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Abstract. We present a terminating tableau calculus for graded hybrid
logic with global modalities, reflexivity, transitivity and role hierarchies.
Termination of the system is achieved through pattern-based blocking.
Previous approaches to related logics all rely on chain-based blocking.
Besides being conceptually simple and suitable for efficient implemen-
tation, the pattern-based approach gives us a NExpTime complexity
bound for the decision procedure.

1 Introduction

Graded modal logic [1] is a powerful generalization of basic modal logic. Most
prominently, graded modalities are used in description logics, rich modal lan-
guages tailored for knowledge representation that have a wide range of practical
applications [2]. Graded modal logic allows to constrain the number of accessi-
ble states satisfying a certain property. So, the modal formula ♦np is true in a
state x if x has at least n + 1 successors satisfying p. Analogously to ordinary
modal logic, graded modal logic can be extended by nominals [3]. The result-
ing language, graded hybrid logic, can be extended further by adding global
modalities [4], which allow to specify properties that are to hold in all states.

Role hierarchies were first studied by Horrocks [5] in the context of description
logics. Using inclusion assertions of the form r v r′, one can specify that the
role (relation) r is contained in the role r′. Role hierarchies are of particular
interest when considered together with transitivity assertions for roles [6, 7].
The description logic SHOQ [8] combines the expressive means provided by
nominals, graded modalities, role hierarchies and transitive roles.

We present a terminating tableau calculus for graded multimodal logic ex-
tended by nominals, global modalities, reflexive and transitive roles, and role hi-
erarchies. The modal language under consideration in the present work is equiv-
alent to SHOQ extended by reflexive roles and a universal role, both extensions
also being known from SROIQ [9].

The most important difference of our approach to existing calculi for SHOQ
and stronger logics [8, 10, 9] is the technique used to achieve termination of the
tableau construction. The established tableau algorithms all rely on modifica-
tions of Kripke’s chain-based blocking technique [11]. Chain-based blocking as-
sumes a precedence order on the nominals (also known as nodes or prefixes) of
a tableau branch, and prevents processing of nominals that are subsumed by
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preceding nominals. In the simplest case, the precedence order is chosen to be
the ancestor relation among nominals (ancestor blocking). In general, however,
it may be any order that contains the ancestor relation (anywhere blocking [12,
13]). Ancestor blocking gives an exponential bound on the length of ancestor
chains, resulting in a double exponential bound on the size of tableau branches.
Depending on the choice of the precedence order, anywhere blocking can lower
this bound to a single exponential. However, the size bound on tableau branches
does not seem to translate easily to a complexity bound for the decision proce-
dures in [8, 10, 9] ([8, 10] show a 2-NExpTime bound, while [9] leaves complexity
open). We feel that the main difficulty in obtaining better complexity bounds is
the algorithms being non-cumulative.

A tableau system is called cumulative if its rules never update or delete
formulas. In contrast to most systems in the literature, calculi devised for de-
scription logics are often not cumulative. Cumulative calculi are easier to present
than non-cumulative systems and are usually more amenable to analysis.

Unlike [8, 10, 9], our calculus is cumulative. Cumulativity of the calculus in
the presence of nominals is achieved following [14] by representing equality con-
straints via an equivalence relation on nominals. Termination of our system
is achieved through pattern-based blocking [15, 14]. Pattern-based blocking is
conceptually simpler than chain-based techniques in that it does not need an
order on the nominals, and seems promising as it comes to efficient implemen-
tation [16]. Pattern-based blocking provides an exponential bound on the size
of tableau branches and on the number of tableau rule applications for a single
branch. Thus it limits the complexity of the associated decision procedure to
NExpTime. To deal with graded modalities, we extend the blocking conditions
in [15, 14], preserving the exponential size bound on the tableau branches.

We begin by presenting a calculus for graded hybrid logic with global modal-
ities. We argue that the blocking conditions used in [15, 14] are insufficient in
the presence of graded modalities. We extend pattern-based blocking to account
for the increased expressive power and argue the completeness and termination
of the resulting calculus. In the second part of the paper, we extend our calculus
further by allowing reflexivity, transitivity and inclusion assertions. It turns out
that in the presence of inclusion assertions, the blocking condition used for the
basic calculus needs to be extended once again.

2 Graded Hybrid Logic with Global Modalities and Role
Inclusion

Following [17, 14], we represent modal logic in simple type theory (see [18]). This
way we can make use of a rich syntactic and semantic framework and modal logic
does not appear as an isolated formal system. We start with two base types B
and S. The interpretation of B is fixed and consists of two truth values. The
interpretation of S is a nonempty set whose elements are called worlds or states.
Given two types σ and τ , the functional type στ is interpreted as the set of all
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total functions from the interpretation of σ to the interpretation of τ . We write
σ1σ2σ3 for σ1(σ2σ3).

