As an example consider the construction of an integer divider:

4The source code for the top-level application and the RTE class are given in Appendix B

for reference.

3.3. THE BACK END 31

object Factory {
type CoreCache = SimpleTagCache

def intDiv(log: mutable.Set[BaseNode]): IntegerArithmeticNode =

logged[IntegerDivider](log) {
new IntegerDivider()

}

private class IntegerDivider()

extends IntegerArithmeticNode("idiv", (_ / _))

with AggregatedRequests with CoreCache

def logged[T <: BaseNode](log: mutable.Set[BaseNode])(con: => T):T = {
val node = con

log += node

node

}
}

The type declaration CoreCache provides a name alias to simplify the modifica-

tion of the caching regime. The intDiv method is the construction routine which

the factory exports to the outside world. It gives back an IntegerArithmeticNode

which is an instance of the more specific internal IntegerDivider class. The sec-

ond parameter given to the node constructor is an anonymous function object

which takes two parameters and divides the first by the second.

The logger is implemented using a custom control abstraction which takes a

type, a log and a value that has the given type. The last argument is defined as

a by-name parameter and whatever expression is provided will only be evaluated

when it is needed in the body of the abstraction.

The Mapper Object

The Mapper object provides a single method mapToNode which takes an AST, an en-

vironment and a log (presumably empty) and transforms the AST into a network

of nodes. The top-level node of that network will eventually be returned.

The mapping is achieved by a collection of private methods that follow a sim-

ilar pattern but only accept particular syntactic constructs (Lucid terms, where

clauses and expressions).

32 CHAPTER 3. IMPLEMENTATION

Subcases are separated using pattern matching, e.g. LuTerms can only either

be a WhereClause or an Expr (recall the use of sealed parent classes) and the

appropriate mapping function is invoked. The collection of mapping functions

builds a pre- and post-fixing tree walk framework that recursively processes an

AST.

The two interesting methods are the one dealing with expressions and the one

dealing with where clauses.

For expressions the method immediately enters a case split based on its ar-

gument, e.g.

case BinOp("div", l, r) =>

val n = intDiv(log)

n.leftInput = mapExpr(l,envls,log)

n.rightInput = mapExpr(r,envls,log)

n

Here we are matching a BinOp node with a label for integer division and

two subexpressions. First, a divider node is built using a Factory construction

method. Next we recursively convert the left and right subtrees into nodes and

wire these to the inputs of our divider node, which is then returned.

Slightly more involved is the treatment of variables which have to be looked up

in the current environment. The environment is actually a stack of Environment

objects for each nesting depth. A helper method processes this list from head

to tail and tries to resolve the identifier in each one of them until it finds a

match. This implements the functionality that inner variable definitions shadow

outer ones. When the list has been consumed without producing a match, the

identifier is a global of the program and has to be mapped to a user input. The

UI is in charge of all input nodes so a synchronous request is sent to the UI to

procure the corresponding reference. The UI can match the request to an existing

input node or creates a new one.

For function applications a similar lookup is required. Here environments

store closures, rather than nodes. Function definitions are not global, so an

error will be thrown if the lookup fails. Otherwise the obtained closure will

be used as follows: a first check ensures that the number of actual parameters

matches the number of formal parameters. Next the FunApp node, containing a

list of ASTs which represent the actual parameters, is converted into a list of

BaseNodes by mapping the function mapLuTerm(,envls,log) over it. The result

3.4. EXTENSION: CACHING 33

is zipped together with the list of formal parameters and injected into a fresh

environment object, which in turn is prepended to the environment found in

the closure. At this point we can finally construct a function node using the

augmented environment and the AST of the function body.

Finally, let us look at the mapWhereClause routine, which has to deal with

the possible existence of declarations, mutual recursion between definitions and

the creation of correct environments and function closures before the subject of

the clause (an Expr) can be processed. Since Lucid specifies that the ordering

of declarations and that of definitions are irrelevant (as long as all declarations

precede all definitions) the translation is necessarily a three pass process.

On the first pass all identifiers are recorded in a new environment object.

Declarations are immediately completed since their bodies use the outer environ-

ment, not the one being constructed, so we do not have to worry about recursion.

For variable definitions, only a VarNode with an open input is created, while the

body remains untouched. This is done, so that when the bodies are processed

later, all variable nodes exist, even before their implementation is finished. In

this fashion, loops can be introduced into the dataflow graph which correspond

to recursive definitions. For functions, a partial closure containing the body AST

and the list of formal parameters but not the full environment is added.

At this point we have a mapping from new identifiers to nodes or closures

and can construct a new Environment object. The second pass then injects this

new object into the full environment in each function closure and on a third pass

all bodies of variable definitions are turned into networks using the augmented

environment.

Lastly we use the new environment to translate the subject of the clause and,

if the list of declarations was non-empty, also prefix it with a clause head node.

3.4 Extension: Caching

I have implemented a very simple caching strategy, where a cache is a mutable

map from tags to data tokens. This map is located in a trait that can be mixed

into any BaseNode and chains into the handleRequest and finishJob communica-

tion sequences (as does the AggregatedRequests trait). Caches use the abstract

override keyword sequence together with super calls. Recall the factory example

for the divider node:

34 CHAPTER 3. IMPLEMENTATION

private class IntegerDivider()

extends IntegerArithmeticNode("idiv", (_ / _))

with AggregatedRequests with CoreCache

The sequence of mixins determines the order in which super calls are resolved.

Say a particular requests sits at the head of the mailbox of a divider node. The

action stack in the BaseNode will invoke the handleRequest message. The most

recent version of that method is the one defined in the cache trait, which on a

success will immediately generate a response before the core of the node is even

aware of this request. Otherwise, the super version will be called which is found

in the request aggregation. If there is no ongoing job for this tag the next super

call will eventually reach the version specified in the IntegerArithmeticNode and

proceed as normal.

Once the node decides to finish the job the same resolution order occurs.

The cache gets to go first and injects the return value into the map, then the

aggregation component can inform all secondary requests about the outcome

and finally the BaseNode (IntegerArithmeticNode does not override the finsihJob

method) responds to the primary request and then disposes the of job.

