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The paper presents two terminating tableau systems for hybrid logic with

the difference modality. Both systems are based on an abstract treatment

of equality. They expand formulas with respect to a congruence closure

that is not represented explicitly. The first system employs pattern-based

blocking. The second system employs chain-based blocking and covers

converse modalities. Both systems can handle transitive relations.

1 Introduction

There are two established ways to arrive at modal logic with equality [5, 10, 1].

One approach employs the difference modality D, defined such that a property

Ds holds for a state x if there exists a different state y such that s holds for y .

The other approach, known as hybrid logic, employs nominals, which are prim-

itive properties holding for exactly one state x. Without further extensions, the

difference modality is more powerful than nominals. Once nominals are accom-

panied by the global modality E (Es holds for x if there exists a y for which s
holds), both approaches have the same expressivity [13].

Tableau systems for modal logic were first devised by Kripke [23, 24]. Termi-

nating tableau systems yield decision procedures for satisfiability. Once more, it

was Kripke [24] who devised the first terminating tableau system for S4 (modal

logic with a reflexive and transitive relation). Work of Horrocks et al [17] on

description logic (modal logic adapted to knowledge representation) shows that

tableau-based decision procedures can be the most efficient choice for practical

applications.

Terminating tableau systems for modal logic with multiple, possibly transitive

relations, and global and converse modalities are known [14, 18]. The purpose
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of this paper is to extend these results to modal logic with nominals and the

difference modality. This turns out to be a non-trivial task.

Tableau systems for modal logic with the difference modality are not well-

understood so far. In a recent handbook chapter on modal proof theory [12],

an unsound tableau calculus for basic modal logic with the difference modality

is given. Balbiani and Demri [2] give a sound and complete tableau system for

this logic, but their system does not terminate on all inputs (although claimed).

Bolander and Braüner [8] devise a terminating tableau system for hybrid logic

with the global modality. Building on this work, Bolander and Blackburn [7] give a

terminating tableau system for hybrid logic with global and converse modalities,

but point out that the difference modality remains a challenge.

To avoid the syntactic limitations of modal logic, in particular as it comes

to equality, we start from nominal predicate logic PLN (classical first-order logic

without functions) and let the individuals act as states. By adding modal quanti-

fiers [15] to PLN we arrive at an extension we call PLM. For instance, the modally

quantified formula ♦rsx holds if there exists an r -successor of x for which the

property s holds. PLM is a translational extension of PLN, that is, formulas with

modal quantifiers can be translated to equivalent formulas without modal quan-

tifiers. For instance, ♦rsx � ∃y. rxy ∧ sy . Full PLM is undecidable, but it is

easy to identify a fragment that corresponds to modal logic with equality.

We devise several tableau systems for PLM. In contrast to existing ap-

proaches [8, 7], our systems handle equality abstractly and do not commit to

a particular representation of the congruence closure induced by the equations.

We develop terminating tableau systems for diamond-free formulas (easy), for

converse-free formulas, and for formulas with all the modal features mentioned

so far. Due to our approach, the treatment of the difference modality is rela-

tively straightforward. The real difficulty are diamond formulas. For the most

general system, we use chain-based blocking, which dates back to Kripke [24]

and was refined by Horrocks and Sattler [18] for converse modalities (dynamic

blocking). For the converse-free system we use a new technique called pattern-

based blocking. Pattern-based blocking is simpler than chain-based blocking and

seems promising for efficient implementation.

With our abstract treatment of equality, the termination proofs are not diffi-

cult. More difficult are the model existence proofs. To avoid large and opaque

proofs, we proceed in stages. First we formulate an evidence property (analogous

to Hintikka’s model sets [16]) and prove the corresponding model existence the-

orem. Evidence yields a first tableau system. Next we formulate a weaker prop-

erty, called quasi-evidence, for which we show model existence by reduction to

evidence. The important point about quasi-evidence is that it doesn’t require the

presence of edges rxy (accessibility formulas) for diamond formulas. Quasi-
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evidence has not been used before. Quasi-evidence yields a tableau system that

can prove much more formulas satisfiable than the system based on evidence.

To arrive at terminating systems, it now suffices to control diamond expansion

with either the pattern- or the chain-based technique.

Preceding this paper, we have written three preliminary papers [21, 20, 22].

The different equality rules used in these papers document our struggle for the

right treatment of equality. Pattern-based blocking first appears in [21]. Our first

terminating system for hybrid logic with difference appears in [20]. Finally, [22]

presents a terminating system for hybrid logic with difference and converse.

The paper is organized as follows. We start with PLM and develop the no-

tion of nominal congruence that underlies our treatment of equality. We then

define syntactic satisfiability and evidence and prove the corresponding model

existence theorem. Next we introduce abstract tableau systems as a basis for our

concrete systems. We then obtain a first concrete system, T , as an operational

reformulation of the notion of PLM-evidence. We show that T terminates for

♦-free formulas if all ∃-subformulas are closed. We then define regular formu-

las, which yield a fragment of PLM that subsumes modal logic with equality. Next

we define quasi-evidence and prove the corresponding model existence theorem.

Quasi-evidence yields a system T q that can verify all satisfiable regular clauses.

Based on quasi-evidence and T q, we then present two terminating systems T p

and T c , which control diamond expansion by pattern-based and chain-based

blocking, respectively. We then add the difference modalities to PLM and show

that our results carry over. Finally, we add transitive relations and rework the

notion of quasi-evidence so that our results carry over.

2 PLM

We start with first-order logic with equality and without function symbols. We

call this logic PLN for nominal predicate logic. It is well-known that modal logic

is a translational fragment of PLN. For this purpose, the individuals of PLN are

understood as states and the relations between states are modeled as binary

predicates. Following [15], we extend PLN with modal quantifiers:

• ♦rsx: There exists an r -successor of x that satisfies s.

• �rsx: Every r -successor of x satisfies s.

An r -successor of x is a y such that rxy holds. Symmetrically, an

r -predecessor of x is a y such that ryx holds. We also provide converse modal

quantification:

• ♦r̄ sx: There exists an r -predecessor of x that satisfies s.

• �r̄ sx: Every r -predecessor of x satisfies s.
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s ::= a | ¬a | s ∧ s | s ∨ s | ∃u | ∀u | tx formula

a ::= px . . .x | x � x atomic formula

u ::= λx.s lambda property

t ::= u | μt property

μ ::= ♦ρ | �ρ modality

ρ ::= r | r̄
x : I individual name

p, r : I . . . IB where r : IIB predicate name

Figure 1: Syntax of PLM

We model converse modal quantification as modal quantification with respect to

the inverse r̄ of a relation r .

We call the extension of PLN with modal quantification PLM. We employ a sim-

ply typed syntax for PLM where the quantifiers appear as higher-order constants

and variable binding is done uniformly through lambda-abstractions. PLM has

two base types B (bool) and I (individuals). Terms of type B are called formulas.

We write functional types σ1 → σ2 as σ1σ2 and omit parentheses according to

σ1σ2σ3 � σ1(σ2σ3). We use the logical constants

¬ : BB � : IIB

∧,∨ : BBB ∃,∀ : (IB)B

with their usual meaning. For modal quantification we provide three additional

constants, called modal constants:

♦,� : (IIB)(IB)IB diamond, box

¯ : (IIB)IIB converse

We use individual names x of type I and predicate names p of type I . . . IB.

Predicate names may be nullary, that is, have the type B. We reserve the letter r
for predicate names of type IIB. We write applicative terms as t1t2 and omit

parentheses according to t1t2t3 � (t1t2)t3. Moreover, applications of ∧, ∨,

and � are written in infix notation, and applications of ¯ are written in postfix

notation (i.e., r̄ instead of ¯r ). Based on these assumptions, Figure 1 defines the

syntax of PLM.

We write quantified formulas of the form ∃(λx.s) and ∀(λx.s) as ∃x.s and

∀x.s. Formulas of the form x � y are called equations. We write x �� y for a

negated equation ¬(x � y). Formulas of the form rxy are called edges.
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Equations in PLM must always be formed with constituents of type I. How-

ever, for semantic considerations it is useful to use equations whose constituents

have other types. Using this device, we define the semantics of the modal con-

stants in terms of the logical constants:

♦ � λrpx. ∃y. rxy ∧ py
� � λrpx. ∀y. ¬rxy ∨ py
¯ � λrxy. ryx

By means of these equations, every formula of PLM can be translated to a formula

of PLN using β-reduction.

We shall use the letters s, t and u for terms in general, that is, ignore the role

these letters play in the grammar defining the syntax of PLM (shown in Figure 1).

PLM provides only formulas in negation normal form since this simplifies the

technical development. General formulas can be translated to negation normal

form by means of the following equations:

¬¬s � s

¬(s ∧ t) � ¬s ∨¬t ¬(s ∨ t) � ¬s ∧¬t
¬∃x.s � ∀x.¬s ¬∀x.s � ∃x.¬s
¬♦rsx � �r(λy.¬sy)x ¬�rsx � ♦r(λy.¬sy)x

The formulas of modal logic appear in PLM as properties, which are terms of

type IB. Our syntax for properties is expressive but inconvenient. We have kept

the syntax for properties minimal to not burden the technical development with

unnecessary syntactic forms. Here are examples showing how the usual modal

notation translates to PLM:

s ∧ t � λx. sx ∧ tx
♦r¬s � ♦r(λx.¬sx)

�r(a∧ s) � �r(λx.a�x ∧ sx)
s ∧@at � λx. sx ∧ ta

↓x.s � λx.sx

From what we have said about PLM it is clear that modal logic can be formalized

in simple type theory. One benefit of this approach is that theorems about modal

logic can be proven in type theory, possibly using automated provers, as done

by Benzmüller and Paulson [3].

To simplify substitution (cf. Proposition 3.1 (3)), we distinguish between two

kinds of individual names, called variables and nominals. The individual names
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bound by lambda properties must always be variables. A formula is closed if

it has no free variable. A formula is open if it is not closed. A PLM-formula is

a closed formula obtained according to the syntax in Figure 1. We will use the

letters x, y , z for individual names (i.e., variables or nominals) and reserve a,

b, c for nominals. The letter F will always denote a set of PLM-formulas. We

write N s and N F for the set of all nominals that occur in a term s or in a set of

formulas F . We use Nom to denote the set of all nominals.