We employ three kinds of variables: Nominal variables x, y, z of type S,
propositional variables p, q of type SB, and role variables r of type SSB. Nominal
variables are called nominals for short, and role variables are called roles. We
assume there are infinitely many nominals. We use the logical constants

⊥,> : B ¬ : BB ∨,∧,→ : BBB .= : SSB ∃,∀ : (SB)B

Terms are defined as usual. We write st for applications, λx.s for abstractions,
and s1s2s3 for (s1s2)s3. We also use infix notation, e.g., s ∧ t for (∧)st.

Terms of type B are called formulas. We employ some common notational
conventions: ∃x.s for ∃(λx.s), ∀x.s for ∀(λx.s), and x 6 .=y for ¬(x .=y).

For every n ∈ IN we define a constant Dn : S . . . SB as follows:

Dn := λx1 . . . λxn.
∧

1≤i<j≤n

xi 6
.=xj

Without loss of generality, we assume a strict total order ≺ on the nominals.
Given a set of nominals X of cardinality n ≥ 1, we write DX for Dnx1 . . . xn
where X = {x1, . . . , xn} and xi ≺ xi+1 for 1 ≤ i < n. We write D̄X for ¬DX.
Formulas of the form DX and D̄X are called distinctness constraints on X. Note
that for two distinct variables x, y, D̄{x, y} reduces to x .=y.

Moreover, we use the following constants:

v : (SSB)(SSB)B r1 v r2 = ∀xy.r1xy → r2xy

R : (SSB)B Rr = ∀x.rxx
T : (SSB)B Tr = ∀xyz.rxy ∧ ryz → rxz

To the right of each constant is an equation defining its semantics. We call
formulas of the form r v r′ (role) inclusion assertions. Formulas Rr and Tr are
called reflexivity and transitivity assertions, respectively.

We write ∃X.s for ∃x1 . . . xn.s if |X| = n and X = {x1, . . . , xn}. The modal
constants are then defined as follows:

¬̇ : (SB)SB ¬̇px = ¬(px)
∧̇ : (SB)(SB)SB (p ∧̇ q)x = px ∧ qx
∨̇ : (SB)(SB)SB (p ∨̇ q)x = px ∨ qx

〈 〉n : (SSB)(SB)SB 〈r〉npx = ∃Y.DY ∧ (
∧
y∈Y rxy ∧ py)

[ ]n : (SSB)(SB)SB [r]npx = ∀Y. (
∧
y∈Y rxy)→ D̄Y ∨

∨
y∈Y py

En : (SB)SB Enpx = ∃Y.DY ∧
∧
y∈Y py

An : (SB)SB Anpx = ∀Y. D̄Y ∨
∨
y∈Y py

˙ : SSB ẋy = x
.=y

where |Y | = n+ 1 in all equations

Intuitively, the semantics of the graded modal operators is as follows:
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Enp: There are at least n+ 1 states satisfying p.
Anp: All states but possibly n exceptions satisfy p.
〈r〉np: There are at least n+ 1 r-successors satisfying p.
[r]np: All r-successors but possibly n exceptions satisfy p.

In accordance with the usual modal intuition, “formulas” of modal logic are
seen as predicates of type SB denoting sets of states. They can be represented
as modal expressions according to the following grammar:

t ::= p | ẋ | ¬̇t | t ∧̇ t | t ∨̇ t | 〈r〉nt | [r]nt | Ent | Ant

As with the propositional connectives, we use infix notation for ∧̇ and ∨̇.
Unlike with the propositional connectives, we assume the application of modal
operators to have a higher precedence than regular functional application. So,
for instance, we write ¬̇〈r〉2ẏ ∨̇ p x for ((¬̇(〈r〉2(ẏ))) ∨̇ p)x.

An interpretation is a function M mapping B to the set {0, 1}, S to a non-
empty set, a functional type στ to the set of all total functions from the inter-
pretation of σ to the interpretation of τ , interpreting all variables as elements of
their respective types, and giving ⊥, >, ¬, ∧, ∨,→, ∃, ∀, .= their usual meaning.
A modal interpretation is an interpretation that, in addition, satisfies the equa-
tions defining the constants v, R, T , ¬̇, ∧̇, ∨̇, 〈 〉n, [ ]n, E, A, ˙ . If Mt = 1, we
say that M satisfies t. A formula is called satisfiable if it has a satisfying modal
interpretation.

3 Graded Hybrid Logic with Global Modalities

We begin with a tableau calculus for the restricted language without inclusion,
reflexivity or transitivity assertions.