Chapter 4

Evaluation

This section considers a variety of properties of the simLucid interpreter, both

in absolute terms as well as in comparison to the pLucid system. The programs

which where chosen to test and evaluate the interpreter are a selection from

those delivered with the pLucid interpreter (with the exception of the hamming

program which is only outlined in [19]). Among them they exercise all major

language features supported by my implementation and produce outputs which

are mathematically well-defined and hence can be verified automatically.

I will in turn look at the expressiveness, the correctness of the implementation

and the performance of my interpreter.

4.1 Expressiveness

Table 4.1 compares the expressiveness of simLucid with the pLucid interpreter.

The major difference is the selection of datatypes and associated operators which

are available in the systems. For full details, refer to Appendix A.

The predicates to test for the type of a data token at runtime are left out since

a static type checker was planned (see “Further Work” in Chapter 5). pLucid is

dynamically typed and hence requires this mechanism.

Booleans are simulated in the system using the classical C convention that 0

represents false and any non-zero value indicates true. The associated oper-

ators can be implemented using function definitions and the if-then-else-fi con-

struct.

35

36 CHAPTER 4. EVALUATION

Feature pLucid simLucid Remarks

Integers X X
Arithmetic operators X X excluding exponentiation (**)

Relational operators X X
Booleans + operators X 7 Simulated using C-convention

Reals + operators X 7

Chars + operators X 7

Lists + operators X 7

Intensional operators X X excluding attime
eod test predicate X 7

Type test prediactes X 7 intentionally left out

is current Declarations X X
User defined rec. functions X X
case and cond X 7 simulate using nested if-then-else-fi

index predefined X X

Table 4.1: Summary of the expressiveness of simLucid in comparison to pLucid

Program pLucid simLucid Remarks

runavg X X
runtotfun X X
howfar X X
factorial X X
hamming 7 X pLucid fails at ham(842)

fibonacci 7 X pLucid fails at fib(36) and fib(40)

primes X X only verified for first 1k primes

Table 4.2: Summary of the results of the correctness tests. Where both results

are marked X, this indicates relative agreement, otherwise it signifies externally

verified correctness.

4.2. CORRECTNESS 37

4.2 Correctness

The results presented in this section are summarized in Table 4.2.

4.2.1 Running Average

next (s div n)
where
s = 0 fby s + x;
n = 0 fby n + 1;

end

The first test program computes the running average of a stream of numbers.

The algorithm used is straightforward. We consume one element at a time and

maintain a running total. Furthermore we count the number of inputs we have

seen and the result for each consumed element is the current total divided by

the current count. First tests were done by hand for small inputs and verified

manually, while larger test sets of randomly generated input where feed into both

interpreters which in all cases agreed on the output sequence.

This demonstrates that the Lucid operators fby and next are implemented

correctly, that simple where clauses are dealt with correctly with respect to name

resolution and also that recursive variable definitions are mapped correctly. The

following tests make use of these features as well and further strengthen this

result.

4.2.2 Fibonacci

The Fibonacci sequence is defined as

fib 0 = 1

fib 1 = 1

fib n = fib(n− 2) + fib(n− 1)

It can be shown by simple mathematical induction on the timestamps of demands

that the definition of F in the following program generates exactly this sequence.

38 CHAPTER 4. EVALUATION

if index > first X then eod else
F
where

F = 1 fby (F fby F + next F);
end

fi

Since the sequence is self contained and could go on forever the test program

wraps it into a conditional to terminate the output after N values have been

produced where N is the first value provided by the user on the input channel x.

On both interpreters the system terminated at the right time which demonstrates

the correct implementation of conditionals and the eod token.

The two interpreters did not however agree on the output everywhere. Since

the sequence is well defined mathematically, at least one of the outcomes had to

be wrong. In particular the results began to diverge at fib(36) where simLucid

claimed fib(36) = 24157817 while pLucid said fib(36) = 24157816. A quick

check using a Haskell implementation of the function as well as an examination

of the values preceding the error revealed that pLucid was incorrect and simLucid

was correct. In pLucid

fib(34)pl + fib(35)pl = 9227465 + 14930352 = 24157817 6= 24157816 = fib(36)pl

The error accumulated until jumping inexplicably by another 8 at fib(40). It

is not clear exactly what is going wrong in pLucid but it may be related to the

internal representation of integers.

4.2.3 Howfar

howfar
where
howfar = if X eq 0 then 0 else 1 + next howfar fi;

end

The howfar program demonstrates the correct implementation of future references

using next and laziness. As mentioned earlier, defining a sequence in terms of its

own future can make sense as long as the recursive definition is guarded, either

by an outer fby or, as in this example, by a conditional. This program computes

a countdown to the next zero on the input stream. Hence the output is known

when the input is zero (namely zero as well) and preceding outputs can refer to

this value.

4.2. CORRECTNESS 39

As an example, consider

X = 〈5, 1, 6, 0, 8, 3, 0, 1, 0, 7, 4, . . .〉
howfar = 〈3, 2, 1, 0, 2, 1, 0, 1, 0, hn, hm . . .〉

If X is known only to the point shown, then all we know from an operational

point of view is that hn = hm + 1. This knowledge is encoded in the design of

the system and will be unrolled whenever the next zero is encountered, at which

point a batch of output values will complete.

As above the output from simLucid for small data sets was verified using

predefined pairs of input and output sequences, followed by a successful agreement

check between simLucid and pLucid for larger sets of random data.

4.2.4 Running Total

tot(input)
where
tot(X) = S

where
S = 0 fby S + X;

end;
end

This program uses the same algorithm as that for the running average, but does

not bother to count the number of input items and omits the division. The

only interesting thing here is that the algorithm is wrapped inside a user defined

function. The correctness was verified as above and demonstrates that simple

user defined functions work as desired.

4.2.5 Factorials

F asa index >= X
where
X is current x;
I = 1 fby I+1;
F = 1 fby F*I;

end

40 CHAPTER 4. EVALUATION

This program computes the pointwise factorial of each number of the input stream

as follows. X is current x freezes the input stream at each outer step while a

counter is incremented until it reaches X and multiplied onto a running total in

the nested time domain. The asa in the subject of the clause eventually extracts

the value and sends it as the outer result to the output. Again a number of small

examples where tested by hand and a successful agreement check on random data

confirmed the correctness of the implementation of declarations.

