
A Straightforward Saturation-Based

Decision Procedure for Hybrid Logic

Mark Kaminski1 Gert Smolka1

Programming Systems Lab

Saarland University

Saarbrücken, Germany

Abstract

In this paper we present a saturation-based decision procedure for basic hybrid
logic extended with the universal modality. Termination of the procedure is
guaranteed by constraints that are conceptually simpler than the loop-checks
commonly used with related tableau-based decision methods in that they do not
rely on the order in which new formulas are introduced. At the same time, our
constraints allow us to limit the worst-case asymptotic complexity of the proce-
dure more tightly than it seems to be possible for methods using conventional
loop-checks. The procedure is based on Hardt and Smolka’s higher-order formu-
lation of hybrid logic [10].

1 Introduction

Recently, several tableau-based decision procedures, both prefixed and internal-
ized [7, 6], were developed for H(E), the basic hybrid language [5] extended with
the universal modality. Termination of the procedures is guaranteed by restricting
the applicability of rules that generate new prefixes (or nominals, respectively) to
formulas prefixed by so-called urfathers. A prefix on a tableau branch is called
an urfather of that branch if the associated set of formulas is not included in the
corresponding set for any other prefix that occurs earlier on the branch.

We present a saturation-based decision procedure for H(E) based on the higher-
order formulation of hybrid logic devised by Hardt and Smolka [10]. The procedure
is obtained from a model existence theorem as a set of terminating saturation rules
that, applied to a set C of hybrid formulas, will construct a model if and only if
C is satisfiable. Like in internalized tableau systems [4, 7, 6], the saturation rules
do not rely on any extensions of the object syntax. Termination of the procedure
is guaranteed by constraints restricting the expansion of diamond-prefixed formu-
las, reminiscent of the urfather-based loop-checks in [7, 6], but motivated by a
different model construction. Our algorithm works on unordered sets of formu-
las rather than ordered tableau branches and treats equality explicitly. Given a
set of formulas, the admissibility of diamond expansion does not depend on any
knowledge about how the set was constructed. Moreover, since our expansion
constraints only depend on very specific subsets of the formulas that are true at a

1{kaminski,smolka}@ps.uni-sb.de 17.5.2007

f̊ := fπ @ut := (λπ.t)u

ů := π
.
=u E̊t := E(λπ.t)

3̊t := 3π(λπ.t) Åt := A(λπ.t)

2̊t := 2π(λπ.t)

Figure 1: Hybrid Notation in Higher-Order Syntax

given nominal rather than on all such formulas, we are able to give upper bounds
for the asymptotic worst-case complexity of our procedure that are smaller than
the ones known for conventional loop-checks. We expect our approach to provide
for a simple and comparatively efficient implementation of the decision procedure.

2 Basics

As the formal basis for our presentation we take the formulation of hybrid logic
based on the simply typed λ-calculus introduced in [10]. For an introduction to
the simply typed λ-calculus, see [3].

For each type T we assume a countably infinite set VarT of variables, and
define Var :=

⋃

T VarT . Two base types are given special interpretation: the
type V of vertices and the type B of truth values. Variables of type V are called
nominal variables, and are written as π, x, y, z. Variables f, g : V → B are called
propositional variables. We also assume a countably infinite set Par of constants of
type V, which we call parameters. Parameters are written as a, b. Elements of the
set Nam := Par ∪ Var are called names. Names of type V are written as u, v, w.

We consider λ-terms, written as s, t, over the following signature:

• Type constants B, V

• Boolean connectives ∨,∧ : B → B → B and ¬ : B → B

• Equality predicate on vertices
.
= : V → V → B

• Relational constant R : V → V → B

• Modal operators 3, 2 : V → (V → B) → B

• Universal modalities E, A : (V → B) → B

For a term t, Vt denotes the set of nominal variables that occur free in t, and
N t := Vt ∪ {a ∈ Par | a occurs in t}. If Vt = ∅, t is called closed.