3 Nominal Congruence

Given a set F of PLM-formulas, the equations in F yield an equivalence relation

on the set of nominals called nominal congruence. If we close F under nomi-

nal congruence, we obtain a set of PLM-formulas called the congruence closure

of F . For instance, if F = {px, x�y}, then the congruence closure of F is

F ∪ {py, x�x, y�x, y�y}. Our tableau systems will treat equality through

congruence closures.

Nominal congruences will be represented through normalizers. A normalizer

is an idempotent functionϕ ∈ Nom → Nom (i.e.,ϕ(ϕx) = ϕx for all x ∈ Nom).

Let ϕ be a normalizer. We define (slight abuse of notation):

• Dom ϕ := {x ∈ Nom |ϕx ≠ x }
• Ranϕ := {ϕx | x ∈ Dom ϕ }
• ϕs is the term obtained from the term s by applying ϕ as a substitution.

• ϕF := {ϕs | s ∈ F }.

Proposition 3.1 Let ϕ is a normalizer and s be a term. Then:

1. N (ϕs) ∩Dom ϕ = �
2. ϕ(ϕs) = ϕs
3. ϕ(λx.s) = λx.ϕs
4. ϕ(sxy) = (ϕs)xϕy if x is a variable

Note that (2) holds since variables and nominals are disjoint, λ binds variables,

and normalizers replace nominals by nominals.

Let ∼ be an equivalence relation on Nom. A normalizer for ∼ is a normal-

izer ϕ such that ∀x,y ∈ Nom : x ∼ y ⇐⇒ ϕx = ϕy . Note that the normaliz-

ers for an equivalence relation can be obtained by choosing a representative for

every class and mapping all members of a class to the chosen representative.

Lemma 3.2 Let ∼1 and ∼2 be equivalence relations on Nom and ϕ1 and ϕ2 be

normalizers for ∼1 and ∼2, respectively. Then ϕ2(ϕ1s) = ϕ2s for all terms s if

∼1⊆∼2.
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Proof By induction on the size of terms. �

We define:

• ∼F is the least equivalence relation on Nom such that ∀(x � y) ∈ F : x ∼F y .

• ϕ is a normalizer for F if ϕ is a normalizer for ∼F .

• s ≈F t :⇐⇒ ∃ normalizer ϕ for F : ϕs = ϕt nominal congruence

• F̃ := { s | ∃t ∈ F : s ≈F t } nominal congruence closure of F

Note that ≈F is an equivalence relation. An equation is trivial if it has the form

x � x. A set F is basic if every equation s ∈ F is trivial. If F is basic, then ∼F
and ≈F are identity relations, F̃ = F , and the unique normalizer of F is the

identity function.

Proposition 3.3 Let ϕ be a normalizer for F . Then:

1. F̃ = { s | ∃t ∈ F : ϕs = ϕt }
2. s ∈ F̃ ⇐⇒ ϕs ∈ ϕF
3. ϕF̃ =ϕF

Proof

1. Clearly { s | ∃t ∈ F : ϕs = ϕt } ⊆ F̃ , so it suffices to show the converse

inclusion. Let s ∈ F̃ . Then ∃t ∈ F ∃ normalizer ϕ′ for F : ϕ′s = ϕ′t. Hence,

by Lemma 3.2, ϕs =ϕ(ϕ′s) = ϕ(ϕ′t) = ϕt. The claim follows.

2. s ∈ F̃ (1)⇐⇒ ∃t ∈ F : ϕs = ϕt ⇐⇒ ϕs ∈ ϕF
3. s ∈ ϕF̃ ⇐⇒ ∃t ∈ F̃ : s = ϕt (1)⇐⇒ ∃t′ ∈ F : s = ϕ(ϕt′) = ϕt′ ⇐⇒ s ∈ ϕF �

Proposition 3.4 Let ϕ be a normalizer for F . Then:

1. F basic ⇐⇒ ∀s : ϕs = s
2. ϕF is basic

3. ∼F ⊆ ≈F
4. s ≈F t ⇐⇒ ϕs = ϕt

Proof Claim (1) holds since F is basic if and only if ∼F is the identity relation.

Claim (2) follows by (1) and Proposition 3.1 (2). Claim (3) is immediate, as is

the direction from right to left in Claim (4). The other direction follows by

Lemma 3.2. �

Proposition 3.5 Let x ∉N F . Then x ∼F y iff x = y .
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Proof Let x ∉N F . Clearly x = y implies x ∼F y . So assume for contradiction

that x ∼F y for some y �= x. Let ∼ := {(x, x)} ∪ { (x′, y′) ∈ ∼F | x′ �=x ∧ y′ �=x }.
Clearly ∼⊊∼F . It can be shown that ∼ is an equivalence relation. Moreover, as

x ∉ N F , x′ ∼ y′ holds for every equation x′ � y′ ∈ F , which contradicts the

definition of ∼F . �

We define Id := {x � x | x ∈ Nom } (the set of all trivial equations).

Proposition 3.6

1. F ⊆ F̃
2. F1 ⊆ F2 	⇒ ∼F1⊆∼F2

3. F1 ⊆ F2 	⇒ F̃1 ⊆ F̃2

4. N F =N F̃

5. F finite ⇐⇒ F̃ finite

6. x ∼F y ⇐⇒ (x � y) ∈ F̃ ∪ Id

7. ∼F = ∼F̃

Proof

1. Follows by the reflexivity of ≈F .

2. By contradiction. Assume x ∼F1 y and x �∼F2 y . Let ∼ := ∼F1 ∩ ∼F2 . It can

be shown that ∼ is an equivalence relation such that ∀(x � y) ∈ F1 : x ∼ y .

Since ∼⊊∼F1 , this is a contradiction to the minimality of ∼F1 .

3. Follows by Claim (2) and Lemma 3.2.

4. ClearlyN F ⊆N F̃ , so it suffices to show the converse inclusion. Let x ∈N F̃ ,

meaning there is some formula s ∈ F̃ such that x ∈ N s. Then there is some

formula t ∈ F such that s ≈F t. Consequently, there is some variable y ∈N t
such that x ∼F y . Since y ∈N F , Proposition 3.5 implies x ∈N F .

5. Follows by Claim (4) and the fact that every two terms s and t such that s ≈F t
have the same size.

6. The direction from left to right is proven similarly to Proposition 3.5. As for

the other direction, it suffices to show that (x � y) ∈ F̃ implies x ∼F y .

So, let (x � y) ∈ F̃ and ϕ be a normalizer for F . By Proposition 3.3 (2),

ϕx � ϕy ∈ ϕF . Then there are nominals x′ and y′ such that x′ � y′ ∈ F ,

ϕx′ = ϕx and ϕy′ =ϕy . The claim follows.

7. x ∼F̃ y
(6)⇐⇒ (x � y) ∈ ˜̃F ∪ Id ⇐⇒ (x � y) ∈ F̃ ∪ Id

(6)⇐⇒ x ∼F y �

Proposition 3.7 Let ϕ be a normalizer for F . Then:

1. ϕF ⊆ F̃
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2. N (ϕF) = ϕ(N F) =N F −Dom ϕ

Proof

1. Let s ∈ F . It suffices to show that ϕs ∈ F̃ . This is the case because, by

Proposition 3.4 (4) and 3.1 (2), ϕs ≈F s.
2. The first equality states a fundamental property of substitution. The second

equality follows by Proposition 3.1 (1) and the observation that x ∉ Dom ϕ
implies x ∈N (ϕF) ⇐⇒ x ∈N F . �

A set F is equationally expanded if F = F̃ . Note that basic sets and nominal

congruence closures are always equationally expanded.

4 Syntactic Satisfiability

An interpretation I interprets B as the set {0,1}, I as a non-empty set, the logical

constants �, ¬, ∧, ∨, ∀, ∃ as usual (1 takes the role of true), the modal constants

according to their defining equations, and the individual and predicate names

according to their types. Given an interpretation I and a term s, we write Is for

the object I assigns to s. An interpretation I satisfies a formula s if Is = 1. An

interpretation satisfies a set of formulas F if it satisfies every formula s ∈ F . An

interpretation is a model of F if it satisfies F . A set F is satisfiable if it has a

model, and unsatisfiable otherwise.

An interpretation I is syntactic for F if II = I(N F) (i.e, II = {Ix | x ∈N F })
and for every atomic formula a the following holds: if Na ⊆ N F , then I
satisfies a if and only if a ∈ F̃ ∪ Id. An interpretation is a syntactic model of F
if it satisfies F and is syntactic for F . A set F is syntactically satisfiable if it has

a syntactic model. A set F is finitely satisfiable if F has a model I such that II
is a finite set.

Proposition 4.1

1. An interpretation I is syntactic for a set F if and only if it is syntactic for F̃ .

2. If F is syntactically satisfiable and finite, then F is finitely satisfiable.

3. If I is syntactic for F and x,y ∈ N F , then I satisfies x � y if and only if

x ∼F y .

Proof The last claim follows with Proposition 3.6 (6). �

Let I be an interpretation and ϕ be a normalizer. We define Iϕ as the inter-

pretation that is obtained from I by (possibly) changing I on the nominals in

Dom ϕ such that Iϕx = I(ϕx).

2008/4/14 9



Proposition 4.2 Let ϕ be a normalizer for F and I be an interpretation that is

syntactic for ϕF . Then Iϕ is syntactic for F .

Proof The first condition of being syntactic is obviously satisfied. To show the

second condition, let a be an atomic formula such that Na ⊆ N F . Then the

following statements are equivalent:

Iϕ satisfies a

I satisfies ϕa substitution lemma

ϕa ∈ ϕF ∪ Id I syntactic for ϕF

a ∈ F̃ ∪ Id Proposition 3.3 �

5 Evidence

Tableau systems rest on a semantically motivated notion of evidence first de-

scribed by Hintikka [16]. To define evidence for PLM, we need some technical

definitions. A literal formula is an atomic formula or a negated atomic formula.