4.2.6 Primes

if index < first x then prime else eod fi
where
prime = 2 fby (n whenever isprime(n));
n = 3 fby n + 2;
isprime(n) = mynot(divs) asa myor(divs, prime * prime > N)

where
N is current n;
divs = N mod prime eq 0;

end;
mynot(b) = if b then 0 eq 1 else 1 eq 1 fi;
myor(a,b) = if a then 1 eq 1 else b fi;

end

The prime program was tested and verified similarly to preceding tests but only

to a limit of 1000 output values (rather than the usual 10k) since the algorithm

is not very efficient. It tests all odd numbers N > 3 for prime divisors up to
√
N .

The method becomes fairly expensive, especially since my treatment of functions

and declarations is not optimised in any way.

For this reason the program was not used for performance testing later. It did,

however, reveal a hidden bug in my implementation that required me to change

the mapping of where clauses from a 2-pass to a 3-pass process. In the original

version, functions could be used before their closures were complete, which led

to undefined values in the associated environments.

4.3. PERFORMANCE 41

4.2.7 Hamming

h
where
h = 1 fby merge(merge(2 * h, 3 * h), 5 * h);
merge(x, y) = if xx <= yy then xx else yy fi

where
xx = x upon xx <= yy;
yy = y upon yy <= xx;

end;
end

The hamming program (Chapter 2) fails in pLucid at ham(842). pLucid returns

ham(842) = 17578124 = 224394531: neither 2, 3 nor 5 divide the remainder,

so the number is not 5-smooth. According to simLucid, however, ham(842) =

17578125 = 3259, which is a valid 5-smooth number, so simLucid is correct.

Again, I can only speculate about the source of this error.

4.3 Performance

To evaluate the performance of my system I set up the following procedure. A

small C program is used (Source in Appendix C) to print a timestamp with

microsecond resolution to stdout. This is done before and after each run of any

test case and the difference is taken as a rough approximation of the command’s

execution time. Each of the programs mentioned above (excluding the one for

primes) was run with data sets of various sizes and appropriate formatting on

each of the two interpreters. Each particular experiment was repeated 5 times

and the arithmetic mean and variance where computed to obtain a data point.

Error bars in the following graphs represent one standard deviation.

4.3.1 Machine used for Testing

All timings where taken on a 2.4 GHz Intel Core 2 Quad workstation (64 bit ar-

chitecture) with 8GB RAM, running Fedora 9 (kernel version 2.6.27) with Gnome

2.22.3. During the experiment the machine was offline and only default system

processes were running in the background. The underlying JVM was OpenJDK’s

JVM version 1.6 and Scala was used at version 2.7.7.

42 CHAPTER 4. EVALUATION

 0

 1

 2

 3

 4

 5

 0 2000 4000 6000 8000 10000

E
x
e
c
u

ti
o
n

 T
im

e
 (

s
)

Number of generated output values

simLucid
pLucid

Figure 4.1: Performance results for the running total program

4.3.2 Absolute Runtime

All programs used for evaluation have shown a roughly linear increase in absolute

execution time, with increasing gradients and startup times proportional to the

complexity of the input program. In all cases, simLucid is beaten by pLucid in

absolute terms. This comes as no surprise, since pLucid is highly optimised while

simLucid is not yet optimised and runs above a JVM and several layers of library

abstractions. Absolute performance, however, was not a primary goal of the im-

plementation and hence this is not considered a drawback. Furthermore pLucid’s

incorrect output in the cases described above renders the fast computation speed

irrelevant.

Note that the times recorded for simLucid come with about 0.1 to 0.2 seconds

overhead on the test machine. This time is spent solely launching the JVM and

loading necessary libraries as measured for an empty Scala application.

Figures 4.1, 4.2 and 4.3 show the results for runtotfun, runavg and howfar

respectively. All of these programs do not exhibit a high degree of complexity

(their dataflow networks are comparatively small) and their runtime behaviour

is rather predictable.

The hamming program (Figure 4.4) is slightly more complex than runtotfun,

4.3. PERFORMANCE 43

 0

 1

 2

 3

 4

 5

 6

 0 2000 4000 6000 8000 10000

E
x
e
c
u

ti
o
n

 T
im

e
 (

s
)

Number of generated output values

simLucid
pLucid

Figure 4.2: Performance results for the running average program

 0

 1

 2

 3

 4

 5

 0 2000 4000 6000 8000 10000

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Number of generated output values

simLucid
pLucid

Figure 4.3: Performance results for the howfar program

44 CHAPTER 4. EVALUATION

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 200 400 600 800 1000 1200 1400

E
x
e
c
u

ti
o
n

 T
im

e
 (

s
)

Number of generated output values

simLucid
pLucid

Figure 4.4: Performance results for the hamming program

runavg and howfar while actually running faster than the previous three. The

key difference here is that in the three preceding examples each output value

required the consumption of an input value. These input values were served via

a UNIX pipe from a file on the local disk. hamming on the other hand only

consumes a single value used as a cut-off point for the output generation. This

highlights the problem of the UI bottleneck where both input and output have

to pass through the same actor.

Similarly self-contained is the fibonacci program (Figure 4.5). Its network

is much smaller, but the minimal increase in execution time for additional output

elements has to be accredited to the implemented caching subsystem. This leads

to an efficient runtime pattern that is comparable to typical array-based imple-

mentations in imperative languages (as opposed to the naive purely functional

O(2N) implementation).

Finally, the factorial program exhibits noticeably longer runtimes (Fig-

ure 4.6), due to its two dimensional data space.

4.3. PERFORMANCE 45

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

E
x
e
c
u

ti
o
n

 T
im

e
 (

s
)

Number of generated output values

simLucid
pLucid

Figure 4.5: Performance results for the Fibonacci program

 0

 5

 10

 15

 20

 0 2000 4000 6000 8000 10000

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Number of generated output values

simLucid
pLucid

Figure 4.6: Performance results for the factorial program

46 CHAPTER 4. EVALUATION

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2000 4000 6000 8000 10000

N
o
rm

a
lis

e
d
 E

x
e

c
u

ti
o
n
 T

im
e

Number of generated output values

simLucid
pLucid

Figure 4.7: Normalised performance results for the running total program

4.3.3 Scaling Behaviour

To better compare the two systems, I normalised the running times of the tests

with respect to their first data points. This revealed two interesting behaviours.