Terms of type B are called formulas. We denote the set of all formulas by For .
Given a term t, we write Ft for the set of all subformulas of t. We call a formula
t monadic if for every subterm s it holds |Vs| ≤ 1, and every subterm of the form
λx.t is closed. It can be shown that monadic formulas of the form
t ∈ MFI ::= fu | u

.
=v | ¬t | t ∨ t | 3u(λπ.t)

naturally correspond to formulas of H(@) [10]. It is easily seen that the monadic
fragment of MFI extended by terms of the form E(λπ.t) analogously corresponds
to H(E). Let us call formulas which are elements of this extended set proper. Fig-
ure 1 summarizes the correspondence between hybrid and higher-order syntax.
Note that a proper formula never contains subterms of the form Ruv. A set C

of β-normal, η-long, negation-normal formulas is called a clause if every element
t ∈ C is either proper or of the form Ruv. In other words, a clause contains only

formulas of the form Ruv and proper formulas of the form
p ::= fu | ¬fu | u

.
=v | ¬u

.
=v | p ∗ p | µu(λπ.p) | M(λπ.p)

where ∗ ∈ {∧,∨}, µ ∈ {3, 2}, M ∈ {A, E}. A clause C is called proper if every
formula t ∈ C is proper. C is called monadic if every proper t ∈ C is monadic.
V , N , and F are extended to clauses in the natural way. So, for instance,
NC :=

⋃

t∈C N t. Please note that in the following, we will always think of clauses
as conjunctions, not as disjunctions.

Definition (Interpretation) An interpretation of hybrid logic is a standard in-
terpretation of the simply typed λ-calculus that interprets the type constants
B, V, the parameters

.
=,¬,∧,∨, R, 3, 2, E, A, and the variables in Var such that

DB = {0, 1} where 0 6= 1, DV 6= ∅, and

D(u
.
=v) = 1 ⇐⇒ Du = Dv

D(¬t) = 1 ⇐⇒ Dt 6= 1

D(s ∧ t) = 1 ⇐⇒ Ds = 1 and Dt = 1

D(s ∨ t) = 1 ⇐⇒ Ds = 1 or Dt = 1

D(Ruv) = 1 ⇐⇒ (Du,Dv) ∈ DR

D(3ut) = 1 ⇐⇒ ∃ a ∈ DV : (Du, a) ∈ DR and Dta = 1

D(2ut) = 1 ⇐⇒ ∀ a ∈ DV : (Du, a) ∈ DR implies Dta = 1

D(Et) = 1 ⇐⇒ ∃ a ∈ DV : Dta = 1

D(At) = 1 ⇐⇒ ∀ a ∈ DV : Dta = 1

Whenever we have Dt = 1, we also write D � t and say that D satisfies t, or
that t is valid in D. A term is called satisfiable if it has a satisfying interpretation.

We write (λx.t)↓u for t[x := u] and make use of the following property.

Proposition 2.1 (β-Compatibility) D(s↓t) = Ds(Dt).

3 Saturatedness and Model Existence

For every clause C, let ∼C denote the equivalence closure of the relation
{(u, v) |u

.
=v ∈ C}. We also write [u]C to denote the set {v |u ∼C v}.

Let ι ∈ P(Nam) → Nam be a choice function, i.e. a function such that, for all
A ∈ P(Nam): |A| > 0 =⇒ ιA ∈ A.

For every clause C we define ρC ∈ NC → NC such that ρCu = ι[u]C . Names
u such that ρCu = u are called ρC -normal.

So, given a name u, ρC returns a canonical representative of the equivalence
class of u in C. Later, when we look at the saturation process, it will be obvious
that ρC needn’t be re-computed from scratch for every intermediate clause, but
can be constructed incrementally, for instance using a disjoint-set forest (see [9, 8]).

Definition (Triviality) A clause C is called trivial if either

• ¬u
.
=v ∈ C for some u, v such that ρCu = ρCv, or

• fu ∈ C and ¬fv ∈ C for some u, v, f such that ρCu = ρCv.

Formulas that are either of the form 3ut or 2ut are called modal literals.
Let C be given. We define the notation

PCu := {λx.3xt |3ut ∈ C} ∪ {λx.2xt |2ut ∈ C}

PC(3ut) :=

{

{λx.3xt} ∪ {λx.2xs |2us ∈ C} if 3ut ∈ C

∅ otherwise

(S .
=) PCu ⊆ PC(ρCu).

(S∧) If s ∧ t ∈ C, then s, t ∈ C.

(S∨) If s ∨ t ∈ C, then s ∈ C or t ∈ C.

(S3) If 3ut ∈ C and ρCu = u,
then ∃v : PC(3ut) ⊆ PC(3vt) and 3vt is expanded in C.

