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abstract. We consider simply typed lambda terms obtained with a
single base type B and two constants ⊥ and →, where B is interpreted
as the set of the two truth values, ⊥ as falsity, and → as implication.
We show that every value of the full set-theoretic type hierarchy can be
described by a closed term and that every valid equation can be derived
from three axioms with β and η. In contrast to the established approach,
we employ a pure lambda calculus where constants appear as a derived
notion.

1 Introduction

Propositional type theory employs simply typed lambda terms obtained
with a single base type B, which is interpreted as the set of the two truth
values. A concrete propositional type theory fixes some logical constants and
a deduction system. We require denotational and deductive completeness.
Denotational completeness means that every value of the full set-theoretic
type hierarchy can be denoted by a closed term. Deductive completeness
means that every valid formula can be deduced. An example of a valid
formula is f(f(fx)) ≡ fx where f : BB and x : B are variables. Deciding
the validity of formulas obtained with higher-order quantification requires
nonelementary time [10].

The first propositional type theory was devised by Henkin [6]. As con-
stants Henkin takes all identity predicates, which can easily express the
propositional connectives and the quantifiers. His deductive system is a
Hilbert system whose inference rules are β and replacement of equals with
equals. Henkin proves denotational and deductive completeness. Henkin’s
deductive system has been simplified and generalized to general type theory
by Andrews [2, 3].
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Altenkirch and Uustalu [1] have devised a different propositional type
theory. They take the simply typed lambda calculus with a single base
type B, the constants false : B and true : B, and the polymorphic con-
ditional ifσ : Bσσ known from programming languages. They obtain de-
ductive completeness with β, η, and four axiom schemes. Their complete-
ness proof is based on Berger and Schwichtenberg’s [4] normalization-as-
evaluation technique.

Like Altenkirch and Uustalu, we base our propositional type theory on
the simply typed lambda calculus with a single base type B. However, we
omit the polymorphic conditional and employ only two constants, falsity
and implication. We show that falsity and implication suffice for denota-
tional completeness and obtain deductive completeness with β, η, and three
axioms. Our proof of deductive completeness uses ideas from Henkin’s com-
pleteness proof. We are the first ones to obtain a complete propositional
type theory with only finitely many constants (the polymorphic conditional
counts as infinitely many constants).

As it comes to the lambda calculus, we work with a pure system where
constants appear only as a derived notion. Besides β and η we only have
conversion steps of the form us = ut where s = t is an axiom. This simplifies
the standard approach [9], where axioms can be applied with capture below
binders (ξ-rule). Application with capture amounts to an implicit universal
quantification of the free variables of the axioms. Implicit quantification is
essential for algebraic systems, but is unnecessary for higher-order systems,
which can express universal quantification with functional equality. For
instance, ∀x. x+ 0 = x can be expressed as λx. x+ 0 = λx.x.

The paper is organized as follows. We start with the pure lambda cal-
culus and basic conversion proofs. We then provide a sequent system and
show that it yields the same theorems as the conversion system. The rules
of the sequent system formulate important properties of the conversion sys-
tem. We then obtain a propositional type theory by committing to one base
type, two constants, and three axioms. Next we formulate propositional se-
quent rules that are admissible for the general sequent system and that
subsume the usual natural deduction rules. We then prove denotational
and deductive completeness.

2 Terms and Conversion

We assume familiarity with the simply typed lambda calculus (see, e.g., [7]).
Types (σ, τ , ρ) are obtained from base types (α) according to σ ::= α | σσ.
Think of στ as the type of functions from σ to τ . Terms (s, t, u) are
obtained from names (x, y, z, f , g) according to s ::= x | λx.s | ss. We
assume a typing relation s : σ satisfying the following properties:
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1. For every term s there is at most one type σ such that s : σ.
2. For every type σ there are infinitely many names x such that x : σ.
3. For all x, s, σ, τ : λx.s : στ ⇐⇒ x : σ ∧ s : τ .
4. For all s, t, σ: s t : σ ⇐⇒ ∃τ : s : τ σ ∧ t : τ .
A term σ is well-typed if there is a type σ such that s : σ. We will only
consider well-typed terms. We use Λ to denote the set of all well-typed
terms. We omit parentheses according to στρ σ(τρ) and stu (st)u.

