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Abstract

Propositional type theory, first studied by Henkin, is the restriction
of simple type theory to a single base type that is interpreted as the set
of the two truth values. We show that two constants (falsity and implica-
tion) suffice for denotational and deductive completeness. Denotational
completeness means that every value of the full set-theoretic type hierar-
chy can be described by a closed term. Deductive completeness is shown
for a sequent-based proof system that extends a propositional natural
deduction system with lambda conversion and Boolean replacement.

1 Introduction

Propositional type theory, first studied by Henkin [3], is the restriction of simple
type theory [2, 1] to a single base type that is interpreted as the set of the two
truth values. Functional types are interpreted as the full set-theoretic function
spaces. As logical constants Henkin takes all identity predicates, which suffices
to express the propositional connectives and the quantifiers. His deductive
system is a Hilbert system whose inference rules are β and replacement of
equals with equals. Henkin first shows that his language is denotationally
complete, meaning that every value of the full set-theoretic type hierarchy
can be denoted by a closed term. He then exploits denotational completeness
to show deductive completeness. Deciding validity of formulas in Henkin’s
language requires nonelementary time [6].

It turns out that only two constants, falsity and implication, suffice for
denotational completeness [5]. This result raises the question for a likewise
minimal proof system. We answer this question in this paper. As a basis



we take a sequent-based natural deduction system for propositional logic with
falsity and implication. We show that with two additional rules one obtains a
complete deduction system. The first rule incorporates lambda conversion (α,
β, η). The second rule provides for Boolean replacement of equals with equals
where variable capture is admissible in some cases.

In a previous paper [5], we give a complete proof system for propositional
type theory with falsity and implication. This system is an instance of an
equational proof system for the pure lambda calculus. As such it is far from
minimal since it provides for equations and replacement at all types. In con-
trast, the system of the present paper has equations and replacement only for
the type of truth values.

The paper is organized as follows. We start by defining the syntax and
semantics of our language. Then we show denotational completeness. Finally
we establish a sequent-based proof system and show its completeness.

2 Terms, Formulas, and Validity

We assume familiarity with the simply typed lambda calculus (see, e.g., [4]).
Types (σ, τ , ρ) are obtained from a single base type B (for bool) according to
σ ::= B | σσ. We think of στ as the type of functions from σ to τ . Terms (s,
t, u) are obtained from names (x, y, z, f , g) according to s ::= x | λx.s | ss.
We assume a typing relation s : σ satisfying the following properties:

1. For every term s there is at most one type σ such that s : σ.

2. For every type σ there are infinitely many names x such that x : σ.

3. For all x, s, σ, τ : λx.s : στ ⇐⇒ x : σ ∧ s : τ .

4. For all s, t, σ: s t : σ ⇐⇒ ∃τ : s : τσ ∧ t : τ .

A term s is well-typed if there is a type σ such that s : σ. We only consider
well-typed terms. We use Λ to denote the set of all well-typed terms. We omit
parentheses according to στρ σ(τρ) and stu (st)u.

Terms of type B are called formulas. We fix two names ⊥ : B and → : BB
and call them constants. All other names are called variables. In a term λx.s,
the bound name x must be a variable. We use Vs to denote the set of all
variables that occur free in s. A term s is closed if Vs = ∅.

Contexts are obtained according to C ::= [] | λx.C | C s | s C. The notation
C[s] describes the term obtained by replacing the hole [] of C with s (capturing
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is ok). We assume a substitution operation sx
t that yields for s, x, t a term that

can be obtained from s by capture-free substitution of t for x, possibly after
renaming of bound variables. Lambda equivalence ∼λ is the least equivalence
relation on Λ that satisfies the following properties:

(α) λx.s ∼λ λy.sx
y if y /∈ Vs

(β) (λx.s)t ∼λ sx
y

(η) λx.sx ∼λ s if x /∈ Vs

(γ) if s ∼λ t, then C[s] ∼λ C[t]

It is easy to see that α is subsumed by the other properties. A term s is a
subterm of a term t if there exists a context C such that C[s] = t. A β-redex

is a term of the form (λx.s)t. A term is β-normal if none of its subterms is a
β-redex. The following fact is well-known [4].

Proposition 1 For every term s there exists a lambda equivalent term t such

that t is β-normal and satisfies Vt ⊆ Vs.

An interpretation is a function I that maps every type to a nonempty set
and every name x : σ to an element of Iσ. We require IB = {0, 1}, I⊥ = 0
and I(→)ab = if a=0 then 1 else b for all a, b ∈ {0, 1}. We will only consider
standard interpretations, that is, interpretations that map a functional type
στ to the set of all total functions from Iσ to Iτ .

