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Abstract. We present the first terminating tableau calculus for ba-
sic hybrid logic with the difference modality and converse modalities.
The language under consideration is basic multi-modal logic extended
with nominals, the satisfaction operator, converse, global and difference
modalities. All of the constructs are handled natively.
To obtain termination, we extend chain-based blocking for logics with
converse by a complete treatment of difference.
Completeness of our calculus is shown via a model existence theorem
that refines previous constructions by distinguishing between modal and
equational state equivalence.
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1 Introduction

Modal logic with the difference modality Dp = λx. ∃y. x 6 .=y ∧ py is an expressive
language [1, 2]. It can express the global modality Ep = p ∨̇Dp and nominals
!p = E(p ∧̇ ¬̇(Dp)). Gargov and Goranko [3] show that basic modal logic with D
is equivalent with respect to modal definability to basic hybrid logic [2, 4] with
E (see also [5–8]).

Tableaux for modal logic with D are not well-understood. In a recent hand-
book chapter on modal proof theory [9], an unsound tableau calculus for basic
modal logic with D is given.1 A sound and complete tableau calculus for basic
modal logic with D is given by Balbiani and Demri [1]. Unfortunately, Balbiani
and Demri’s calculus does not yield a decision procedure as it does not terminate
on all inputs.

This paper presents a terminating prefixed tableau calculus for basic hybrid
logic with D and converse. While it is possible to express the satisfaction oper-
ator @ and E in terms of D, it is more efficient to let the decision procedure
handle satisfaction and global modalities natively. Hence, we allow @ and E as
additional constructs in our language and extend the calculus to deal with them
directly. So, the input language for our calculus is precisely characterized as basic
1 The formula �P ∨D¬P is invalid but provable by the rules in [9].
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multi-modal logic extended with nominals, the satisfaction operator, converse,
global and difference modalities.

The first tableau-based decision procedure for a modal language extended
with D as an additional operator was given in [10]. The blocking technique
used there to ensure termination, called pattern-based blocking, is different from
the traditional chain-based techniques [11–14] in that it does not exploit any
information about the order in which prefixes are introduced to a tableau branch.
In the presence of converse, however, pattern-based blocking as proposed in [10]
is inherently incomplete.

Termination of the present calculus is obtained by chain-based blocking.
Chain-based blocking was initially developed to deal with transitive modali-
ties [11–13] and subsequently extended to logics with converse [15, 16] and nom-
inals [14, 17]. As we show, the interaction between converse and D is similar to
the interaction between converse and transitive modalities, and can be handled
by adapting the techniques in [15, 16] to account for the additional generative
power of D.

Bolander and Blackburn [14] propose a different extension of chain-based
blocking to global modalities and converse, blocking E by the same mechanism
as diamond modalities. We propose an alternative treatment of global modali-
ties. Besides, our approach differs from that of [14] in the model construction
techniques employed to prove completeness of our calculus. As Bolander and
Blackburn’s approach does not cover D, they employ traditional filtration argu-
ments, constructing a model that identifies prefixes modulo modal equivalence.
To capture the semantics of D, we construct a model that does not necessarily
identify modally equivalent prefixes, while still respecting the stronger equational
equivalence.

Unlike our approach, which is cumulative and relies solely on tree-like struc-
tures, Horrocks and Sattler [17] propose a tableau calculus for a nominal logic
with global modalities and converse based on possibly cyclic graph structures and
treat equational equivalence by destructive graph transformation during tableau
construction. Their calculus does not cover D but handles qualified number re-
strictions [18].

To treat D in a sound and complete way, the calculus by Balbiani and
Demri [1] employs a computationally expensive cut rule. To avoid the general
inefficiency coming with this rule, we follow [10] and integrate it into the rule
for the dual of D. Thus the costs of the cut rule need only be paid if the dual of
D is used.

It is possible to obtain decision procedures for the language under considera-
tion by means of satisfiability-preserving translations into simpler languages [3,
19, 20, 8] for which effective decision procedures are already available [21, 14, 10].
Our calculus yields the first effective decision procedure for modal logic with
both D and converse modalities that does not rely on transformations of the
input into other languages.

The paper is organized as follows. We start by formulating hybrid logic in
simple type theory. Next, we present the rules of our calculus. Then, we impose
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control on the rules and show that the restricted calculus is terminating. The
terminating calculus is then shown complete by means of a model existence
theorem.

2 Hybrid Logic with D and Converse

We represent modal logic in simple type theory, which gives us an expressive
syntax and a solid foundation. The basic idea of the representation goes back
to Gallin [22] and can also be found in Gamut [23] (Sect. 5.8, two-sorted type
theory). The representation of boxes and diamonds as higher-order constants ap-
pears in [24, 25]. Since the type-theoretic representation formalizes the semantics
of modal logic at the object level, one can prove meta- and object-level theorems
of modal logic with a higher-order theorem prover [26].