(S2) If 2ut, Ruv ∈ C, then t↓v ∈ C.

(SA) If At ∈ C and ρCu = u, then t↓u ∈ C.

(SE) If Et ∈ C, then t↓u ∈ C for some u.

Figure 2: Saturatedness Conditions

The sets PCu and PC(3ut) are called the patterns of u and 3ut, respectively, the
latter also being called diamond patterns. A formula of the form 3ut ∈ C is called
expanded in C if there exists a name v such that Ruv ∈ C and t↓v ∈ C.

We use patterns to abstract away names from formulas in such a way that
every two modal literals of the form µut and µvt, for some µ ∈ {3, 2}, correspond
to the same abstraction λx.µxt. Although diamond expansion introduces new
nominal variables and hence formulas that are not subformulas of the terms from
which they were generated, such formulas can always be related to a subterm of a
generating formula by abstracting away the newly introduced variable. As we will
see in Chapter 7, this property is of crucial importance when it comes to showing
termination of our procedure.

Definition (Saturatedness) A clause C is called saturated if it satisfies S .
=,

S∧,S∨,S2,SA,SE , and S3.

The saturatedness conditions given in Figure 2 are mostly straightforward, so
let us just explain the intuition behind S3. There we observe that, provided there
is some name w such that Rvw, t↓w ∈ C and PC(3ut) ⊆ PC(3vt), there is no
need to expand 3ut because in a model of C the vertex corresponding to the
introduced name could not make any formulas true that are not already true in
the vertex corresponding to w. Therefore, given a model of PC(3vt), it suffices to
introduce an edge between the vertices corresponding to u and v to ensure that
the resulting model satisfies PC(3ut). Note also that S3 and SA apply only to
ρC -normal names. We take these names to be the vertices of our model. The
precise model construction is as follows.

Given a saturated clause C, let DC be an interpretation such that

DCV = {ρCu |u∈NC}

DCu = ρCu

DCf = λu∈DCV. ∃v : ρCv = u ∧ fv∈C

DCR = {(u, ρCv) | ρcu = u ∧

∃3ut ∈ C, w : PC(3ut) ⊆ PC(3wt) ∧ Rwv ∈ C}

Looking at DC, one may wonder why we do not weaken S2 to

(S′
2
) If 2ut, Ruv ∈ C and ρCu = u, then t↓v ∈ C.

Condition S′
2

looks more similar to S3 and SA, and seems sufficient because
names that are not ρC -normal do not directly appear in the model. However, this
intuition turns out to be wrong.

Consider the clause C := {3u(λπ.fπ), Ruw, fw, 2u(λπ.¬fπ), 3v(λπ.fπ),
2v(λπ.¬fπ)} and assume ρCu = v. If we replace S2 with S′

2
, C becomes sat-

urated. But C is clearly unsatisfiable. We see that since S3 does not require
3v(λπ.fπ) to be expanded, we have to enforce propagation of 2u(λπ.¬fπ) along
Ruw to arrive at a trivial clause.

Theorem 1 (Model Existence) If C is a non-trivial saturated clause and t ∈ C

proper, then DC � t.

Proof By induction on |t|.

Case t = fu. Assume fu ∈ C. Then DC(fu) = DCf(ρCu) = 1 by the definition
of DCf .

Case t = ¬fu. Assume ¬fu ∈ C. Since C non-trivial, there exists no v such that
ρCv = ρCu and f(ρCv) ∈ C, i.e. DCf(ρCu) = DC(fu) 6= 1. Hence DC � ¬fu.

Case t = u
.
=v. Assume u

.
=v ∈ C. Then DCu = ρCu = ρCv = DCv, i.e.

DC � u
.
=v.

Case t = ¬u
.
=v. Assume ¬u

.
=v ∈ C. Since C is non-trivial, ρCu 6= ρCv, i.e.

DC 6� u
.
=v. Hence DC � ¬u

.
=v.

Case t = t1 ∧ t2. Assume t1 ∧ t2 ∈ C. By S∧, t1 ∈ C and t2 ∈ C. By the induc-
tive hypothesis, DC � t1 and DC � t2. Therefore DC � t1 ∧ t2.

Case t = t1 ∨ t2. Analogously to the preceding case.