Every interpretation I can be extended uniquely to a function Î that maps
every term s : σ to an element of Iσ and treats applications and abstractions
as one would expect. An interpretation I satisfies a formula s if Îs = 1. A
formula is valid if it is satisfied by every interpretation.

3 Denotational Completeness

We fix an interpretation B. We have Iσ = Bσ for every interpretation I and
every type σ. Moreover, we have Îs = B̂s for every closed term s and every
interpretation I. We will show that our language is denotationally complete,
that is, for every type σ and every value a ∈ Bσ there is a closed term s : σ
such that B̂s = a.

It is well-known that implication and falsity can express the usual proposi-
tional connectives:

⊤ := ⊥ → ⊥ s ∨ t := (s → t) → t
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↓σ1...σnB a := λx1 . . . xn.
∨

〈bi∈Bσi〉
ab1...bn=1

∧

1≤j≤n

xj
.
=σj

(↓σj
bj) D↓

∀σ := λf.
∧

a∈Bσ

f(↓σa) D∀

.
=B := λxy. x ≡ y D

.
=

.
=στ := λfg. ∀σ(λx. fx

.
=τ gx) D

.
=

〈bi ∈ Bσi〉 stands for (b1, . . . , bn) ∈ Bσ1 × · · · × Bσn

Figure 1: Quote Functions ↓σ and Notations ∀σ and
.
=σ

¬s := s → ⊥ s ∧ t := ¬(¬s ∨ ¬t)

s ≡ t := (s → t) ∧ (t → s)

Note that Boolean equivalence s ≡ t is Boolean identity (i.e., Is = It iff I sat-
isfies s ≡ t). Notationally, we assume the operator precedence ≡, →, ∨, ∧, ¬
where ¬ binds strongest.

To show denotational completeness, we will define a family of quote func-

tions ↓σ : Bσ → Λσ
0 where Λσ

0 is the set of all closed terms of type σ. The quote
functions will satisfy B̂(↓σa) = a for all a ∈ Bσ and all types σ.

The quote functions are defined by recursion on types. The definition of
the basic quote function ↓B is straightforward. To explain the definition of the
other quote functions, we consider the special case ↓σB . We start with

↓σB(a) = λx.
∨

b∈Bσ
ab=1

x
.
=σ (↓σb)

It remains to define a closed term
.
=σ that denotes the identity predicate for Bσ.

If σ = B, λxy. x ≡ y does the job. If σ = σ1σ2, we rely on recursion and define

.
=σ = λfg.

∧

a∈Bσ1

f(↓σ1
b)

.
=σ2

g(↓σ1
b)

Figure 1 shows the full definition of the quote functions. A disjunction with an
empty index set denotes ⊥, and a conjunction with an empty index set denotes
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⊤. The notations
.
=σ and ∀σ defined in the figure will be used in the following.

We write ∀σx. s for ∀σ(λx.s). The notational operator
.
=σ will be used with

a precedence higher than ¬ (i.e, ¬ s
.
=σt stands for ¬(s

.
=σ t)). The following

results are all straightforward consequences of the definitions in Figure 1.

Proposition 2 The terms ↓σa, ∀σ and
.
=σ are closed.

Proposition 3 Let σ be a type, f ∈ B(σB), and a, b ∈ Bσ. Then:

1. B̂(↓σa) = a

2. B̂(∀σ)f = 1 ⇐⇒ ∀c ∈ Bσ : fc = 1

3. B̂(
.
=σ)ab = 1 ⇐⇒ a = b

Note that statement (1) of Proposition 3 implies that our language is de-
notationally complete. We state this important fact explicitly.

Proposition 4 (Denotational Completeness) Let σ be a type and a ∈ Bσ.

Then there is a closed term s such that B̂s = a.

4 Proof System

A sequent is a pair A ⇒ s where A is a finite set of formulas and s is a formula.
The letter A will always denote a finite set of formulas. We write VA for the set
of all variables that occur free in at least one formula in A. An interpretation
I satisfies A if it satisfies every formula in A. A sequent A ⇒ s is valid if every
interpretation that satisfies A also satisfies s. A context C captures a variable x
if the hole of C is in the scope of a binder λx. A context C is admissible for A
if it does not capture any variable in VA.