An equation is a pair s = t of two terms s, t of the same type. We use e
as a metavariable for single equations and A as a metavariable for finite sets
of equations. Since equations are pairs, A is a binary relation on Λ. We use
N s, N e and NA to denote the sets of names that occur free in s, e and A,
respectively. Contexts are obtained according to C ::= [] | λx.C | C s | sC.
The notation C[s] describes the term obtained by replacing the hole [] of C
with s (capturing is ok). We assume a substitution operation sxt that yields
for s, x, t a term that can be obtained from s by capture-free substitution
of t for x, possibly after renaming of local names.

We define three reduction relations:

→β := { (C[(λx.s)t], C[sxt ]) | C[(λx.s)t] ∈ Λ }
→η := { (C[λx.sx], C[s]) | C[λx.sx] ∈ Λ ∧ x /∈ N s }
→A := { (us, ut) | us ∈ Λ ∧ (s, t) ∈ A }

The elements of the reduction relations are called reduction steps. We define
A-conversion ∼A as the least equivalence relation on Λ that contains →β ,
→η, and →A. λ-conversion ∼λ is obtained as ∼∅. We say that s, t are
A-convertible [λ-convertible] if s ∼A t [s ∼λ t]. A β-conversion step is an
equation s = t such that s →β t or t →β s. The definition of η- and A-
conversion steps is analogous. A basic conversion proof of s = t with A is
a tuple (s1, . . . , sn) such that s1 = s, sn = t, and si = si+1 is a β-, η- or
A-conversion step for all i ∈ {1, . . . , n− 1}.
PROPOSITION 1.1. s ∼A t iff there exists a basic conversion proof of s = t
with A.

PROPOSITION 1.2 (α-equivalence). λx.s ∼λ λy.sxy if λx.s ∈ Λ, y /∈
N (λx.s), and x and y have the same type.

Proof. Follows with the basic conversion proof (λx.s, λy.(λx.s)y, λy.sxy)
consisting of an η- and a β-step. �

Our definition of→A is non-standard. At first glance,→A may seem too
weak to yield first-order rewriting. However, if we quantify the equational
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axioms with λ, we get all we need. This can be seen from the following
basic conversion proof of f(y + 0) = fy with {λx.x+0 = λx.x}:

f(y + 0) = f((λx.x+0)y) β

= (λg.f(gy))(λx.x+0) β

= (λg.f(gy))(λx.x) λx.x+0 = λx.x

= f((λx.x)y) β

= fy β

Our pure lambda calculus with A-conversion has the same expressive power
as the lambda calculus with constants commonly used in programming lan-
guage theory [9]. We prefer the pure calculus since it is technically simpler.
In particular, it does not provide implicit quantification of the free variables
of equational axioms. In the pure system, the distinction between variables
and constants is not hard-wired but is obtained as a derived notion, as will
be seen in § 5.

A context C captures a name x if the hole of C is in the scope of a
binder λx. A context C is admissible for A if it does not capture any name
in NA.

PROPOSITION 1.3 (Compatibility). If s ∼A t and C is admissible for A,
then C[s] ∼A C[t].

Proof. It suffices to show the property for single reduction steps. It is easy
to verify that it holds for β- and η-steps. Let us→A ut and C be admissible
for A. Then we can choose a name x such that (λx.C[ux])s→β C[us] and
(λx.C[ux])t→β C[ut]. Hence C[us] ∼A C[ut]. �

A generalized A-conversion step is an equation s = t such that either
s ∼λ t or there exist an equation (u=v) ∈ A and an A-admissible context C
such that s ∼λ C[u] and C[v] ∼λ t. A generalized conversion proof of s = t
with A is a tuple (s1, . . . , sn) such that s1 = s, sn = t, and si = si+1 is a
generalized A-conversion step for all i ∈ {1, . . . , n− 1}.
PROPOSITION 1.4. s ∼A t iff there exists a generalized conversion proof
of s = t with A.