We start with two base types B and S. The interpretation of B is fixed and
consists of two truth values. The interpretation of S is a nonempty set whose
elements are called worlds or states. Given two types σ and τ , the functional
type στ is interpreted as the set of all total functions from the interpretation of
σ to the interpretation of τ . We write σ1σ2σ3 for σ1(σ2σ3).

We employ three kinds of variables: Nominal variables x, y, z of type S,
propositional variables p, q of type SB, and relational variables r of type SSB.
Nominal variables are called nominals for short. We use the logical constants

⊥,> : B .= : SSB
¬ : BB ∃,∀ : (SB)B

∨,∧,→ : BBB

Terms are defined as usual. We write st for applications, λx.s for abstractions,
and s1s2s3 for (s1s2)s3. We also use infix notation, e.g., s ∧ t for (∧)st.

Terms of type B are called formulas. We employ some common notational
conventions: ∃x.s for ∃(λx.s), ∀x.s for ∀(λx.s), and x 6 .=y for ¬(x .=y).

The formulas of modal logic can be either translated to type-theoretic formu-
las (as in [22, 23, 25, 27]) or directly represented as terms of type SB (as in [24,
26, 10]). Here we use the latter approach, which is more elegant since it models
modal syntax directly as higher-order syntax. To do so, we need lifted versions
of the Boolean connectives, which are defined as follows:

¬̇px = ¬(px) ¬̇ : (SB)SB

(p ∧̇ q)x = px ∧ qx ∧̇ : (SB)(SB)SB

(p ∨̇ q)x = px ∨ qx ∨̇ : (SB)(SB)SB
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We can now write terms like p ∧̇ ¬̇q, which represent modal formulas. Here are
the definitions of the remaining modal constants we will use:

r−xy = ryx − : (SSB)SSB
〈r〉px = ∃y. rxy ∧ py 〈 〉 : (SSB)(SB)SB
[r]px = ∀y. rxy → py [ ] : (SSB)(SB)SB
Epx = ∃p E : (SB)SB
Apx = ∀p A : (SB)SB
Dpx = ∃y. x 6 .=y ∧ py D : (SB)SB
D̄px = ∀y. x .=y ∨ py D̄ : (SB)SB
ẋy = x

.=y ˙ : SSB
@xpy = px @ : S(SB)SB

Applied to a relation r, the operator − yields the converse of r. This allows us
to add converse to our language without introducing converse versions of the
operators 〈 〉 and [ ]. We call a term t : SB modal if it has the form

ρ ::= r | r−

t ::= p | ¬̇t | t ◦ t | µρt | νt | ẋ | @xt

where ◦ ∈ {∧̇, ∨̇}, µ ∈ {〈 〉, [ ]} and ν ∈ {E,A,D, D̄}.
A modal interpretation M is an interpretation of simple type theory that

interprets B as the set {0, 1}, ⊥ as 0 (i.e., false), > as 1 (i.e., true), maps S
to a non-empty set, gives the logical constants ¬, ∧, ∨, →, ∃, ∀, .= their usual
meaning, and satisfies the equations defining the modal constants ¬̇, ∧̇, ∨̇, −,
〈 〉, [ ], E, A, D, D̄, ˙ , and @. Whenever Mt = 1, we say that M satisfies t, or
that M is a model of t. A formula is called satisfiable if it has a satisfying modal
interpretation.

We now give some additional syntactic definitions that are needed for the rest
of the paper. A modal term s : SB is called normal if it is in negation-normal
form, that is, has the form

s ::= p | ¬̇p | s ◦ s | µρs | νs | ẋ | ¬̇ẋ | @xs

where ◦ ∈ {∧̇, ∨̇}, µ ∈ {〈 〉, [ ]} and ν ∈ {E,A,D, D̄}. A formula s is called
normal if it has the form tx where t is a normal modal term. Formulas of the
form rxy or r−xy are called accessibility formulas or edges.

Given a term t, we write N t for the set of nominals that occur in t. The
notation is extended to sets of terms in the natural way: NX :=

⋃
{N t | t ∈ X}.

3 Tableau Rules

Our tableaux are constructed in the usual way from a finite non-empty set of
initial normal formulas by the rules in Fig. 1. The rules may extend tableau
branches by formulas s of the form

s ::= x
.=y | x 6 .=y | ρxy | tx
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where t is a normal modal term. Single tableau branches are referred to by the
meta-variables Γ and ∆. We allow no multiple occurrences of identical formulas
on a single branch. Nominals x occurring in normal formulas sx are used to
reference individual states, analogously to prefixes as used by related calculi [28,
14] and, similarly, prefixed calculi for nominal-free logics [9], with the important
difference that in our case prefixes are part of the object language. We use
edges to represent assertions about accessibility relations and equations for state
equality or inequality constraints.

Given a branch Γ , we use ∼Γ to denote the equivalence closure of the relation
{(x, y) |x .=y ∈ Γ}. If x ∼Γ y, we call x and y equationally equivalent on Γ .

It is easy to verify that the rules in Fig. 1 are sound in the following sense.

