
Clausal Graph Tableaux for

Hybrid Logic with Eventualities and

Difference

Mark Kaminski and Gert Smolka

Saarland University

August 10, 2010

We introduce the method of clausal graph tableaux at the example of

hybrid logic with difference and star modalities. Clausal graph tableaux

are prefix-free and terminate by construction. They provide an abstract

method of establishing the small model property of modal logics. In con-

trast to the filtration method, clausal graph tableaux result in goal-directed

decision procedures. Until now no goal-directed decision procedure for

the logic considered in this paper was known. There is the promise that

clausal graph tableaux lead to a new class of effective decision procedures.

1 Introduction

For modal logic there exist two basic kinds of tableau decision procedures.

The more traditional kind, dating back to Kripke [20] and further developed

by Fitting [9], Massacci [23] and others, sees tableaux as rooted trees labeled

with formulas and, sometimes, auxiliary meta-level information. The formulas

on an individual tableau branch are interpreted conjunctively while the different

branches are interpreted disjunctively. Tableau calculi are designed so that the

set of all branches of a tableau represents an exhaustive enumeration of ways to

satisfy the formula at the root of the tableau. A typical decision procedure for

satisfiability based on tree tableaux will explore the tableau branch by branch

until it finds an evident branch. An evident branch is a satisfiable branch that

syntactically describes a model of all of its formulas, in particular of the root

formula. Most modern tree tableau calculi model possible worlds and the acces-

sibility relation between them by prefixes (either at the meta level [23] or at the

1

object level [3]). Prefixed tableaux usually allow for straightforward complete-

ness arguments but often require complicated blocking mechanisms [20, 16] for

termination.

An alternative view of tableaux was developed by Pratt [26] and elaborated by

Goré et al. [12, 14] for PDL. There, tableaux are seen as possibly cyclic graphs.

Given a graph tableau, a corresponding (typically infinite) tree tableau can be

obtained by a tree unfolding of the graph. A decision procedure based on

graph tableaux conceptually consists of two stages. First, given an input for-

mula s, the procedure constructs the tableau (graph) for s. Then, the proce-

dure checks if the constructed graph contains an evident subtableau that con-

tains s. While being presented as two successive steps in [26], the two stages

are interleaved in [12, 14] for performance reasons. For temporal logics, the

graph tableau approach is adopted by Manna and Wolper [22] and by Kesten et

al. [19] (there also exist decision procedures for alternation-free µ-calculi based

on graph tableaux [29] that are, however, not incremental in the sense of [19]).

Graph tableaux are usually set up in a way that makes termination obvious, of-

ten allowing to obtain worst-case optimal decision procedures for expressive

logics [26, 12, 14].

In this paper we propose a uniform treatment of a family of modal and hy-

brid logics by graph tableaux. To abstract away from propositional reasoning,

we employ a clausal form developed for tree tableaux in our previous work [18]

(note that our clausal form is different from the normal form by the same name

used in [24, 13]). Our present investigations focus on graph tableaux as a way

of establishing the small model property and decidability of modal logics, a role

that has traditionally been filled by filtration. Filtration [4] was invented by Lem-

mon and Scott [21] and further developed by Segerberg [28] and, in a somewhat

different form, by Gabbay [10]. Fischer and Ladner [8] were the first to apply

filtration to a logic with eventualities. While being similarly elegant to filtration,

graph tableaux offer an important advantage. Rather than just providing an up-

per bound on the size of a minimal model of a satisfiable formula, they provide

a way of constructing such a model in a goal-directed way.

We demonstrate clausal graph tableaux on H∗D, which is modal logic extended

with nominals, eventualities and the difference operator. Nominals are formu-

las of the form x that hold exactly for the state x. Eventualities are formulas

of the form ♦∗s that hold for a state if it can reach in n ≥ 0 steps a state sat-

isfying the formula s. A difference formula Ds holds for a state if there is a

different state satisfying s. Nominals and the difference operator D equip modal

logic with equality, a characteristic feature of hybrid logic [4, 2]. Eventualities ex-

tend modal logic with reflexive transitive closure and are an essential feature of

PDL [8, 15] and temporal logics [25, 6, 7]. One can see H∗D either as hybrid logic

2010/8/10 2

extended with eventualities or as stripped-down PDL extended with nominals

and D. Due to the inductive nature of eventualities, H∗D is not compact (consider

♦∗¬p, p, �p, ��p, . . .). The EXPTIME-hardness of H∗D follows from Fischer and

Ladner’s proof for PDL [8] (see Blackburn et al. [4], Theorem 6.52). The method

in this paper yields a NEXPTIME upper bound for H∗D . This seems to be the first

upper bound established for H∗D .

In [18], we develop a clausal tree tableau calculus for H∗ (modal logic with

nominals and eventualities). While it is easy to give clausal tree tableaux for hy-

brid logic with D, we found it difficult to give an elegant clausal treatment of

logics containing both eventualities and difference (such as H∗D and HPDLD) us-

ing tree tableaux. Moreover, the graph tableau approach has not been applied so

far to logics with nominals. By adapting the clausal approach and the solutions

developed for nominals in [18] to graph tableaux, we are able to give a satisfac-

tory treatment of both eventualities and D within a single framework. Unlike the

approach in [18], which works on a single branch of a tree tableau at a time, the

present approach is fully deterministic, representing all possible choices within

a single graph tableau. This allows us to share the computational costs neces-

sary to deal with D across the tableau instead of paying them on every branch.

Another advantage of graph tableaux over the approach in [18] is a significantly

simpler soundness argument. The soundness of the calculus in [18] relies on an

invariant of tableau branches, called straightness. To maintain the invariant, a

technique reminiscent of blocking is used. The present approach does not rely

on any such invariants for soundness. We believe that following the ideas in [17]

the present approach scales to HPDLD (PDL extended with nominals and D).

We see the main contribution of the present paper in extending the graph

tableau approach to hybrid logic with eventualities and difference, while at the

same time giving the first goal-directed decision procedure for this logic. The

use of a clausal form allows for an elegant presentation and simple, modular

correctness arguments.

The paper is organized as follows. First, we introduce the approach on the

basic modal logic with eventualities. Then we show how graph tableaux adapt

to basic hybrid logic and hybrid logic with difference. Finally, we combine the

treatment of eventualities with that of nominals and the difference operator.

2 Hybrid Logic with Eventualities and Difference

We define the syntax and semantics of the basic hybrid logic with eventualities

and difference. We assume that two kind of names, called nominals and predi-

cates, are given. Nominals (written x, y) denote states and predicates (written

2010/8/10 3

p, q) denote sets of states. Formulas are defined as follows:

s ::= x | p | ¬s | s ∧ s | ♦s | ♦∗s | Ds

For simplicity we employ only a single transition relation. The extension of the

approach to multimodal logic is straightforward. Formulas prefixed with the di-

amond operators ♦ and ♦∗ are called diamond formulas and formulas prefixed

with the difference operator D are called difference formulas.

An interpretation I consists of the following components:

• A nonempty set |I| of states.

• A transition relation →I ⊆ |I| × |I|.

• A state Ix ∈ |I| for every nominal x.

• A set Ip ⊆ |I| for every predicate p.

The satisfaction relation I , X ⊨ s between interpretations I , states X ∈ |I|, and

formulas s is defined by induction on s:

I, X ⊨ x ⇐⇒ X = Ix I, X ⊨ s ∧ t ⇐⇒ I, X ⊨ s and I, X ⊨ t

I, X ⊨ p ⇐⇒ X ∈ Ip I, X ⊨ ♦s ⇐⇒ ∃Y : X →I Y and I, Y ⊨ s

I, X ⊨ ¬s ⇐⇒ not I, X ⊨ s I, X ⊨ ♦∗s ⇐⇒ ∃Y : X →∗
I Y and I, Y ⊨ s

I, X ⊨ Ds ⇐⇒ ∃Y : X 6= Y and I, Y ⊨ s

→∗
I denotes the reflexive transitive closure of →I

Given a set A of formulas, we write I , X ⊨ A if I , X ⊨ s for all formulas s ∈ A.