Generalized conversion proofs can be much shorter than basic conversion
proofs. For instance, there is a generalized conversion proof of f(y+0) = fy
with {λx.x+0 = λx.x} consisting of a single step. Both basic and gener-
alized conversion proofs have their uses. The existence of basic conversion
proofs is helpful when we show general properties of A-conversion.
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Triv
A, e ` e

Weak
A′ ` e
A ` e

A′ ⊆ A Cut
A ` e′ A, e′ ` e

A ` e

Sub
A ` e
Axs ` exs

Ref
A ` s = s

Sym
A ` s = t

A ` t = s
Trans

A ` s = t A ` t = u

A ` s = u

Inst
A ` s1 = s2

A ` t1 = t2
t1 ∼λ C[s1] and C[s2] ∼λ t2 and C admissible for A

Figure 1.1. A Sequent-Based Proof System

3 A Sequent System

The rules in Figure 1.1 define a sequent-based proof system for equations.
We will show that A ` e iff there is a conversion proof of e with A. Thus
the sequent rules show how conversion proofs can be combined into more
complex conversion proofs. In fact, the rules formulate important properties
of A-conversion. The rules Triv, Weak, Cut, and Sub express basic proper-
ties that are common for sequent systems. Note that Cut boosts conversion
proofs since it allows conversion with respect to lemmas (i.e., provable equa-
tions). The rules Ref, Sym, and Trans account for the fact that conversion
is an equivalence relation. The rule Inst (Instantiation) is the workhorse
of the system. It incorporates λ-equivalence and closure under admissible
contexts. Here is an instance of Inst that shows its power:

A ` λxy. x+ y = λxy. y+x

A ` s+ t = t+ s

Inst also subsumes the rules

ζ
A ` sx = tx

A ` t = s
x /∈ N (A ∪ {s=t}) ξ

A ` s = t

A ` λx.s = λx.t
x /∈ NA

that generalize well-known properties of λ-conversion.

PROPOSITION 1.5. s ∼A t ⇐⇒ A ` s = t
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Proof. The direction ⇒ is straightforward since Ref, Sym, Trans and Inst
can simulate basic conversion proofs. The other direction requires more
work. For each of the rules one shows that one can obtain a generalized
conversion proof for the conclusion if one has basic conversion proofs for
the premises. Proposition 1.3 is helpful for Cut and Inst. �

4 Interpretations

An interpretation is a function I that maps every type to a nonempty
set and every name x : σ to an element of Iσ. We will only consider
interpretations that map a functional type στ to the set of all total functions
from Iσ to Iτ . Every interpretation I can be extended uniquely to a
function Î which maps every term s : σ to an element of Iσ and treats
applications and abstractions as one would expect. An interpretation I
satisfies an equation s = t if Is = It. An interpretation satisfies A if it
satisfies every equation in A. We write s ≈A t if every interpretation that
satisfies A also satisfies s = t.

PROPOSITION 1.6 (Soundness). s ∼A t =⇒ s ≈A t

5 Propositional Type Theory

Figure 1.2 shows our axiomatization of propositional type theory. Techni-
cally, we fix a base type B and five names ⊥, →, x, y, and f and define P
as the set containing the following three equations:

λx. > → x = λx. x I>
λfx. f⊥ → f> → fx = λfx. > BCA

λxy. (x≡ y)→ x = λxy. (x≡ y)→ y Rep

Note that only ⊥ and → occur free in P . We call ⊥ and → constants and
all other names variables. The variable constant distinction is exploited
in Figure 1.2, where the axioms appear with implicit quantification. Note
that in our system implicit quantification is a notational device and not a
syntactic feature.
Convention. In the rest of the paper we will only consider types, terms,
and equations that can be obtained with the single base type B. We use
Vs to denote the set of all variables that occur free in s. A term s is closed
if Vs = ∅, and open otherwise.

PROPOSITION 1.7 (I⊥). P ` ⊥ → x = >

Proof. Here is a (generalized) conversion proof:

⊥ → x = ⊥ → > → x I>
= > BCA �
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Base Type B

Constants ⊥ : B; → : BBB
Variables x, y : B; f : BB
Notations

> := ⊥ → ⊥ s ∨ t := (s→ t)→ t

¬s := s→ ⊥ s ∧ t := ¬(¬s ∨ ¬t)
s ≡ t := (s→ t) ∧ (t→ s)

Precedence =, ≡, →, ∨, ∧, ¬
Parentheses s→ t→ u  s→ (t→ u)

Axioms
> → x = x I>

f⊥ → f> → fx = > BCA
(x≡ y)→ x = (x≡ y)→ y Rep

Figure 1.2. Axiomatization of Propositional Type Theory

A propositional interpretation is an interpretation I such that IB = {0, 1},
I⊥ = 0 and I(→)ab = if a=0 then 1 else b for all a, b ∈ {0, 1}.
PROPOSITION 1.8. Every propositional interpretation satisfies P .