Case t = 3us. Assume 3us ∈ C. Then by S .
= it holds 3(ρCu)s ∈ C. Since

ρC(ρCu) = ρCu, by S3 there exist v, w such that PC(3(ρCu)s) ⊆ PC(3vs)
and Rvw, s↓w ∈ C. Then (DCu,DCw) = (ρCu, ρCw) ∈ DCR. Moreover, by
the inductive hypothesis and β-compatibility, DCs(DCw) = DC(s↓w) = 1. We
have shown that DCw witnesses validity of 3us.

Case t = 2us. Assume 2us ∈ C. We have to show that for every pair (v, w) ∈
DCR such that v = DCu = ρCu it holds DCsw = 1.
So assume, for some v ∈ DCV, that (ρCu, v) ∈ DCR. Then C contains a modal
literal of the form 3(ρCu)s′ such that, for some u′ and w with ρCw = v it
holds PC(3(ρCu)s′) ⊆ PC(3u′s′) and Ru′w ∈ C. By S .

= it holds 2(ρCu)s ∈ C.
Consequently, 2u′s ∈ C. Now by S2, s↓w ∈ C. By the inductive hypothesis
and β-compatibility it holds DCsv = DCs(ρCw) = DCs(DCw) = DC(s↓w) = 1.

Case t = As. Assume As ∈ C. To show: DCsu = 1 for all u ∈ DCV. So let
u ∈ DCV be arbitrary. Since ρCu = u, by SA, s↓u ∈ C. By the inductive
hypothesis and β-compatibility, DC(s↓u) = DCs(DCu) = DCsu = 1.

Case t = Es. Assume Es ∈ C. By SE , s↓u ∈ C for some u. By the inductive
hypothesis and β-compatibility, DC(s↓u) = DCs(DCu) = 1, i.e. DCu witnesses
validity of Es. �

So, given a proper clause C, in order to show C satisfiable it suffices to find a
non-trivial saturated clause D ⊇ C. Theorem 1 then guarantees that DD � C.

4 Saturation Algorithm

Definition (Saturation Relation) The saturation relation → on clauses is de-
fined such that C → D if and only if C (D and D can be obtained from C by
one of the rules C .

=, C∧, C∨, C2, CA, CE , or C3.

(C3.
=

) If 3ut ∈ C, add 3(ρCu)t.

(C2.
=
) If 2ut ∈ C, add 2(ρCu)t.

(C∧) If s ∧ t ∈ C, add s and t.

(C∨) If s ∨ t ∈ C and neither s ∈ C nor t ∈ C, add s or t.

(C3) If 3ut ∈ C, ρCu = u, and
there is no v such that PC(3ut) ⊆ PC(3vt) and 3vt is expanded in C,
add Rux and t↓x for some x 6∈ VC.

(C2) If 2ut, Ruv ∈ C, add t↓v.

(CA) If At ∈ C and ρCu = u, add t↓u.

(CE) If Et ∈ C and for no u ∈ NC, t↓u ∈ C, add t↓x for some x 6∈ VC.

Figure 3: Saturation Rules

A clause C is called terminal if there exists no D such that C → D. We say
C → D don’t care if C → D and D is obtained from C by one of the rules excluding
C∨. We say C → D1, D2 don’t know if D1, D2 are the two alternative results of
applying C∨ to some formula in C.

Proposition 4.1 (Soundness) 1. If C → D don’t care, then C is satisfiable if

and only if D is satisfiable.

2. If C → D1, D2 don’t know, then C is satisfiable if and only if D1 is satisfiable

or D2 is satisfiable.

We can now describe the proposed decision procedure. Given a finite monadic
and proper clause C, we first construct C0 := C ∪ {π

.
=π}. Using saturation and

the usual backtracking techniques, we search for a saturated non-trivial clause D

such that C0 →∗ D. C is satisfiable if and only if D exists.
The reader might be wondering why we need to construct C0 and cannot

saturate C directly. The reason is that we need to ensure that at least one name of
type V occurs free in the initial clause. This way we prevent the saturation relation
from terminating with clauses like {A(λπ.gπ ∧ ¬gπ)}, that are only satisfiable in
an empty model, i.e. an interpretation D such that DV = ∅.