An interpretation I satisfies (or is a model of) a formula s or a set A of formulas

if there is a state X ∈ |I| such that I , X ⊨ s or, respectively, I , X ⊨ A. A formula

s (a set A) is satisfiable if s (A) has a model.

The complement ∼ of a formula s is t if s = ¬t and ¬s otherwise. Note that

∼∼s = s if s is not a double negation. We use the notations s ∨ t := ¬(∼s ∧∼t),

�s := ¬♦∼s, �∗s := ¬♦∗∼s, and D̄s := ¬D∼s. Note that ∼♦p = �¬p and

∼♦¬p = �p. Moreover, we define ♦+s := ♦♦∗s and �+s := ��∗s (note that

�+s = ��∗s = ¬♦∼¬♦∗∼s = ¬♦♦∗∼s = ¬♦+∼s). An eventuality is a formula

of the form ♦∗s or ♦+s. All other diamond formulas are called simple.

We write H∗
D

for the full logic and define several sublogics:

K p | ¬s | s ∧ s | ♦s

K∗ K extended with ♦∗s

H K extended with x

HD H extended with Ds

H∗ H extended with ♦∗s (or K∗ extended with x)

H∗D HD extended with ♦∗s (or H∗ extended with Ds)

2010/8/10 4

3 Clausal Form

We define a clausal form for our logic. The clausal form allows us to abstract

from propositional reasoning and to focus on modal reasoning. Rather than

committing to a particular clausal form, we make explicit the abstract properties

of the clausal form that we need for our results. This makes our results more

widely applicable since the abstract properties are general enough to allow for

different clausal forms, in particular for clausal forms compatible with propo-

sitional optimizations like semantic branching [30]. A naive computable clausal

form is then suggested in the proof of Proposition 3.3.

A basic formula is a formula of the form x, p, ♦s, or Ds. A literal is a basic

formula or the complement of a basic formula. A clause (denoted by C , D) is a

finite set of literals that contains no complementary pair. Note that since clauses

contain no complementary literals, for every finite set A of basic formulas there

are 3|A| clauses C such that C ⊆ A∪ {¬s | s ∈ A }. Clauses are interpreted con-

junctively. Satisfaction of clauses (i.e., I , X ⊨ C) is a special case of satisfaction

of sets of formulas (i.e., I , X ⊨ A), which was defined in §2. For instance, the

clause {♦p, �(¬p ∧ q)} is unsatisfiable. Note that every clause not containing

literals of the form ♦s or Ds is satisfiable.

To deal with the difference operator, our approach assumes an injective func-

tion that assigns to every literal Ds a nominal xDs . Intuitively, a nominal xDs is

supposed to denote a state that satisfies s, provided such a state exists. If it

does, all states that are different from the one denoted by xDs satisfy Ds. A base

is a set A of basic formulas such that:

1. If s ∈ A and t is a basic subformula of s, then t ∈ A.

2. If s ∈ A and ♦∗t is a subformula of s, then ♦+t ∈ A.

3. If Ds ∈ A, then xDs ∈ A.

While conditions (1) and (2) are required for all extensions of K∗, (3) is only

needed for the difference operator. A set A is called a base of a formula s if A is

a base, contains every basic subformula of s and, additionally, ♦+t ∈ A whenever

♦∗t is a subformula of s. Note that in particular we have that every base of a

formula �∗s (i.e., ¬♦∗∼s) is also a base of �+s (i.e., ¬♦+∼s). Intuitively, a base of

a formula s contains all basic formulas that need to be evaluated (not necessarily

all at the same state) to determine the truth value of s. A set A is a base of a

set of formulas B if A is a base of every s ∈ B. Let A be a set of formulas. We

write BA for the least base of A. It can be shown that BA is finite if A is finite,

and that the size of BA is linear in the size of A, i.e., the sum of the sizes of the

formulas occurring as elements of A (except for the nominals xDs , Bs is a subset

of the Fischer-Ladner closure of s; cf. [8, 15]).

The support relation C ⊲ s between clauses C and formulas s is defined by

2010/8/10 5

induction on s:

C ⊲ s ⇐⇒ s ∈ C if s is a literal C ⊲¬¬s ⇐⇒ C ⊲ s

C ⊲ s ∧ t ⇐⇒ C ⊲ s and C ⊲ t C ⊲ s ∨ t ⇐⇒ C ⊲ s or C ⊲ t

C ⊲♦∗s ⇐⇒ C ⊲ s or C ⊲♦+s C ⊲�∗s ⇐⇒ C ⊲ s and C ⊲�+s

We say C supports s if C ⊲ s. We write C ⊲A and say C supports A if C ⊲ s for

every s ∈ A. Note that C ⊲D ⇐⇒ D ⊆ C if C and D are clauses.

Proposition 3.1 If C ⊲A and C ⊆ D and B ⊆ A, then D ⊲ B.

Proposition 3.2 If I , X ⊨ C and C ⊲A, then I , X ⊨ A.

A DNF (disjunctive normal form) is a function D that maps every finite set A

of formulas to a finite set of clauses such that:

1. I , X ⊨ A ⇐⇒ ∃D ∈ DA : I , X ⊨ D.

2. C ⊲A ⇐⇒ ∃D ∈ DA : D ⊆ C .

3. If C ∈ DA, then C ⊆ BA∪ {¬s | s ∈ BA }.

Note that the third property of DNFs may equivalently be stated as follows:

If C ∈ DA, then BC ⊆ BA. Note further that, restricted to propositional

logic, our notion of a DNF reduces to the common notion of a propositional

DNF. Consider, for instance, a function D such that D{p1 ∧ (¬p2 ∨ p3)} =

{{p1, ¬p2}, {p1, p3}}. Clearly, D is a DNF according to the above definition.

By interpreting {{p1, ¬p2}, {p1, p3}} as (p1 ∧ ¬p2) ∨ (p1 ∧ p3) we see that D

indeed computes a DNF of p1 ∧ (¬p2 ∨ p3).

Proposition 3.3 There is a computable DNF.

Proof The definition of the support relation can be seen as a tableau-style de-

composition procedure for formulas. The clauses of a DNF can be obtained with

the literals the decomposition produces. The direction “⇐” of property (1) of

DNFs follows with Proposition 3.2. Properties (2) and (3) of DNFs easily follow,

respectively, from the definitions of the support relation and the base of a for-

mula. �

For the rest of the paper, we fix some computable DNF D. In our examples, in

particular in Examples 4.3 and 5.3, we assume that D is defined as suggested

in the proof of Proposition 3.3. In particular, we assume that DC = {C} for all

clauses C , and D{s ∧ t} = {{s, t}} for every two non-complementary literals s, t.

The request of a clause C is RC := { t | �t ∈ C }.

Proposition 3.4 If I , X ⊨ C and X →I Y , then I , Y ⊨ RC .

2010/8/10 6

4 Tableaux for K∗

To demonstrate the basic ideas of the graph tableau approach, we begin with a

tableau system for K∗, the basic modal logic with eventualities. Hence, for the

rest of the section, we restrict formulas to be of the form:

s ::= p | ¬s | s ∧ s | ♦s | ♦∗s

Basic formulas, literals and clauses are restricted accordingly.

A claim is a pair C♦s such that ♦s ∈ C . Given a formula s and a set A, we

write A ; s for the set A∪{s}. A link is a triple C♦sD such that C♦s is a claim and

either

1. ♦s is not an eventuality and D ∈ D(RC ; s), or

2. s = ♦∗t and D ∈ D(RC ; t)∪D(RC ;♦s).

A tableau is a finite non-empty set T of clauses and links such that C,D ∈ T

whenever CsD ∈ T . A tableau T is complete if C♦sD ∈ T whenever ♦s ∈ C ∈ T

and C♦sD is a link. Given a tableau T , we define BT as the least set A that is a

base of all C ∈ T . It is easily seen that BT =
⋃
{BC | C ∈ T }.

The architecture of a decision procedure based on graph tableaux is as fol-

lows. Given a clause C , we construct a tableau T that contains C and satisfies

certain completeness criteria. The size of T will be exponentially bounded in the

size of the base of C . If C is satisfiable, T will contain a subtableau that syntacti-

cally describes a model of C . We call such subtableaux evident. The existence of

evident subtableaux is decidable since T is finite. Given the decision procedure

for clauses, a procedure for formulas is immediate by property (1) of DNFs.