3.1 Tableaux and Evidence

For the sake of simplicity, we define our tableau calculus on negation normal
expressions, i.e., terms of the form:

t ::= p | ¬̇p | ẋ | ¬̇ẋ | t ∧̇ t | t ∨̇ t | 〈r〉nt | [r]nt | Ent | Ant

A branch Γ is a finite set of formulas s of the form

s ::= tx | rxy | DX | D̄X | ⊥

where t is a negation-normal modal expression of the above form. Formulas of
the form rxy are called accessibility formulas or edges. We use the formula ⊥
to explicitly mark unsatisfiable branches. We call a branch Γ closed if ⊥ ∈ Γ .
Otherwise, Γ is called open. The branch consisting of the initial formula to be
tested for satisfiability is called the initial branch.
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Let Γ be a branch. With ∼Γ we denote the least equivalence relation ∼
on nominals such that x ∼ y for every formula D̄{x, y} ∈ Γ . We define the
equational closure Γ̃ of a branch Γ as

Γ̃ := Γ ∪ {tx | ∃x′ : x′ ∼Γ x ∧ tx′ ∈ Γ}
∪ {rxy | ∃x′, y′ : x′ ∼Γ x ∧ y′ ∼Γ y ∧ rx′y′ ∈ Γ}

Clearly, Γ̃ is finite if Γ is finite. Reasoning with respect to Γ̃ can be implemented
efficiently using disjoint-set forests, as demonstrated in [16].

A branch Γ is called evident if it satisfies all of the following evidence condi-
tions:

(t1 ∧̇ t2)x ∈ Γ ⇒ t1x ∈ Γ̃ ∧ t2x ∈ Γ̃
(t1 ∨̇ t2)x ∈ Γ ⇒ t1x ∈ Γ̃ ∨ t2x ∈ Γ̃
〈r〉ntx ∈ Γ ⇒ ∃Y : |Y | = n+ 1 ∧ DY ∈ Γ ∧ {rxy, ty | y ∈ Y } ⊆ Γ̃
[r]ntx ∈ Γ ⇒ |{y | rxy ∈ Γ̃ , ty /∈ Γ̃}/∼Γ | ≤ n
Entx ∈ Γ ⇒ ∃Y : |Y | = n+ 1 ∧ DY ∈ Γ ∧ {ty | y ∈ Y } ⊆ Γ̃
Antx ∈ Γ ⇒ |{y | ty /∈ Γ̃}/∼Γ | ≤ n
ẋy ∈ Γ ⇒ x ∼Γ y
¬̇ẋy ∈ Γ ⇒ x 6∼Γ y
¬px ∈ Γ ⇒ px /∈ Γ̃
D̄X ∈ Γ ⇒ |X/∼Γ | < |X|
DX ∈ Γ ⇒ |X/∼Γ | = |X|

Note that the evidence condition for D̄X ∈ Γ implies |X| ≥ 2. A formula s
is called evident on Γ if Γ satisfies the right-hand side of the evidence condi-
tion corresponding to s. For instance, (t1 ∧̇ t2)x is evident on Γ if and only if
{t1x, t2x} ⊆ Γ̃ .

We will now show that evident branches are satisfiable. Given a term t, we
write N t for the set of nominals that occur in t. The notation is extended to
sets of terms in the natural way: NΓ :=

⋃
{N t | t ∈ Γ}.

Given a branch Γ , we construct the interpretation MΓ by taking as the
domain of S the nominals on Γ , and interpreting propositional variables and
roles as the smallest sets that are consistent with the respective assertions on Γ .
To satisfy the equality constraints on Γ , all nominals that are equivalent modulo
∼Γ are mapped to the same fixed representative.

Let Γ be a branch and let x0 ∈ NΓ . Let ρ be a function from finite sets of
nominals to nominals such that ρX ∈ X whenever X is nonempty. We define
the interpretation MΓ as follows:

MΓS := NΓ
MΓx := if x ∈ NΓ then ρ{y ∈ NΓ | y ∼Γ x} else x0

MΓ p := {x ∈ NΓ | px ∈ Γ̃}
MΓ r := {(x, y) ∈ (NΓ )2 | rxy ∈ Γ̃}
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Note that in the last two lines of the definition, we interpret the set notation as
a convenient description for the respective characteristic functions.

The evidence of 〈r〉ntx (and Entx) depends on the presence of structurally
unrelated and possibly larger formulas DY (|Y | = n+1). Similar phenomena will
be observed later with our tableau rules (see Fig. 1). Therefore, in the following
we will need a measure d e on formulas such that, in particular, dDY e < d〈r〉ntxe.
Let bsc denote the size of a formula s. We define the order of s, dse, as follows:

dDXe := 1
dD̄Xe := 1 if |X| ≤ 2
dD̄Xe := 2 if |X| > 2
dse := 3 + bsc otherwise

The case distinction in the definition of dD̄Xe is exploited in the proofs of
Theorems 3.3 and 4.4.

Theorem 3.1 (Model Existence). If Γ is evident, then MΓ satisfies Γ .

Proof. For every s ∈ Γ , we show that MΓ satisfies s by induction on the order
of s. ut

3.2 Tableau Rules

The tableau rules of our basic calculus T are defined in Fig. 1. In the rules, we
write ∃x ∈ X : Γ (x) for Γ (x1) | . . . | Γ (xn), where X = {x1, . . . , xn} and Γ (x)
is a set of formulas parameterized by x. In case X = ∅, the notation translates
to ⊥. Dually, we write ∀x ∈ X : Γ (x) for Γ (x1), . . . , Γ (xn) (X = {x1, . . . , xn}).