5 Example

Let us demonstrate the basic properties of the saturation algorithm and the
model construction with an example. Consider the following input clause C:
{A(λπ.3π(λπ.fπ)), 2π(λπ.3π(λπ.π

.
=a))}. (In hybrid notation, C can be writ-

ten more concisely as {Å3̊f̊ , 2̊3̊å}.) From C we construct C0 := C ∪ {π
.
=π} and

proceed as follows:

C0 : A(λπ.3π(λπ.fπ)), 2π(λπ.3π(λπ.π
.
=a)), π

.
=π

C2 : 3π(λπ.fπ), 3a(λπ.fπ) CA on A(. . .), π, a

C3 : Rπx, fx C3 on 3π(λπ.fπ)

C4 : 3x(λπ.fπ) CA on A(. . .), x

C5 : 3x(λπ.π
.
=a) C2 on 2π(. . .), Rπx

C6 : Rxy, y
.
=a C3 on 3x(λπ.π

.
=a)

Now assume that ρC6
y = ρC6

a = a. Then CA is not applicable to A(. . .), y. Since
additionally PC6

(3x(λπ.fπ)) = PC6
(3a(λπ.fπ)) ⊆ PC6

(3π(λπ.fπ)), C6 is satu-
rated. The model constructed from C6 looks as follows:

π
f

x a

6 Completeness

Theorem 2 (Completeness) Every terminal clause is saturated.

Proof Assume C is a terminal clause. We have to show that C satisfies all the
saturatedness conditions.

S .
=: By assumption, C is closed under application of C3.

=
and C2.

=
, i.e. for every

µut ∈ C where µ ∈ {3, 2} we have µ(ρCu)t ∈ C. Then for every λx.µxt ∈ PCu

it holds λx.µxt ∈ PC(ρCu), i.e. PCu ⊆ PC(ρCu).

S∧,S∨,S2,SA are easily shown using C∧, C∨, C2, CA, respectively.

SE : Assume Et ∈ C. Since every application of CE enlarges NC by a new variable,
terminality of C implies that CE is not applicable. Then there has to exist some
u such that t↓u ∈ C.

S3: Assume 3ut ∈ C and ρCu = u. As with CE , terminality of C implies that C3

is not applicable. Then there has to exist some v such that PC(3ut) ⊆ PC(3vt)
and 3vt is expanded in C. �

7 Termination

Since C∨ is the only rule that leads to “don’t know”-reductions, the search tree our
decision procedure has to traverse is finitely branching (binary, to be more precise).
Therefore, to prove termination of the procedure it suffices to show that the tree
has finite depth. This is clearly the case if the relation → always terminates. So,
let us prove → terminating.

The degree of a clause C is defined as follows: deg C := maxt∈C |t|.

Lemma 7.1 Let C0 → C1 → . . . be a saturation sequence. There exist no two

indices i, j ∈ N such that i < j and, for some Et ∈ Ci ⊆ Cj , both Ci+1 and Cj+1

are obtained by an application of CE to Et.

Proof Assume by contradiction i, j do exist. Since Ci+1 was obtained by ap-
plying CE to 3ut, for some w we must have t↓w ∈ Ci+1 ⊆ Cj , contradicting the
applicability of CE in Cj . �

Proposition 7.2 If C → D, then PC(3ut) ⊆ PD(3ut).

Lemma 7.3 Let C0 → C1 → . . . be a saturation sequence. There exist no two

indices i, j ∈ N, such that i < j and

1. Ci+1 is obtained by an application of C3 to 3ut ∈ Ci,

2. Cj+1 is obtained by an application of C3 to 3vt ∈ Cj,

3. PCi
(3ut) = PCj

(3vt).

Proof Assume by contradiction indices i, j do exist. Clearly, u 6= v. By as-
sumption, C3 is applicable to 3vt in Cj . This implies, amongst other things,
that there exists no w such that PCj

(3vt) ⊆ PCj
(3wt) and 3wt is expanded

in Cj . But, also by assumption, 3ut is expanded in Cj and, by Prop. 7.2,
PCj

(3ut) ⊇ PCi
(3ut) = PCj

(3vt). Contradiction. �

Proposition 7.4 If C is monadic and C → D, then D is monadic.

The following proposition is an analogue to the “quasi-subformula property”
as stated in [7] or in [6].

Lemma 7.5 (Pattern Preservation) Let C be monadic and C → D.