Proposition 4.1 If CsD is a link, then BD ⊆ BC .

For every clause C , we can construct a complete tableau T containing C by closing

the initial tableau {C} under the following completion rule:

D

E, D♦sE
♦s ∈ D, D♦sE link

The closure is finite since for all clauses D added by the construction we have

BD ⊆ BC (follows by Proposition 4.1). Hence, the number of clauses in T is

bounded by 3|BC|. The number of links in T is then bounded by |BC| · 9|BC|.

Clearly, C ∈ T and BT = BC .

Proposition 4.2 For every clause C there is a complete tableau T such that C ∈

T , BT = BC , and |T | = 3|BC| + |BC| · 9|BC|.

A run for C♦
+s in T is a sequence of clauses C1 . . . Cn such that:

2010/8/10 7

1. C1 = C .

2. ∀i ∈ [1, n− 1] : Ci
♦+sCi+1 ∈ T .

3. Cn ⊲ s.

We call a tableau evident if every claim has an outgoing link and every claim of

the form C♦
+s has a run. More precisely: A tableau T is evident if:

1. ∀♦s ∈ C ∈ T ∃D : C♦sD ∈ T .

2. T has a run for C♦
+s whenever ♦+s ∈ C ∈ T .

An interpretation satisfies (or is a model of) a tableau if it satisfies all of its

clauses.

Example 4.3 Consider the complete tableau T for the clause C0 = {♦
+p, ♦♦p,

�¬p, ¬p} obtained with the above completion rule.

♦+p, ♦♦p, �¬p, ¬p

♦+p, ¬p ♦p, ¬p

♦+p p

Links of the form CsD are represented graphically by arrows going from the

formula s in the clause C to the clause D. Consider the claim C0
♦+p. Since

♦+p is an eventuality and RC0 = {¬p}, a triple C0
♦+pD is a link if and only

if D ∈ D{p, ¬p} ∪ D{♦+p, ¬p} = 0 ∪ {{♦+p, ¬p}} = {{♦+p, ¬p}}. Hence,

{♦+p, ¬p} is the only clause and C0
♦+p{♦+p, ¬p} the only link that is added by

the completion rule for the claim C0
♦+p. Note that T is evident since every claim

has at least one outgoing link and the clause {p} is reachable from every dia-

mond ♦+p. In particular, {♦+p, ¬p}{♦+p}{p} is a run for {♦+p, ¬p}♦
+p in T .�

Theorem 4.4 (Model Existence) Evident tableaux have finite models.

Proof Let T be an evident tableau. We choose an interpretation I such that:

• |I| = {C | C ∈ T }

• C →I D ⇐⇒ ∃s : C♦sD ∈ T

• C ∈ Ip ⇐⇒ p ∈ C

Clearly, |I| is finite since T is finite.

We show ∀s ∀C ∈ T : C ⊲ s =⇒ I , C ⊨ s by induction on s. Let C ∈ T and

C⊲s. We show I , C ⊨ s by case analysis. The argument is straightforward except

possibly for the cases s = ♦∗t and s = �∗t.

2010/8/10 8

Let s = ♦∗t. Since C ⊲s, we have either C ⊲t or C ⊲♦+t. If C ⊲t, then I , C ⊨ t

by the inductive hypothesis, and the claim follows. Otherwise, let C ⊲♦+t. Then

♦+t ∈ C ∈ T . By the second evidence condition we know that there is a run for

C♦
+t in T . Thus C →∗

I D and D ⊲ t for some clause D ∈ Γ . Hence I , D ⊨ t by the

inductive hypothesis. The claim follows.

Let s = �∗t. Let C = C1 →I . . . →I Cn. We show I , Cn ⊨ t by induction on n.

If n = 1, we have Cn ⊨ s by assumption. Hence Cn ⊨ t and the claim follows by

the outer inductive hypothesis. If n > 1, we have s ∈ RC1 since �s ∈ C1 since

C1 ⊲ �s since C1 ⊲ s. Thus C2 ⊲ s and the claim follows by the inner inductive

hypothesis. �

A tableau T ′ is a subtableau of a tableau T if T ′ ⊆ T .

Theorem 4.5 (Evidence) Let T be a complete tableau and C ∈ T . If C is satisfi-

able, then there is an evident subtableau of T containing C .

Proof (Sketch) Let T and C be as required, and let I be a model of C . We define

U to consist of the clauses of T that are satisfied by I , and the edges DsE ∈ T

such that {D, E} ⊆ U . It is easily seen that U is a subtableau of T and that

C ∈ U , so it remains to show that U is evident. Showing evidence condition (1) is

straightforward. As for condition (2), observe that whenever we have I , X0 ⊨ ♦
+s,

this means that there is a sequence of states X1 . . .Xn (n ≥ 1) such that, for all

i ∈ [1, n], Xi−1 →I Xi, and I , Xn ⊨ s. Now, to show condition (2), we show

that, given a claim C0
♦+s and assuming I , X0 ⊨ C0, the sequence X1 . . .Xn can

be “projected” onto clauses C1 . . . Cn of U such that, for all i ∈ [1, n], we have

(a) I , Xi ⊨ Ci, (b) Xi−1 →I Xi implies Ci−1
♦+sCi ∈ U , and (c) Cn ⊲ s. Clearly,

this implies that C0C1 . . . Cn is a run for C0
♦+s , which suffices for the claim. See

Appendix for details. �

5 Tableaux for HD

Before we proceed to the full logic, let us develop graph tableaux for HD. This

will allow us to introduce the machinery needed for nominals without the com-

plications that are added by eventualities. To account for nominals, we will allow

links to clauses that are larger than those given by the DNF of the diamond for-

mula and the request of the source clause. To reduce redundancy in complete

graph tableaux, we will introduce the notion of a link closure and require a com-

plete tableau to contain an evident subtableau in its link closure. We will point

out which parts of the construction are needed for hybrid logic in general and

which are there specifically to account for the difference operator. The formulas

2010/8/10 9

of HD look as follows:

s ::= x | p | ¬s | s ∧ s | ♦s | Ds

To deal with nominals, we need to adapt the definition of links. A link is a triple

C♦sD such that C♦s is a claim and D ⊲RC ; s. A link C♦sD is called minimal if

D ∈ D(RC ; s) (i.e., minimal links are precisely the special kind of links used in

§ 4). Proposition 4.1 adapts as follows:

Proposition 5.1 If CsD is a minimal link, then BD ⊆ BC .

Given the new definition of links, tableaux are defined as before. A tableau T

is complete if:

1. If ♦s ∈ C ∈ T and C♦sD is a minimal link, then C♦sD ∈ T .

2. If C ∈ T and x ∈ BC , then {x} ∈ T .

3. If C,D ∈ T , x ∈ C ∩D, and C ∪D is a clause, then C ∪D ∈ T .

4. If Ds ∈ C ∈ T , xDs ∉ C , and D ∈ D{xDs , s}, then D ∈ T .

5. If Ds ∈ C ∈ T , xDs ∈ C , and D ∈ D{¬xDs , s}, then D ∈ T .

6. If D̄s ∈ C ∈ T , D ∈ T , D ⋫ s, and C ∪D is a clause, then C ∪D ∈ T .

7. If D̄s ∈ C ∈ T , D ∈ T , D ⋫ s, and E ∈ D(D ; s), then E ∈ T .

Note that to obtain a complete system for H, only the first three of the complete-

ness criteria are needed. The last four criteria are there exclusively to deal with

D and its dual. Recall that the idea behind the completion rules is to generate

enough clauses so that we can select an evident subset. Criterion (1) is the ob-

vious adaptation of the completeness criterion from § 4. Criteria (2) and (3) are

motivated by the semantics of nominals. Every nominal x has to denote some

state that, obviously, satisfies {x}. Moreover, if two clauses are satisfied by the

same model and have a nominal in common, then they hold in the same state of

the model, and hence their union is also satisfiable. For (4) and (5), recall that a

nominal xDs is assumed to denote a state that satisfies s (provided such a state

exists). So, if Ds is satisfiable anywhere in a model, then {xDs , s} is satisfiable,

and if {Ds, xDs} is satisfiable, then so is {¬xDs , s}. Criteria (6) and (7) are moti-

vated as follows. If D̄s holds in a state X, then every state that is distinct from X

satisfies s. So, every given state Y must either be equal to X (cf. (6)) or satisfy s

(cf. (7)).