We write sxy for the term obtained from s by capture-free replacement of the

free occurrences of x by y . If y is a nominal, sxy is obtained without renaming

of bound variables. By abuse of notation we mean by ρxy the formula rxy if

ρ = r and ryx if ρ = r̄ . We say that a formula is evident in F if it is not literal

and if it satisfies the evidence condition corresponding to its form:

s1 ∧ s2 evident in F if s1 ∈ F ∧ s2 ∈ F
s1 ∨ s2 evident in F if s1 ∈ F ∨ s2 ∈ F

∃s evident in F if ∃x : sx ∈ F
∀s evident in F if ∀x ∈N F : sx ∈ F

(λx.s)y evident in F if sxy ∈ F
♦ρsx evident in F if ∃y : ρxy ∈ F ∧ sy ∈ F
�ρsx evident in F if ∀y : ρxy ∈ F 	⇒ sy ∈ F

Lemma 5.1 (Soundness) Let I be a syntactic model of F and F = F̃ . Then I
satisfies s if s is evident in F and N s ⊆N F .

Proof Since I is syntactic for F we have II = I(N F). We refer to this property

as (S). Let s be evident in F and N s ⊆ N F . We show that I satisfies s. If s
is a conjunction, disjunction, ∃-, λ-, or ♦-formula, the claim is obvious. For ∀-

formulas the claim follows with (S). If s = �ρtx, because of (S) it suffices to show

that I satisfies ρxy → ty if y ∈ N F . Let I satisfy ρxy and y ∈ N F . We show
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that I satisfies ty . We have x ∈ N F since N s ⊆ N F . Hence ρxy ∈ F̃ = F
since I is syntactic for F . Thus ty ∈ F since s is evident in F . Hence I satisfies s
since I satisfies F . �

Proposition 5.2 (Stability) Let ϕ be a normalizer for F . Then a formula s is

evident in F̃ if and only if ϕs is evident in ϕF .

Proof Let s be a non-literal formula. Case analysis.

Case s = s1 ∧ s2. We have to show that s1, s2 ∈ F̃ ⇐⇒ ϕs1,ϕs2 ∈ ϕF , which

holds by Proposition 3.3 (2).

Case s = (λx.t)y . We have to show that txy ∈ F̃ ⇐⇒ (ϕt)xϕy ∈ ϕF . This

holds by Proposition 3.1 (4) and Proposition 3.3 (2).

Case s = ∀t. Let x ∈ N F̃ . We have to show that tx ∈ F̃ ⇐⇒ (ϕt)(ϕx) ∈
ϕF , which holds by Proposition 3.3 (2).

Case s = ♦ρtx. We have to show that (∃y : ρxy, sy ∈ F̃) ⇐⇒
(∃y : ρ(ϕx)y, (ϕs)y ∈ F̃), which holds by Proposition 3.3 (2) since N (ϕF) =
ϕ(Ñ F).

The remaining cases are similar. �

Proposition 5.3 (Compatibility) Let s ≈F s′. Then s is evident in F̃ if and only

if s′ is evident in F̃ .

Proof Letϕ be a normalizer for F . Thenϕs =ϕs′. Hence the claim follows with

Proposition 5.2. �

A set F is locally consistent if there is no negated formula ¬s ∈ F such that

s ∈ F ∪ Id.

Lemma 5.4 (Local Consistency) F̃ is locally consistent if and only if there is no

formula s such that ¬s ∈ F and s ∈ F̃ ∪ Id.

Proof The direction from left to right is obvious. We show the other direction by

contraposition. Let F̃ be locally inconsistent. Then there exists a formula ¬t ∈ F̃
such that t ∈ F̃ ∪ Id. Let ϕ be a normalizer for F . Then there exists a formula

¬s ∈ F such that ϕs = ϕt. We show s ∈ F̃ ∪ Id by contradiction. Suppose, s ∉ F̃
and s ∉ Id. Then t ∉ F̃ and hence t ∈ Id. Thus there exist two nominals x ≠ y
such that s = (x � y) and ϕx = ϕy . Hence s ∈ F̃ by Proposition 3.6 (6), which

contradicts our assumption. �

A set F is evident if it is equationally expanded and locally consistent, con-

tains a least one nominal, and every non-literal formula s ∈ F is evident in F . For

instance, the set {♦r̄ pa, rba, pb} is evident and the set {�r̄ pa, rba} is not
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evident. Hintikka [16] considers evident sets for pure predicate logic (no func-

tions, no equality) and calls them model sets. Some authors, e.g., [14, 18], call

evident sets tableaux. We see it as an advantage of PLM that evident sets can be

represented as sets of PLM-formulas. If native modal syntax is used, additional

syntax is needed (e.g., for edges rxy).

Proposition 5.5 (Stability) Let ϕ be a normalizer for F . Then:

1. F̃ is locally consistent if and only if ϕF is locally consistent.

2. F̃ is evident if and only if ϕF is evident.

Proof Claim (1) follows with the statements (2) and (3) of Proposition 3.3.

Claim (2) follows from claim (1), Proposition 5.2, and the fact that ϕF is basic

and hence equationally expanded. �

Theorem 5.6 (Model Existence)

Every evident set is syntactically satisfiable.

Proof Let F be evident. By Propositions 5.5 and 4.2 we assume without loss

of generality that F is basic. Also without loss of generality we assume that

(x � x) ∈ F for every x ∈ N F (to meet the variable requirement of the Sound-

ness Lemma). Now we choose an interpretation I such that II =N F and Ix = x
for all nominals x ∈ N F . Moreover, we choose I such that it satisfies atomic

formulas a = px1 . . . xn if and only if a ∈ F . Since F is basic, I is syntactic

for F . Since F is locally consistent, I satisfies all literal formulas in F . With the

Soundness Lemma 5.1 and induction on the size of formulas it now follows that I
satisfies all non-literal formulas in F . For the induction the size of formulas must

be defined such that sx is smaller then ∃s and ∀s. �

6 Tableau Systems

The evidence conditions for non-literal formulas say which formulas are needed

to render a formula evident. A tableau system adds these formulas step by step

until either an evident set is reached or a local inconsistency appears. Tableau

systems originated with Beth [4] and Hintikka [16]. It was Beth [4] who first used

the term tableau.

We first introduce abstract tableau systems not committed to a particular

logic. To do so, we assume that a set of formulas and a class of interpretations

are given, and that for every interpretation I and every formula s it is defined

whether or not I satisfies s. We make no further assumptions about formulas

and interpretations.
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A clause is a finite and non-empty set of formulas. A clause set is a set of

clauses. The letter Γ will always denote a clause, and S will always denote a

clause set. An interpretation I satisfies a clause Γ if it satisfies every formula

in Γ . An interpretation I satisfies a clause set S if it satisfies at least one clause

in S. Hence the empty clause set is unsatisfiable. Moreover, Γ is satisfiable if and

only if {Γ} is satisfiable.

We formalize the rules of tableau systems through moves, where a rule yields

at least one move for every clause to which it applies. A move takes the form

(Γ , {Γ1, . . . , Γn}) where n ≥ 0 and Γ ⊊ Γi for all i ∈ {1, . . . , n}. A move (Γ , S) is

• refuting if S is empty.

• expansive if S is non-empty.

• branching if S contains at least two clauses.

• sound if S is satisfiable if Γ is satisfiable.

A tableau system (Cla,Mov) consists of a set Cla of clauses and a set Mov of

moves such that every move (Γ , S) ∈ Mov satisfies the following conditions:

1. Γ ∈ Cla and S ⊆ Cla

2. (Γ , �) ∈ Mov 	⇒ S = �
3. (Γ , S) sound.

Proposition 6.1 If (Γ , S) is a move of a tableau system, then Γ is satisfiable if and

only if at least one clause in S is satisfiable. Hence Γ is unsatisfiable if S is empty.

A tableau system yields a set of proof trees. Every single clause is a primitive

proof tree. Using the moves of the tableau system we obtain composed proof

trees. An example may look as follows:

Γ

Γ1

Γ2 Γ3

Γ4

This tree is obtained from the moves (Γ , {Γ1}), (Γ1, {Γ2, Γ3}) and (Γ3, {Γ4}). As

we go down on a branch of a proof tree, the clauses contain more and more

formulas. For instance, Γ ⊊ Γ1 ⊊ Γ3 ⊊ Γ4. A tableau exploits this property

and represents a proof tree by giving at each node only the formulas that are

added. Because of the soundness of the moves, the root clause of a proof tree is

satisfiable if and only if at least one of the leaf clauses is satisfiable.

The following definitions and results are parameterized with respect to a

tableau system (Cla,Mov). We define two expansion relations:

• Γ → Γ ′ if there exists a move (Γ , S′) ∈ Mov such that Γ ′ ∈ S′.
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• S → S′ if S ⊆ Cla and there exists a move (Γ , S′′) ∈ Mov such that Γ ∈ S and

S′ = (S − {Γ})∪ S′′.
We write Γ →∗ Γ ′ and S →∗ S′ for the reflexive and transitive closures of the

expansion relations. An expansion is a pair (Γ , Γ ′) or (S, S′) such that Γ → Γ ′ or

S → S′. Note that a derivation Γ1 → ·· · → Γn corresponds to a path in a proof

tree, and that {Γ} →∗ S holds if and only if there is a proof tree with Γ as root

clause and the clauses in S as leaf clauses.

A clause Γ ∈ Cla is

• refuted if Mov contains a refuting move for Γ .

• refutable if {Γ} →∗ �.

• verified if Γ is not refuted and there is no clause Γ ′ such that Γ → Γ ′.

• verifiable if there is a verified clause Γ ′ such that Γ →∗ Γ ′.

A clause is refutable if it has a proof tree whose leaves are all refuted, and ver-

ifiable if it has a proof tree with at least one verified leaf. Since every clause

is by itself a proof tree, refuted clauses are refutable, and verified clauses are

verifiable.