1. At ∈ FD ⇐⇒ At ∈ FC

2. Et ∈ FD ⇐⇒ Et ∈ FC

3. {λx.3xt |3ut ∈ FD} = {λx.3xt |3ut ∈ FC}

4. {λx.2xt |2ut ∈ FD} = {λx.2xt |2ut ∈ FC}

Proof By straightforward case analysis on the saturation rules. For the latter
two claims we additionally observe that every two formulas of the form µut and
µvt, µ ∈ {3, 2}, are abstracted to the same term λx.µxt. �

Proposition 7.6 If C → D, then deg D = deg C.

Proposition 7.7 There exists a function f ∈ N × N → N, exponential in the ar-

guments, such that for every clause C it holds: If deg C, |NC| < ∞, then |C| ≤
f(deg C, |NC|).

Theorem 3 (Termination) → terminates on finite monadic clauses.

Proof Let C0 be a finite monadic clause. Assume by contradiction that there
exists an infinite sequence C0 → C1 → C2 → Since C0 is finite, the sets
A3 := {{t} ∪ A | (t, A)∈ {λx.3xs |3us∈FC0}×P({λx.2xs |2us∈FC0})} and
AE := {Et ∈ C0} are finite as well. By Prop. 7.4 and Lemma 7.5, for all Ci it holds
{Et ∈ Ci} ⊆ AE and {PCi

(3ut) |3ut ∈ Ci} ⊆ A3. Now consider C :=
⋃

i∈N
Ci.

By Lemma 7.1 and 7.3, C was obtained by finitely many applications of the rules
CE and C3, and hence NC is finite. Moreover, by Prop. 7.6, deg C = deg C0.
Therefore, by Prop. 7.7, C is finite. But since Ci → Ci+1 implies Ci (Ci+1, C

must be infinite. Contradiction. �

Since → terminates, it provides a basis for a decision procedure for the satis-
fiability problem in H(E). The procedure is in EXPTIME, which is known to be
optimal for the problem [12, 1].

8 Discussion

Although our presentation is limited to a decision procedure for the class of all
frames, the procedure can easily be modified to deal with other frame classes.
Indeed, to obtain a decision procedure for most of the common frame classes it
suffices to modify the rule C2, analogously to how it is demonstrated in [11].
Termination of the procedure is guaranteed as long as the modified rules do not
violate Lemma 7.5. In particular, our expansion constraint suffices to deal with
transitive frames.

Unlike urfather-based loop checks that are applicable on a per-prefix (or per-
nominal) basis, the expansion constraint in C3 works on a per-diamond-pattern
basis. It is possible for a clause to have two formulas of the form 3us, 3ut such
that one of them can be expanded and the other one cannot.

An interesting feature of our expansion constraint is that we only need to
look at modal literals. This does not suffice in the case of urfather-based loop-
checks, and can lead to more diamond expansions. Consider, for instance, a
tableau representation of {3a(λπ.fπ), ga, 3b(λπ.fπ),¬gb} (in hybrid notation,

{@a3̊f̊ , @ag̊, @b3̊f̊ , @b¬̊g}). Clearly, neither a nor b can be considered an urfa-
ther of the respective other name. Hence both diamonds need to be expanded. In
our approach, saturatedness is achieved after only one expansion.

Even if one could restrict urfather-based loop-checks to consider modal literals
only, our expansion constraint can still do better. Given m and n distinct formulas
of the form 3ut and 2ut, respectively, and assuming none of their proper subfor-
mulas are modal literals, there exist 2m+n distinct sets of formulas, corresponding
to up to approximately 2m+n distinct states one can obtain using urfather-based
loop-checks. In our case, however, the number of diamond expansions is bounded
from above by m · 2n, the number of distinct diamond patterns. As an exam-
ple, consider the formula A(λπ.

∨

J⊆I,|J|≥1

∧

j∈J 3π(λπ.fjπ)) (in hybrid notation,

Å(
∨

J⊆I,|J|≥1

∧

j∈J 3̊f̊j)) where I is some index set and f1, . . . , f|I| are pairwise
distinct. Depending on the strategy, urfather-based loop checking can lead to a
number of diamond expansions that is exponential in |I|. Our expansion con-
straint, on the other hand, allows at most |I| expansions.

9 Strong Diamond Expansion

Consider the following simplification of C3:

(Cs
3
) If 3ut ∈ C, ρCu = u, and 3ut is not expanded in C,

add Rux and t↓x for some x 6∈ VC.

We can define a saturation relation →s analogously to →, but with the rule Cs
3

instead of C3.
Note that whenever C3 is applicable to a clause C, Cs

3
is also applicable to C.