Note that, analogously to the above tableau construction rule in § 4, the above

completeness criteria can be interpreted as tableau rules (called completion

rules). So, for instance, criterion (1) and (3) translate to, respectively:

1)
C

D, C♦sD
♦s ∈ C, C♦sD minimal link 3)

C, D

C ∪D
C ∪D clause, ∃x : x ∈ C ∩D

2010/8/10 10

Analogously to the argument in § 4, we obtain:

Proposition 5.2 For every clause C there is a complete tableau T such that C ∈

T , BT = BC , and |T | = 3|BC| + |BC| · 9|BC|.

We define AT := A ∪ { s | ∃x ∈ A ∃C ∈ T : x ∈ C and s ∈ C }. A tableau T is

evident if:

1. ∀♦s ∈ C ∈ T ∃D : C♦sD ∈ T .

2. If C ∈ T and x ∈ BC , then there is some D ∈ T such that x ∈ D.

3. If C ∈ T , then C = CT .

4. If Ds ∈ C ∈ T , then there is some D ∈ T such that D 6= C and D ⊲ s.

5. If D̄s ∈ C ∈ T , then, for all D ∈ T such that D 6= C , we have D ⊲ s.

Again, for hybrid logic without D we only need the first three conditions.

In the presence of nominals and D, clauses introduced by the rule for criterion

(1) may be too small to be included in the evident tableau (because of evidence

condition (3) or (5)). While criteria (3), (6) and (7) will ensure that the complete

tableau contains the larger clauses that are needed, they will add no links to the

new clauses. Instead, we add the required links in a uniform way by defining the

link closure T̂ of a tableau T as

T̂ := T ∪ {CsD | ∃E : E ⊆ D and CsE ∈ T }

Example 5.3 Consider the following complete tableau T for the unsatisfiable

clause {♦(y ∧ Dy)}.

♦(y ∧ Dy)
1

y, Dy
2

xDy , y
3

¬xDy , y
5

xDy , y, Dy
4

¬xDy , y, Dy
6

y
7

The numbers indicate in which order the clauses are introduced by the com-

pletion rules. So, clause (2) is derived from (1) by the rule corresponding to

completeness criterion (1), clause (3) follows from (2) by the rule for criterion (4),

clause (4) follows from (2) and (3) by the rule for criterion (3), clause (5) follows

from (4) by the rule for criterion (5), clause (6) follows from (2) and (5) by the

2010/8/10 11

rule for criterion (3), and clause (7) follows by the rule for criterion (2) applied to

any of the preceding clauses. Note that the rule for criterion (3) does not apply

to clauses (4) and (5) since their union is not a clause. The dashed arrows stand

for the additional links in the link closure T̂ .

The tableau T̂ contains no evident subtableau that contains {♦(y ∧Dy)} (i.e.,

clause (1)). By evidence condition (1), an evident subtableau of T̂ containing

clause (1) would also have to contain either (2), (4) or (6), all of which contain the

nominal y and the formula Dy . Then, by evidence condition (4), the subtableau

would have to contain a second clause containing y . However, having two dis-

tinct clauses that contain the same nominal contradicts evidence condition (3).�

As before for K∗, one of our goals will be showing that complete tableaux

for satisfiable clauses have evident subtableaux (now modulo link closure). This

also explains why we introduce nominals xDs . We need them to ensure that

subtableaux of a complete tableau satisfy evidence condition (4). Assume we

simplified completeness criteria (4) and (5) to:

If Ds ∈ C ∈ T and D ∈ D{s}, then D ∈ T .

Then T := {{D̄Dp, Dp, ¬p}, {Dp, p}, {p}} would be a complete tableau. More-

over, T̂ = T . Although all clauses of T are satisfiable, T contains no evident

subtableau containing {D̄Dp, Dp, ¬p}.

Theorem 5.4 (Model Existence) Evident tableaux have finite models.

Proof Let T be an evident tableau. By evidence conditions (2) and (3), for ev-

ery x ∈ BT we have a unique clause C ∈ T such that x ∈ C . We choose

an interpretation I as in the proof of Theorem 4.4 such that additionally, for

all x ∈ BT , Ix = C ⇐⇒ x ∈ C . Again, |I| is finite as so is T . We show

∀s ∀C ∈ T : C ⊲ s =⇒ I , C ⊨ s by induction on s. The verification of the

individual cases is straightforward. �

Theorem 5.5 (Evidence) Let T be a complete tableau and let C ∈ T be such that,

for all t ∈ C and Ds ∈ BT , xDs does not occur in t. If C is satisfiable, then there

is an evident subtableau U of T̂ and a clause D ∈ U such that C ⊆ D.

Proof (Sketch) Let T and C be as required, and let I be a model of C (with some

additional constraints). We define U to consist of the maximal clauses among all

clauses of T that are satisfied by I . As the edges of U we take all DsE ∈ T̂ such

that {D, E} ⊆ U . One can show that U has the desired properties. See Appendix

for details. �

2010/8/10 12

6 Tableaux for H∗ and H∗
D

Now that we know how graph tableaux look for eventualities and nominals in

isolation, let us approach their combinations, H∗ and H∗D . The addition of D to H

turns out to be particularly straightforward since the cases for D in the proofs of

evidence and model existence for HD can be treated orthogonally from the rest

of the respective arguments. For H∗, this is no longer the case. While model exis-

tence is still straightforward, given a meaningful definition of an evident tableau,

D significantly complicates the evidence proof when combined with eventualities.

Links and minimal links are now defined as follows. A link is a triple C♦sD

such that C♦s is a claim and either

1. ♦s is not an eventuality and D ⊲RC ; s, or

2. s = ♦∗t and D ⊲RC ; t or D ⊲RC ;♦s.

A link C♦sD is called minimal if

1. ♦s is not an eventuality and D ∈ D(RC ; s), or

2. s = ♦∗t and D ∈ D(RC ; t)∪D(RC ;♦s).

Given the new definitions, tableaux are defined as in § 4. The completeness cri-

teria, completion rules and the link closure for H∗D (resp., H∗) look exactly the

same as for HD (resp., H). Also, Propositions 5.1 and 5.2 are easy to re-prove for

the new definitions.

As it turns out, taking maximal clauses to obtain evidence in the presence of

nominals, as it is done in the proof of Theorem 5.5, may destroy runs that are

necessary for evidence in the presence of eventualities. Consider the following

tableau (a):

♦+p, �¬p, ¬p

♦+p, ¬p

♦+p p

♦+p, �¬p, ¬p

p

(a) (b)

The tableau (a) is complete and satisfies the evidence conditions for K∗. All

clauses of (a) are satisfiable. However, the maximal clauses construction in the

proof of Theorem 5.5 produces the tableau (b), which does not satisfy evidence

condition (2) for K∗. In the absence of D we can solve the problem by adapting

the construction from [18] to graph tableaux. To cope with D, however, the

approach needs considerable refinement.

2010/8/10 13

The evidence conditions for H∗D are obtained by taking the union of the con-

ditions for K∗ and HD. A tableau T is evident if:

1. ∀♦s ∈ C ∈ T ∃D : C♦sD ∈ T .

2. T has a run for C♦
+s whenever ♦+s ∈ C ∈ T .

3. If C ∈ T and x ∈ BC , then there is some D ∈ T such that x ∈ D.

4. If C ∈ T , then C = CT .

5. If Ds ∈ C ∈ T , then there is some D ∈ T such that D 6= C and D ⊲ s.

6. If D̄s ∈ C ∈ T , then, for all D ∈ T such that D 6= C , we have D ⊲ s.

Theorem 6.1 (Model Existence) Evident tableaux have finite models.