Proposition 1 (Soundness). Let Γ be a tableau branch and ∆1, . . . ,∆n be
the extensions of Γ obtained by a rule R from Fig. 1 (n ∈ {1, 2}). Then Γ is
satisfiable if and only if there is some i ∈ {1, . . . , n} such that ∆i is satisfiable.

Unlike [28, 14] but similarly to [15, 17], we use signed edges of the form rxy

and r−xy. We define r̃ := r− and r̃− := r. Semantically, rxy is considered
identical to r−yx. But the former formula additionally records that y was added
to the branch after x, while the latter formula implies the converse. This way,
we have an explicit representation of all the chronological information that will
be necessary in Sect. 4 to impose a terminating control on the rules.

As all the relevant chronological information is contained in the edges, we
can ignore the vertical structure of tableau branches and see them as sets of
formulas, which may be subject to the usual set predicates and operators. For
instance, we may write s ∈ Γ to denote that s occurs on Γ , and Γ −∆ for the
set of formulas that occur on Γ but not on ∆. The notation NΓ is defined in
the obvious way.

R∧̇
(s ∧̇ t)x
sx, tx

R∨̇
(s ∨̇ t)x
sx | tx

R♦
〈ρ〉tx
ρxy, ty

y /∈ NΓ R�

[ρ]tx ρxy

ty

R�̃

[ρ]tx ρ̃yx

ty
RE

Etx

ty
y /∈ NΓ RA

Atx

ty
y ∈ NΓ

R .=
sx

sy
x ∼Γ y, s modal RN

ẋy

x
.
=y

RN̄
¬̇ẋy
x6 .=y

R@

@ytx

ty

RD
Dtx

x6 .=y, ty
y /∈ NΓ RD̄

D̄tx

x
.
=y | ty

y ∈ NΓ

Γ is the tableau branch to which a rule is applied.

Fig. 1. Tableau Rules
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We call a branch Γ closed if there is some p, x and y such that Γ contains
either both px and ¬̇px or a disequation x 6 .=y where x ∼Γ y. Otherwise, Γ is
called open. A tableau is called closed if all of its branches are closed, and open
otherwise. To prove a modal term s valid, one computes the negation-normal
form t of ¬̇s, selects a nominal x /∈ N t, and constructs a closed tableau for tx.

4 Control

It is easy to see that our tableau rules do not terminate without additional
restrictions on their applicability. Figure 2 shows a possible non-terminating
derivation. So, to achieve termination, we need to impose on our rules a termi-

A(〈r〉p)x
〈r〉px RA
rxy, py R♦

〈r〉py RA
. . .

Fig. 2. A Non-terminating Tableau Derivation

nating control.
Every tableau branch Γ can be seen as a graph with the vertices NΓ and the

edges given by the relation <Γ := {(x, y) | ∃ρ : ρxy ∈ Γ}. The relations <+
Γ and

<∗Γ are defined from <Γ as usual (transitive and reflexive transitive closure). We
define GΓ := (NΓ,<Γ ).

A modal term s is said to occur at a nominal x on a tableau branch Γ if
sx occurs on Γ . We define the labeling LΓx of a nominal x on a branch Γ to
be set of all modal terms that occur at x on Γ . Two nominals x, y are called
modally equivalent on a branch Γ if LΓx = LΓ y. The function LΓ defines a
vertex labeling of GΓ with sets of modal terms. We say a nominal x is a root
of GΓ if x has no predecessor in <Γ , and write RootΓ for the set of all roots
of GΓ .

The graph GΓ should not be understood as a partial model of Γ . So, the
connection between <Γ and the transition relations in possible models of Γ is
relatively loose. In particular, our tableau algorithm will always keep <Γ acyclic
while actual models of Γ may contain cycles.

Achieving termination is easy once we can give an upper bound on the num-
ber of vertices in GΓ . In particular, we would like to be able to bound the
maximal length of chains x1 <Γ . . . <Γ xn. To do so, we want to avoid extend-
ing such chains if they are repeating, i.e., contain two distinct nominals with
the same labeling. This motivates the following definition: A nominal x is called
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active on a branch Γ if there are no two distinct nominals y, z <∗Γ x such that
LΓ y = LΓ z. Otherwise, x is called inactive.

We say a formula s is expanded on a branch Γ if one of the following expand-
edness conditions holds:

(E∧) s = (t1 ∧̇ t2)x and t1x, t2x ∈ Γ
(E∨) s = (t1 ∨̇ t2)x and t1x ∈ Γ or t2x ∈ Γ
(E♦) s = 〈ρ〉tx and there is some y such that ty ∈ Γ and either ρxy ∈ Γ or

ρ̃yx ∈ Γ
(E�) s = [ρ]tx and, for every y such that ρxy ∈ Γ or ρ̃yx ∈ Γ , it holds ty ∈ Γ
(EE) s = Etx and there is some y ∈ RootΓ such that ty ∈ Γ
(EA) s = Atx and, for every y ∈ NΓ , it holds ty ∈ Γ
(E .=) s = x

.=y and LΓx = LΓ y
(EN ) s = ẏx and y

.=x ∈ Γ
(EN̄ ) s = ¬̇ẏx and y 6 .=x ∈ Γ
(E@) s = @ytx and ty ∈ Γ
(ED) s = Dtx and there is some y ∈ RootΓ such that y 6∼Γ x and ty ∈ Γ
(ED̄) s = D̄tx and, for every y ∈ NΓ , either x ∼Γ y or ty ∈ Γ

Note that there are no expandedness conditions for formulas of the form px, ¬̇px
and x6 .=y.