The side condition of R♦ uses the notion of quasi-evidence, which we will
introduce in Sect. 3.3. For now, we assume the rule is formulated with the re-
striction “〈r〉ntx not evident on Γ”.

Note that for |X| < 2 the rule RD̄ instantiates to

D̄X

⊥

A branch Γ is called a proper extension of a branch ∆ if Γ̃ ) ∆̃. Note that if Γ
is a proper extension of ∆, in particular it holds Γ ) ∆. We implicitly restrict
the applicability of the tableau rules such that a rule R is only applicable to a
formula s ∈ Γ if all of the alternative branches ∆1, . . . ,∆n resulting from this
application are proper extensions of Γ .

Proposition 3.1 (Soundness). Let ∆1, . . . ,∆n be the branches obtained from
a branch Γ by a rule of T . Then Γ is satisfiable if and only if there is some
i ∈ {1, . . . , n} such that ∆i is satisfiable.
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R∧̇
(s ∧̇ t)x
sx, tx

R∨̇
(s ∨̇ t)x
sx | tx

R♦
〈r〉ntx

DY, ∀y ∈ Y : rxy, ty
Y fresh, |Y | = n+ 1, 〈r〉ntx not quasi-evident on Γ

R�

[r]ntx

D̄Y | ∃y ∈ Y : ty
Y ⊆ {y | rxy ∈ Γ̃}, |Y | = |Y/∼Γ | = n+ 1

RE
Entx

DY, ∀y ∈ Y : ty
Y fresh, |Y | = n+ 1, Entx not evident on Γ

RA
Antx

D̄Y | ∃y ∈ Y : ty
Y ⊆ NΓ, |Y | = |Y/∼Γ | = n+ 1 RN

ẋy

D̄{x, y}
x 6= y

RN̄
¬̇ẋy

D{x, y}
x 6= y RD̄

D̄X

∃x, y ∈ X, x 6= y : D̄{x, y}
RD

DX

⊥
|X/∼Γ | < |X|

R⊥¬̇
¬̇px
⊥

px ∈ Γ̃ R⊥N̄
¬̇ẋx
⊥

Γ is the branch to which a rule is applied. “Y fresh” stands for Y ∩NΓ = ∅.

Fig. 1. Tableau rules for T

3.3 Control

The restrictions on the applicability of the tableau rules given by the evidence
conditions are not sufficient for termination. To obtain a terminating calculus,
the rule R♦ needs to be restrained further. We do so by weakening the notion
of evidence for diamond formulas. The weaker notion, called quasi-evidence, is
then used in the side condition of R♦ in place of evidence. Quasi-evidence must
be weak enough to guarantee termination of the calculus but strong enough to
preserve completeness.

The notions of quasi-evidence used in previous work on pattern-based block-
ing [15, 14] turn out to be too weak in the presence of graded modalities. For
instance, intuitively adapting the notion in [15] would give us the following can-
didate definition:

A formula 〈r〉msx is quasi-evident on Γ if there are y, z1, . . . , zm such that
{ryz1, sz1, . . . , ryzm, szm} ⊆ Γ̃ and {[r]nty | [r]ntx ∈ Γ̃} ⊆ Γ̃ . (We also say:
〈r〉msx is quasi-evident if the corresponding pattern {〈r〉ms}∪{[r]nt | [r]ntx ∈ Γ̃}
is expanded).

With this definition of quasi-evidence, no rule of our calculus would apply to
the following branch:

Γ := {ryz, qz, [r]1(p ∧̇ ¬̇p)y, 〈r〉0qx, [r]1(p ∧̇ ¬̇p)x, rxu, ¬̇qu}
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As Γ is clearly unsatisfiable, the notion of quasi-evidence needs to be adapted.
Given a branch Γ and a role r, an r-pattern is a set of expressions of the

form µs, where µ ∈ {〈r〉n, [r]n |n ∈ IN}. We write P rΓx for the largest r-pattern
P such that P ⊆ {t | tx ∈ Γ̃}. We call P rΓx the r-pattern of x on Γ . An r-pattern
P is expanded on Γ if there are nominals x, y such that rxy ∈ Γ̃ and P ⊆ P rΓx.
In this case, we say that the nominal x expands P on Γ .

A diamond formula 〈r〉nsx ∈ Γ is quasi-evident on Γ if it is either evident
on Γ or x has no r-successor on Γ (i.e., there is no y such that rxy ∈ Γ̃ ) and
P rΓx is expanded on Γ . The rule R♦ can only be applied to diamond formulas
that are not quasi-evident.

Note that whenever 〈r〉nsx ∈ Γ is quasi-evident but not evident on Γ , there
is a nominal y that expands P rΓx on Γ .