Proof Let T be an evident tableau. We choose I as in the proof of Theorem 5.4

and show ∀s ∀C ∈ T : C ⊲s =⇒ I , C ⊨ s by induction on s. The case distinction

on the shape of s proceeds as in the proofs of Theorems 4.4 and 5.4. All cases

but s = ♦∗t and s = �∗t proceed exactly as in the proof of Theorem 5.4. The

cases s = ♦∗t and s = �∗t that are not covered by the proof of Theorem 5.4

proceed as in the proof of Theorem 4.4. �

As for evidence, let us begin with with an outline of the proof for H∗.

Theorem 6.2 (Evidence for H∗) Let T be a complete tableau for H∗ and let C ∈

T . If C is satisfiable, then there is an evident subtableau U of T̂ and a clause

D ∈ U such that C ⊆ D.

Proof Let T and C be as required, and let I be a model of C . Let T ′ :=

{E ∈ T | I satisfies E }. We define U such that:

1. D ∈ U :⇐⇒ D ∈ T ′ and D = DT
′
.

2. D♦sE ∈ U :⇐⇒ D♦sE ∈ T̂ and {D, E} ⊆ U .

It is straightforward to verify that U is an evident subtableau of T̂ that contains

a superclause of C . �

Unfortunately, the construction in the proof of Theorem 6.2 for selecting an

evident subtableau does not work in the presence of D. The problem is caused

by the evidence condition for formulas D̄s (condition (6)). Consider the complete

tableau T := {{D̄p}, {p}, {D̄p, p}}. Let I be an interpretation such that |I| =

Ip = {X}. Clearly, I satisfies all clauses of T . Since T contains no nominals,

the construction in the proof of Theorem 6.2 for I yields U = T . However,

T does not satisfy evidence condition (6) since D̄p ∈ {D̄p, p} ∈ T but also

{D̄p} ∈ T (clearly, {D̄p} ⋫ p). Note that although U is not evident, it still contains

evident subtableaux ({{D̄p}}, {{D̄p, p}} and {{p}, {D̄p, p}}). As we noted in

the beginning of the section, it is now not possible to take the maximal clauses of

2010/8/10 14

U since this will in general destroy the evidence of eventualities (condition (2)).

In the following, we will demonstrate how we can select an evident subtableau of

U while preserving condition (2).

A key observation is that for every formula D̄s that holds in some state X ∈

|I|, we either have that s holds everywhere in I , or that X is the unique state

satisfying D̄s and all other states satisfy s. Hence, for every formula D̄s for

which evidence condition (6) is violated (in a tableau T satisfied by I), we can

establish (6) by removing all clauses that do not support s (if s holds everywhere)

or all such clauses except one (otherwise). In the latter case, we can select the

remaining clause to be the largest clause containing D̄s. Since I satisfies T and

X is the unique state in I satisfying D̄s, none of the clauses supporting s will

contain D̄s, which guarantees that (6) is satisfied in the resulting tableau.

Lemma 6.3 Let T be a complete tableau and I an interpretation. Let

T ′ := {C ∈ T | I satisfies C }

Let D̄s1 . . . D̄sn be an injective enumeration of the set { D̄s | D̄s ∈ C ∈ T ′ }. Let

T ′0 := {C ∈ T ′ | C = CT
′
}. For all i ∈ [1, n] we construct a set T ′i from T ′i−1 as

follows:

• If ∀X ∈ |I| : I , X ⊨ si, then T ′i := {C ∈ T ′i−1 | C ⊲ si }.

• Otherwise, T ′i := {C ∈ T ′i−1 | C ⊲ si } ;
⋃
{C ∈ T ′i−1 | D̄si ∈ C }.

Then, for all i ∈ [1, n]:

1. If C ∈ T ′i−1 ∩ T
′
i , D ∈ T

′
i−1, and C ⊆ D, then D ∈ T ′i .

2. If C ∈ T ′i−1 and I , X ⊨ C , then C ⊆ D for some D ∈ T ′i such that I , X ⊨ D.

3. T ′i ⊆ T
′
i−1.

4. If C ∈ T ′i , then C = CT
′
i (i.e., T ′i satisfies evidence condition (4)).

5. Let j ∈ [1, i], D̄sj ∈ C ∈ T
′
i , and D ∈ T ′i such that D 6= C . Then D ⊲ sj (i.e., T ′i

satisfies evidence condition (6) restricted to D̄s1, . . . , D̄si).

Proof See Appendix. �

Theorem 6.4 (Evidence) Let T be a complete tableau and let C ∈ T be such that,

for all t ∈ C and Ds ∈ BT , xDs does not occur in t. If C is satisfiable, then there

is an evident subtableau U of T̂ and a clause D ∈ U such that C ⊆ D.

Proof (Sketch) Let T and C be as required, and let I be a model of C (with some

additional constraints). Let T ′, Ds1 . . .Dsn, T ′1, . . . , T
′
n be defined from T and I as

in Lemma 6.3. We define:

U := T ′n ∪ {D
sE ∈ T̂ | {D, E} ⊆ T ′n }

2010/8/10 15

Evidence conditions (4) and (6) hold by Lemma 6.3 (4,5). To show condition (2),

we use the same basic technique as for K∗ (see the proof of Theorem 4.5). The

argument is now more complex since not every clause from T that is satisfied

by some state in I is still there in U . To show that we can still match every “wit-

ness sequence” X0 . . .Xn by a run C0 . . . Cn, Lemma 6.3 (2) plays a crucial role.

Lemma 6.3 (2) implies that for every satisfiable clause C in T there exists a su-

perclause D in U that holds in the same state as C . Together with Lemma 6.3 (3),

asserting that U is a subset of T with respect to clauses, Lemma 6.3 (2) is also

central for showing evidence conditions (1), (3) and (5). See Appendix for details.

�

7 Conclusion

The paper presents the first goal-directed decision procedure for hybrid logic

with eventualities and difference. A naive two-phase implementation of the pro-

cedure seems straightforward. Given an input clause C , we first compute a com-

plete tableau containing C . This step takes at most deterministic exponential

time in the size of the input (more precisely, in the size of the base of the input).

To determine whether C is satisfiable, it then remains to check for the existence

of an evident subtableau containing C . Naively, this can be done by repeatedly

guessing candidate subtableaux and then checking their evidence. While the

non-deterministic running time for the second phase is polynomial in the size

of the complete tableau, because of the guessing, the deterministic algorithm is

exponential. Hence, the combined procedure is in NEXPTIME, allowing for im-

plementations with doubly exponential complexity. Based on results for related

logics [1, 27], we conjecture H∗D to be EXPTIME-complete. To reduce the com-

plexity of our procedure to EXPTIME, provided this is possible at all, more work

is needed. A promising direction is developing a polynomial algorithm for the

second phase of the procedure, possibly following the ideas of [26]. The main

complication here is that the procedure in [26] relies on the assumption that

for every satisfiable formula s there exists a unique largest evident subtableau

containing s. In our case, this assumption does not hold. In the presence of nom-

inals, a complete tableau may contain several evident subtableaux whose union

is not evident. Following [12, 14], one could also interleave the first and the sec-

ond phase of the procedure so as to allow early pruning of unsatisfiable clauses.

Compared to interleaved procedures for nominal-free logics [12, 14], such a pro-

cedure would have to deal with an additional difficulty, namely the link closure,

which can contain considerably more links than the complete tableau.

2010/8/10 16

References

[1] Carlos Areces, Patrick Blackburn, and Maarten Marx. The computational

complexity of hybrid temporal logics. L. J. IGPL, 8(5):653–679, 2000.

[2] Carlos Areces and Balder ten Cate. Hybrid logics. In Blackburn et al. [5],

pages 821–868.

[3] Patrick Blackburn. Internalizing labelled deduction. J. Log. Comput.,

10(1):137–168, 2000.

[4] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic. Cam-

bridge University Press, 2001.

[5] Patrick Blackburn, Johan van Benthem, and Frank Wolter, editors. Hand-

book of Modal Logic, volume 3 of Studies in Logic and Practical Reasoning.

Elsevier, 2007.

[6] E. Allen Emerson and Edmund M. Clarke. Using branching time temporal

logic to synthesize synchronization skeletons. Sci. Comput. Programming,

2(3):241–266, 1982.

[7] E. Allen Emerson and Joseph Y. Halpern. “Sometimes” and “not never” revis-

ited: On branching versus linear time temporal logic. J. ACM, 33(1):151–178,

1986.