An equation s = t is propositionally valid if Îs = Ît for every proposi-
tional interpretation I. We write s ≈2 t if s = t is propositionally valid. An
example of a propositionally valid equation is f(f(fx)) = fx where f : BB
and x : B (to verify validity, consider all 4 functions {0, 1} → {0, 1}).
PROPOSITION 1.9 (Semantic Completeness). s ≈P t ⇐⇒ s ≈2 t

Proof. The direction ⇒ holds by Proposition 1.8. For the other direction
we assume that I is an interpretation that satisfies P . We show Is = It.
Case Analysis.

Let I⊥ = I>. Then I(λx.x) = I(λx.>) by I⊥ (Proposition 1.7) and
Axiom I>. Hence IB is a singleton. Thus all types denote singletons and
hence Is = It.

Let I⊥ 6= I>. Because of I⊥ and I> it suffices to show that IB ⊆
{I⊥, I>}. Suppose for contradiction a ∈ IB − {I⊥, I>}, and let b be
a function from IB → IB such that b(I⊥) = b(I>) = I> and ba = a.
Instantiating BCA and I> with a and b yields a = I>, thus contradicting
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the assumption. �

Note that so far we have only used the axioms I> and BCA. The axiom
Rep is only needed for deductive completeness. Brown [5] has constructed a
general model that shows that P without Rep is deductively weaker than P .
An alternative to Rep that yields the same deductive power is λxy. x∨y =
λxy. y∨x.

A propositional term is a term that can be obtained according to s ::=
x | s → s where x : B is a name. A propositional equation is an equation
s = t where s, t are propositional terms. A tautology is a propositional
equation s = t such that s ≈2 t. Note that the axioms I> and Rep are
tautologies.

LEMMA 1.10. Let s be a closed propositional term. Then:
1. s ∼P ⊥ or s ∼P >.
2. If s ≈2 >, then s ∼P >.

Proof. A closed propositional term contains no other names but ⊥ and→.
We show (1) by induction on the size of s. If s = ⊥, then s ∼P ⊥ by Ref.
If s = s1 → s2, then s1 ∼P ⊥ or s1 ∼P > and s2 ∼P ⊥ or s2 ∼P > by
induction. Now the claim follows with I> and I⊥. Claim (2) follows by (1)
and Soundness. �

A term s is β-normal if there exists no term t such that s →β t. It
is well-known [7] that for every well-typed term s there exists a β-normal
term t such that s ∼λ t and N t ⊆ N s.
PROPOSITION 1.11.
Every closed and β-normal term s : B is propositional.

Proof. By induction on the size of s. Let s : B be β-normal and closed.
Then s = xs1 . . . sn where s1, . . . , sn are closed and β-normal. Since s is
closed, either x = ⊥ or x = →. If x = ⊥, then n = 0 and hence s is
propositional. If x = →, then n = 2 and s1 and s2 are propositional by
induction. Hence s is propositional. �

Let E be a set of equations. We say that P is complete for E if s ≈2 t
implies s ∼P t for every equation s = t in E. Eventually, we will show
that P is complete for all equations.

PROPOSITION 1.12. P is complete for all closed equations s = >.

Proof. Let s ≈2 >. There exists a β-normal and closed term t : B such
that s ∼λ t. By Soundness and Semantic Completeness we have t ≈2 >.
By Proposition 1.11 we know that t is propositional. Hence t ∼P > by
Lemma 1.10 (2). Thus s ∼P >. �
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MP
A ` s→ t = > A ` s = >

A ` t = >
P ⊆ A

BE
A ` s ≡ t = >
A ` s = t

P ⊆ A BE−
A ` s = t

A ` s ≡ t = >
P ⊆ A

Taut
A ` e

P ⊆ A and e tautology

CA
A ` ex⊥ A ` ex>

A ` e
P ⊆ A Ded

A, s = > ` t = >
A ` s→ t = >

P ⊆ A

DE
A, s=> ` t=> A, t=> ` s=>

A ` s = t
P ⊆ A

Figure 1.3. Admissible Rules for `

6 Propositional Sequent Rules

Figure 1.3 collects some sequent rules that are admissible for the relation `
defined in § 3. Admissibility of a rule for ` means that the conclusion of
the rule is satisfied by ` if the premises of the rule are satisfied by `. MP
stands for modus ponens, BE for Boolean equality, CA for case analysis,
Ded for deductivity, and DE for deductivity and Boolean equality.