Firstly, simLucid’s runtime increases faster then that of pLucid. Secondly and

more interestingly, simLucid scales up much more smoothly, while pLucid exhibits

a fair amount of jitter. One has to take into account though that small changes

introduced through varying OS activity have a much higher relative impact on

the comparatively small times measured for pLucid. The results are shown in

Figure 4.7 (runtotfun), Figure 4.8 (runavg), Figure 4.9 (howfar), Figure 4.10

(hamming), Figure 4.11 (fibonacci) and Figure 4.12 (factorial), which show

the scaling behaviour of simLucid and pLucid with respect to input size.

Finally, I looked at the amount of parallelism inherent in the test programs

and to what degree that could be exploited. I took three programs with vary-

ing degrees of complexity and executed experiments for each with the largest

of the data sets used above. Using a Linux boot manager flag (maxcpus=x) I

repeated this experiment with 1, 2, 3 and 4 active processor cores. The abso-

lute and normalised times obtained are presented in Table 4.3. The normalised

results are also visualised in Figure 4.15 (runavg), Figure 4.13 (hamming) and

Figure 4.14 (factorial) and highlight the fundamental difference between the

4.3. PERFORMANCE 47

 0

 1

 2

 3

 4

 5

 0 2000 4000 6000 8000 10000

N
o
rm

a
lis

e
d
 E

x
e
c
u
ti
o

n
 T

im
e

Number of generated output values

simLucid
pLucid

Figure 4.8: Normalised performance results for the running average program

 0

 1

 2

 3

 4

 5

 0 2000 4000 6000 8000 10000

N
o
rm

a
lis

e
d
 E

x
e
c
u
ti
o
n
 T

im
e

Number of generated output values

simLucid
pLucid

Figure 4.9: Normalised performance results for the howfar program

48 CHAPTER 4. EVALUATION

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 200 400 600 800 1000 1200 1400

N
o
rm

a
lis

e
d
 E

x
e
c
u
ti
o

n
 T

im
e

Number of generated output values

simLucid
pLucid

Figure 4.10: Normalised performance results for the hamming program

 0

 0.5

 1

 1.5

 2

 0 10 20 30 40 50

N
o
rm

a
lis

e
d
 E

x
e
c
u
ti
o
n
 T

im
e

Number of generated output values

simLucid
pLucid

Figure 4.11: Normalised performance results for the Fibonacci program

4.3. PERFORMANCE 49

 0

 2

 4

 6

 8

 10

 0 2000 4000 6000 8000 10000

N
o
rm

a
lis

e
d
 E

x
e

c
u

ti
o
n
 T

im
e

Number of generated output values

simLucid
pLucid

Figure 4.12: Normalised performance results for the factorial program

two interpreters.

pLucid is single threaded and cannot profit from any additional cores and

hence its execution time remains unaffected by the number of cores (the 60%

increase in the hamming case is again an effect of OS variations being overstated

in the normalised result and only corresponds to a difference of about 70 millisec-

onds). simLucid on the other hand shows a marked improvement in all three cases

when going from one to two cores. Here the actor subsystem increases the thread

pool and hence enables the concurrent execution of multiple network nodes. In

the case of hamming, which has the largest network among the three test cases,

further improvements can be observed for three and four cores (about 10% from

2 to 3) while the other two do not gain any further speed-ups. Interestingly in all

three cases, CPU utilisation dropped drastically when the speed-up curve began

to flatten. An explanation for this is the limited amount of parallelism inherent

in the examples used here. The hamming curve however looks rather promising,

considering that the program is still fairly small.

50 CHAPTER 4. EVALUATION

hamming factorial runavg
Cores pLucid simLucid pLucid simLucid pLucid simLucid

absolute time / seconds

1 0.12 6.08 0.60 31.80 0.25 9.08

2 0.13 3.17 0.60 21.36 0.29 5.91

3 0.14 2.56 0.58 21.15 0.26 6.14

4 0.20 2.43 0.58 19.87 0.31 5.66

normalized with respect to one core

1 1.00 1.00 1.00 1.00 1.00 1.00

2 1.08 0.52 1.01 0.67 1.14 0.65

3 1.16 0.42 0.97 0.67 1.05 0.68

4 1.62 0.40 0.97 0.63 1.22 0.62

Table 4.3: Summary of the scaling behaviour of simLucid and pLucid with respect

to the number of processor cores. For each program, the largest test data set was

used.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1 2 3 4

N
o
rm

a
lis

e
d
 t
im

e
 w

rt
 o

n
e
 c

o
re

Number of Cores

pLucid
simLucid

Figure 4.13: Scaling behaviour of the hamming program with respect to the

number of cores

4.3. PERFORMANCE 51

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4

N
o
rm

a
lis

e
d

 t
im

e
 w

rt
 o

n
e

 c
o
re

Number of Cores

pLucid
simLucid

Figure 4.14: Scaling behaviour of the factorial program with respect to the num-

ber of cores

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 2 3 4

N
o
rm

a
lis

e
d
 t
im

e
 w

rt
 o

n
e
 c

o
re

Number of Cores

pLucid
simLucid

Figure 4.15: Scaling behaviour of the runavg program with respect to the number

of cores

52 CHAPTER 4. EVALUATION

t1

t2

Demand

Demand

Demand
YX

A

B

Demand

Demand

Figure 4.16: A diamond-shaped demand pattern

4.4 Non-deterministic Input Requests

Figure 4.16 demonstrates how the use of concurrently operating actors leads to

non-determinism in the evaluation order. It is fairly common to have network

structures where, for the general case, we cannot assume t1 = t2. Since Lucid is

side-effect free this absence of a deterministic evaluation order is not a problem

and allows us to exploit parallelism in the first place1. This assurance, however,

breaks when the interpreter is interacting with the user. Inputting data is a

side-effect.

Say node X is an input directly tied to the UI and a demand at Y generates

two demands at A and B which in turn generate demands for X at times t1 and

t2 respectively. Let us further assume that t1 6= t2, and since X is an input both

requests will eventually be presented to the user. Now since all four nodes are

distinct, concurrently operating entities there is no guarantee about which of the

two demands at X arrives and will be serviced first.