[8] Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of

regular programs. J. Comput. System Sci., pages 194–211, 1979.

[9] Melvin Fitting. Proof Methods for Modal and Intuitionistic Logics. Reidel,

1983.

[10] Dov M. Gabbay. Selective filtration in modal logic, Part A. Semantic tableaux

method. Theoria, 36(3):323–330, 1970.

[11] Jürgen Giesl and Reiner Hähnle, editors. IJCAR 2010, volume 6173 of LNCS.

Springer, 2010.

[12] Rajeev Goré and Linh Anh Nguyen. EXPTIME tableaux with global caching for

description logics with transitive roles, inverse roles and role hierarchies. In

Nicola Olivetti, editor, TABLEAUX 2007, volume 4548 of LNCS, pages 133–

148. Springer, 2007.

[13] Rajeev Goré and Linh Anh Nguyen. Clausal tableaux for multimodal logics

of belief. Fund. Inform., 94(1):21–40, 2009.

2010/8/10 17

[14] Rajeev Goré and Florian Widmann. Optimal tableaux for propositional dy-

namic logic with converse. In Giesl and Hähnle [11], pages 225–239.

[15] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. The MIT Press,

2000.

[16] Ian Horrocks, Ullrich Hustadt, Ulrike Sattler, and Renate Schmidt. Compu-

tational modal logic. In Blackburn et al. [5], pages 181–245.

[17] Mark Kaminski and Gert Smolka. Clausal tableaux for hybrid PDL. Technical

report, Saarland University, 2010.

[18] Mark Kaminski and Gert Smolka. Terminating tableaux for hybrid logic with

eventualities. In Giesl and Hähnle [11], pages 240–254.

[19] Yonit Kesten, Zohar Manna, Hugh McGuire, and Amir Pnueli. A decision

algorithm for full propositional temporal logic. In Costas Courcoubetis,

editor, CAV’93, volume 697 of LNCS, pages 97–109. Springer, 1993.

[20] Saul A. Kripke. Semantical analysis of modal logic I: Normal modal proposi-

tional calculi. Z. Math. Logik Grundlagen Math., 9:67–96, 1963.

[21] Edward J. Lemmon and Dana Scott. The ‘Lemmon Notes’: An Introduction to

Modal Logic. Blackwell, 1977.

[22] Zohar Manna and Pierre Wolper. Synthesis of communicating processes

from temporal logic specifications. ACM TOPLAS, 6(1):68–93, 1984.

[23] Fabio Massacci. Single step tableaux for modal logics. J. Autom. Reasoning,

24(3):319–364, 2000.

[24] Linh Anh Nguyen. A new space bound for the modal logics K4, KD4 and S4.

In Mirosław Kutyłowski, Leszek Pacholski, and Tomasz Wierzbicki, editors,

MFCS’99, volume 1672 of LNCS, pages 321–331, 1999.

[25] Amir Pnueli. The temporal logic of programs. In Proc. 18th Annual Symp.

on Foundations of Computer Science (FOCS’77), pages 46–57. IEEE Computer

Society Press, 1977.

[26] Vaughan R. Pratt. A near-optimal method for reasoning about action. J.

Comput. System Sci., 20(2):231–254, 1980.

[27] Ulrike Sattler and Moshe Y. Vardi. The hybrid µ-calculus. In Rajeev Goré,

Alexander Leitsch, and Tobias Nipkow, editors, IJCAR 2001, volume 2083

of LNCS, pages 76–91. Springer, 2001.

2010/8/10 18

[28] Krister Segerberg. An Essay in Classical Modal Logic. Number 13 in

Filosofiska Studier. University of Uppsala, 1971.

[29] Yoshinori Tanabe, Koichi Takahashi, and Masami Hagiya. A decision pro-

cedure for alternation-free modal µ-calculi. In Carlos Areces and Robert

Goldblatt, editors, Advances in Modal Logic, volume 7, pages 341–362. Col-

lege Publications, 2008.

[30] Dmitry Tsarkov, Ian Horrocks, and Peter F. Patel-Schneider. Optimizing ter-

minological reasoning for expressive description logics. J. Autom. Reason-

ing, 39(3):277–316, 2007.

2010/8/10 19

Appendix

Proposition 7.1 uses the notion of links as defined in § 4.

Proposition 7.1 Let ♦s ∈ C and let I satisfy C . Then there is a link C♦sD such

that I satisfies D.

Proof Let ♦s ∈ C and let I satisfy C . We distinguish two cases:

1. s is not an eventuality. Clearly, I satisfies RC ; s. By property (1) of DNFs,

there is some D ∈ D(RC ; s) such that I satisfies D. The claim follows.

2. s = ♦∗t. Then I satisfies RC ; t or I satisfies RC ;♦s. Hence, there is some

D ∈ D(RC ; t)∪D(RC ;♦s) such that I satisfies D. The claim follows. �

Theorem 4.5 (Evidence) Let T be a complete tableau and C ∈ T . If C is satisfi-

able, then there is an evident subtableau of T containing C .

Proof Let T and C be as required, and let I be a model of C . We define U such

that:

1. D ∈ U :⇐⇒ D ∈ T and I satisfies D.

2. DsE ∈ U :⇐⇒ DsE ∈ T and {D, E} ⊆ U .

Clearly, U is a subtableau of T . Since C ∈ T and I satisfies C , C ∈ U . It remains

to show that U is evident.

First, we show that, for all ♦s ∈ D ∈ U , there is some E such that D♦sE ∈ U .

Let ♦s ∈ D ∈ U . Then D ∈ T and I satisfies D. By Proposition 7.1, there is a link

D♦sE such that I satisfies E. Since T is complete, D♦sE ∈ T . The claim follows

since I satisfies E.

We now show that U has a run for D♦
+s whenever ♦+s ∈ D ∈ U . Let ♦+s ∈

D ∈ U . Then D ∈ T and I satisfies D. Hence, there are X,Y , Z ∈ |I| and some

n ≥ 0 such that I , X ⊨ D, I , Z ⊨ s, and X →I Y →n
I Z . By Proposition 3.4,

I , Y ⊨ RD. We proceed by induction on n.

Let n = 0. Then Y = Z , so I , Y ⊨ RD ; s. By property (1) of DNFs, there is

some E ∈ D(RD ; s) such that I , Y ⊨ E. Since E ∈ D(RD ; s), D♦
+sE is a link, and

hence D♦
+sE ∈ T . Since I , Y ⊨ E, we have D♦

+sE ∈ U . Since E⊲s, DE is a run for

D♦
+s .

Let n > 0. Then I , Y ⊨ RD ;♦+s. By property (1) of DNFs, there is some

E ∈ D(RD ;♦+s) such that I , Y ⊨ E. Since E ∈ D(RD ;♦+s), D♦
+sE is a link, and

hence D♦
+sE ∈ T . Since I , Y ⊨ E, we have D♦

+sE ∈ U . Since E ⊲♦+s, ♦+s ∈ E. By

the inductive hypothesis for n − 1, U has a run E . . . E′ for E♦
+s . Thus, DE . . .E′

is a run for D♦
+s in U . �

The following propositions (7.2–7.5) can be shown for both HD (using the defini-

tions from § 5), and H∗ and H∗D (using the corresponding definitions from § 6).

2010/8/10 20

Proposition 7.2 If T is complete, C,D ∈ T , and CsD is a link, then CsD ∈ T̂ .

Proposition 7.3 If I satisfies T and I , X ⊨ C , then I , X ⊨ CT .

Proposition 7.4 If T is a complete tableau, C ∈ T , U is a subtableau of T , and

CU is a clause, then CU ∈ T .

Proposition 7.1 adapts to nominals as follows:

Proposition 7.5 Let ♦s ∈ C and let I satisfy C . Then there is a minimal link

C♦sD such that I satisfies D.

Theorem 5.5 (Evidence) Let T be a complete tableau and let C ∈ T be such that,

for all t ∈ C and Ds ∈ BT , xDs does not occur in t. If C is satisfiable, then there

is an evident subtableau U of T̂ and a clause D ∈ U such that C ⊆ D.