Proposition 6.2

1. If Γ → Γ ′, then Γ ⊊ Γ ′ and Γ is not refuted.

2. If S → S′, then S is satisfiable if and only if S′ is satisfiable.

Proposition 6.3 Refutable clauses are unsatisfiable.

A tableau system is

• verification-sound if every verified clause is satisfiable.

• verification-complete if every satisfiable clause is verifiable.

• refutation-complete if every unsatisfiable clause in Cla is refutable.

• complete if it is verification- and refutation-complete.

• terminating if the expansion relation Γ → Γ ′ is terminating.

Proposition 6.4

1. A refutation-complete tableau system is verification-sound.

2. If a clause is verifiable in a verification-sound tableau system, it is satisfiable.

3. A verification-sound and terminating tableau system is complete.

4. A verification-sound and terminating tableau system yields a decision proce-

dure for the satisfiability of clauses.

The decision procedure starts from {Γ} and applies moves until either a verified

clause is reached or no clause is left. If a verified clause Γ ′ is reached, Γ is
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R¬
¬s
�
s ∈ Γ̃ ∪ Id R∧

s1 ∧ s2
s1, s2

R∨
s1 ∨ s2
s1| s2

Rλ
(λx.s)y

sxy

R∃
∃s
sx

x ∉N Γ ∧ ∃s not evident in Γ̃ R∀
∀s
sx

x ∈N Γ

R♦

♦ρsx

ρxy, sy
y ∉N Γ ∧ ♦ρsx not evident in Γ̃ R�

�ρsx

sy
ρxy ∈ Γ̃

Figure 2: Rules for T

verifiable and hence satisfiable since the tableau system is verification-sound. If

no clause is left, Γ is refutable and hence unsatisfiable.

7 A Tableau System for PLM

We are now construct a tableau system T for PLM. T is obtained as an opera-

tional reformulation of the notion of PLM-evidence. As clauses we take all finite

sets Γ of PLM-formulas such that Γ contains at least one nominal. A clause Γ
will be refuted in T if and only if Γ̃ is locally inconsistent, and verified if and

only if Γ̃ is evident. By Lemma 5.4 we know that it suffices that T has a refuting

move for every clause Γ such that ¬s ∈ Γ and s ∈ Γ̃ ∪ Id. The expansive moves

(Γ , S) of T are chosen such that there is no refuting move for Γ and Γ̃ ⊊ Δ̃ for

every Δ ∈ S. By Compatibility (Proposition 5.3) we know that it suffices if there

is an expanding move for every clause Γ containing a non-literal formula that is

not evident in Γ̃ . Thus the expansive moves are operational reformulations of

the evidence conditions for the different types of non-literal formulas. Figure 2

represents all moves of T through rules. R¬ represents the refuting moves. The

other rules correspond to the evidence conditions for non-literal formulas and

describe expansive moves. A rule can only be applied to a clause Γ if the premise

of the rule is in Γ and the side conditions of the rule are satisfied by Γ . If this is

the case, the rule adds the formulas appearing as its conclusions to Γ .
R∨ is the only rule that describes branching moves. An example of a branch-

ing move obtained from R∨ is ({p∨q}, {{p∨q, p}, {p∨q, q}}). R∨ also yields

non-branching moves, for instance, ({p ∨ p}, {{p ∨ p, p}}). Note that R∨ does
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not yield a move for {p ∨ q, p}. Here are examples of verified clauses:

{∀x.px, (λx.px)a, pa}
{∀x.px, (λx.px)a, (λx.px)b, pa, pb}
{∀x.px, (λx.px)b, pa, a�b}
{∃x.px, (λx.px)a, pb, a�b}
{♦r(λx.px)a, rbb, (λx.px)a, pb, a�b}
{♦r(�r̄ (λx.px))a, rab, �r̄ (λx.px)b, (λx.px)a, pa}

Proposition 7.1 T is a tableau system.

Proof It is straightforward to verify the soundness of the moves of T . The other

properties hold by construction. �

Lemma 7.2 (Evidence) If Γ is verified in T , then Γ̃ is evident.

Proof Let Γ be verified in T . Certainly, Γ̃ is equationally expanded. Since R¬
does not apply to Γ , we know by Lemma 5.4 that Γ̃ is locally consistent. More-

over, Γ̃ contains a nominal since every clause of T contains a nominal.

It remains to show that all non-literal formulas in Γ̃ are evident in Γ̃ . By Com-

patibility (Proposition 5.3) it suffices to show that all non-literal formulas in Γ are

evident in Γ̃ . The tableau rules for non-literal formulas are designed such that a

rule is applicable if its premise formula is not evident in Γ̃ . Hence all non-literal

formulas in Γ are evident in Γ̃ since no rule applies to Γ . �

Theorem 7.3 (Verification-Soundness)

If a clause is verified in T , then it is syntactically satisfiable.

Proof Follows with Lemma 7.2, Theorem 5.6, and Proposition 4.1. �

Example 7.4 T does not terminate for the satisfiable formula ∀x.∃y.rxy :

∀x.∃y.rxy, a � a initial clause

(λx.∃y.rxy)a, ∃y.ray R∀, Rλ

(λy.ray)b, rab R∃, Rλ

(λx.∃y.rxy)b, ∃y.rby R∀, Rλ

. . .

The non-termination comes from the interplay of R∀ and R∃ and the fact

that R∃ introduces new nominals. �
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Example 7.5 Here is a derivation verifying a satisfiable clause. We use syntactic

sugar to hide lambda abstractions.

♦rpa, �r(a∧ ♦rp)a initial clause

rab, (λx.px)b, pb R♦, Rλ

(a∧ ♦rp)b R�

a�b ∧♦rpb Rλ

a�b, ♦rpb R∧

The final clause Γ is verified since ♦rpb is evident in Γ̃ (rbb and (λx.px)b are

in Γ̃ ). �

8 Straight Termination

Since satisfiability of PLN-formulas is not semi-decidable (a single binary pred-

icate suffices, see [9]), decidable fragments of PLM must restrict the use of the

quantifiers. We begin with a tableau-decidable fragment of PLM that excludes

♦-formulas.

We distinguish between ordinary, existential and universal formulas. Formu-

las of the form ∃s or ♦rsx are called existential, and formulas of the form ∀s
or �rsx are called universal. Formulas that are neither universal nor existential

are called ordinary.

The rules R∃ and R♦ for existential formulas introduce fresh nominals, that

is, nominals that do not appear in the clauses the rules are applied to. For this

reason we refer to R∃ andR♦ as generative rules. R∃ andR♦ have to introduce

fresh nominals since otherwise they would not be sound.

A subterm of a set F is a term that appears as subterm in a formula s ∈ F . We

write SubF for the set of all subterms of F . We say that F contains t if t ∈ SubF .

Proposition 8.1 T terminates on clauses not containing existential formulas.

For the proof of the proposition we need some terminology. The height of a

clause Γ is the size of the largest formula in Γ . If Γ → Δ, then Γ and Δ have the

same height. In other word, expansion preserves the height of clauses.

The breadth of a clause Γ is the number of elements of Γ (as a set). If Γ → Δ,

then the breadth of Δ is larger than the breadth of Γ . In other words, expansion

increases the breadth of clauses.

The vocabulary of a clause Γ consists of all nominals and all predicate names

that occur in Γ . If Γ → Δ, then the vocabulary of Γ is a subset of the vocabulary

of Δ. While generative rules enlarge the vocabulary of a clause, non-generative

rules preserve the vocabulary of a clause.
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The stock of a clause Γ consists of all PLM-formulas whose size is at most the

height of Γ and that contain only nominals and predicate names in the vocabulary

of Γ . The stock of a clause is finite since the vocabulary of a clause is finite. All

non-generative rules preserve the stock of a clause.

The slack of a clause Γ is the number of formulas in the stock of Γ that are

not in Γ . Every non-generative rule decreases the slack of a clause. Hence we

know that an infinite derivation must employ a generative rule. Thus we have a

proof of Proposition 8.1.

Proposition 8.2 (Monotonicity) Expansion preserves evidence of non-universal

formulas. That is, if a non-universal formula s is evident in Γ and Γ ⊆ Δ, then s is

evident in Δ. Moreover, the evidence of a universal formula can only be lost by

an expansion with a generative rule (i.e. N Γ ⊊NΔ).

An ∃-formula is is a formula of the form ∃s. A clause Γ is straight if it is

diamond-free (i.e., ♦ ∉ Sub Γ ) and every ∃-formula in Sub Γ is closed. We will

show that T terminates on straight clauses.

Proposition 8.3 If Γ is straight and Γ → Δ in T , then Δ is straight.

Only Rλ can introduce new ∃-subformulas, and only if there are open ∃-

subformulas. Consider (λx.∃y.rxy)a as an example. Each time R∃ is applied

it renders an ∃-formula evident that was not evident before (ensured by the side

condition of R∃). Since evidence of ∃-formulas is preserved by all rules, R∃
cannot cause divergence if all ∃-formulas are closed.

The ∃-power of a clause Γ is the number of ∃-formulas in Sub Γ that are not

evident in Γ̃ . Obviously, R∃ decreases the ∃-power of a clause. Moreover, if all

∃-formulas are closed, no rule increases the ∃-power of a clause.

Theorem 8.4 (Straight Termination)

T terminates on straight clauses.

Proof We summarize the facts that prove the theorem.

1. A derivation issuing from a straight clause involves only straight clauses.

2. No rule increases the ∃-power of a straight clause.

3. R∃ decreases the ∃-power of a straight clause.

4. R♦ is not applicable.

5. All rules but R∃ and R♦ decrease the slack of a clause. �

Corollary 8.5 T decides the satisfiability of straight clauses.

Proof Follows from Theorems 7.3 and 8.4. �
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Corollary 8.6 Straight clauses are finitely satisfiable if they are satisfiable.

The termination result for straight clauses can be generalized by admitting

open ∃-formulas whose free variables are existentially quantified (i.e., by ∃). To

do this, the definition of ∃-power must be adapted. The insight is that new closed

∃-formulas are introduced only after a larger ∃-formula has been made evident

with R∃.