We call a branch Γ quasi-evident if it satisfies all of the evidence conditions
but the one for diamond formulas, which we replace by:

〈r〉ntx ∈ Γ ⇒ 〈r〉ntx is quasi-evident on Γ

One can show the following lemma:

Lemma 3.1. Let Γ be a quasi-evident branch and let 〈r〉nsx ∈ Γ be not evident
on Γ . Let y be a nominal that expands P rΓx on Γ and ∆ := Γ ∪{rxz | ryz ∈ Γ̃}.
Then:

1. ∀z : rxz ∈ ∆̃ ⇐⇒ ryz ∈ Γ̃ ,
2. ∀m, t : 〈r〉mt ∈ P rΓx =⇒ 〈r〉mtx evident on ∆,
3. 〈r〉nsx evident on ∆,
4. ∀r′,m, t, z : 〈r′〉mtz evident on Γ =⇒ 〈r′〉mtz evident on ∆,
5. ∆ quasi-evident.

Theorem 3.2 (Evidence Completion). For every quasi-evident branch Γ
there is an evident branch ∆ such that Γ ⊆ ∆.

Proof. For every branch Γ , we define:

ϕΓ := |{〈r〉nsx | 〈r〉nsx ∈ Γ ∧ 〈t〉nsx not evident on Γ}|

Let Γ be quasi-evident. We proceed by induction on ϕΓ . If ϕΓ = 0, then Γ is
evident and we are done. Otherwise, there is a diamond 〈r〉nsx ∈ Γ that is not
evident on Γ . Let y be a nominal that expands P rΓx on Γ , and let Γ ′ := Γ ∪
{rxz | ryz ∈ Γ̃}. By Lemma 3.1(3-5), Γ ′ is quasi-evident and ϕΓ ′ < ϕΓ . So, by
the inductive hypothesis, there is some evident branch ∆ such that ∆ ⊇ Γ ′ ⊇ Γ .

ut

A branch is called maximal if it cannot be extended by any tableau rule.

Theorem 3.3 (Quasi-evidence). Every open and maximal branch in T is
quasi-evident.

Proof. Let Γ be an open and maximal branch. We show that every s ∈ Γ that
is not of the form px or rxy is (quasi-)evident on Γ by induction on the order
of s. ut
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3.4 Termination

We will now show that every tableau derivation is finite. As usual, the main
difficulty is bounding the number of applications of generative rules, in particular
of R♦. The present proof is notably more complex than the proofs in [15, 14]
since now, an application of R♦ does not necessarily expand a new pattern.
Hence, we need to combine the pattern-counting argument from [15, 14] with a
bound on the number of non-expanding applications of R♦.

Since the rules R∨̇, R�, RA, and RD̄ are all finitely branching, by König’s
lemma it suffices to show that the construction of every individual branch ter-
minates. Since tableau rule application always produces proper extensions of
branches, it then suffices to show that the size (i.e., cardinality) of an individual
branch is bounded.

First, we show that the size of a branch Γ is bounded by a function in the
number of nominals on Γ . Then, we show that this number itself is bounded
from above, completing the termination proof.

We write Γ R→ ∆ to denote that the branch ∆ is obtained from Γ by the
rule R. We write Γ → ∆ if ∆ is obtained from Γ by a single rule application.
We write SΓ for the set of all modal expressions occurring on Γ , possibly as
subterms of other expressions, and RelΓ for the set of all roles that occur on Γ .

Crucial for the termination argument is the fact the the tableau rules cannot
introduce any modal expressions that do not already occur on the initial branch.

Proposition 3.2. If Γ,∆ are branches such that ∆ is obtained from Γ by any
rule of T , then S∆ = SΓ .

Let m0 = max{n | ∃r, s, x : 〈r〉nsx ∈ Γ ∨ [r]nsx ∈ Γ}. For every pair of
nominals x, y and every role r, a branch Γ may contain an edge rxy, for every
set X ⊆ NΓ where |X| ≤ m0, Γ may contain constants DX and D̄X and,
for every expression s ∈ SΓ , a formula sx. Hence, the size of Γ is bounded by
|RelΓ | · |NΓ |2 + 2m0 · |NΓ |m0 + |SΓ | · |NΓ |. By Proposition 3.2, we know that
|SΓ | and |RelΓ | depend only on the initial branch.

Note that the above bound is exponential in m0. If, however, we represented
distinctness constraints by binary equations and disequations, we could easily
give a bound that is independent from m0 by replacing the summand 2m0 ·
|NΓ |m0 with 2|NΓ |2.

By the above, it suffices to show that |NΓ | is exponentially bounded in
the size of the initial formula. We do so by giving a bound on the number of
applications of R♦ and RE that can occur in the derivation of a branch, which
suffices sinceR♦ andRE are the only two rules that can introduce new nominals.