When running in standalone mode this is not a major issue since the user is

presented with the explicit timestamps required, and from there on assigning the

right input values to the right timeslots ensures correct evaluation behaviour. If,

however, the interpreter takes its input from another UNIX process via a pipe,

then this uncertainty in ordering will be observable at the output. Future work

is to rectify this.

1Note that pLucid follows a strict left to right evaluation policy when presented with multiple

evaluation options

Chapter 5

Conclusion

In my project I have successfully implemented a modern, high-level Lucid inter-

preter for the targeted subset of the language specification. My evaluation results

demonstrate that all components are operating correctly with respect to Lucid’s

semantics as required by my success criteria. simLucid even supersedes pLucid

in two cases in this regard.

Beyond that a number of extensions have been implemented, including multi

dimensionality using is current declarations and simple caching. The modular

design approach had major advantages for the development cycle, since it allowed

quick modification of the supported language subset.

Furthermore an evaluation of the runtime performance of the simLucid system

with respect to the pLucid interpreter was conducted.

5.1 Further Work

The interpreter is functioning correctly but there is still major scope for improve-

ment. Further work could include the following.

The system was designed to be statically typed, and a small number of basic

components have been implemented with this in mind. A typed AST would allow

us to quickly add the missing data types to the system. Simultaneously, one could

replace the basic message passing facilities with strongly typed channels [8] found

in newer versions of the Scala actor library, possibly providing performance gains.

A second point to tackle is the UI bottleneck, which could significantly im-

prove performance. This would either involve a thread safe solution for print and

53

54 CHAPTER 5. CONCLUSION

write streams, or alternatively a clear distinction between who is allowed to read

and who is allowed to write. When dealing with the UI one might also fix the

non-determinism problem on the input by forcing the inputs to always request

user data in sequential order. If they want to jump ahead they would be required

to request the intermediate values as well and buffer them.

A performance boost could also be gained from a better caching system in-

volving a garbage collector of some form and an effective dimensionality analysis

to avoid duplicating working in multiple time dimensions in the presence of dec-

larations. The latter is what crippled the performance of the prime program.

Each prime was computed once for its own outer time and once for every other

primes’ outer timeslot.

A further area that could be improved is the implementation of functions.

The approach would involve tagging each static occurrence of a function call

with a callsite tag. Each formal parameter would then be represented with a

variable capable of routing requests based on the callsite information associated

with that request. This would allow fixed size networks at compile time, rather

than dynamically unfolding ones. (This approach is taken in pLucid)

One could also widen the language specification to incorporate more advanced

features like explicit multi-dimensionality [2], either in addition to or as a replace-

ment of declarations. And finally, there is still the long term aim of turning the

current BE into a full fledged many-core simulator.

5.2 Key Findings

The performance and scaling analysis showed that it is possible, to some degree,

to abstract away the parallelism inherent in a program and leave the exploitation

thereof to a distributed underlying runtime system. This project shows how well

actors are suited for the implementation of parallel dataflow systems and gives

credence to the idea of using Lucid for programming many-core machines.

Reflecting on the initial motivation, i.e. the long term transition to a hardware

mapping, I believe it necessary to rigorously revise the Lucid language specifica-

tion. In particular, user defined recursive functions and, more seriously, decla-

rations that incur nested time seem to be ill-suited for a mapping to hardware.

Even in a simulation domain it might be advisable to remove declarations since

they drastically complicate the programming effort and dataflow implementation.

Bibliography

[1] J. Armstrong. A history of Erlang. In HOPL III: Proceedings of the third

ACM SIGPLAN conference on History of programming languages, pages 6–

1–6–26, New York, NY, USA, 2007. ACM.

[2] E. A. Ashcroft, A. A. Faustini, R. Jagannathan, and W. W. Wadge. Multi-

dimensional Programming. Oxford University Press, Oxford, UK, 1995.

[3] E. A. Ashcroft and W. W. Wadge. The Syntax and Semantics of Lucid. Tech-

nical Report CSL-146, Computer Science Laboratory, SRI International,

Menlo Park, CA 94025, USA, 1984.

[4] A. M. DeFlumere and S. R. Alam. Exploring multi-core limitations through

comparison of contemporary systems. In TAPIA ’09: The Fifth Richard

Tapia Celebration of Diversity in Computing Conference, pages 75–80, New

York, NY, USA, 2009. ACM.

[5] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood

Cliffs, NJ, USA, 1976.

[6] A. A. Faustini, S. G. Matthews, and A. A. Yaghi. The pLucid Program-

ming Manual. Technical Report TR84-004, Computer Science Department,

Arizona State University, Tempe, Arizona 85287, USA, 1984.

[7] A. A. Faustini and W. W. Wadge. An eductive interpreter for the language

Lucid. In SIGPLAN ’87: Papers of the Symposium on Interpreters and

interpretive techniques, pages 86–91, New York, NY, USA, 1987. ACM.

[8] P. Haller and M. Odersky. Actors that unify threads and events. In CO-

ORDINATION’07: Proceedings of the 9th international conference on Co-

ordination models and languages, pages 171–190, Berlin, Heidelberg, 2007.

Springer-Verlag.

55

56 BIBLIOGRAPHY

[9] M. D. Hill and M. R. Marty. Amdahl’s Law in the Multicore Era. Computer,

41:33–38, 2008.

[10] R. Jagannathan, C. Dodd, and I. Agi. GLU: A high-level system for granular

data-parallel programming. Concurrency: Practice and Experience, 9(1):63–

83, 1997.

[11] G. Kahn and D. B. MacQueen. Coroutines and Networks of Parallel Pro-

cesses. In IFIP Congress, pages 993–998, 1977.

[12] P. J. Landin. The next 700 Programming Languages. Communications of

the ACM, 9(3), MAR 1966.

[13] E. A. Lee. The Problem with Threads. Computer, 39:33–42, 2006.

[14] S. K. Moore. Multicore Is Bad News For Supercomput-

ers, 2008. http://spectrum.ieee.org/computing/hardware/

multicore-is-bad-news-for-supercomputers.

[15] M. Odersky, L. Spoon, and B. Venners. Programming in Scala: A Compre-

hensive Step-by-step Guide. Artima Incorporation, USA, 2008.

[16] J. Plaice, B. Mancilla, and G. Ditu. From Lucid to Translucid: Iteration,

Dataflow, Intensional and Cartesian Programming. Mathematics in Com-

puter Science, 2:37–61, 2008. http://www.springerlink.com/content/

y5352j34q124r098.

