
Clausal Tableaux for Hybrid PDL

Mark Kaminski and Gert Smolka

Saarland University

March 16, 2010

We present the first tableau-based decision procedure for PDL with nom-

inals. The procedure is based on a prefix-free clausal tableau system

designed as a basis for gracefully degrading reasoners. The clausal sys-

tem factorizes reasoning into regular, propositional, and modal reasoning.

This yields a modular decision procedure and pays off in transparent cor-

rectness proofs.

1 Introduction

PDL (propositional dynamic logic) [6, 11, 8] is an expressive modal logic invented

for reasoning about programs. It extends basic modal logic with expressions

called programs. Programs describe relations from states to states and are used

to express modalities. Programs are composed with the operators familiar from

regular expressions. In addition, they may employ formulas so that conditionals

and while loops can be expressed. Fischer and Ladner [6] show the decidabil-

ity of PDL using a filtration argument. They also prove that the satisfiability

problem for PDL is EXPTIME-hard. Pratt [15] shows that PDL satisfiability is in

EXPTIME using a tableau method with an and-or graph representation. Goré and

Widmann [7] address the efficient implementation of Pratt-style decision proce-

dures.

We consider PDL extended with nominals [12, 13], a logic we call hybrid PDL

or HPDL. Nominals are atomic formulas that hold exactly for one state. Nominals

equip PDL with equality and are the characteristic feature of hybrid logic [2]. The

satisfiability problem of HPDL is in EXPTIME [13, 16].

We are interested in a tableau system for HPDL that can serve as a basis for

gracefully degrading decision procedures. We found it impossible to extend one

of the existing tableau methods for PDL [15, 5, 1, 7] to nominals. The difficulties

are in the correctness proofs. For Pratt-like methods [15, 7], the problem stems

1

from the fact that the global and-or graph representation is not compatible with

nominal propagation (see Remark 5.6 in [9] for a discussion and an example).

The difficulties led us to the development of a new tableau method for modal

logic. The new method is based on a prefix-free clausal form. In a previous

paper [9] we used the method to give a tableau-based decision procedure for the

sublogic of HPDL that restricts programs to the forms a and a∗ where a is a

primitive action. In the present paper we extend the clausal method to full HPDL

and obtain the first tableau-based decision procedure for HPDL.

Our method factorizes reasoning into regular reasoning, propositional rea-

soning and modal reasoning. At each level we realize reasoning with tableau

methods. Nominals are handled at the modal level. Given our approach, the in-

tegration of nominals is straightforward. The modular structure of our decision

procedure pays off in transparent correctness proofs. Each level invites opti-

mizations. The regular level, in particular, asks for further investigation. It may

profit from efficient methods for translating regular expressions into determin-

istic automata.

In contrast to previous approaches, we do not rely on the Fischer-Ladner clo-

sure. Instead, we use the notion of a finitary regular DNF that can be obtained at

the regular level.

Following Baader [3] and De Giacomo and Massacci [5], we disallow bad loops

and thus avoid the a posteriori eventuality checking of Pratt’s method [15].

The paper is organized as follows. First we define HPDL and outline the

clausal tableau method with examples. Then we address, one after the other,

regular, propositional, and modal reasoning. Finally, we prove the correctness of

the decision procedure.

2 Hybrid PDL

We define the syntax and semantics of HPDL. We assume that three kinds of

names are given:

• nominals (x, y , z) (denote states)

• predicates (p, q, r) (denote sets of states)

• actions (a, b, c) (denote relations from states to states).

The interpretations of HPDL are the usual transition systems where states are

labelled with predicates and edges are labelled with actions. Formally, an inter-

pretation I is a tuple consisting of the following components:

• A nonempty set |I| of states.

• A state Ix ∈ |I| for every nominal x.

• A set Ip ⊆ |I| for every predicate p.

2010/3/16 2

• A relation
a
→I ⊆ |I| × |I| for every action a.

Formulas (s, t, u) and programs (α, β, γ) are defined as follows:

s ::= x | p | ¬s | s ∧ s | 〈α〉s

α ::= a | s | 1 | α+α | αα | α∗

The grammar is to be read inclusive, that is, every nominal and every predicate is

a formula, and every action and every formula is a program. We write programs

of the form α(βγ) without parentheses as αβγ. Given an interpretation, formu-

las denote sets of states and programs denote relations from states to states.