We begin by showing that RE can be applied at most as many times, as
there are distinct modal expressions of the form Ens on the initial branch. For
this purpose, we define a function ψE such that ψEΓ := {Ens ∈ SΓ | ∃x ∈
NΓ : Ensx not evident on Γ}. Since |ψEΓ | is bounded from below by 0, it
suffices to show that the number decreases with every application of RE (and is
non-increasing otherwise, which is obvious).
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Proposition 3.3. Γ RE→ ∆ =⇒ |ψEΓ | > |ψE∆|
The proof proceeds analogously to the corresponding arguments in [15, 14].

Now we show that R♦ can be applied at most finitely often in a derivation.
Since there are only finitely many roles, it suffices to show thatR♦ can be applied
at most finitely often for each role. Observe that since R♦ is only applicable to
diamond formulas that are not quasi-evident, it holds:

Proposition 3.4. If R♦ is applicable to a formula 〈r〉nsx ∈ Γ , then either

1. x has an r-successor on Γ , or
2. P rΓx is not expanded on Γ .

Let Γ and ∆ be branches such that ∆ is obtained from Γ by applying R♦

to a formula 〈r〉nsx ∈ Γ such that P rΓx is not expanded on Γ . It is easy to
see that P r∆x must be expanded on ∆. Let us call such an application of R♦

pattern-expanding.
Let Pat rΓ := P({〈r〉ns ∈ SΓ} ∪ {[r]ns ∈ SΓ}). In other words, Pat rΓ

contains all the possible sets of r-diamonds and r-boxes from SΓ . Since Γ → ∆
implies Γ̃ ⊆ ∆̃, it holds:

Lemma 3.2. Let Γ → ∆ and P ∈ Pat rΓ . If P is expanded on Γ , then P is
expanded on ∆.

So, for each role r the derivation of a branch has at most |Pat rΓ0| pattern-
expanding applications of R♦, where Γ0 is the initial branch. Clearly, |Pat rΓ0|
is exponentially bounded in the size of the initial formula.

Hence, it remains to show that a derivation can contain only finitely many
applications of R♦ assuming that none of the applications is pattern-expanding.
We say a nominal x has a successor on Γ if x has an r-successor on Γ for any
role r. A set of nominals X has a successor on Γ if there is some x ∈ X that has
a successor on Γ . We define

ψX♦ Γ := |{〈r〉ns ∈ SΓ | ∃x ∈ X : 〈r〉nsx not evident on Γ}|

and
ψ♦Γ :=

∑
X∈NΓ/∼Γ

X has a successor on Γ

ψX♦ Γ .

Proposition 3.5. Let Γ → ∆ such that ∆ is obtained from Γ by some rule
application other than a pattern-expanding application of R♦.

1. If ∆ is obtained from Γ by R♦, then ψ♦Γ > ψ♦∆.
2. Otherwise, ψ♦Γ ≥ ψ♦∆.

This completes the termination proof. Since the cardinalities of the sets
Pat rΓ are exponentially bounded in the size n0 of the initial formula, |ψEΓ |
is polynomial in n0, and ψ♦Γ polynomial in |Γ | and n0, |NΓ | is exponentially
bounded in n0. Since |Γ | is polynomial in |NΓ |, we conclude that |Γ | is at most
exponential in n0. By cumulativity, the construction of Γ terminates in at most
exponentially many steps in n0. This suffices to give us a NExpTime complexity
bound for the decision procedure based on the calculus.
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4 Adding Reflexivity, Transitivity and Role Inclusion

We now extend T to deal with reflexivity, transitivity and inclusion assertions. As
in related work on description logic [5, 8, 10, 9], we restrict our modal expressions
to contain no graded boxes for roles that have transitive subroles.

We define ⊆∗Γ as the smallest reflexive and transitive relation such that
r ⊆∗Γ r′ whenever r v r′ ∈ Γ . A role r is called simple if there is no r′ such
that r′ ⊆∗Γ r and Tr′ ∈ Γ . Observe that all subroles of a simple role are in turn
simple.

Our branches may now contain inclusion, reflexivity and transitivity asser-
tions:

s ::= tx | rxy | DX | D̄X | ⊥ | r v r′ | Rr | Tr

The modal expressions t in formulas of the form tx are restricted to contain no
boxes [r]ns with n > 0 unless r is simple.

Following the ideas in [5, 8, 10, 9], we introduce the induced transition rela-
tion DrΓ to reason about accessibility in the presence of inclusion axioms. Intu-
itively, x DrΓ y means that in every model of Γ , y is accessible from x via r.

4.1 Extending Evidence

To account for the new types of formulas, we extend the evidence conditions as
follows:

r v r′ ∈ Γ ⇒ ∀x, y ∈ NΓ : rxy ∈ Γ̃ ⇒ r′xy ∈ Γ̃
Rr ∈ Γ ⇒ ∀x ∈ NΓ : rxx ∈ Γ̃
T r ∈ Γ ⇒ ∀x, y, z ∈ NΓ : rxy ∈ Γ̃ ∧ ryz ∈ Γ̃ ⇒ rxz ∈ Γ̃

It is easy to see that if Γ satisfies the extended evidence conditions, MΓ will
satisfy the new formulas. Hence, Theorem 3.1 adapts to the extended system.