[17] P. Rondogiannis and W. W. Wadge. Intensional Programming Languages,

1998.

[18] J. Stokes. Analysis: more than 16 cores may well be point-

less, 2008. http://arstechnica.com/hardware/news/2008/12/

analysis-more-than-16-cores-may-well-be-pointless.ars.

[19] W. W. Wadge and E. A. Ashcroft. Lucid, the Dataflow Programming Lan-

guage. Academic Press Professional, Inc., San Diego, CA, USA, 1985.

Appendix A

The simLucid Grammar

The simLucid interpreter implements the following context free grammar. It

makes use of the syntax for optional and/or repeated occurrances(square brakets

and curly braces). The implementation is split over the two files Lexer.scala and

Parser.scala.

program→ lucid term

lucid term→ expression [‘where’ { definition } { declaration } ‘end’]

definition→ ident ‘(’ ident { ‘,’ ident } ‘) =’ lucid term ‘;’

| ident ‘=’ lucid term ‘;’

declaration→ ident ‘is current’ lucid term ‘;’

expression→ pred6 stream { ‘asa’ pred6 stream

| ‘upon’ pred6 stream

| ‘whenever’ pred6 stream

| ‘wvr’ pred6 stream }
pred6 stream→ { pred5 stream ‘fby’ } pred5 stream

pred5 stream→ ‘if’ lucid term ‘then’ lucid term ‘else’ lucid term ‘fi’

| pred4 stream

pred4 stream→ pred3 stream { ‘eq’ pred3 stream | ‘ne’ pred3 stream

| ‘<=’ pred3 stream | ‘<’ pred3 stream

| ‘>=’ pred3 stream | ‘>’ pred3 stream }

57

58 APPENDIX A. THE SIMLUCID GRAMMAR

pred3 stream→ pred2 stream { ‘+’ pred2 stream | ‘-’ pred2 stream }
pred2 stream→ pred1 stream { ‘*’ pred1 stream | ‘mod’ pred1 stream

| ‘div’ pred1 stream | ‘\’ pred1 stream }
pred1 stream→ ‘next’ pred1 stream | ‘first’ pred1 stream | pred0 stream

pred0 stream→ fun app | atom | ‘(’ lucid term ‘)’

fun app→ ident ‘(’ lucid term { ‘,’ lucid term } ‘)’
atom→ index | eod | ident | integer

index→ ‘index’

eod→ ‘eod’

Appendix B

simLucid Source

B.1 File: SimLucid.scala

package sl.app.first

import collection._

import java.io.FileReader

import fe.first._

import be.first.RTE

import ast.first._

import util.first._

object SimLucid extends Parser with TypeChecker {

private var sourceFile: String = "";

private val flags = mutable.Map(

"verbose" -> false,

"debug" -> false,

"no-eval" -> false,

"noInputFile" -> true)

private val progName = "simLucid(1), version 1.0"

def processFlag(f: String) {
f match {
case "--verbose" => flags += ("verbose" -> true)

case "--debug" => flags += ("debug" -> true)

case "--no-eval" => flags += ("no-eval" -> true)

59

60 APPENDIX B. SIMLUCID SOURCE

}
}

def main(args: Array[String]) {
for(arg <- args) {

arg match {
case s: String if s.startsWith("--") => processFlag(s)

case _ =>

sourceFile = arg

flags += ("noInputFile" -> false)

}
}

Debugger.debugOn = flags("debug")

Debugger.verboseOn = flags("verbose")

import Debugger._

if(verboseOn) Console.println(verbosePrefix+"running "+progName)

if(verboseOn) Console.println(verbosePrefix+"flag settings: "+ flags)

if(verboseOn) Console.println(verbosePrefix+"source file: "+ sourceFile)

if(flags("noInputFile")) {
if(panicOn)

Console.println(panicPrefix+"no input found, system stopping ... ")

exit

}

if(debugOn)

Console.println(debugPrefix+"creating a reader on input file")

val reader = new FileReader(sourceFile)

if(debugOn) Console.println(debugPrefix+"parsing input")

val parseResult = parseAll(program, reader)

if(debugOn) Console.println(debugPrefix+"process parse result")

val ast: Program = parseResult match {
case Success(res, _) => res

case Failure(msg, next) =>

if(panicOn)

Console.println(panicPrefix+

B.1. FILE: SIMLUCID.SCALA 61

"Parse failed: "+msg+"\n"+blockPrint(next))
exit

case Error(msg, next) =>

if(panicOn)

Console.println(panicPrefix+

"Parsing error: "+msg+"\n"+blockPrint(next))
exit

}

if(verboseOn)

Console.println(verbosePrefix+

"The parsed AST is:\n\n"+ast+"\n")

if(debugOn)

Console.println(debugPrefix+"Type checking AST -- not really atm")

val typedAST = typecheck(ast)

if(flags("no-eval")) {
if(verboseOn)

Console.println(verbosePrefix+

"System running in no-eval mode, exiting now ...")

exit

}

if(debugOn) Console.println(debugPrefix+"Setting up RTE")

new RTE(typedAST)

}

def blockPrint(reader: Input): String = {
val res = new StringBuilder(50)

var remainder = reader

while (! remainder.atEnd) {
res.append(remainder.first)

remainder = remainder.rest

}
res.toString

}

}

62 APPENDIX B. SIMLUCID SOURCE

B.2 File: RTE.scala

package sl.be.first

import net._

import ast.first._

import util.first._

class RTE(val ast: Program) {

val ui = new UserInterface()

Debugger.verbosePort = ui

Debugger.debugPort = ui

Debugger.warningPort = ui

Debugger.panicPort = ui

Mapper.ui = ui

ui.start()

val driver = new DriverNode(ui,ast)

driver.start()

}

Appendix C

Microsecond Timestamping

The following C program prints a timestamp with microsecond resolution to

stdout. This relies on a Linux 2.6 kernel.