We restrict the applicability of our tableau rules by two conditions.

(C1) A rule is applicable to a formula s ∈ Γ only if Γ is open, s is not expanded
on Γ , and if the rule application results in a proper extension of Γ , i.e.,
extends Γ by at least one formula that does not already occur on Γ .

(C2) A rule is applicable to a formula of the form 〈ρ〉tx on Γ only if x is active
on Γ .

Note that C1 applies to all formulas, including diamonds, while C2 applies to
diamond formulas only.

Except possibly for the cases EE and ED, the condition C1 is intuitive. In-
deed, similar conditions are often assumed implicitly when formulating tableau
systems. The restriction C2 is a chain-based blocking condition as in [15, 16].

Incidentally, E♦ has a well-known analog in tableaux for classical first-order
logic. There, the applicability of the existential rule δ can be restricted to once
per formula. In a somewhat less obvious way, EE and ED also relate to this
restriction. More details are provided later.

We are going to show that our calculus with the two applicability restrictions
is complete and terminating, thus yielding a decision procedure for hybrid logic
with D and converse. If a branch cannot be extended by any tableau rules,
we call it maximal. Assuming that our calculus terminates, its completeness is
proven by showing that an open and maximal tableau branch always exhibits a
model of its initial formulas.

In the cases EE and ED, it may seem unclear why we want the witness of s
(i.e., the nominal y such that ty ∈ Γ ) to be a root of GΓ . One may consider
taking the following weaker versions of EE and ED:
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(E ′E) Etx is expanded if there is some y such that ty ∈ Γ .
(E ′D) Dtx is expanded if there is some y such that x 6∼Γ y and ty ∈ Γ .

It turns out, however, that if we do so, the interaction of C1 with C2 will render
our calculus incomplete. Figure 3 shows an open branch for the unsatisfiable set
{A(〈r〉p)x,A(〈r〉⊥̇ ∨̇E(〈r〉⊥̇))x}, where ⊥̇ := q ∧̇ ¬̇q, which becomes maximal if
we weaken EE to E ′E . An example for E ′D looks analogously.

A(〈r〉p)x, A(〈r〉⊥̇ ∨̇E(〈r〉⊥̇))x

〈r〉px RA
(〈r〉⊥̇ ∨̇E(〈r〉⊥̇))x RA
E(〈r〉⊥̇)x R∨̇
rxy, py R♦

〈r〉py RA
(〈r〉⊥̇ ∨̇E(〈r〉⊥̇))y RA
E(〈r〉⊥̇)y R∨̇
ryz, pz R♦

〈r〉pz RA
rzu, pu R♦

〈r〉pu RA
(〈r〉⊥̇ ∨̇E(〈r〉⊥̇))u RA
〈r〉⊥̇u R∨̇
(〈r〉⊥̇ ∨̇E(〈r〉⊥̇))z RA
E(〈r〉⊥̇)z R∨̇

Fig. 3. A Maximal Tableau Branch with the Expandedness Condition E ′E

Another variant of ED that we might consider corresponds more closely to
the tableau rule for D:

(E ′′D) Dtx is expanded if there is some y such that x 6 .=y, ty ∈ Γ .

Here, it is termination that is no longer guaranteed, as shown in Fig. 4.

5 Termination

We will now show that every tableau derivation is finite. Since the two branching
rules R∨̇ and RD̄ are at most binary, by König’s lemma it suffices to show that
the length of the individual branches is bounded.
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A(D(D(Dp)))x

D(D(Dp))x RA
x 6 .=y, D(Dp)y RD
y 6 .=z, Dpz RD
z 6 .=u, pu RD
D(D(Dp))u RA
. . .

Fig. 4. A Non-terminating Tableau Derivation with the Expandedness Condition E ′′D

Since every rule application extends a branch only by formulas that do not
yet occur on the branch, the length of a branch Γ coincides with the number
of formulas on Γ . First, let us show that this number is bounded by a function
in the number of nominals on Γ . Then, we will show that this number is itself
bounded from above, completing the termination proof.

We write Γ → ∆ to denote that the branch ∆ is an extension of a branch
Γ obtained by a single rule application. The notations Γ →+ ∆ and Γ →∗ ∆
are then defined in the obvious way. We write ModΓ for the set of all modal
terms occurring on Γ , possibly as subterms, and RelΓ for the set of all relational
variables that occur on Γ .