Theorem 4.1 (Model Existence). If Γ is evident, then MΓ satisfies Γ .

4.2 Pre-evidence

To account for the new evidence conditions, one could imagine the following
rules.

r v r′, rxy
r′xy

Rr

rxx
x ∈ NΓ

Tr, rxy, ryz

rxz

In the presence of blocking, however, the rules are problematic. In particular,
the rule for reflexivity renders the notion of quasi-evidence that we use for T
ineffective to ensure termination. Once we add a reflexive edge rxx to a branch
Γ , x will have an r-successor on Γ , meaning quasi-evidence will coincide with
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evidence for all r-diamonds on x. Similarly, the rule for transitivity is known to
be incomplete in the presence of blocking [14].

We solve the problem by defining a weaker notion of evidence, called pre-
evidence. To satisfy the pre-evidence conditions, we do not have to explicitly
add reflexive or transitive edges during tableau construction. We will extend our
tableau rules and the notion of quasi-evidence such that every open and maximal
branch in the extended calculus can be completed to a pre-evident branch, which
in turn can be made evident by adding the implicit edges.

We define the relation BrΓ as the least relation such that:

rxy ∈ Γ̃ ⇒ x BrΓ y

r′ v r ∈ Γ, x Br
′

Γ y ⇒ x BrΓ y

The relation BrΓ does not account for reflexivity. To do so, we extend it as follows:

DrΓ :=
{
BrΓ ∪{(x, y) |x, y ∈ NΓ ∧ x ∼Γ y} if ∃r′ : r′ ⊆∗Γ r ∧Rr′ ∈ Γ
BrΓ otherwise

The pre-evidence conditions are obtained from the evidence conditions by
omitting the conditions for inclusion and reflexivity assertions and replacing the
conditions for diamonds, boxes and transitivity assertions as follows:

〈r〉ntx ∈ Γ ⇒ ∃Y : |Y | = n+ 1 ∧ DY ∈ Γ̃ ∧ ∀y ∈ Y : x DrΓ y ∧ ty ∈ Γ̃
[r]ntx ∈ Γ ⇒ |{y |x DrΓ y, ty /∈ Γ̃}/∼Γ | ≤ n

Tr ∈ Γ ⇒ ∀x, y : [r′]0tx ∈ Γ̃ ∧ r ⊆∗Γ r′ ∧ x BrΓ y ⇒ [r]0ty ∈ Γ̃
Note that we do not need pre-evidence conditions for inclusion or reflexivity
assertions as their semantics is taken care of by the way we define the rela-
tion x DrΓ y. Pre-evidence of individual formulas is defined analogously to the
corresponding evidence notion.

We now show that every pre-evident branch can be extended to an evident
branch. Let the evidence closure Γ̂ of a branch Γ be defined as the least superset
of Γ such that:

x DrΓ y ⇒ rxy ∈ Γ̂
T r ∈ Γ̂ ∧ rxy ∈ Γ̂ ∧ ryz ∈ Γ̂ ⇒ rxz ∈ Γ̂

r v r′ ∈ Γ̂ ∧ rxy ∈ Γ̂ ⇒ r′xy ∈ Γ̂

Note that by construction, we have rxy ∈ ˆ̃Γ ⇐⇒ rxy ∈ Γ̂ .

Lemma 4.1. Let Γ be a branch and r be simple on Γ . Then x DrΓ y ⇐⇒
rxy ∈ Γ̂
Lemma 4.2. Let Γ be a branch and let rxy ∈ Γ̂ . Then either x DrΓ y, or there
is an r′ such that {r′ v r, T r′} ⊆ Γ and

∃n≥2 ∃x1, . . . , xn : x1 = x ∧ xn = y ∧ ∀1≤i<n : xi B
r′

Γ xi+1 .

Theorem 4.2 (Evidence Completion). Γ pre-evident =⇒ Γ̂ evident

Proof. Straightforward, using Lemmas 4.1 and 4.2. ut
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R�

[r]ntx

D̄Y | ∃y ∈ Y : ty
Y ⊆ {y |x Dr

Γ y}, |Y | = |Y/∼Γ | = n+ 1

RT
Tr, [r′]0tx

[r]0ty
r ⊆∗Γ r′, x Br

Γ y

Fig. 2. New rules for Tv

4.3 Tableau Rules

The tableau rules for the extended calculus Tv in Fig. 2 replace the original
rule R� from Fig. 1 and add a new rule RT , which is necessary to achieve
the pre-evidence condition for transitivity assertions. While the formulation of
R♦ remains unchanged, the rule will now have to use an adapted notion of
quasi-evidence, which will be introduced in Sect. 4.4. For now, we assume R♦ is
formulated with the restriction “〈r〉ntx not pre-evident on Γ” instead. Again, it
is not hard to verify that the extended rules are sound.