We use the letters X, Y , Z to denote states. The semantic relations I , X ⊨ s

and X
α
-→I Y are defined by mutual induction on the structure of formulas and

programs:

I , X ⊨ x ⇐⇒ X = Ix

I , X ⊨ p ⇐⇒ X ∈ Ip

I , X ⊨ ¬s ⇐⇒ not I , X ⊨ s

I , X ⊨ s ∧ t ⇐⇒ I , X ⊨ s and I , X ⊨ t

I , X ⊨ 〈α〉s ⇐⇒ ∃Y : X
α
-→I Y and I , Y ⊨ s

X
a
-→I Y ⇐⇒ X

a
→I Y

X
s
-→I Y ⇐⇒ X = Y and I , X ⊨ s

X
1
-→I Y ⇐⇒ X = Y

X
α+β
-→ I Y ⇐⇒ X

α
-→I Y or X

β
-→I Y

X
αβ
-→I Y ⇐⇒ ∃Z : X

α
-→I Z and Z

β
-→I Y

X
α∗
-→I Y ⇐⇒ X

α
-→∗I Y

α
-→∗I denotes the reflexive transitive closure of

α
-→I

Given a set A of formulas, we write I , X ⊨ A if I , X ⊨ s for all formulas s ∈ A. An

interpretation I satisfies (or is a model of) a formula s or a set A of formulas if

there is a state X ∈ |I| such that I , X ⊨ s or, respectively, I , X ⊨ A. A formula s

(a set A) is satisfiable if s (A) has a model.

The complement ∼s of a formula s is t if s = ¬t and ¬s otherwise. Note that

∼∼s = s if s is not a double negation. We use the notations s ∨ t := ¬(∼s ∧ ∼t)

and [α]s := ¬〈α〉∼s. Note that ∼〈α〉p = [α]¬p and ∼〈α〉¬p = [α]p. The

size |s| and |α| of formulas and programs is defined as the size of the abstract

syntax tree. For instance, |ap| = |〈p〉q| = 3. Note that |s ∨ t| > |s|, |t| and

|[α]s| ≥ |〈α〉s| > |α|, |s|.

2010/3/16 3

We use Fα to denote the set of all formulas that occur in α as subprograms.

For instance, F(a¬p + b〈ap〉q) = {¬p, 〈ap〉q}. Formulas that occur as pro-

grams are called tests.

Proposition 2.1 If s ∈ Fα, then |s| < |¬s| < |〈α〉t| ≤ |[α]t|.

3 Outline of the Method

Our tableau method is based on a clausal form, which provides for the separation

of regular, propositional, and modal reasoning. We start with a few definitions

and three examples.

A basic formula is a formula of the form p, x, or 〈aα〉s. A literal is a basic

formula or the complement of a basic formula. A clause (C , D) is a finite set

of literals that contains no complementary pair. A claim is a pair Cs consist-

ing of a clause C and a diamond formula s. The request of a clause C for an

action a is RaC := { [α]s | [aα]s ∈ C }. As an example, consider the clause

C = {〈ab∗〉p, 〈bb∗〉p, [a(a + b)∗]¬p}. We have RaC = {[(a + b)
∗]¬p} and

RbC = 0.

We interpret clauses conjunctively. Thus satisfaction of clauses (i.e., I , X ⊨

C) is a special case of satisfaction of sets of formulas (i.e., I , X ⊨ A), which was

defined in §2. For instance, the clause {p,¬p} is unsatisfiable.

The method is implemented with three reasoners. The propositional rea-

soner determines for every set A of formulas a set of clauses such that

I , X ⊨ A if and only if I , X ⊨ C for one of the clauses. Given the formula

〈a∗〉p ∧ [b∗]¬p, for instance, the propositional reasoner determines the sin-

gle clause {〈aa∗〉p, ¬p, [bb∗]¬p}. The modal reasoner constructs for every

satisfiable clause a finite model whose states are clauses and where every state C

satisfies the clause C . To do so, the modal reasoner starts with the initial clause

and derives further clauses until every diamond literal s in every clause C is re-

alized with a link CsDt where D is one of the clauses. The modal reasoner calls

the regular reasoner to determine the successor formula t and the propositional

reasoner to determine the successor clause D. The tableau method terminates

since the derived clauses must take their literals from a finite set that can be

determined from the initial formulas.