Crucial for our termination argument is the fact that our rules cannot intro-
duce to the tableau any modal terms that do not already occur as subterms of
the initial formulas.

Proposition 2 (Subterm Property). If Γ →∗ ∆, then ModΓ = ModΓ .

For every pair of nominals x, y and every relation r, a branch Γ may contain edges
rxy and r−xy, equations x .=y, disequations x 6 .=y and, for every term s ∈ ModΓ ,
a formula sx. Hence, the size of Γ is bounded by 2|RelΓ | · |NΓ |2 + 2|NΓ |2 +
|ModΓ | · |NΓ |. By Proposition 2, we know that |ModΓ | and |RelΓ | depend
only on the initial formulas of the tableau.

So, it suffices to show that |NΓ | is bounded. We do so by showing that GΓ
is a finite forest of a size bounded by some function in the initial branch Γ0.
Looking at how Γ is constructed, it is easy to see that GΓ is a well-founded
forest, so it remains to show that:

1. Every tree in GΓ has bounded outdegree.
2. Every tree in GΓ has bounded depth.
3. GΓ has a bounded number of roots.

The first bound is obtained by observing that edges are only added by the
rule R♦. It is easy to see that once R♦ is applied to some formula s, s will
be expanded on all extensions of the resulting branch. Hence, the outdegree of
a nominal x is bounded by the number of distinct terms 〈ρ〉t that occur at x,
which, in its turn, is bounded by |ModΓ0|.
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The bound on the depth of the trees in GΓ is 2|ModΓ0|+1, which easily follows
from the fact that, by the Subterm Property and the pigeonhole principle, every
sequence x1 <Γ . . . <Γ x2|Mod Γ0|+1 contains at least two distinct but modally
equivalent nominals.

Now to the the number of roots in GΓ . The applicability condition C1 enforces
that the number of distinct formulas on a branch is strictly increased by every
rule application.

Proposition 3. If Γ →+ ∆, then Γ ( ∆.

Note that since our tableaux are constructed starting from normal formulas,
<Γ0 is always empty. Hence, since Γ0 is non-empty, RootΓ contains at least
one nominal. Moreover, whenever a branch Γ is extended by a formula ρxy, we
require that y /∈ NΓ . Therefore, once a nominal is a root of Γ , it will remain a
root for every extension of Γ .

Proposition 4. If Γ →∗ ∆, then RootΓ ⊆ Root∆.

Since there are only two rules that can introduce new roots to GΓ , namely
RE and RD, it suffices to show that the number of their applications in any
derivation is bounded from above by a function in the initial branch Γ0. The
bound for RE is given by BEΓ0, and the bound for RD by BDΓ0, where BE and
BD are defined as follows.

BEΓ := |ModΓ − { s | ∃x ∈ RootΓ : sx ∈ Γ }|

The intuition behind BEΓ is that RE can only be applied once per modal term,
independently of the nominal at which the term occurs. By Propositions 2, 3
and 4, BEΓ is decreased by every application of RE and not increased by any
of the other rules. The definition

BDΓ := |ModΓ − {s |∃ y∈RootΓ : sy∈Γ }|
+ |ModΓ − {s |∃x∈NΓ ∃ y, z∈RootΓ : x∼Γ y and {sy, x 6 .=z, sz}⊆Γ }|

follows the same idea, with the intuition here being that RD is applicable at
most twice per modal term. One can verify that BDΓ is decreased by RD and
not increased by any of the other rules. That the second argument of the sum is
needed can be seen with the branch {Dsx, x 6 .=y, sy,Dsy}, where y is a root and
Dsy is not expanded. To see that RD is not applicable to a formula Dsu ∈ Γ
once, for some x ∈ NΓ and y, z ∈ RootΓ , it holds x ∼Γ y and {sy, x 6 .=z, sz} ⊆
Γ , observe that Dsx is expanded unless x ∼Γ y ∼Γ z ∼Γ u, in which case Γ is
closed and hence maximal.

6 Model Existence

To prove our calculus complete, it remains to show that every open maximal
extension Γ of an initial branch Γ0 exhibits a model M of Γ0. Without converse
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modalities, we can construct M such that it satisfies not only Γ0 but all formulas
on Γ [28, 14, 10]. With converse, however, it seems easier to construct a model
only for a distinguished subset X of Γ that still contains Γ0. It is known [15, 14]
that the set of formulas occurring at nominals active on Γ is a suitable candidate
for X.

The model construction by Bolander and Blackburn [14] deals with equa-
tional equivalence of nominals by identifying nominals up to modal equivalence
(this approach is commonly known as filtration). Two nominals x and y are
mapped to the same state if LΓx = LΓ y. This suffices because on saturated
branches equational equivalence implies modal equivalence. However, the ap-
proach is no longer appropriate once we extend our language by D. Look at
the branch Γ := {Dpx, px,Dpy, py}. A model of Γ needs at least two different
states, both of which may satisfy the same set of formulas. To avoid this prob-
lem, we base our model construction not on modal equivalence but directly on
equational equivalence as defined by the relation ∼Γ .