Proof Let T and C be as required, and let I be a model of C . Since no term in C

contains nominals xDs such that Ds ∈ BT , without loss of generality we assume

that, for all Ds ∈ BT , I satisfies {xDs , s} whenever I satisfies {s}. We define U

such that:

1. D ∈ U :⇐⇒ D ∈ T , I satisfies D, and there is no E ∈ T such that I satisfies E

and D ⊊ E.

2. DsE ∈ U :⇐⇒ DsE ∈ T̂ and {D, E} ⊆ U .

Clearly, U is a subtableau of T̂ . By assumption, we know that I satisfies C . Let D

be a maximal clause in T such that C ⊆ D and I satisfies D. By definition, D ∈ U .

It remains to show that U is evident.

We begin with evidence condition (1). Let ♦s ∈ C ∈ U . Then C ∈ T and I

satisfies C . By Proposition 7.5, there is a minimal link C♦sD such that I satisfies

D. Since T is complete, C♦sD ∈ T . Since I satisfies D, there is some maximal

E ∈ T such that D ⊆ E and I satisfies E. Then E ∈ U . Thus C♦sE ∈ T̂ , and hence

C♦sE ∈ U .

Now to condition (2). Let C ∈ U and x ∈ BC . Then C ∈ T . Since T is complete,

{x} ∈ T . Clearly, I , Ix ⊨ {x}. Hence, there is some maximal D ∈ T such that

x ∈ D and I satisfies D. The claim follows since D ∈ U .

Now to (3). Let C ∈ U . Then C ∈ T and I satisfies C . By Proposition 7.4,

CU ∈ T . By Proposition 7.3, I satisfies CU . Clearly, we either have C = CU or

C ⊊ CU . The claim follows since, by definition, C is a maximal clause in U that is

satisfied by I .

Now to condition (4). Let Ds ∈ C ∈ U . Then C ∈ T and I satisfies C . We

distinguish two cases:

2010/8/10 21

• xDs ∉ C . Then I satisfies {s} and hence {xDs , s}. Consequently, there is some

D ∈ D{xDs , s} such that I satisfies D. Since T is complete, D ∈ T . Let E

be a maximal clause in T such that D ⊆ E and I satisfies E. Then E ∈ U . By

Proposition 3.1, E ⊲ s. Since xDs ∈ E, E 6= C .

• xDs ∈ C . Let X be a state such that I , X ⊨ C . Since xDs ∈ C , IxDs = X.

Since I satisfies C , there is some Y 6= X such that I , Y ⊨ s. Since Y 6= X,

I , Y ⊨ {¬xDs , s}. Hence, there is some D ∈ D{¬xDs , s} such that I satisfies

D. The argument proceeds analogously to the first case.

Finally, to (5). Let D̄s ∈ C ∈ U , and let D ∈ U such that D 6= C . We have to

show that D ⊲ s. Assume, by contradiction, D ⋫ s. Let X,Y be states such that

I , X ⊨ C and I , Y ⊨ D. Since I satisfies C , we distinguish two cases:

• X = Y . Then I satisfies C ∪ D. Since T is complete, C ∪ D ∈ T . Let E

be a maximal clause in T such that C ∪ D ⊆ E and I satisfies E. Clearly,

C,D ⊊ C ∪D ⊆ E, which contradicts the definition of U .

• I , Y ⊨ s. Then there is some E ∈ D(D ; s) such that I , Y ⊨ E. Since T is

complete, E ∈ T . Let E′ be a maximal clause in T such that E ⊆ E′ and I

satisfies E′. By Proposition 3.1, D ⊊ E ⊆ E′, which contradicts the definition

of U . �

Proposition 7.6 If C = CT and D = DT , then C ∪D = (C ∪D)T .

Proposition 7.7 Let D̄s ∈ C and I be a model of C . Then exactly one of the

following two statements is true:

1. ∀X ∈ |I| : I , X ⊨ s

2. ∃X ∈ |I| : I , X 6⊨ s, I , X ⊨ C , and∀Y ∈ |I| : X 6= Y =⇒ I , Y ⊨ s and I , Y 6⊨ D̄s

Proof Clearly, (1) and (2) cannot both be true at the same time. Assume (1) does

not hold. It suffices to prove (2). Let X and Y be states (possibly identical) such

that I , X 6⊨ s and I , Y 6⊨ s. Since I satisfies C , there is a state Z such that I , Z ⊨ C .

It now suffices to show that X = Y = Z , which follows since I , Z ⊨ D̄s. �

Lemma 6.3 Let T be a complete tableau and I an interpretation. Let

T ′ := {C ∈ T | I satisfies C }

Let D̄s1 . . . D̄sn be an injective enumeration of the set { D̄s | D̄s ∈ C ∈ T ′ }. Let

T ′0 := {C ∈ T ′ | C = CT
′
}. For all i ∈ [1, n] we construct a set T ′i from T ′i−1 as

follows:

• If ∀X ∈ |I| : I , X ⊨ si, then T ′i := {C ∈ T ′i−1 | C ⊲ si }.

• Otherwise, T ′i := {C ∈ T ′i−1 | C ⊲ si } ;
⋃
{C ∈ T ′i−1 | D̄si ∈ C }.

2010/8/10 22

Then, for all i ∈ [1, n]:

1. If C ∈ T ′i−1 ∩ T
′
i , D ∈ T

′
i−1, and C ⊆ D, then D ∈ T ′i .

2. If C ∈ T ′i−1 and I , X ⊨ C , then C ⊆ D for some D ∈ T ′i such that I , X ⊨ D.

3. T ′i ⊆ T
′
i−1.

4. If C ∈ T ′i , then C = CT
′
i (i.e., T ′i satisfies evidence condition (4)).

5. Let j ∈ [1, i], D̄sj ∈ C ∈ T
′
i , and D ∈ T ′i such that D 6= C . Then D ⊲ sj (i.e., T ′i

satisfies evidence condition (6) restricted to D̄s1, . . . , D̄si).

Proof

1. Let C ∈ T ′i−1 ∩ T
′
i and let D ∈ T ′i−1 be a superset of C . We consider two cases:

• T ′i = {C ∈ T
′
i−1 | C ⊲ si }. Since C ∈ T ′i , C ⊲ si. Since D ⊇ C , D ⊲ si (Proposi-

tion 3.1), and so D ∈ T ′i .

• T ′i = {C ∈ T
′
i−1 | C ⊲si } ;

⋃
{C ∈ T ′i−1 | D̄si ∈ C }. Since C ∈ T ′i , we either have

C⊲si or D̄si ∈ C . In the former subcase the proof proceeds analogously to the

preceding case. In the latter subcase, we must have C =
⋃
{C ∈ T ′i−1 | D̄si ∈

C }. Consequently, since D̄si ∈ C ⊆ D, we have C = D. The claim follows.

2. The proof proceeds by induction on i ∈ [1, n]. Let i ∈ [1, n] and let C ∈ T ′i−1.

Without loss of generality let C ⋫ si (otherwise C ∈ T ′i). We distinguish two

cases:

• ∀X ∈ |I| : I , X ⊨ si. Let X be such that I , X ⊨ C . Then I , X ⊨ C ; si, so

there is some D ∈ D(C ; si) such that I , X ⊨ D. Hence D ∈ T ′, DT
′
∈ T ′0,

and I , X ⊨ DT
′

(Propositions 7.3 and 7.4). We now show that there is some

E ∈ T ′i−1 such that C ⊆ D ⊆ DT
′
⊆ E and I , X ⊨ E. The claim then follows

since E ⊲ si, and so E ∈ T ′i . If i = 1, we can set E = DT
′
. For i > 1, the

existence of E follows by repeated application of the inductive hypothesis for

j ∈ [1, i− 1].

• Otherwise, let X be a state such that I , X 6⊨ si. Let Y be the state such that

I , Y ⊨ C . If Y 6= X, I , Y ⊨ si and the proof proceeds as in the first case.