The reverse direction does not hold, as we can see by looking at a simple example:
Let C := {3a(λπ.fπ), 3b(λπ.fπ)}. Since C does not contain any equations,

both a and b are ρC-normal. Moreover, PC(3b(λπ.fπ)) = {λx.3x(λπ.fπ)} =
PC(3a(λπ.fπ)). So, C3 is not applicable to any of the formulas in C, whereas Cs

3

is applicable to 3b(λπ.fπ).
On formulas of the basic hybrid language H(@) even the simpler saturation

relation →s can be proven terminating by using essentially the same chain of
reasoning as found in [6] for a related internalized calculus. Since applicability of
C3 implies that of Cs

3
, our model construction from Section 3 suffices to show the

completeness of the procedure based on →s.

10 Conclusion

Compared to the known tableau-based methods in [7, 6], our decision procedure
has several noteworthy differences:

1. The applicability of saturation rules in our decision procedure does not depend
on the order in which new formulas are added to a clause. This information
is always present in the structure of a tableau, and is exploited by the tableau
algorithms to ensure termination, usually by means of additional rule applica-
bility conditions. In the saturation-based setting the same information could
be represented by a saturation sequence C0 → C1 → . . . → C. Our saturation
rules depend solely on the contents of a clause, not on how it was constructed.

2. The rule CA is only applicable to ρC -normal names. Assuming ρ is imple-
mented such that certain monotonicity principles are preserved, it will usually
be possible to arrive at a saturated clause without having to propagate univer-
sal modalities to every name. A suitable, efficient implementation of ρ may be
found in [8].

3. In contrast to loop-checks as used in [7, 6], which restrict expansion on a per-
prefix basis, C3 uses termination checking on a per-diamond-pattern basis. As
demonstrated in Section 8, an input clause always generates strictly, and up to
exponentially, fewer distinct diamond patterns than sets of subformulas. Thus
we hope that in practice our procedure will perform significantly better than
a procedure based on loop-checks.

We see the procedure as a promising basis for automated theorem proving
in hybrid logic and hope for it to provide a practical alternative to other ap-
proaches (in particular to the direct resolution method by Areces, de Nivelle and
de Rijke [2]).

References

[1] Areces, C., Blackburn, P., and Marx, M. The computational complexity of hybrid
temporal logics. Logic Journal of the IGPL 8, 5 (2000), 653–679.

[2] Areces, C., de Nivelle, H., and de Rijke, M. Resolution in modal, description and
hybrid logic. Journal of Logic and Computation 11, 5 (2001), 717–736.

[3] Barendregt, H. P. Lambda calculi with types. In Handbook of Logic in Computer Science,
S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, Eds., vol. 2. Oxford University Press,
1992.

[4] Blackburn, P. Internalizing labelled deduction. Journal of Logic and Computation 10, 1
(2000), 137–168.

[5] Blackburn, P., and Seligman, J. Hybrid languages. Journal of Logic, Language and
Information 4, 3 (1995), 251–272.

[6] Bolander, T., and Blackburn, P. Termination for hybrid tableaus. To appear in Journal
of Logic and Computation.

[7] Bolander, T., and Braüner, T. Tableau-based decision procedures for hybrid logic.
Journal of Logic and Computation 16, 6 (2006), 737–763.

[8] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. Introduction to Algo-
rithms, 2nd ed. The MIT Press, 2001.

[9] Galler, B. A., and Fisher, M. J. An improved equivalence algorithm. Communications
of the ACM 7, 5 (May 1964), 301–303.

[10] Hardt, M., and Smolka, G. Higher-order syntax and saturation algorithms for hybrid
logic. In International Workshop on Hybrid Logic 2006 (HyLo 2006), to appear in ENTCS,
Elsevier.

[11] Massacci, F. Strongly analytic tableaux for normal modal logics. In Proceedings of the
12th International Conference on Automated Deduction (CADE’94) (1994), A. Bundy, Ed.,
vol. 814, Springer-Verlag, pp. 723–737.

[12] Spaan, E. Complexity of Modal Logics. PhD thesis, ILLC, University of Amsterdam, 1993.

	Introduction
	Basics
	Saturatedness and Model Existence
	Saturation Algorithm
	Example
	Completeness
	Termination
	Discussion
	Strong Diamond Expansion
	Conclusion