We proceed in several steps. Starting with a branch Γ , we apply to it a
substitution ϕ eliminating syntactically distinct nominals that are equivalent
modulo ∼Γ . Then, we construct a model M of a distinguished subset ϕX of ϕΓ
such that X contains Γ0. Finally, we show how to extend M to a model of X.

A nominal substitution ϕ is a function Nom → Nom, where Nom is the set
of all nominals. Since nominal substitutions are the only kind of substitutions
we will look at, in the following we will refer to them simply as “substitutions”.
We write ϕs for the term obtained by replacing every nominal x in s by ϕx.
So, for instance, ϕ((@xẏ)z) = (@x′ẏ′)z′ if ϕx = x′, ϕy = y′ and ϕz = z′.
Substitutions are extended to sets of terms in the intuitive way. Given a branch
Γ , we call a substitution ϕ a normalizer for Γ if ϕx ∼Γ x for all x ∈ NΓ and
∀x, y ∈ NΓ : ϕx = ϕy ⇐⇒ x ∼Γ y. Note that, given an at most countable
branch Γ , a normalizer ϕ for Γ can always be constructed by taking an arbitrary
well-ordering ≺ of Γ and setting ϕ := { (x, y) ∈ (NΓ )2 | y = min≺{ z ∈ NΓ |
x ∼Γ z } }. Hence, normalizers exist for every branch Γ of our calculus. They
are not unique since neither are well-orderings of Γ .

Lemma 1. Let Γ be open and maximal. If x ∼Γ y, then LΓx = LΓ y.

Lemma 2. Let Γ be open and maximal and ϕ a normalizer for Γ . If LΓx =
LΓ y, then LϕΓ (ϕx) = LϕΓ (ϕy).

Proof. Clearly, LϕΓ (ϕz) =
⋃
u∼Γ z

ϕ(LΓu). By Lemma 1, the latter is the same
as ϕ(LΓ z). So, LϕΓ (ϕx) = ϕ(LΓx) = ϕ(LΓ y) = LϕΓ (ϕy). ut

A nominal x is called relevant on Γ if every y such that y <+
Γ x is active.

Proposition 5. Every nominal that is active on a branch Γ is relevant on Γ .

Proposition 6. If x is active on Γ and either ρxy ∈ Γ or ρyx ∈ Γ , then y is
relevant on Γ .

Proposition 7. If x is relevant on Γ , then there is some y <∗Γ x such that y is
active on Γ and LΓ y = LΓx.
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For the model construction, we want to eliminate all distinct nominals that
are equationally equivalent. This will allow us to construct a term model of the
initial branch in which syntactically distinct nominals denote distinct states.
This is achieved by considering the image of a branch Γ under a normalizer ϕ.
Of course, applying ϕ to Γ will destroy the forest structure of GΓ . The desired
properties of ϕΓ can be formulated as follows.

A set Γ of formulas is saturated for a formula sx ∈ Γ on a set X ⊆ NΓ if
N (ModΓ ) ⊆ X and one of the following saturatedness conditions holds:

(S∧) s = t1 ∧̇ t2 and t1x, t2x ∈ Γ
(S∨) s = t1 ∨̇ t2 and t1x ∈ Γ or t2x ∈ Γ
(S♦) s = [ρ]t and either x /∈ X or there is some y ∈ NΓ such that ty ∈ Γ , either

ρxy ∈ Γ or ρ̃yx ∈ Γ , and LΓ y = LΓ z for some z ∈ X
(S�) s = [ρ]t and, for every y such that ρxy ∈ Γ or ρ̃yx ∈ Γ , it holds ty ∈ Γ
(SE) s = Et and there is some y ∈ X such that ty ∈ Γ
(SA) s = At and, for every y ∈ NΓ , it holds ty ∈ Γ
(SN ) s = ẏ and y = x
(SN̄ ) s = ¬̇ẏ and y 6 .=x ∈ Γ
(S@) s = @yt and ty ∈ Γ
(SD) s = Dt and there is some y ∈ X such that y 6= x and ty ∈ Γ
(SD̄) s = D̄t and, for every y ∈ NΓ , either y = x or ty ∈ Γ

Note that all of the saturatedness conditions but S♦, SE , SN , SD and SD̄ are
identical to the corresponding expandedness conditions. Γ is called saturated on
a set X ⊆ NΓ if it is saturated on X for all normal formulas sx ∈ Γ . Saturated
sets are often also called Hintikka sets after the inventor of the concept.

We define XΓ,ϕ := {x ∈ N (ϕΓ ) | ∃ y ∈ NΓ : y ∼Γ x and y active on Γ}.
The following proposition captures an essential intuition about XΓ,ϕ.

Proposition 8. Let ϕ be a normalizer for a branch Γ . If x is active on Γ , then
ϕx ∈ XΓ,ϕ.