#include stdlib.h

#include stdio.h

#include sys/time.h

main()

{

struct timeval tv;

struct timezone tz;

gettimeofday(&tv, &tz);

printf("%ld.%06ld\n", tv.tv_sec, tv.tv_usec);

exit(0);

}

63

Appendix D

Project Proposal

64

Jonas Kaiser

Churchill College

jk431

Computer Science Part II Project Proposal

Reconsidering Lucid – a modern approach

October 22, 2009

Project Originator: Jonas Kaiser, after discussions with Alan Mycroft,

Dominic Orchard and John Fawcett

Resources Required: See attached Project Resource Form

Project Supervisor: Dominic Orchard

Signature:

Director of Studies: John Fawcett

Signature:

Overseers: Graham Titmus and Alastair Beresford

Signatures:

66 APPENDIX D. PROJECT PROPOSAL

Introduction and Description of the Work

Diminishing gains from the previous century’s processor design methods have

prompted designers to take a new approach: multicore machines. General pur-

pose quadcore CPUs are now available as commodity hardware and recent de-

velopments in using manycore GPUs for general purpose computation highlight

that programs must be targeted to run efficiently on manycore architectures.

If we run our existing programs on these machines, we will not see any perfor-

mance increases (and indeed they may actually run slightly slower, as each core

on its own might be weaker than a traditional single core CPU). Parallelising

existing code or writing parallel code from scratch with the current mainstream

programming tools on the other hand can unlock large portions of the available

performance – if it is done correctly. But actually getting it right is far from easy

with the tools at hand. The main reason here is that most mainstream languages

were developed with the sequential von Neumann architecture in mind, i.e. we

are using the wrong tools for the right task.

As the hardware is changing under our feet our mental model and the cor-

responding tools should change as well. It is not perfectly clear what this new

model will be and hence it is necessary to investigate not just variations of the

paradigm in use but to consider completely different paradigms as well. One

alternative on which I want to focus is the dataflow architecture.

The dataflow concept is not new and during the 1970s and 1980s the language

Lucid emerged. It is a comparatively small, pure and declarative language with an

execution model that is structured around how data moves through the program

instead of how the next step in the control sequence is reached. Parallelism is

implicit in the language design, allowing the user to express the essence of the

problem, as opposed to its efficient execution. The implementation will then

work out how to achieve this latter part. During the 1980s the sequential pLucid

interpreter was created as a major implementation of this language.

It might be that the version of Lucid described so many years ago (or a

derivative thereof) will map nicely onto modern many core architectures but to

answer this question we need, as a starting point, an implementation that is clear,

modular, well documented and hence easily modifiable. pLucid is fast but it fails

in all of these points as it was written in C and highly optimised at a very low

level. It is my aim to construct a modern implementation of a Lucid interpreter

from scratch, using a high level language to provide the required features.

67

Resources Required

• SVN Repository on the PWF filespace, so that I can work from various

workstations

• latest stable version of Scala (currently 2.7.6)

• my PC (as workstation)

• Lucid book from the UL

• Scala book

• Optional: If native dataflow extensions are considered, then a CUDA ca-

pable GPU might be useful

• Linux development environment with standard tools (vim, svn and ssh

clients, latex, etc...)

Starting Point

Prior Knowledge

Books:

• Odersky M., Spoon L., Venners B., 2007 Programming in Scala – I have

read it completely and attempted some of the exercises

• Wadge W.W., Ashcroft E.A., 1985, Lucid, the Dataflow Programming Lan-

guage – out of print, UL owns a copy, I currently have it on loan

Papers:

• Ashcroft E.A., Wadge W.W., 1984, The Syntax and Semantics of Lucid

• Plaice J., Mancilla B., Ditu G., 2008, From Lucid to TransLucid: Iteration,

Dataflow, Intensional and Cartesian Programming

I have also gained some experience with Scala during a three week coding

project of my summer internship.

68 APPENDIX D. PROJECT PROPOSAL

To get a feel for the lazy semantics of Lucid I wrote a small program in Scala

that implemented the classic, lazy howfar program using the actor based execu-

tion model. This worked and serves as a small proof-of-concept. The compiled

jar, together with instructions to run it can be found on the project wiki (see

below).

Software

• Operating Systems: Fedora Core 11 (64 bit), WinXP sp3 professional (32

bit)

• under both operating systems: sun JDK 1.6 or later, Scala 2.7.5.final

• windows only: successfully installed CUDA drivers and CUDA SDK, but

haven’t really used it yet

Hardware

• 2.6 GHz Dual Core Centrino notebook (64 bit architecture), 4GB RAM,

GeForce 8400M GS gfx chip (CUDA capable)

Substance and Structure of the Project

The interpreter can be separated into two major sections, the frontend (FE) and

the backend (BE), which can be developed independently. The FE is a parser

that transforms an input program in the source language Lucid into an Abstract

Syntax Tree (AST) that serves as the intermediate representation of the program.

The BE is a runtime engine that then evaluates the parsed program.

The implementation language is Scala which satisfies the high-level criterion

mentioned in the introduction and comes with some features and libraries that

are particularly useful to the structure of my implementation. Additionally, Scala

compiles to pure Java bytecode hence providing portability.

The FE consists of global datastructures like symbol tables, a lexer, a parser,

and zero or more optional stages (see below for details). The lexer, parser and

other stages will be arranged in a pipelined structure. When the parsing stage

completes successfully, the input program will be represented in the form of an

AST which serves as the intermediate format. Any further stages must consume

69

an AST as input and produce an AST as primary output. This allows easy

composition. I will use the Scala Parser Combinator library, which merges the

lexer and parser into a single system. Parser code written in this style closely

mirrors the underlying grammar, so it is easy to comprehend what is going on

and hence easy to change the grammar and thereby modify the accepted input

language. This allows me to start with a simple subset of the final grammar and

then extend it incrementally, without rewriting the system each time.

The BE consists of a textual user interface, a translation unit, a runtime engine

and a framework that holds it all together. The engine is a highly idealized ab-

straction of a dataflow architecture where programs are represented as a network

of computation nodes (as many as are required). These nodes communicate by

asynchronously passing around requests for data items and corresponding replies.

This layout is efficiently implementable on the Scala Actors library, Scala’s native

concurrency model. The translation unit takes an AST from the FE and creates

such a network, possibly using an internal domain specific language (DSL) to

encapsulate the core construction routines. This is again natively supported in

Scala. The “loose” ends of these networks, which represent the input and out-

put streams of the program, will be tied to the UI. When everything is set up,

the system operates in a demand driven way, requesting the next value from the

output which will trigger a ripple of request messages inside the network. When

all data values have been provided on the inputs and all computations have com-

pleted a response with the result will reach the output. This implements the lazy

evaluation semantics of Lucid.