Otherwise, let D ∈ T ′ be some clause such that D̄si ∈ D. Then I , Y ⊨ C ∪D

(Proposition 7.7), and hence I , Y ⊨ (C ∪ D)T
′

and (C ∪ D)T
′
∈ T ′0 (Proposi-

tions 7.3 and 7.4). As before, it now suffices to find some E ∈ T ′i−1 such that

C ⊆ (C ∪D)T
′
⊆ E and I , Y ⊨ E. The claim then follows since D̄si ∈ E, and so

E ⊆
⋃
{C ∈ T ′i−1 | D̄si ∈ C }. If i = 1, we can set E = (C ∪D)T

′
, while for i > 1,

the existence of E follows by repeated application of the inductive hypothesis

for j ∈ [1, i− 1].

3. We proceed by induction on i ∈ [1, n]. Let i ∈ [1, n]. The claim is obvious if

T ′i = {C ∈ T
′
i−1 | C ⊲ si }. Otherwise, it suffices to show that

⋃
{C ∈ T ′i−1 | D̄si ∈

C } ∈ T ′i−1. Let D :=
⋃
{C ∈ T ′i−1 | D̄si ∈ C }. By Proposition 7.7, there is a state X

such that

2010/8/10 23

a) X is the unique state such that I , X 6⊨ si, and

b) X is the unique state such that I , X ⊨ D̄si.

By (b), D is a clause. By (a) and (b), we have C ⋫ si whenever D̄si ∈ C . We have

D ∈ T by completeness criterion (6) and repeated application of the inductive

hypothesis for j ∈ [1, i − 1] together with the observation that T ′0 ⊆ T ′ ⊆ T .

Since I satisfies D, D ∈ T ′. By construction, C = CT
′

holds for all C ∈ T ′0, and

so, by repeated application of the inductive hypothesis, for all C ∈ T ′i−1. Then,

by Proposition 7.6, D = DT
′
, and hence D ∈ T ′0. Let C ∈ T ′i−1 such that D̄si ∈ C

(such a C exists by (2) and Propositions 7.3 and 7.4 since there is some E ∈ T ′

such that D̄si ∈ E). By repeated application of the inductive hypothesis, C ∈ T ′j
for all j ∈ [0, i − 1]. Since C ⊆ D, we obtain D ∈ T ′i−1 by repeated application

of (1).

4. The claim holds since it holds for T ′0 and, by (3), CT
′
i ⊆ CT

′
i−1 for all i ∈ [1, n].

5. We proceed by induction on i ∈ [1, n]. Let i ∈ [1, n]. Clearly, T ′i satisfies

evidence condition (6) restricted to D̄si if T ′i = {C ∈ T
′
i−1 | C⊲si }. Otherwise, we

know that C ⋫ si whenever D̄si ∈ C (Proposition 7.7). Hence, by construction, for

all clauses C ∈ T ′i except
⋃
{C ∈ T ′i−1 | D̄si ∈ C } we have C⊲si and D̄si ∉ C . This

implies evidence condition (6) restricted to D̄si. Evidence condition (6) restricted

to D̄s1, . . . , D̄si−1 follows by the inductive hypothesis and (3). �

Theorem 6.4 (Evidence) Let T be a complete tableau and let C ∈ T be such that,

for all t ∈ C and Ds ∈ BT , xDs does not occur in t. If C is satisfiable, then there

is an evident subtableau U of T̂ and a clause D ∈ U such that C ⊆ D.

Proof Let T and C be as required, and let I be a model of C . Since no term

in C contains nominals xDs such that Ds ∈ A, without loss of generality we

assume that, for all Ds ∈ A, I satisfies {xDs , s} whenever I satisfies {s}. Let T ′,

Ds1 . . .Dsn, T ′1, . . . , T
′
n be defined from T and I as in Lemma 6.3. We define:

U := T ′n ∪ {D
sE ∈ T̂ | {D, E} ⊆ T ′n }

By Lemma 6.3 (3), T ′n ⊆ T
′ ⊆ T . Hence U is a subtableau of T̂ . Since I satisfies

C , C ∈ T ′. By Propositions 7.3 and 7.4, CT
′
∈ T ′, and hence CT

′
∈ T ′0. So, by

Lemma 6.3 (2), there is some D ∈ T ′n ⊆ U such that C ⊆ CT
′
⊆ D.

By Lemma 6.3 (4,5), it remains to show that U satisfies evidence conditions

(1), (2), (3) and (5). We begin with condition (5). Let Ds ∈ E ∈ U . We distinguish

two cases.

• xDs ∉ E. By Lemma 6.3 (3), E ∈ T . Since I satisfies E, I satisfies {s} and hence

{xDs , s}. Consequently, there is some E′ ∈ D{xDs , s} such that I satisfies E′.

Since T is complete, E′ ∈ T . Since I satisfies E′, E′ ∈ T ′. By Propositions 7.3,

7.4, and Lemma 6.3 (2), there is some E′′ ∈ U such that E′ ⊆ E′T
′
⊆ E′′. Clearly,

E′′ ⊲ s (Proposition 3.1). Since xDs ∈ E
′′, E′′ 6= E.

2010/8/10 24

• xDs ∈ E. By Lemma 6.3 (3), E ∈ T . Let X be a state such that I , X ⊨ E. Since,

xDs ∈ E, IxDs = X. Since I satisfies E, there is some Y 6= X such that I , Y ⊨ s.

Since Y 6= X, I , Y ⊨ {¬xDs , s}. Hence, there is some E′ ∈ D{¬xDs , s} such

that I satisfies E′. The argument proceeds analogously to the first case.

Now to condition (1). Let ♦s ∈ E ∈ U . By Lemma 6.3 (3), E ∈ T . Since I

satisfies E, by Proposition 7.5 there is a minimal link E♦sE′ such that I satisfies

E′. Since T is complete, E♦sE′ ∈ T , and hence E′ ∈ T . By Propositions 7.3, 7.4,

and Lemma 6.3 (2), there is some E′′ ∈ U such that E′ ⊆ E′′. Then E♦sE′′ is a link

and, by Lemma 6.3 (3), E′′ ∈ T . By Proposition 7.2, E♦sE′′ ∈ T̂ . The claim follows.

Now to (2). Let ♦+s ∈ E ∈ U . We show that U has a run for E♦
+s . By

Lemma 6.3 (3), E ∈ T . Since I satisfies E, there are states X,Y , Z and some n ≥ 0

such that I , X ⊨ E, I , Z ⊨ s, and X →I Y →
n
I Z . By Proposition 3.4, I , Y ⊨ RE.

We proceed by induction on n.

Let n = 0. Then Y = Z , so I , Y ⊨ RE ; s. Then there is some E′ ∈ D(RE ; s)

such that I , Y ⊨ E′. So, E♦
+sE′ is a minimal link. Since T is complete, E♦

+sE′ ∈ T ,

and hence E′ ∈ T . By Proposition 7.4 and Lemma 6.3 (2), there is some E′′ ∈ U

such that E′ ⊆ E′′ (and I , Y ⊨ E′′). Then E♦
+sE′′ is a link and, by Lemma 6.3 (3),

E′′ ∈ T . By Proposition 7.2, E♦
+sE′′ ∈ T̂ , and so E♦

+sE′′ ∈ U . Since E′′ ⊲ s, EE′′ is

a run for E♦
+s .

Let n > 0. Then I , Y ⊨ RE ;♦+s. Consequently, there is some E′ ∈

D(RE ;♦+s) such that I , Y ⊨ E′. Analogously to the case n = 0, we obtain

that there is some E′′ ∈ U such that E′ ⊆ E′′, I , Y ⊨ E′′, and E♦
+sE′′ ∈ U . Since

E′′ ⊲ ♦+s, ♦+s ∈ E′′. By the inductive hypothesis for n− 1, U has a run E′′ . . . F

for E′′
♦+s

. Thus EE′′ . . . F is a run for E♦
+s in U .

It remains to show evidence condition (3). Let E ∈ U and x ∈ BE. By

Lemma 6.3 (3), E ∈ T . Since T is complete, {x} ∈ T . Clearly, I , Ix ⊨ {x}.

Hence, by Propositions 7.3, 7.4, and Lemma 6.3 (2), there is some E′ ∈ U such

that {x} ⊆ {x}T
′
⊆ E′. The claim follows. �

2010/8/10 25

	Introduction
	Hybrid Logic with Eventualities and Difference
	Clausal Form
	Tableaux for K*
	Tableaux for HD
	Tableaux for H* and H*D
	Conclusion