Proposition 9. Let ϕ be a normalizer for a branch Γ . If Γ is open and maximal,
then ϕΓ is open and saturated on XΓ,ϕ.

Proof. First, we show by contradiction that ϕΓ is open. Assume ϕΓ closed.
Then there are some x, y such that ϕx = ϕy (which is equivalent to x ∼Γ y
since ϕ is a normalizer) and either x 6 .=y ∈ Γ or px, ¬̇py ∈ Γ . In the former case,
it immediately follows that Γ is closed, in contradiction to the assumption. In
the latter case, the contradiction follows by Lemma 1.

Now to saturatedness on XΓ,ϕ. Let us first show that N (Mod (ϕΓ )) =
ϕ(N (ModΓ )) ⊆ XΓ,ϕ. Let x ∈ N (ModΓ ). It suffices to show that ϕx ∈ XΓ,ϕ.
By the Subterm Property, x ∈ N (ModΓ0), where Γ0 is the initial branch. Since
Γ0 contains no edges, x is a root of GΓ0 . Then, by Proposition 4, x is a root of
GΓ and hence active on Γ . Since x ∼Γ ϕx, we have ϕx ∈ XΓ,ϕ.

It remains to show that ϕΓ satisfies the respective saturatedness conditions
for all normal formulas sx ∈ Γ , which we do by case analysis on s. The claim is
almost immediate for all cases but s = 〈ρ〉t, s = Et, s = ẏ, s = Dt and s = D̄t,
so let us focus on these cases.
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Case s = ẏ (SN). It suffices to show that ϕy = ϕx. By EN , y .=x ∈ Γ . So,
y ∼Γ x and hence ϕy = ϕx.

Case s = D̄t (SD̄). Similarly to the preceding case.
Case s = 〈ρ〉t (S♦). Let ϕx ∈ XΓ,ϕ. It suffices to show that there is some y

such that (ϕt)y ∈ ϕΓ , ρ(ϕx)y ∈ Γ or ρ̃y(ϕx) ∈ Γ , and LϕΓ y = LϕΓ z for
some z ∈ XΓ,ϕ.
We know that there is some active u such that x ∼Γ ϕx ∼Γ u. By Lemma 1,
〈ρ〉tu ∈ Γ . Hence, by E♦, there is some v such that tv ∈ Γ and either ρuv ∈ Γ
or ρ̃vu ∈ Γ . Since ϕu = ϕx, (ϕt)(ϕv) ∈ ϕΓ and either ρ(ϕx)(ϕv) ∈ ϕΓ or
ρ̃(ϕv)(ϕx) ∈ ϕΓ . So, let y = ϕv. It remains to show that LϕΓ y = LϕΓ z
for some z ∈ XΓ,ϕ. Since u is active, by Proposition 6, v is relevant. Hence,
by Proposition 7, there is some active w such that LΓ v = LΓw. Then, by
Lemma 2, LϕΓ y = LϕΓ (ϕw). Moreover, by Proposition 8, ϕw ∈ XΓ,ϕ. So,
ϕw is the required z.

Case s = Dt (SD). It suffices to show that there is some y ∈ XΓ,ϕ such that
y 6= ϕx and (ϕt)y ∈ ϕΓ .
By ED, there is some z ∈ RootΓ such that z 6∼Γ x and tz ∈ Γ . Then
(ϕt)(ϕz) ∈ ϕΓ . As z clearly is active on Γ , by Proposition 8, ϕz ∈ XΓ,ϕ.
Moreover, ϕz ∼Γ z 6∼Γ x ∼Γ ϕx, i.e. ϕz 6= ϕx. So, ϕz is the required y.

Case s = Et (SE). Analogously to the preceding case, but simpler. ut

Given a set Γ saturated on X ⊆ NΓ , we call ρxy safe (for Γ and X) if
x, y ∈ X and there is some z ∈ NΓ such that ρxz ∈ Γ or ρ̃zx ∈ Γ , and
LΓ z = LΓ y. Clearly, if x, y ∈ X and either ρxy ∈ Γ or ρ̃yx ∈ Γ , then ρxy is
safe. Moreover, ρxy is safe if and only if ρ̃yx is safe.

Let Γ be saturated on X ⊆ NΓ , and let x0 ∈ X. We define the modal
interpretation MΓ as follows:

MΓS = X

MΓx = if x ∈ X then x else x0

MΓ p = λx ∈ X. if px ∈ Γ then 1 else 0
MΓ r = {(x, y) | rxy safe for Γ and X}

Proposition 10 (Model Existence). Let Γ be open and saturated on some
X ⊆ NΓ . If x ∈ X, s modal and sx ∈ Γ , then MΓ satisfies sx.

Proof. By induction on the size of s. The cases s = p, s = ¬̇p, s = ẏ, s = ¬̇ẏ,
s = t1 ∧̇ t2, s = t1 ∨̇ t2, s = Et, s = At, s = Dt and s = D̄t are easy, so let us
focus on the remaining ones.