Figure 2 defines a sequent-based proof system for our language. The first
five rules (Triv, Weak, Ded, MP, DN) are well-known from propositional logic.
We refer to the proof system obtained with these rules as the propositional

subsystem. The propositional subsystem differs from a pure propositional sys-
tem in that the propositional variables may be instantiated with any term of
type B. The rule Lam incorporates lambda equivalence. The final rule BR
provides for replacement with respect to Boolean equations. A replacement
may capture variables of the equation if they don’t occur in the assumptions.
A sequent is deducible if it is derivable with the proof rules. A formula s is
deducible if the sequent ∅ ⇒ s is deducible.
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Triv
A, s ⇒ s

Weak
A ⇒ t

A, s ⇒ t
Ded

A, s ⇒ t

A ⇒ s → t

MP
A ⇒ s → t A ⇒ s

A ⇒ t
DN

A ⇒ ¬¬s

A ⇒ s

Lam
A ⇒ s

A ⇒ t
s ∼λ t BR

A ⇒ s ≡ t A ⇒ C[s]

A ⇒ C[t]
C admissible for A

Figure 2: Proof System

Proposition 5 (Soundness) Every deducible sequent is valid.

Proof It suffices to show that every instance of every proof rule is sound, that
is, that the conclusion is valid if all the premises are valid. This is obvious for
the propositional rules and well-known for Lam. The soundness of BR can be
shown by induction on the context C. �

Let us look at an example illustrating that the completeness of the proof
system is not obvious. Consider the formula f(f(fx)) ≡ fx, where x : B and
f : BB are variables. The formula is valid. Checking this claim is easy since
there are only 4 functions of type BB (negation, the identity function, and the
two constant functions). But for non-experts, a proof of the formula in our
proof system is not obvious.

A propositional formula is a formula s that can be obtained according to
s ::= x | ⊥ | s → s where x serves as a placeholder for variables. A tautology

is a valid propositional formula. A formula is tautologous if it is a substitution
instance of a tautology.

Proposition 6 (Taut) Every tautologous formula is deducible.

Proof We take it for granted that the propositional subsystem can deduce every
tautology. Since the instances of the propositional proof rules are closed under
substitution of variables, propositional proof trees are closed under substitution
of variables. Hence the claim follows. �
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We use ⊢ to denote the set of all deducible sequents. Since sequents are
pairs, ⊢ is a binary relation. We write A ⊢ s if the sequent A ⇒ s is deducible,
and ⊢ s if the formula s is deducible. The next proposition states properties
of ⊢ that we will use in the following.

Proposition 7

Ded A ⊢ s → t ⇐⇒ A, s ⊢ t

Cut A, s1, . . . , sn ⊢ s ∧ A ⊢ s1 ∧ . . . ∧ A ⊢ sn =⇒ A ⊢ s

And s1, s2 ⊢ s1 ∧ s2

Ref A ⊢ s ≡ s

Sub A ⊢ s =⇒ Ax
t ⊢ sx

t

Proof The derivation of Ded and Cut is straightforward. And follows with
Taut and Ded since x → y → x∧ y is a tautology. Ref follows with Taut since
x ≡ x is a tautology. Because of Ded it suffices to show Sub for A = ∅. Let
⊢ s. Then ⊢ s ≡ ⊤ by Taut and BR since x ≡ (x ≡ ⊤) is a tautology. By Ref
an BR we obtain ⊢ (λx.s)t ≡ (λx.⊤)t. Thus ⊢ sx

t ≡ ⊤ by Lam. Hence ⊢ sx
t

by Taut and BR. �

Proposition 8 Every closed and β-normal formula is propositional.

Proof By induction on the size of formulas. Let s be a β-normal and closed
formula. Then s = xs1 . . . sn where s1, . . . , sn are all closed and β-normal.
Since s is closed, either x = ⊥ or x = →. If x = ⊥, then n = 0 and hence s
is propositional. If x = →, then n = 2 and the claim follows by the induction
hypothesis applied to s1 and s2. �

Proposition 9 (Closed Completeness)
Every closed and valid formula is deducible.

Proof By Proposition 1, Lam, and Soundness it suffices to show the claim for
closed, valid, β-normal formulas. By Proposition 8 we know that such formulas
are tautologies. Now the claim follows with Taut. �
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5 Deductive Completeness

We say that ⊢ is complete if every valid formula is deducible. By Ded, com-
pleteness of ⊢ implies that every valid sequent is deducible. For every type σ,
we define three properties:

Allσ For all f : σB and x : σ it holds: ∀σf ⊢ fx

Enumσ For all x : σ it holds: ⊢
∨

a∈Bσ

(↓σa)
.
=σ x

Repσ For all A and all formulas s
.
=σ t and C[s] such that the context C is

admissible for A, it holds: If A ⊢ s
.
=σ t and A ⊢ C[s], then A ⊢ C[t].

We will show that the properties hold for all types.

Lemma 10 If Allσ holds for all types σ, then ⊢ is complete.