Example 3.1 Consider the following literals and clauses:

s := 〈a(a+ b)∗〉p C := {t,¬p,u}

t := 〈b(a+ b)∗〉p D := {s, t,¬p,u}

u := [bb∗](¬p ∧ t) E := {p}

2010/3/16 4

We start the modal reasoner with the satisfiable clause C . There is one claim Ct

to be realized. We need a clause that supports the formulas 〈(a + b)∗〉p and

[b∗](¬p∧ t). The regular reasoner and the propositional reasoner determine Ct

and Ds as possible successor clauses and successor literals. The modal reasoner

rejects Ct since it would introduce the loop CtCt . The pair Ds is fine and adds

the clause D and the link CtDs . The claim Ct is now realized. However, the new

clause D has two unrealized claims Ds and Dt . To realize Ds , we need a clause

that supports the formula 〈(a + b)∗〉p. The regular and the propositional rea-

soner yield the pairs E〈1〉p, {s}s , and {t}t . We choose E〈1〉p and add the clause E

and the link DtE〈1〉p. It remains to realize Dt . To do so, we need a clause that

supports the formulas 〈(a+b)∗〉p and [b∗](¬p∧ t). As before, the regular and

the propositional reasoner yield Ct and Ds . Both are fine. We choose Ct and

add the link DtCt . This gives us a model for the initial clause C . A graphical

representation of the model looks as follows:

C t, ¬p, u

D s, t, ¬p, u

E p

b b

a

�

Example 3.2 Consider the following literals:

s := 〈a(a+ b)∗〉¬p u := [a(b + a)∗]p

t := 〈b(a+ b)∗〉¬p v := [b(b + a)∗]p

Here is a closed tableau for the unsatisfiable clause {s, u}:

C1 = {s, u}

C2 = {s, p,u, v} C3 = {t, p,u, v}

Cs1C
s
2 Cs1C

t
3

C4 = {t, p,u, v} C5 = {s, p,u, v}

Cs2C
t
4 Ct3C

s
5

The tableau is closed since all possible links for the claims Ct4 and Cs5 introduce

loops. For instance, for Ct4 the regular and the propositional reasoner yield the

links Ct4C
s
2 and Ct4C

t
4. Note that the clause names Ci do not act as prefixes. They

are only used for explanatory purposes. �

Example 3.3 Due to the clausal form, the extension of our tableau method to

nominals is straightforward. When we add a new clause to a branch, we add to

2010/3/16 5

the new clause all literals that occur in clauses of the branch that have a nominal

in common with the new clause. This takes care of nominal propagation. Clauses

and links that are already on the branch remain unchanged.

Consider the clause C = {〈aa∗〉p, [a](x∧¬p), [b]x, 〈b〉[a]¬p}. The initial

tableau just consisting of C can be developed into a maximal branch as follows

(graphical representation):

〈aa∗〉p, [a](x ∧¬p), [b]x, 〈b〉[a]¬p
1

x, 〈aa∗〉p, ¬p
2

x, 〈aa∗〉p, ¬p, [a]¬p
4

p
3

〈aa∗〉p, ¬p
5

The numbers indicate the order in which the clauses are introduced. When clause

4 is introduced, nominal propagation from clause 2 takes place. Note that we

obtain a model of all clauses on the branch by taking the clauses 1, 3, 4, and 5

as states and the triples 1a4, 1b4, 4a5, and 5a3 as transitions. �

4 Language-Theoretic Semantics

We define a language-theoretic semantics for programs that treats formulas as

atomic objects. This semantics is the base for the regular reasoner and decouples

it from the propositional reasoner. It is also essential for the correctness proofs

of the modal reasoner. The semantics is an adaption of the language-theoretic

model of Kleene algebras with tests [10].