The rules formulate important properties of the conversion relations ∼A
with P ⊆ A. By Proposition 1.5 a rule is admissible for ` iff there is a
conversion proof for the conclusion of the rule if there are conversion proofs
for the premises of the rule. Hence the rules tell us how we can construct
complex conversion proofs from simpler ones. The rules will be crucial for
the completeness proof to come. Seen semantically, the rules express well-
known properties of propositional logic.

PROPOSITION 1.13. MP is admissible for `.

Proof. Let P ⊆ A. By Cut it suffices to give a conversion proof of t = >
with A ∪ {s→t = >, s = >}. Here it is:

t = > → t I>
= s→ t s = >
= > s→t = > �
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PROPOSITION 1.14. BE is admissible for `.

Proof. Let P ⊆ A. Here is a conversion proof of s = t with A∪{s ≡ t = >}:

s = > → s I>
= (s ≡ t)→ s s ≡ t = >
= (s ≡ t)→ t Rep
= > → t s ≡ t = >
= t I> �

Axiom Rep is used for the first time in the above proof. In fact, our
axiomatization contains Rep so that we can show that BE is admissible.

LEMMA 1.15. If s = > is a tautology, then P ` s = >.

Proof. By induction on |Vs|. If s is closed, the claim follows by Lemma
1.10 (2). Otherwise, let x ∈ Vs. Then sx⊥ = > and sx> = > are tautologies.
By induction P ` sx⊥ = > and P ` sx> = >. Hence P ` s = > follows with
a conversion proof:

s = > → s I>
= > → > → s I>
= sx⊥ → >→ s sx⊥ = >
= sx⊥ → sx> → s sx> = >
= > BCA �

PROPOSITION 1.16. BE− is admissible for `.

Proof. Let P ⊆ A. Since x ≡ x = > is a tautology, it suffices by Lemma 1.15
to give a conversion proof of s ≡ t = > with A ∪ {s = t, x ≡ x = >}. This
is straightforward. �

PROPOSITION 1.17. Taut is admissible for `.

Proof. By BE and Lemma 1.15. �

PROPOSITION 1.18. CA is admissible for `.

Proof. By BE and BE− it suffices to show the claim for e = (s = >). This
can be done with BCA, Inst, and MP. �

LEMMA 1.19. P ` x→fx = x→f>
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Proof. Follows by CA and conversion proofs with I⊥. �

LEMMA 1.20. Let P ⊆ A and t1 = t2 be an A ∪ {s = >}-conversion step.
Then A ` s→t1 = s→t2.

Proof. If t1 = t2 is a A-conversion step, the claim follows by Inst. If t1 = t2
is a {s = >}-conversion step, we have t1 = us and t2 = u> for some u.
Hence P ` s→t1 = s→t2 by Lemma 1.19. The claim follows by Weak. �

PROPOSITION 1.21. Ded is admissible for `.

Proof. Let P ⊆ A and A, s = > ` t = >. Then there exists a basic
conversion proof of t = > with A ∪ {s = >}. Hence A ` s→t= s→> by
Lemma 1.20. Since A ` x→> = > by Taut, we have A ` s→t = >. �

PROPOSITION 1.22. DE is admissible for `.

Proof. By Ded and BE it suffices to give a conversion proof of s≡t = >
with s→t = >, t→s = >, and tautologies. This is straightforward. �

7 Denotational Completeness

We fix a propositional interpretation B. Then we have Iσ = Bσ for every
propositional interpretation I and every type σ. Moreover, we have Îs = B̂s
for every closed term s and every propositional interpretation I. We will
show that P is denotationally complete, that is, for every type σ and every
value a ∈ Bσ there is a closed term s : σ such that B̂s = a.

We will define a family of quote functions ↓σ : Bσ → Λσ0 by recursion on
types. Λσ0 is the set of all closed terms of type σ. The quote functions will
satisfy B̂(↓σa) = a for all a ∈ Bσ and all types σ.