Proof Assume Allσ holds for all types σ. Let s be a valid formula. We show
⊢ s. Let Vs = {x1, . . . , xn}. Then ∀x1 . . .∀xn.s is closed and valid. Hence,
⊢ ∀x1 . . .∀xn.s by Proposition 9. The claim now follows by repeated application
of Allσ, Sub, Lam, and Cut. �

Lemma 11 ⊢ ↓τ (ab)
.
=σ (↓στa)(↓σb)

Proof Since the formula is closed, by Proposition 9 it suffices to show that it is
valid. This holds since B̂(↓τ (ab)) = ab = (B̂(↓στa))(B̂(↓σb)) = B̂((↓στa)(↓σb))
by Proposition 3. �

Lemma 12 Let I and J be finite sets and xi,j : B be a variable for all i ∈ I,
j ∈ J . Moreover, let [I → J ] be the set of all total functions I → J . Then:

⊢
∧

i∈I

∨

j∈J

xi,j ≡
∨

ϕ∈[I→J ]

∧

i∈I

xi,ϕi

Proof Let s and t be the left and the right term of the equivalence in question,
respectively, and let I be an interpretation. The claim follows by Taut if we
can show that Îs = 1 iff Ît = 1. Let Îs = 1. Then for every i ∈ I there exists
a j ∈ J such that I(xi,j) = 1. Hence there exists a function ϕ ∈ [I → J ] such

that I(xi,ϕi) = 1 for every i ∈ I. Hence Ît = 1. The other direction follows
analogously. �
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Lemma 13 Let σ be a type. If Enumσ and Repσ hold, then Allσ holds.

Proof Assume that Enumσ and Repσ hold. Let f : σB, x : σ, and a ∈ Bσ. By
Taut we have:

⊢

(

∧

b∈Bσ

f(↓σb)

)

→ f(↓σa)

Hence, by D∀, Lam, and Weak:

(↓σa)
.
=σ x ⊢ ∀σf → f(↓σa)

Hence, by Triv, Repσ, and Ded:

⊢ (↓σa)
.
=σx → ∀σf → fx

Since a ∈ Bσ was chosen freely, we have by And and Cut:

⊢
∧

a∈Bσ

((↓σa)
.
=σx → ∀σf → fx)

Now, by Taut and MP, it follows:

⊢

(

∨

a∈Bσ

(↓σa)
.
=σ x

)

→ ∀σf → fx

The claim follows by Enumσ and MP. �

Lemma 14 Enumσ and Repσ hold for all types σ.

Proof By induction on σ.
We first show Enumσ. Let x : σ. If σ = B, the claim follows by Taut.

Otherwise, let σ = σ1σ2. By Enumσ2
(induction hypothesis) and Sub, we

obtain
⊢
∨

c∈Bσ2

(↓σ2
c)

.
=σ2

x(↓σ1
b)

for every b ∈ Bσ1. Hence, by And:

⊢
∧

b∈Bσ1

∨

c∈Bσ2

(↓σ2
c)

.
=σ2

x(↓σ1
b)

By Lemma 12, Sub, and BR, this yields:

⊢
∨

a∈Bσ

∧

b∈Bσ1

(↓σ2
(ab))

.
=σ2

x(↓σ1
b)
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By repeated application of Lemma 11 and Repσ2
(induction hypothesis), we

obtain
⊢
∨

a∈Bσ

∧

b∈Bσ1

(↓σa)(↓σ1
b)

.
=σ2

x(↓σ1
b)

which is Enumσ up to D
.
=, D∀ and Lam.

Next we show Repσ. Let A ⊢ s
.
=σ t and A ⊢ C[s], and let C be admissible

for A. We show A ⊢ C[t]. If σ = B, the claim is immediate by BR. Otherwise,
let σ = σ1σ2. By Triv, D

.
=, and Lam we have:

s
.
=σ t ⊢ ∀σ1

y. sy
.
=σ2

ty

for some variable y /∈ V(s
.
=σt). By the induction hypothesis and Lemma 13,

we have Allσ1
. By Sub, Lam, Weak, and Cut we then obtain:

s
.
=σ t ⊢ sy

.
=σ2

ty

Hence, by Weak, the assumption A ⊢ s
.
=σ t, and Cut:

A ⊢ sy
.
=σ2

ty

Since A ⊢ C[s] and y /∈ Vs, we have by Lam:

A ⊢ C[λy.sy]

Since the context C[λy.[]] is admissible for A and Repσ2
holds by the induction

hypothesis, we have:
A ⊢ C[λy.ty]

The claim follows by Lam. �

Theorem 15 (Deductive Completeness) ⊢ is complete.

Proof Follows by Lemmas 14, 13, and 10. �
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