9 Regular Clauses

To arrive at decidable fragments of PLM that admit ♦-formulas, we must restrict

the use of modal quantification. It turns out that we must also disallow formulas

of the form ¬rxy if r is used with a modal quantifier. A set F of PLM-formulas is

• well-quantified if SubF contains no open formula of the form ∃s, ♦ρsx, or

�ρsx.

• edge-positive if ¬rxy ∈ SubF implies that SubF contains no modality con-

taining r .

• regular if F is well-quantified and edge-positive.

• converse-free if SubF contains no term of the form r̄ .

The translation of formulas in ordinary modal syntax to PLM always yields reg-

ular formulas. The exception is the down-arrow binder of hybrid logic, whose

presence renders hybrid logic undecidable [1]. We define the modal terms of a

set F as follows:

Mod F := {♦ρs | ♦ρs ∈ Sub Γ } ∪ {�ρs | �ρs ∈ Sub Γ }
∪ { s | ∃ρ : ♦ρs ∈ Sub Γ ∨ �ρs ∈ Sub Γ }

To have an example, we list the modal terms of the clause {♦r(�r(λx.px))a}:
♦r(�r(λx.px)), �r(λx.px), λx.px.

Proposition 9.1 Let Γ → Δ in T . Then:

1. If Γ is well-quantified, then Mod Γ = ModΔ.

2. If Γ is well-quantified, then Δ is well-quantified.

3. If Γ is regular, then Δ is regular.

Proof New modal subterms can only be introduced by Rλ and only if there are

open modal terms. However, well-quantifiedness excludes the presence of open

modal terms. This proves claim (1). The other claims are easy to verify. �
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Well-quantifiedness will be crucial for the termination proofs to come since it

ensures that the tableau rules preserve the modal terms of a clause (as stated by

the above proposition). Note that Mod Γ is finite since clauses are finite. Edge-

positiveness is of no relevance for termination, but is essential for verification-

soundness.

The tableau system in this paper all have the property that they can only

verify clauses that are finitely satisfiable. Hence a class of clauses can only be

tableau-decidable with our approach if it excludes satisfiable clauses that are not

finitely satisfiable. Such clauses can be obtained by specifying a binary relation

that is total, irreflexive, and transitive.

Example 9.2 (TIT) The strict order < on N is a relation that is total, irreflexive,

and transitive (TIT). It is easy to see that there is no finite relation that is TIT.

Here is a PLM-clause specifying that a relation r is TIT:

∀x. ♦r(λx.x�x)x totality

∀x. ¬rxx irreflexivity

∀xyz. ¬rxy ∨¬ryz ∨ rxz transitivity

Note that the clause is well-quantified but not edge-positive. Thus the example

explains why we require edge-positiveness.

Here is another PLM-clause specifying that a relation r is TIT:

∀x. ♦r(λx.x�x)x totality

∀x. �r(¬x)x irreflexivity

∀xyz. �r(¬y)x ∨�r(¬z)y ∨♦rzx transitivity

This time we use the expressive features of hybrid logic. The example is written

with some notational sugar. For instance, the notation ♦rz stands for the modal

term ♦r(λx. z�x), and �r(¬x) stands for �r(λy.x ��y). Note that the clause

is edge-positive but not well-quantified since it contains open modal terms (e.g.,

♦r(λx. z�x)). �

Regularity takes away most of the extra-expressivity PLM has over hybrid

logic. One expressive feature that remains is reflexivity: ∀x.rxx.

10 Quasi-Evidence

T diverges on most clauses that involve diamonds. The reason is that the evi-

dence condition for diamond formulas requires for ♦ρsx the presence of an edge

ρxy , which R♦ can only add by introducing a new nominal. We will now define
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a weaker quasi-evidence property for diamond formulas that doesn’t require the

presence of edges.

Example 10.1 Consider the formula ∀x.♦rpx. It is finitely satisfiable since

{∀x.♦rpx, (λx.♦rpx)a, ♦rpa, raa, (λx.px)a, pa}

is an evident clause. However, T diverges on this formula since it tries to build

a tree-like model:

∀x.♦rpx, pa initial clause

(λx.♦rpx)a, ♦rpa R∀, Rλ

rab, (λx.px)b, pb R♦, Rλ

(λx.♦rpx)b, ♦rpb R∀, Rλ

rbc, (λx.px)c, pc R♦, Rλ

. . . �

We say that an edge rxy is safe in F if rxy ∈ F , or if the following conditions

are satisfied:

1. ∀t : �rtx ∈ F 	⇒ ty ∈ F
2. ∀t : �r̄ ty ∈ F 	⇒ tx ∈ F
For diamond formulas we have a quasi-evidence condition:

♦ρsx quasi-evident in F ∃y : ρxy safe in F ∧ sy ∈ F

An edge-positive set F is quasi-evident if it satisfies all the conditions for evi-

dent sets except the one for diamond formulas, for which it satisfies the quasi-

evidence condition. For instance, the set {♦rpa, (λx.px)b, pb} is quasi-evident

since rab is safe.

Proposition 10.2 Let F be quasi-evident. Then F ∪{rxy} is quasi-evident if and

only if rxy is safe in F .

Proposition 10.3

1. If a diamond formula is evident in F , then it is also quasi-evident in F .

2. If a set is evident, then it is also quasi-evident.

Proposition 10.4 (Stability) Let ϕ be a normalizer for F . Then:

1. An edge rxy is safe in F̃ if and only if r(ϕx)(ϕy) is safe in ϕF .

2. A formula ♦ρxy is quasi-evident in F̃ if and only if ♦ρ(ϕx)(ϕy) is quasi-

evident in ϕF .
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3. F̃ is quasi-evident if and only if ϕF is quasi-evident.

Proof Claim (1) follows with Proposition 3.3 (2). Claim (2) follows with Claim (1).

Claim (3) follows with Claim (2) and Propositions 5.2 and 5.5. �

Lemma 10.5 (Safe Edges) Let F be quasi-evident and basic, and let R be the set

of all edges s such that s is safe in F and N s ⊆N F . Then F ∪ R is evident.

Proof The addition of safe edges preserves the local consistency and the equa-

tional expansion of F (recall that quasi-evident sets are edge-positive). Let t ∈ F
be a non-literal formula. It remains to show that t is evident in F ∪ R. If t is

neither a diamond nor a box formula, then t is evident in F ∪R since it is evident

in F .

If t is a box formula, a certain condition must be satisfied by every edge that

is adjacent to s. For the edges in F this condition is satisfied since t is evident

in F . For the edges in R the condition is satisfied since they are safe in F .

If t = ♦ρsx ∈ F , we distinguish two cases. If t is evident in F , then t is also

evident in F ∪ R. If t is not evident in F , there exists a nominal y such that

sy ∈ F and ρxy is safe in F . Hence ρxy ∈ R. Thus t is evident in F ∪ R. �

Theorem 10.6 (Model Existence)

Every quasi-evident set is syntactically satisfiable.

Proof By Lemma 10.4 (3) and Proposition 4.2 we can assume without loss of gen-

erality that F is basic. Now the claim follows with Lemma 10.5 and Theorem 5.6.�

Quasi-evidence yields a verification-sound tableau system T q, which is ob-

tained as follows. As clauses T q takes all edge-positive clauses. The moves

of T q are defined analogously to T except that for diamond formulas we now

employ the rule

Rq
♦

♦ρsx

ρxy, sy
y ∉N Γ ∧ ♦ρsx not quasi-evident in Γ̃

Proposition 10.7 T is a verification-sound tableau system.

Proof Analogous to the proofs of Lemma 7.2 and Theorem 7.3. �

We will show that T q can verify every converse-free regular clause that is

satisfiable. Example 10.1 shows that T doesn’t have this property. The following

example shows that T q doesn’t terminate.
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Example 10.8 Here is a diverging T q-derivation starting from a satisfiable regu-

lar clause (some formulas are omitted):

∀x.♦rpx ∧�rqx, pa initial clause

♦rpa, �rqa R∀, Rλ, R∧

rab, pb Rq
♦, Rλ

♦rpb, �rqb R∀, Rλ, R∧

. . .

If we prioritize R� over R♦, we terminate with a quasi-evident clause after a few

steps.

∀x.♦rpx ∧�rqx, pa initial clause

♦rpa, �rqa R∀, Rλ, R∧

rab, pb, qb Rq
♦, Rλ, R�

♦rpb, �rqb R∀, Rλ, R∧

Note that ♦rpa is evident and ♦rpb is quasi-evident since rbb is safe. �

11 A Pattern-Based System

We will now present a terminating tableau system that decides the satisfiability

of converse-free regular clauses. One way to get such a system is to take the sub-

system of T q that prioritizesR� overRq
♦ (i.e.,Rq

♦ can only be applied to clauses

to which R� does not apply). However, we take a slightly different approach,

which enjoys simpler proofs and extends to transitive relations (see §14). We

refer to this approach as pattern-based approach (patterns will play an essential

role in the termination proof).

A formula ♦rsx is pattern-evident in a set F if there exist nominals x′, y
such that rx′y, sy ∈ F and ∀t : �rtx ∈ F 	⇒ �rtx′ ∈ F . An edge-positive and

converse-free set F is pattern-evident if it satisfies all the conditions for evident

sets except the one for diamond formulas, for which it satisfies pattern-evidence.

A set F is box-evident if every box-formula in F is evident in F .

Proposition 11.1 If a converse-free diamond formula is evident in a set F , then

it is pattern-evident in F .

Proposition 11.2 Let F be pattern-evident. Then a converse-free diamond for-

mula is quasi-evident in F if it is pattern-evident in F .
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Proof Let ♦rsx ∈ F be pattern-evident in F . Then there exist nominals x′, y
such that rx′y, sy ∈ F and ∀t : �rtx ∈ F 	⇒ �rtx′ ∈ F . Since all box-formulas

are evident in F , we have ∀t : �rtx ∈ F 	⇒ ty ∈ F . Hence rxy is safe in F since

F is edge-positive and converse-free. �

Proposition 11.3 Every pattern-evident set is quasi-evident.