I am keeping track of my progress on a project wiki page that is backed up

daily. This allows me to store ideas that might be useful at a later stage as well

as keeping a log of meetings and other developments related to the project:

http://kudos.chu.cam.ac.uk/kwiki/index.php/Jonas_Kaiser

Extensions

Here are some extensions that are not part of the core project, but that might

enhance the usability, speed, or analytical capabilities of the interpreter.

• (general) performance comparison with pLucid, try not to fall too far behind

in runtime behaviour

• (FE) a static type checker

70 APPENDIX D. PROJECT PROPOSAL

• (FE) a pipeline stage that just analyses the AST and dumps some diagnostic

data (e.g. a dataflow graph)

• (FE) other standard compiler optimisations

• (BE) extend computation nodes with local caches to reduce number of

messages (warehousing)

• (BE) equip framework with diagnostic hooks to extract detailed runtime

statistics

• (BE) if caches are used, add a simple garbage collector

• (BE) restrict the number of available nodes and cache sizes (i.e. getting

closer to what hardware could provide natively)

• (BE) offload simple parts of the network to GPU

Success Criterion

For the project to be deemed a success the following items must be successfully

completed.

• A correct interpreter accepting one-dimensional first-order Lucid (i.e. di-

mensions and functions are not considered as first order values) consisting

of separated FE and BE

• A correct FE with a variable pipeline of at least two stages: Lexer and

Parser.

• A correct BE that exhibits the lazy evaluation semantics of Lucid

For “correctness” tests I will use the old pLucid interpreter as a reference

by using the provided example programs. In some areas my interpreter will be

less expressive than pLucid, so programs using the respective features have to be

excluded (e.g. multidimensionality).

71

Timetable and Milestones

The following list is the division of the available time into 10 work slots of two

weeks each, together with major objectives that I want to tackle in each of these

periods. Each slot also has one or more milestones that should be achieved by

the end of the respective period. The longer periods over Christmas and Easter

will allow me to catch up if something is running late or to gain a head start if

there is sufficient time.

Slot 1: 24th October – 6th November

Preparation and Research Phase:

• Read Lucid Book

• Read several Lucid papers

• Research: Scala Actors library

• Research: Scala Parser Combinator library; Write a parser for simple arith-

metic expressions

• First version of AST

• Choose test programs for zero order Lucid

• Create supporting datastructures for the FE

• First version of parser (targeting zero-order Lucid – only the very basics,

no functions)

Milestones: Running “Hello World” parser – Working FE for zero order Lucid

– Written record of research results

Slot 2: 7th November – 20th November

Coding phase 1:

• First version of dataflow network implementation (zero order features only)

• First implementation of the translation unit

72 APPENDIX D. PROJECT PROPOSAL

• Clean UI

• Tie zero order FE and BE together to produce first stable interpreter

• Correctness Testing

Milestone: Working Interpreter for zero order Lucid

Slot 3: 21st November – 4th December

Coding phase 2:

• Choose test programs for first order Lucid (user functions and is current

operator)

• Extend AST

• Extend parser to accept first order Lucid

• Implement first order features in the BE

• Adjust translation unit to accommodate changes

• Tie first order FE and BE together to produce second stable interpreter

• Correctness Testing

Milestone: Working Interpreter for first order Lucid

Christmas break

Before Christmas:

• Finish Milestones that haven’t been achieved yet

• Major Debugging + Correctness Testing

• Review whether any extensions are possible

• Start Michaelmas revision

• Vacation

73

After Christmas:

• Compose ideas for the dissertation, write fragments of text, etc ...

• Start implementation of first order features for the BE

Slot 4: 9th January – 22nd January

Coding phase 3:

• Continue Major Debugging + Correctness Testing

• Start on Progress Report

Milestones: Stable First Order Lucid Interpreter – Draft Progress Report

Slot 5: 23rd January – 5th February

Evaluation phase 1:

• Complete Progress Report and practice presentation

• Improve system documentation

• Document / Demonstrate ease of system composition; start with identity

transform, then make it more interesting

• Plan which extensions can be achieved during slots 6 and 7, focus on pLucid

performance comparisons

Milestones: Finished Progress Report on 29th January, 12am noon – Presen-

tation – System Documentation – Detailed plan for slots 6 and 7

Slot 6: 6th February – 19th February

Evaluation phase 2:

• Perform work planned earlier, e.g. set up and run performance tests

• Document results and incorporate conclusions where possible

74 APPENDIX D. PROJECT PROPOSAL

• Repeat bug fixes and correctness tests where necessary due to changes

Milestones: Interpreter is still stable – Collected large section of dataset as

specified in plan from previous stage

Slot 7: 20th February – 5th March

Evaluation phase 3 / Dissertation phase 1:

• Perform any uncompleted tests left from previous stage

• Review, consolidate and organize obtained data set

• Set up dissertation, import any fragments already written along the way,

start work on chapters 1 to 3 properly

Milestones: Written record of completed evaluation data set – Full draft of

Introduction, Preparation and Implementation

Slot 8: 6th March – 19th March

Dissertation phase 2:

• Finish Chapters 1 to 3

• Start work on Chapter 4

• Verify formal constraints, layout, support sections

Milestones: C1 - C3: final draft – Evaluation(C4): first full draft

Easter Break

• Polish Chapter 4, create and place diagrams, graphs, etc.

• Create an initial version of Chapter 5 Conclusion

• Compose first draft of dissertation and send to Supervisor and DoS

• Revise Lent term, work out which courses are good exam options

Milestone: First draft of Dissertation

75

Slot 9: 17th April – 30th April

Dissertation phase 3:

• Finish Chapters 4 and 5 and incorporate feedback

• Compose Appendix, TOC, Bib, index

• Assemble final dissertation

• Start major proof reading

Milestones: Final draft of Dissertation – performed and processed several

Proof readings

Slot 10: 1st May – 14th May

Dissertation phase 4:

• Complete proof reading

• Compose final version of Dissertation

• Double check commission procedure

• Get it printed and bound

• Hand in before deadline

Milestone: Hand everything in on time, final deadline 14th May, 12:00am

noon