Case s = 〈ρ〉t. By S♦, there is some y ∈ NΓ such that ty ∈ Γ and either
ρxy ∈ Γ or ρ̃yx ∈ Γ , and some z ∈ X such that LΓ y = LΓ z. So, ρxz is safe,
i.e. (x, z) ∈ MΓ ρ. Moreover, tz ∈ Γ . Hence, by the inductive hypothesis,
MΓ satisfies tz.

Case s = [ρ]tx. Let (x, y) ∈MΓ ρ. We have to show that MΓ satisfies ty.
Clearly, ρxy is safe, so x, y ∈ X and there is some z ∈ NΓ such that ρxz ∈ Γ
or ρ̃zx ∈ Γ , and LΓ z = LΓ y. By S�, it holds tz ∈ Γ . Hence ty ∈ Γ . The
claim follows by the inductive hypothesis. ut
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Let ϕ be a substitution and M a modal interpretation. We define Mϕ to be
the modal interpretation obtained from M such that, for all terms s, Mϕs =
M(ϕs).

Proposition 11. M satisfies ϕs if and only if Mϕ satisfies s.

Theorem 1 (Model Existence). Let Γ be open and maximal. Let ϕ be a
normalizer for Γ . If x is active on Γ and sx ∈ Γ , then (MϕΓ )ϕ satisfies sx.

Proof. Let Γ be open and maximal. Let ϕ be a normalizer for Γ . Let x be
active on Γ and sx ∈ Γ . By Proposition 9, ϕΓ is open and saturated on XΓ,ϕ.
By Proposition 8, ϕx ∈ XΓ,ϕ. Then, by Proposition 10, MϕΓ satisfies ϕ(sx) =
(ϕs)(ϕx) ∈ ϕΓ . Hence, by Proposition 11, (MϕΓ )ϕ satisfies sx. ut

Since all nominals on the initial branch Γ0 are roots of GΓ0 and hence ac-
tive, the interpretation constructed in Theorem 1 from any open and maximal
extension of Γ0 satisfies Γ0.

7 Explicit Computation of Equational Equivalence

The ruleR .=, the expandedness conditions ED and ED̄, and the closedness criteria
for tableau branches take for granted that the equational equivalence relation ∼Γ
can be effectively computed. We leave open how this computation is performed.
Alternatively, one could make the computation of ∼Γ explicit by replacing R .=
by the following two rules.

Rsub.
=

sx x
.=y

sy
s modal Rsym

.
=

x
.=y

y
.=x

Additionally, one could change the closedness criteria and the expandedness
conditions for the difference modality to work with an explicit syntactic repre-
sentation of ∼Γ . Note, however, that for the so modified calculus to terminate,
one needs to ensure that the computation of ∼Γ is performed before the rule
RD is applied. One way of doing so is as follows. One takes, in addition to Rsub.

=
and Rsym

.
=

, the following rule.

R 6
.
=
.
=

x 6 .=y y
.=z

x6 .=z

One then prioritizes Rsub.
=

, Rsym
.
=

and R 6
.
=
.
=

over RD while replacing the conditions
“y 6∼Γ x” in ED and “y ∼Γ x” in ED̄ by “y .=x /∈ Γ” and “y .=x ∈ Γ”, respectively,
and changing the closedness criterion for disequations from “x 6 .=y(∈ Γ ) where
x ∼Γ y” to “x 6 .=x ∈ Γ”.

We chose R .= over syntactic rules like Rsub.
=

, Rsym
.
=

and R 6
.
=
.
=

to simplify the
presentation and because we didn’t want to commit to any particular algorith-
mic treatment of equational equivalence. Moreover, a practical implementation
is likely to use a different, more efficient way of computing ∼Γ than the one
suggested by the above rules.
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8 Conclusion

We have seen a terminating tableau calculus for basic hybrid logic with converse
and difference. Termination of the calculus was obtained by combining chain-
based blocking for logics with converse as introduced by Horrocks and Sattler [15]
with a complete and terminating treatment of D in [10]. To prove completeness
of the calculus, it was necessary to refine conventional filtration arguments as
found in [15, 14] by distinguishing between modal and equational equivalence of
states.

Following [29, 15], one can further extend our calculus to cover reflexive,
symmetric and transitive modalities while retaining termination. Since the depth
ofGΓ is bounded by an exponential in the size of the input, the size of our tableau
branches is at most doubly exponential. Hence, a naive implementation would
have triply exponential worst-case complexity. Donini and Massacci [30] and
later Goré and Nguyen [31] show that caching of satisfiability results for explored
tableau branches can reduce the complexity of tableau algorithms for expressive
nominal-free description logics to ExpTime, resulting in decision procedures
that are worst-case optimal [32, 8]. It is an open problem to find corresponding
techniques that would scale to logics with nominals and difference.

Acknowledgment. We would like to thank the anonymous referees for their
valuable comments and suggestions to this paper.
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