Proof Follows with Proposition 11.2. �

Proposition 11.4 (Stability) Let ϕ be a normalizer for F . Then a diamond for-

mula s is pattern-evident in F̃ if and only if ϕs is pattern-evident in ϕF .

Proposition 11.5 (Compatibility) Let s ≈F s′. Then s is pattern-evident in F̃ if

and only if s′ is pattern-evident in F̃ .

Proof Let ϕ be a normalizer of F , ♦r(ϕs)(ϕx) = ♦r(ϕs′)(ϕx′), and let ♦rsx
be pattern-evident in F̃ . Then, by Stability, ♦r(ϕs)(ϕx) is pattern-evident in

ϕF . Hence ♦r(ϕs′)(ϕx′) is pattern-evident in ϕF . Thus, by Stability, ♦rs′x′ is

pattern-evident in F̃ . �

We now define a tableau system T p. As clauses T p takes all converse-free reg-

ular clauses. The moves of T p are defined analogously to T except that for

diamond formulas we now employ the rule

Rp
♦

♦rsx

rxy, sy
y ∉N Γ ∧ ♦rsx not pattern-evident in Γ̃

Check that T p terminates after 2 steps on the clause in Example 10.1, and that

it also terminates on the clause in Example 10.8.

Proposition 11.6 T p is a tableau system.

Lemma 11.7 (Evidence) If Γ is verified in T p, then Γ̃ is quasi-evident.

Proof Let Γ be verified in T p. By reuse of the proof of Lemma 7.2, we know

that Γ̃ satisfies all evidence conditions but possibly the condition for diamond

formulas. Since Rp
♦ is not applicable to Γ , we know that all diamond formulas in

Γ are pattern-evident in Γ̃ . Hence all diamond formulas in Γ̃ are pattern-evident in

Γ̃ by Compatibility (Proposition 11.5). Since by assumption Γ is edge-positive and

converse-free, we now know that Γ̃ is pattern-evident. Hence Γ̃ is quasi-evident

by Proposition 11.3. �

Theorem 11.8 (Verification-Soundness)

If a clause is verified in T p, then it is syntactically satisfiable.
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Proof Follows with Lemma 11.7, Theorem 10.6, and Proposition 4.1. �

We now start with the termination proof for T p. A property for clauses is

monotone if, if it holds for a set F , it also holds for all supersets of F . Re-

call from §8 that evidence of non-universal formulas is monotone. Pattern-

evidence of diamond formulas, however, is not monotone. Hence we need some

other property we can base the termination argument on. A pattern P is a set

{♦rs,�rs1, . . . ,�rsn} of terms where n ≥ 0. A pattern is realized in F if there

are nominals x, y such that the formulas rxy , sy , and �rs1x, . . . ,�rsnx are

in F .

Proposition 11.9 (Monotonicity)

If a pattern P is realized in F and F ⊆ F ′, then P is realized in F ′.

Proposition 11.10 A formula ♦rsx is pattern-evident in Γ̃ if and only if the pat-

tern {♦rs} ∪ {�rt ∈ Mod Γ | �rtx ∈ Γ̃ } is realized in Γ̃ .

Proof The direction⇒ is easy to verify. To show the other direction, let the given

pattern be realized in Γ̃ and let ϕ be a normalizer for Γ . By Proposition 11.4 it

suffices to show that ♦r(ϕs)(ϕx) is pattern-evident in ϕΓ . Since the pattern is

realized in Γ̃ , there exist x′, y such that r(ϕx′)(ϕy) and (ϕs)(ϕy) are in ϕΓ
and �r(ϕt)(ϕx′) ∈ ϕΓ for all �rt ∈ Mod Γ such that �r(ϕt)(ϕx) ∈ ϕΓ . Thus

♦r(ϕs)(ϕx) is pattern-evident in ϕΓ . �

We define the ♦-power of a clause Γ as the number of patterns P ⊆ Mod Γ that

are not realized in Γ . Because all rules of T p preserve Mod Γ (Proposition 9.1)

and realization of patterns is a monotone property, no rule of T p increases the

♦-power of a clause. However, by Proposition 11.10 and Proposition 11.1 we

know that Rp
♦ decreases the ♦-power of a clause.

Theorem 11.11 (Termination)

T p is terminating.

Proof The claim follows from the following facts. The facts concerning the slack

and the ∃-power of clauses were shown in §8.

1. Only well-quantified clauses are involved.

2. No rule increases the ∃- or the ♦-power of a well-quantified clause.

3. R∃ decreases the ∃-power of a well-quantified clause.

4. Rp
♦ decreases the ♦-power of a well-quantified clause.

5. All rules but R∃ and R♦ decrease the slack of a clause. �
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Corollary 11.12 T p decides the satisfiability of converse-free regular clauses.

Proof Follows from Theorems 11.8 and 11.11. �

Corollary 11.13 Converse-free regular clauses are finitely satisfiable if they are

satisfiable.

For an efficient decision procedure it seems advantageous to prioritize R�

over Rp
♦, that is, to apply Rp

♦ only to box-evident clauses. Moreover, Rp
♦ should

only be applied to diamond formulas that are not quasi-evident. By Proposi-

tion 11.2 we know that this will result in a complete decision procedure. Note

that such a procedure checks for quasi-evidence of diamond formulas rather

than pattern-evidence.

Corollary 11.14 T q is verification-complete for converse-free regular clauses.

Example 11.15 We close with a example that suggests that the pattern-based

technique does not extend to regular clauses containing converse modalities.

Here is an unsatisfiable regular clause that is pattern-evident except for the fact

that it contains converse modalities:

{ (♦r(�r̄ ¬p))a, raa, �r̄ (¬p)a, (λx.¬px)a, ¬pa
(♦r(�r̄ ¬p))b, pb }

The diamond formula at a is evident, and the diamond formula at b is pattern-

evident. �

12 A Chain-Based System

In this section we present a terminating tableau system that decides the sat-

isfiability of regular clauses possibly containing converse modalities. The sys-

tem builds on a well-known technique we call chain-based blocking. Chain-

based blocking exploits a finiteness condition that also appears with the model-

theoretic technique of filtration [5]. Chain-based blocking first appears in

Kripke [24] with a terminating tableau system deciding S4 (modal logic with a

reflexive and transitive relation). In Hughes and Cresswell [19] chain-based block-

ing appears as rule of repeating chains. Horrocks and Sattler [18] use chain-based

blocking to cope both with transitive relations and converse modalities. They ob-

serve that with converse relations chain-based blocking becomes dynamic. This

is also the case with equations. Bolander and Blackburn [7] employ chain-based

blocking for a hybrid logic with converse modalities.
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Example 12.1 Here is a divergingT -derivation starting from a satisfiable regular

clause (λ-formulas are omitted):

∀x.♦r(�r̄ p)x, a�a initial clause

♦r(�r̄ p)a R∀, Rλ

rab, �r̄ pb R♦

pa R�, Rλ

♦r(�r̄ p)b R∀, Rλ

rbc, �r̄ pc R♦

pb R�, Rλ

. . .

Let Γ be the clause that is reached after pb has been added, and let Γ ′ ⊆ Γ be the

clause obtained from Γ by deleting the two formulas containing the nominal c.

Now note that Γ ′ is quasi-evident since rbb is safe in Γ ′. The example shows that

T can diverge although it has produced a quasi-evident subclause containing the

initial clause. �

Chain-based blocking builds on a notion of modal equivalence. We define the

label set of x in F as LFx := { t ∈ ModF | tx ∈ F̃ }. Note that LFx = � if x ∉N F .

We say that two nominals x, y are modally equivalent in F if LFx = LFy .

Chain-based blocking records the ancestors of the nominals introduced with

the diamond rule through a relation ≺ such that x ≺ y holds if and only if the

nominal y was introduced to expand a diamond formula at x. So for every nom-

inal y we know the complete ancestor chain x ≺ · · · ≺ y . An ancestor chain

is repeating if it contains two different nominals that are modally equivalent.

Chain-based blocking now disallows diamond expansions of nominals whose an-

cestor chain is repeating. Since Mod Γ is finite and fixed for derivations issuing

from well-quantified clauses, the diamond rule can add nominals only up to a

certain ancestor depth. This proviso suffices for termination and preserves com-

pleteness.

We model the ancestor relation through an a priori given binary relation ≺
on the set of all nominals. If x ≺ y , we say that x is a predecessor of y , and

that y is a successor of x. A nominal is initial if it doesn’t have a predecessor.

We assume that the ancestor relation satisfies the following conditions:

1. Every nominal has at most one predecessor.

2. There are no infinite chains · · · ≺ x3 ≺ x2 ≺ x1.

3. There are infinitely many initial nominals.

4. Every nominal has infinitely many successors.
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An ancestor chain is a tuple (x1, . . . , xn) of nominals such that x1 ≺ · · · ≺ xn.

The ancestor chain of a nominal x is the unique ancestor chain of maximal

length that ends at x. The depth of a nominal x is the length of its ancestor

chain. We write depthx for the depth of x. An ancestor chain is repeating

in F if it contains two different nominals that are modally equivalent in F . A

nominal x is repeating in F if its ancestor chain is repeating in F . We write RF
for the set of all nominals that are repeating in F . Note that RF does not contain

initial nominals. We define the kernel of F as KF := { s ∈ F | N s ∩RF = � }.

Proposition 12.2

1. x ∉RΓ 	⇒ depthx ≤ |P(Mod Γ)|
2. LFx = LFy ⇐⇒ LF̃x = LF̃y
3. RF = RF̃

Proof Claim (1) is a straightforward consequence of our definitions. Claim (3)

follows from claim (2). To show claim (2), let ϕ be a normalizer for F . Then

ϕ(Mod F) =ϕ(Mod F̃). Together with Proposition 3.3 this yields claim (2). �

A formula ♦ρsx is chain-evident in a set F if there exist x′ and y such that

x ∼F x′, x′ ∉RF , x′ ≺ y , and ρx′y, sy ∈ F . Note that chain-evidence is not a

monotone property.