The definition of the basic quote function ↓B is straightforward. To
explain the definition of the other quote functions, we consider the special
case ↓σB . We start with

↓σB(a) = λx.
∨
b∈Bσ
ab=1

x
.=σ (↓σb)

It remains to define a closed term .=σ that denotes the identity predicate
for Bσ. If σ = B, λxy. x ≡ y does the job. If σ = σ1σ2, we rely on recursion
and define

.=σ = λfg.
∧

a∈Bσ1

f(↓σ1a) .=σ2 g(↓σ1a)
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↓σ1...σnBa := λx1 . . . xn.
∨

〈bi∈Bσi〉
ab1...bn=1

∧
1≤j≤n

xj
.=σj (↓σj bj) D↓

∀σ := λf.
∧
a∈Bσ

f(↓σa) D∀

.=B := λxy. x ≡ y D .=
.=στ := λfg. ∀σ(λx. fx .=τ gx) D .=

〈bi ∈ Bσi〉 abbreviates (b1, . . . , bn) ∈ Bσ1 × · · · × Bσn

Figure 1.4. Quote Functions ↓σ and Terms ∀σ and .=σ

Figure 1.4 shows the full definition of the quote functions. A disjunction
with an empty index set denotes ⊥, and a conjunction with an empty index
set denotes >. The notations .=σ and ∀σ will be used in the following. We
will write ∀σx. s for ∀σ(λx.s). The notational operator .=σ will be used with
a precedence higher than ¬ (i.e, ¬ s .=σt ¬(s .=σ t)).

PROPOSITION 1.23. The terms ↓σa, ∀σ and .=σ are closed.

PROPOSITION 1.24. Let σ be a type, a, b ∈ Bσ, and ϕ ∈ B(σB). Then:
1. B̂(↓σa) = a

2. B̂(∀σ)ϕ = 1 ⇐⇒ ∀c ∈ Bσ : ϕc = 1
3. B̂( .=σ)ab = 1 ⇐⇒ a = b

THEOREM 1.25 (Denotational Completeness). Let σ be a type and a ∈ Bσ.
Then there is a closed term s such that B̂s = a.

Proof. Follows from Proposition 1.24 (1). �

8 Deductive Completeness

PROPOSITION 1.26. P is complete for all equations if it is complete for
all equations of the form s = >.

Proof. Assume P is complete for all equations of the form s = >. Let
s ≈2 t. We show s ∼P t. We choose distinct variables x̄ = x1 . . . xn that
do not occur in s = t such that sx̄ : B. We have sx̄ ≈2 tx̄ and hence
sx̄≡ tx̄ ≈2 >. By the assumption we have sx̄≡ tx̄ ∼P >. By BE we have
P ` sx̄ = tx̄. Thus P ` s = t by Inst (or repeated use of ζ). �
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LEMMA 1.27. P is complete for all equations if for all types σ there are
variables f , x such that P ` ∀σf → fx = >.

Proof. Assume that for all types σ there are variables f , x such that
P ` ∀σf → fx = >. Let s ≈2 >. By Proposition 1.26 it suffices to show
that s ∼P >. There exist variables x̄ = x1 . . . xn such that ∀x̄.s is closed.
By the second assumption we have ∀x̄.s ≈2 >. By Proposition 1.12 we have
P ` ∀x̄.s = >. Hence P ` s = > by the first assumption, Sub and MP. �

LEMMA 1.28. P ` x .=σx = >

Proof. By induction on σ, exploiting Taut. �

LEMMA 1.29. If a, b ∈ Bσ are distinct, then P ` (↓σa) .=σ(↓σb) = ⊥.

Proof. Let a, b ∈ Bσ be distinct. Then:

¬ (↓σa) .=σ(↓σb) ≈2 > Proposition 1.24
P ` ¬ (↓σa) .=σ(↓σb) = > Proposition 1.12
P ` ¬¬ (↓σa) .=σ(↓σb) = ¬> Inst
P ` (↓σa) .=σ(↓σb) = ⊥ Taut �

LEMMA 1.30. If σ = ρτ , then for all a ∈ Bσ and b ∈ Bρ:
P ` (↓σa)(↓ρb) = ↓τ (ab).

Proof. Let σ = ρτ and τ = τ1 . . . τnB. Let a ∈ Bσ and b ∈ Bρ. By D↓
and β, we have

(↓ρτ1...τnB a)(↓ρb)

=

λxy1 . . . yn.
∨
c∈Bρ
〈di∈Bτi〉

acd1...dn=1

x
.=ρ (↓ρc) ∧

∧
1≤j≤n

yj
.=τj (↓τjdj)

 (↓ρb)

= λy1 . . . yn.
∨
c∈Bρ
〈di∈Bτi〉

acd1...dn=1

(↓ρb) .=ρ (↓ρc) ∧
∧

1≤j≤n

yj
.=τj

(↓τjdj)