4.4 Control

As it turns out, in the presence of role inclusion we have to modify the definition
of patterns. It no longer suffices to consider patterns separately for each role.
This is due to the fact that now, different roles may be constrained by inclusion
assertions. Consider, for instance, the unsatisfiable branch

Γ := {r v r′, 〈r〉0px, 〈r′〉0¬̇px, [r′]1(p ∧̇ ¬̇p)x, r′xy, ¬̇py, 〈r〉0pz, rzu, pu}

According to our previous notion of quasi-evidence, 〈r〉0px is quasi-evident on Γ
as x has no r-successor (even if we extend the set of successors to {y |x BrΓ y})
and P rΓx is expanded. Since the other two diamonds on Γ are evident, Γ is quasi-
evident, witnessing the incompleteness of our previous definition of patterns.

Hence, we redefine the notion of a pattern as follows. Given a branch Γ , a
pattern is a set of terms of the form µs, where µ ∈ {〈r〉n, [r]n | r ∈ RelΓ, n ∈ IN}.
We write PΓx for the largest pattern P such that P ⊆ {t | tx ∈ Γ̃}. We call PΓx
the pattern of x on Γ . A pattern P is expanded on Γ if there are nominals x, y
and a role r such that x BrΓ y and P ⊆ PΓx. In this case, we say that x expands
P on Γ . Note that here we use the relation BrΓ rather than DrΓ . Otherwise, we
would get the same problems with termination as outlined in Sect. 4.2.

A diamond formula 〈r〉nsx is quasi-evident on Γ if it is either pre-evident on
Γ or x has no successor on Γ (i.e., there is no y such that for any r, x BrΓ y) and
PΓx is expanded on Γ . As before, we restrain the rule R♦ such that it can only
be applied to diamond formulas that are not quasi-evident, and call a branch
Γ quasi-evident if it satisfies all of the pre-evidence conditions but the one for
diamond formulas, which we again replace by

〈r〉ntx ∈ Γ ⇒ 〈r〉ntx is quasi-evident on Γ
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but now with the adapted notion of quasi-evidence.

Lemma 4.3. Let x, y, u, v be nominals and Γ,∆ branches such that {r | rxy ∈
Γ̃} = {r | ruv ∈ ∆̃}. Then, for every r, x BrΓ y ⇔ u Br∆ v.

Lemma 4.4. Let Γ be a quasi-evident branch and let 〈r〉nsx be not pre-evident
on Γ . Let y expand PΓx on Γ and ∆ := Γ ∪ {r′xz | r′yz ∈ Γ̃}. Then:

1. ∀r′, z : x Br
′

∆ z ⇐⇒ y Br
′

Γ z and x Dr
′

∆ z ⇐⇒ y Dr
′

Γ z,
2. ∀r′,m, t : 〈r′〉mt ∈ PΓx =⇒ 〈r′〉mtx pre-evident on ∆,
3. 〈r〉nsx pre-evident on ∆,
4. ∀r′,m, t, z : 〈r′〉mtz pre-evident on Γ =⇒ 〈r′〉mtz pre-evident on ∆,
5. ∆ quasi-evident.

Proof. Analogous to the proof of Lemma 3.1, Lemma 4.3 being used for (1). ut

Theorem 4.3 (Pre-evidence Completion). For every quasi-evident branch
Γ there is a pre-evident branch ∆ such that Γ ⊆ ∆.

Proof. Proceeds analogously to the proof of Theorem 3.2 with Lemma 4.4 in
place of Lemma 3.1. ut

Theorem 4.4 (Quasi-evidence). Every open and maximal branch in Tv is
quasi-evident.

Proof. Proceeds analogously to the proof of Theorem 3.3. ut

While requiring some adaptations, the termination proof for Tv is mostly
analogous to the proof for T .

5 Conclusion

We have presented a terminating tableau calculus for graded hybrid logic with
global modalities and role hierarchies. Following [19, 20, 14], our calculus is cumu-
lative, representing state equality abstractly via an equivalence relation (declar-
ative approach). The existing calculi for equivalent and stronger logics [8, 10, 9]
work on possibly cyclic graph structures and treat equality by destructive graph
transformation during tableau construction (procedural approach). The proce-
dural approach encompasses algorithmic decisions that are not present in the
more abstract declarative approach. From a declarative calculus we can always
obtain a procedural system by refinement.

Exploiting an extended pattern-based blocking technique and the cumulativ-
ity of our calculus, we have proved a NExpTime complexity bound for the asso-
ciated decision procedure. To ensure termination of pattern-based blocking in the
presence of reflexivity, we differentiated between the induced transition relation
DrΓ and its non-reflexive counterpart BrΓ . The implementation of pattern-based
blocking for a hybrid language with global modalities [16] reveals its consider-
able practical potential. We consider it a promising project to implement the
extended version of pattern-based blocking presented in this paper and compare
its performance to that of established blocking techniques.
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