Proposition 12.3 (Compatibility) Let ♦ρsx ≈F ♦ρs′x′. Then ♦ρsx is chain-

evident in F̃ if and only if ♦ρs′x′ is chain-evident in F̃ .

A set F is chain-evident if it is edge-positive, KF contains at least one nomi-

nal, and F satisfies all the conditions for evident sets except the ones for ∃- and

♦-formulas, for which F satisfies the following conditions:

1. ∃s ∈ KF 	⇒ ∃x : sx ∈ KF
2. ♦ρsx ∈ KF 	⇒ ♦ρsx chain-evident in F

Lemma 12.4 Let F be chain-evident and LFy = LFz. Then ρxy is safe in F if

and only if ρxz is safe in F .

Proof Let rxy be safe in F . We show that rxz is safe in F . Let �rsx ∈ F . Since

rxy is safe in F and F is box-evident, sy ∈ F . Since s ∈ LFy = LFz, sz ∈ F̃ = F .

Now let �r̄ sz ∈ F . Since �r̄ s ∈ LFz = LFy , we have �r̄ sy ∈ F̃ = F . Hence

sx ∈ F since rxy is safe in F and F is box-evident.

Let ryx be safe in F . Then we have to show that rzx is safe in F . This follows

with the same arguments as above. �

Lemma 12.5 If F is chain-evident, then KF is quasi-evident.
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Rc
∃
∃s
sx

x ∉N Γ ∧ x initial ∧ ¬∃x : x initial ∧ sx ∈ Γ̃

Rc
♦

♦ρsx

ρx′y, sy
♦ρsx not chain-evident in Γ̃ ∧ x ∼Γ x′ ∧ x′ ∉RΓ ∧ y ∉N Γ ∧ x′≺y

Figure 3: New Rules for T c

Proof Let F be chain-evident. Then KF contains at least a nominal. Moreover,

KF ⊆ F is locally consistent since F is locally consistent. To show that KF is

equationally expanded, let ϕ be a normalizer for KF , ϕs = ϕt, and s ∈ KF . It

suffices to show that t ∈ KF . Since F is equationally expanded and KF ⊆ F , we

have t ∈ F . Since Dom ϕ ∪ Ran ϕ ⊆ N (KF), we have N t ⊆ N (KF). Hence

t ∈ KF .

Let t ∈ KF be a non-literal formula. It remains to show that t is either evident

or quasi-evident in KF . If t is neither an ∃- nor a ♦-formula, then t is evident

in F and hence is t evident in KF . If t is an ∃-formula, the chain-evidence of F
ensures that t is evident in KF .

Otherwise, let t = ♦ρsx. We show that t is quasi-evident in KF . Since F
is chain-evident, t is chain-evident in F . Hence there are x′ and y such that

x ∼F x′, x′ ∉ RF , x′ ≺ y , and ρx′y, sy ∈ F . Then ρxy ∈ F since x ∼F x′.
If y ∉ RF , then t is evident in KF and hence quasi-evident in KF . Otherwise,

y ∈ RF . Since x′ ≺ y and x′ ∉ RF , there is a z ∉ RF such that LFz = LFy .

Since F = F̃ , we have sz ∈ F . Hence sz ∈ KF . Moreover, since ρxy ∈ F , we

know by Lemma 12.4 that ρxz is safe in F . Then ρxz is also safe in KF . Hence

t is quasi-evident in KF . �

We now construct a tableau system T c that expands a satisfiable regular

clause Γ0 until a clause Γ is reached such that Γ̃ is chain-evident. If Γ0 contains

only initial nominals, we have Γ0 ⊆ KΓ̃ , which by Lemma 12.5 and Theorem 10.6

proves that Γ0 is finitely satisfiable. We define the tableau system T c as follows.

As clauses T c takes all regular clauses Γ such that KΓ̃ contains at least one

nominal. The moves of T c are defined analogously to T except that for ∃- and

♦-formulas we now employ the rules Rc
∃ and Rc

♦ shown in Figure 3. Check that

T c terminates on the clause in Example 12.1 since after a few additional steps b
and c will be modally equivalent.

Proposition 12.6 T c is a tableau system.

Lemma 12.7 (Evidence) If Γ is verified in T c , then KΓ̃ is quasi-evident.
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Proof Let Γ be verified in T c . By Lemma 12.5 it suffices to show that Γ̃ is chain-

evident. By reuse of the proof of Lemma 7.2, we know that Γ̃ satisfies all evidence

conditions but possibly the conditions for ∃- and ♦-formulas.

Let ∃s ∈ KΓ̃ . It suffices to show that there is an initial x such that sx ∈ Γ̃ . By

the assumption we have a formula ∃s′ ∈ Γ such that s′ ≈Γ s. Since Rc
∃ does not

apply to Γ , there there is an initial x such that sx ∈ Γ̃ .
Let ♦ρsx ∈ KΓ̃ . It suffices to show that ♦ρsx is chain-evident in Γ̃ . By the

assumption we have s′ ≈Γ s and x′ ∼Γ x such that ♦ρs′x′ ∈ Γ . Since x ∉ RΓ
and Rc

♦ does not apply to Γ , ♦ρs′x′ is chain-evident in Γ̃ . Hence ♦ρsx is chain-

evident in Γ̃ by Compatibility (Proposition 12.3). �

We now start with the termination proof for T c . The breadth of a nominal

in a clause is defined as breadth Γ x := |{y ∈N Γ | x ≺ y }|. A clause Γ is chain-

admissible if for every nominal x ∈N Γ the following conditions are satisfied:

1. depthx ≤ |P(Mod Γ)| + 1

2. breadth Γ x ≤ |{♦ρs ∈ Mod Γ | ♦ρsx chain-evident in Γ̃ }| ≤ |Mod Γ |

Proposition 12.8 A chain-admissible clause Γ contains at most I ·M2M nominals,

where I is the number of initial nominals in Γ and M is the cardinality of Mod Γ .

Proposition 12.9 Let Γ → Δ in T c . Then:

1. Mod Γ = ModΔ.

2. If Γ is chain-admissible, then Δ is chain-admissible.

Proof Claim (1) follows from the fact that the clauses of T c are well-quantified.

The depth part of claim (2) follows with Proposition 12.2 (1). �

A formula ∃s is initially evident in F if there is an initial nominal x such that

sx ∈ F . We redefine the ∃-power of a clause Γ as the number of ∃-formulas in

Sub Γ that are not not initially evident in Γ̃ (cf. §8).

We redefine the ♦-power of a clause Γ as I·M2M−N , where where I is the num-

ber of initial nominals in Γ , M is the cardinality of Mod Γ , and N is the cardinality

of N Γ . By Proposition 12.8 we know that the ♦-power of a chain-admissible

clause is not negative.

Theorem 12.10 (Termination)

T c terminates on chain-admissible clauses.

Proof

1. Only well-quantified and chain-admissible clauses are involved.

2. All rules preserve Mod Γ .
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3. No rule increases the ∃-power of a clause, and Rc
∃ decreases it.

4. No rule but Rc
∃ increases the ♦-power of a clause, and Rc

♦ decreases it.

5. All remaining rules decrease the slack of a clause. �

A clause is initial if it contains only initial nominals.

Theorem 12.11 (Correctness) Let Γ be an initial regular clause. Then:

1. T c terminates on Γ .

2. If Γ is verifiable in T c , then Γ is finitely satisfiable.

3. If Γ is refutable in T c , then Γ is unsatisfiable.

Proof Claim (1) follows by Theorem 12.10 since initial clauses are chain-

admissible. Claim (3) follows immediately from the fact that T c is a tableau

system. To show Claim (2), let Γ →∗ Δ such that Δ is verified in T c . Then Γ ⊆ KΔ̃
since Γ is initial. By Lemma 12.7 we know thatKΔ̃ is quasi-evident. HenceKΔ̃ is

syntactically satisfiable by Theorem 10.6. Since Γ ⊆ KΔ̃, Γ is finitely satisfiable.�

Corollary 12.12 T c decides the satisfiability of initial regular clauses.

Corollary 12.13 Regular clauses are finitely satisfiable if they are satisfiable.

Example 12.14 In contrast to our other tableau systems, T c is not verification-

sound (as defined in §6). This is not in conflict with the Correctness Theo-

rem 12.11 since verification-soundness only fails for non-initial clauses. Con-

sider the unsatisfiable clause

Γ = {pa, rab, pb, rbc, ♦rpc, �r(¬p)c}

We assume that a is initial and a ≺ b ≺ c. Then RΓ = {b, c} and Γ is chain-

evident and verified in T c . And, as claimed by the Evidence Lemma 12.7, KΓ̃ =
{pa} is quasi-evident. �

13 Difference Modalities

Adding the difference modalities to basic modal logic is the most elegant way to

arrive at modal logic with equality [10]. Informally, we can describe the difference

modalities as follows:

• Dpx: at least one individual different from x satisfies p.

• D̄px: all individuals different from x satisfy p.
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We now extend PLM and our tableau systems with the difference modalities. We

add two modal constants D, D̄ : (IB)IB and define their semantics in terms of the

logical constants of PLN:

D � λpx. ∃y. x ��y ∧ py existential difference

D̄ � λpx. ∀y. x � y ∨ py universal difference

Next, we extend the syntax of PLM (see Figure 1) by adding the new modalities:

μ ::= ♦ρ | �ρ | D | D̄

Now we define evidence conditions (cf. §5) for the new formulas:

Dsx evident in F if ∃y : y �∼F x ∧ sy ∈ F
D̄sx evident in F if ∀y ∈N F : y �∼F x 	⇒ sy ∈ F

We observe that Soundness (Lemma 5.1), Stability (Propositions 5.2 and 5.5),

Compatibility (Proposition 5.3), and Model Existence (Theorem 5.6) also hold for

PLM with difference modalities. Now we are ready to extend T with rules for the

difference modalities:

RD
Dsx

x ��y, sy y ∉N Γ ∧ Dsx not evident in Γ̃ RD̄

D̄sx

x � y | sy y ∈N Γ ∧ y �∼Γ x

RD is an operational reformulation of the evidence condition for D-formulas.