By Lemma 1.28, Lemma 1.29, and Taut we obtain

= λy1 . . . yn.
∨

〈di∈Bτi〉
abd1...dn=1

∧
1≤j≤n

yj
.=τj

(↓τjdj)

= ↓τ1...τn(ab) �
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LEMMA 1.31. Let I and J be finite sets and xi,j : B be a variable for all
i ∈ I, j ∈ J . Moreover, let [I → J ] be the set of all total functions I → J .
Then the equation ∧

i∈I

∨
j∈J

xi,j =
∨

ϕ∈[I→J]

∧
i∈I

xi,ϕi

is a tautology and hence is provable with P .

Proof. Let s and t be the left and the right term of the equation, and let I
be a propositional interpretation. We have to show that Îs = 1 iff Ît = 1.
Let Îs = 1. Then for every i ∈ I there exists a j ∈ J such that I(xi,j) = 1.
Hence there exists a function ϕ ∈ [I → J ] such that I(xi,ϕi) = 1 for every
i ∈ I. Hence Ît = 1. The other direction follows analogously. �

LEMMA 1.32. P `
∨
a∈Bσ

x
.=σ (↓σa) = >

Proof. By induction on σ. If σ = B, the claim follows with Taut. Other-
wise, let σ = σ1σ2. We show the claim with a conversion proof.∨

a∈Bσ
x
.=σ (↓σa)

=
∨
a∈Bσ

∀σ1y. xy
.=σ2 (↓σa)y D .=

=
∨
a∈Bσ

∧
b∈Bσ1

x(↓σ1b) .=σ2 (↓σa)(↓σ1b) D∀

=
∨
a∈Bσ

∧
b∈Bσ1

x(↓σ1b) .=σ2 (↓σ2(ab)) Lemma 1.30

=
∧

b∈Bσ1

∨
c∈Bσ2

x(↓σ1b) .=σ2 (↓σ2c) Lemma 1.31, Bσ = [Bσ1 → Bσ2]

=
∧

b∈Bσ1

> induction for σ2

= > Taut

�

LEMMA 1.33. If P, x
.=σy = > ` x = y, then P ` ∀σf → fx = >.

Proof. Let P, x
.=σy = > ` x = y. Then we obtain with DE and Ded

P ` x .=σy → fx = x
.=σy → fy (1.1)
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Now we show the claim with a conversion proof.

∀σf → fx

= > → ∀σf → fx Taut

=

( ∨
a∈Bσ

x
.=σ(↓σa)

)
→ ∀σf → fx Lemma 1.32

=
∧
a∈Bσ

x
.=σ(↓σa)→ ∀σf → fx Taut

=
∧
a∈Bσ

x
.=σ(↓σa)→ ∀σf → f(↓σa) (1.1)

=
∧
a∈Bσ

x
.=σ(↓σa)→

( ∧
b∈Bσ

f(↓σb)

)
→ f(↓σa) D∀

= > Taut �

LEMMA 1.34. P, x .=σy = > ` x = y

Proof. By induction on σ. If σ = B, the claim follows with BE. Otherwise,
let σ = σ1σ2. By D .= we have

P, x
.=σy = > ` ∀σ1z. xz

.=σ2yz = >

for some variable z. By induction for σ1 and Lemma 1.33 we have

P ` (∀σ1z. xz
.=σ2yz)→ xz

.=σ2yz = >

By MP we have
P, x

.=σy = > ` xz
.=σ2yz = >

Now induction for σ2 and Cut yield

P, x
.=σy = > ` xz = yz

which yields the claim with Inst. �

THEOREM 1.35 (Deductive Completeness).
P is complete for all equations.

Proof. Follows by Lemma 1.34, Lemma 1.33 and Lemma 1.27. �



16

9 Final Remarks

We have shown that the pure simply typed lambda calculus furnished with
three axioms is a complete deduction system for propositional type theory
with falsity and implication. This yields the most minimal set-up of proposi-
tional type theory known so far. Our results carry over to propositional type
theories with quantifiers and identity predicates [8]. The motivation of our
research is to better understand the deductive power of the lambda-calculus
when applied to higher-order logic. The idea to capture higher-order logic
as a lambda theory appears in Mitchell [9] (Example 4.4.7).
Acknowledgments. We benefited from discussions with Chad E. Brown
and Jan Schwinghammer. Jan pointed us to [1].
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