RD̄ is a slight surprise since it is branching. Having only sy as conclusion as

suggested by the evidence condition for D̄-formulas does not yield sound moves.

It is not difficult to verify that Evidence (Lemma 7.2) and hence Verification-

Soundness (Theorem 7.3) still hold for T with difference modalities.

As it comes to termination, the difference modalities behave similar to the

ordinary quantifiers and are much easier than the classical modalities ♦ and

�. We extend the definition of straightness (see §8) with the proviso that every

D-formula in Sub Γ is closed. As is the case for ∀-formulas, D̄-formulas may

be open. Extended T preserves straightness of clauses and still terminates on

straight clauses. The termination proof must deal with the complication that

evidence of D-formulas may be lost if equations are added (i.e., evidence of

D-formulas is not a monotone property). We account for this complication by

defining the D-power of a clause Γ as the following natural number:

|{Ds ∈ Sub Γ | ¬∃x : sx ∈ Γ̃ }| + |{Ds ∈ Sub Γ | ¬∃x,y : sx, sy, x ��y ∈ Γ̃ }|

Since for straight clauses T does not add new terms Ds to Sub Γ , no rule in-

creases the D-power of a clause. Moreover, application of RD decreases the
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D-power of a clause. The interesting case is that Dsx ∈ Γ is not evident in Γ̃ but

sx ∈ Γ̃ . We can assume that Γ̃ is locally consistent sinceRD does not apply to re-

futed clauses. Then there cannot be a y such that sx, sy, x ��y ∈ Γ̃ . Application

of RD will add sy and x ��y and thus yield a clause whose D-power is smaller

than the D-power of Γ .
The definition of well-quantifiedness in §9 is extended such that it disallows

open formulas of the form Dsx. With this update the results about quasi-

evidence and the pattern-based system stay valid.

For the chain-based system, RD needs to be modified in the same wayR∃ was

modified before:

Rc
D

Dsx

x ��y, sy y ∉N Γ ∧ y initial ∧ ¬∃y : y initial ∧ y �∼Γ x ∧ sy ∉ Γ̃

Accordingly, the definition of D-power must be updated for the termination

proof to only consider initial witnesses, that is, be defined as the number

|{Ds ∈ Sub Γ | ¬∃x ∈ Ini : sx ∈ Γ̃ }|
+ |{Ds ∈ Sub Γ | ¬∃x,y ∈ Ini : sx, sy, x ��y ∈ Γ̃ }|

where Ini is the set of all initial nominals. With these updates the results about

the chain-based system stay valid.

14 Transitive Relations

In many applications the relations used for modal quantification are transitive.

Tableau-based decision procedures for transitive modal quantification are well

known [19, 14, 18]. It turns out that the usual tableau rule for transitive modal

relations [14, 18] also works in our setting. It is enlightening to see what form

the correctness arguments for transitive modal relations take in our framework.

We have seen in Example 9.2 that PLM can express that a relation r is tran-

sitive. However, transitivity cannot be expressed in regular PLM since regular

clauses exclude negated edges. To circumvent the problem, we extend PLM with

a logical constant T so that the formula Tr states that r is transitive. We then

admit formulas Tr in regular clauses and show how our main results generalize.

We define the semantics of T : (IIB)B by reduction to PLN:

T � λr .∀x∀y∀z. ¬rxy ∨¬ryz ∨ rxz

We extend the syntax of PLM so that it provides for formulas of the form Tr .

Negated formulas ¬Tr are not allowed. The evidence condition for T -formulas
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follows from the definition of T :

Tr evident in F if ∀x,y, z : rxy, ryz ∈ F 	⇒ rxz ∈ F

We observe that Soundness (Lemma 5.1), Stability (Propositions 5.2 and 5.5),

Compatibility (Proposition 5.3), and Model Existence (Theorem 5.6) also hold for

PLM with T -formulas. We now extend T with the canonical rule for T -formulas:

RT
Tr , rxy

rxz
ryz ∈ Γ̃

Evidence (Lemma 7.2), Verification-Soundness (Theorem 7.3), and Straight Ter-

mination (Theorem 8.4) still hold for T with T -formulas.

The definition of regular clauses now allows T -formulas but stays unchanged

otherwise. Next the notion of quasi-evidence needs to be generalized. It is here

where things really become interesting. Recall that model existence for quasi-

evident sets is crucial for both the pattern- and chain-based tableau systems. It

turns out that we need a special quasi-evidence condition for T -formulas. As a

consequence, we have to replace the tableau RT for T -formulas with a new rule

Rq
T based on the quasi-evidence condition.

Example 14.1 Consider the unsatisfiable clause

{Tr , ♦rpa, �rpa, (λx.px)b, pb, rbc, ¬pc}

which, if we ignore Tr , is quasi-evident with the definition from §10 since rab
is a safe edge. The problem shows if we add rab. RT then adds rac, R� adds

(λx.px)c, and Rλ adds pc, which leaves us with a locally inconsistent clause. �

The problem is that in the presence of Tr the old notion of safe r -edges is

too weak. The solution of the problem builds on the fact that the formula

Tr ∧ rxy ∧�rpx → �rpy

holds in all interpretations. Based on this formula we redefine edge safeness as

follows. An edge rxy is safe in F if rxy ∈ F or all of the following conditions

are satisfied:

1. ∀t : �rtx ∈ F 	⇒ ty ∈ F
2. ∀t : �r̄ ty ∈ F 	⇒ tx ∈ F
3. Tr ∈ F 	⇒ ∀t : �rtx ∈ F 	⇒ �rty ∈ F
4. Tr ∈ F 	⇒ ∀t : �r̄ ty ∈ F 	⇒ �r̄ tx ∈ F
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Conditions (3) and (4) are new. Condition (4) accounts for the fact that r̄ is

transitive if r is transitive. With the new definition, rab is no longer safe for the

clause of Example 14.1.

We are not done yet. It is essential that an edge that is an element of

a quasi-evident set remains safe if is removed (Proposition 10.2). The set

{Tr , �rpa, rab, (λx.px)b, pb} shows that is not the case with our current

definition, since rab becomes unsafe after removal. We fix the problem with

a quasi-evidence condition for T -formulas, which requires the properties (3)

and (4) for unrealized safe edges also for realized edges:

Tr quasi-evident in F if ∀x,y, t : (rxy, �rtx ∈ F 	⇒ �rty ∈ F)
∧ (rxy, �r̄ ty ∈ F 	⇒ �r̄ tx ∈ F)

We now define that an edge-positive set is quasi-evident if it satisfies all the

conditions for evident sets except the ones for diamond and T -formulas, for

which it satisfies the respective quasi-evidence conditions. It is not difficult to

verify that our previous results for quasi-evidence in §10 still hold. For the

verification of Lemma 10.5, the following proposition is essential.

Proposition 14.2 Let F be quasi-evident. If Tr ∈ F and rxy and ryz are safe

in F , then rxz is safe in F .

We now extend the tableau system T q with the tableau rule obtained from

the quasi-evidence condition for T -formulas:

Rq
T

T |ρ|, �ρsx
�ρsy

ρxy ∈ Γ̃

The notation |ρ| stands for r if ρ = r or ρ = r̄ . Rq
T replaces RT , which is

superfluous. As before, T q is verification-sound.

As it comes to termination, neither RT nor Rq
T are critical since they are not

generative.

We now come to the pattern-based system. The critical point here is that

pattern-evidence must imply quasi-evidence (Propositions 11.2 and 11.3). If we

define pattern-evidence with the quasi-evidence condition for T -formulas, every-

thing works out as before.

Finally, we consider the chain-based system. The critical point is that chain-

evidence must imply quasi-evidence (Lemmas 12.4 and 12.5). If we define chain-

evidence with the quasi-evidence condition for T -formulas, everything works out

as before.
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15 Conclusion

Let us summarize the contributions of this paper. We start with modal logic

without equality.

• PLM. Our work is based on classical predicate logic with a touch of simple

type theory. This basis provides for ordinary and modal quantification and

easily accommodates features such as transitivity and equality.

• Quasi-evidence. Quasi-evidence provides for transparent model existence

proofs for both the pattern-based and the chain-based system. Quasi-

evidence explains how edges can be safely added after the tableau system

has done its work. Before, this important technique was buried in monolithic

model existence proofs.

• Pattern-based blocking. For the converse-free case, pattern-based blocking is

an elegant alternative to the established chain-based blocking. It has great

promise for efficient implementation since in total at most |P(Mod Γ0)| dia-

mond expansions are needed, where Γ0 is the initial clause. In contrast, chain-

based blocking achieves the same bound only per ancestor chain.

Now we come to modal logic with equality, which is the real issue of this paper.

• Abstract congruence closure. We work with an abstract congruence closure,

that is, do not commit to a particular representation of the closure in our

tableau systems. This approach yields a transparent treatment of equality,

providing a basis for routinely generalizing techniques from the equation-

free case. The scalability was demonstrated with chain-based blocking and

transitivity.

• Difference Modalities. This paper presents the first terminating tableau sys-

tems for the notorious difference modality. Given our approach, the differ-

ence modality is not a big deal. However, it were difficulties with the differ-

ence modality that finally led us to work with abstract congruence closures.

Bolander and Blackburn [7] start from basic hybrid logic and then successively

add universal and converse modalities. Their strongest system uses chain-based

blocking as does our system T c . For their converse-free system, they use a

scheme that blocks diamond-expansion at a nominal x if there is an older nomi-

nal y such that Lx ⊆ Ly . For their basic system, they don’t employ loop-checks

but rather restrict the propagation of equational variants to initial nodes. Both

termination disciplines can also be obtained with our abstract congruence clo-

sure.

We expect that our results extend to symmetric relations and to what is called

role hierarchies in description logics [18]. Role hierarchies can be expressed with

inclusion formulas r ⊆ r ′ saying that rxy implies r ′xy . For inclusion formulas,
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the notions of safe edge and quasi-evidence need to be adapted.

Another interesting question is whether T and T q are refutation-complete.

We expect that this is the case and can be shown using consistency proper-

ties [11].
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