The letters A, B range over finite sets of formulas. A guarded string is a finite

sequence Aa1A1 . . . anAn where n ≥ 0. The letters σ and τ range over guarded

strings. The length |σ | of a guarded string σ = Aa1A1 . . . anAn is n. We use

For to denote the set of all formulas. A language is a set of guarded strings. For

languages L and L′ and sets of formulas A we define the following:

LA := {B | A ⊆ B ⊆ For } L0 := L0

L · L′ := {ωAω′ |ωA ∈ L, Aω′ ∈ L′ } Ln+1 := L · Ln

L∗ :=
⋃

n∈N

Ln

Note that L∗ = L0∪ (L−L0) ·L∗. We assign to every program α a language Lα:

La := {AaB | A,B ⊆ For } L(α+ β) := Lα∪Lβ

Ls := L{s} L(αβ) := Lα · Lβ

L1 := L0 Lα∗ := (Lα)∗

2010/3/16 6

Note that L(s∗) = L1 = L((s + t)∗).

Given an interpretation I , we define the relations
σ
-→I ⊆ |I| × |I| by induction

on the structure of σ :

X
A
-→I Y ⇐⇒ X = Y and I , X ⊨ A

X
Aaσ
-→ I Y ⇐⇒ I , X ⊨ A and ∃Z : X

a
-→I Z and Z

σ
-→I Y

Proposition 4.1

1. X
α
-→I Y ⇐⇒ ∃ σ ∈ Lα : X

σ
-→I Y

2. I , X ⊨ 〈α〉s ⇐⇒ ∃ σ ∈ Lα ∃Y : X
σ
-→I Y and I , Y ⊨ s

3. I , X ⊨ [α]s ⇐⇒ ∀σ ∈ Lα ∀Y : X
σ
-→I Y implies I , Y ⊨ s

5 Regular DNF

We now describe the regular reasoner. The regular reasoner relies on the

language-theoretic semantics and ignores the propositional and modal aspects

of the language.

A program is basic if it has the form aα, and normal if it is 1 or basic. A

guarded program is a pair Aα where A is a set of formulas and α is a program.

A guarded program Aα is normal if α is normal. The language of a guarded

program is L(Aα) := LA · Lα. A regular DNF is a function D that maps every

program α to a finite set Dα of normal guarded programs such that:

1. Lα =
⋃

Bβ∈Dα

L(Bβ)

2. If Bβ ∈ Dα, then B ∪Fβ ⊆ Fα.

LetD be a regular DNF. A set P of programs isD-closed if β ∈ P whenever α ∈ P

and Bβ ∈ Dα. A regular DNF D is finitary if for every program α there exists a

finite D-closed set of programs that contains α.

The regular reasoner computes a finitary regular DNF. Kleene’s theorem (reg-

ular expressions translate into finite automata) [14] suggests that finitary regular

DNFs exist. We give a naive algorithm that computes a finitary DNF. For space

reasons we omit the correctness proof. The algorithm employs the following

inference rules for guarded programs.

Aa

Aa1

As

(A ; s)1

Asβ

(A ; s)β

A1β

Aβ

A(α1 +α2)

Aα1 , Aα2

A(α1 +α2)β

Aα1β , Aα2β

A(α1α2)β

Aα1α2β

Aα∗

A1 , Aαα∗

Aα∗β

Aβ , Aαα∗β

2010/3/16 7

The notation A ; s stands for the set A∪{s}. Given a set G of guarded programs,

we denote the closure of G under the rules with RG. One can show that RG

describes the same language as G, and that RG is finite if G is finite. If G is a

set of guarded programs, we call a guarded program Aα ∈ G minimal in G if

A ⊆ B whenever Bα ∈ G. We obtain a finitary regular DNF D by taking for Dα

all normal guarded programs in R{0α} that are minimal in R{0α}.

Example 5.1 Consider the program (a+ b)∗. We have:

R{0(a+ b)∗} = {0(a+ b)∗, 01, 0(a+ b)(a+ b)∗, 0a(a+ b)∗, 0b(a+ b)∗}

D{(a+ b)∗} = {01, 0a(a+ b)∗, 0b(a+ b)∗} �

Example 5.2 Consider the program (p+q)∗ where p, q are predicates. We have

D{(p + q)∗} = {01}. We profit from the optimization that only the minimal

guarded programs are taken for the DNF. Otherwise D{(p + q)∗} would contain

three further elements. �

There are efficient algorithms that translate regular expressions into deter-

ministic finite automata [4]. For programs without tests this gives us efficient

regular DNFs. We expect that efficient regular DNFs also exist for programs with

tests.

We fix some computable and finitary regular DNF D for the rest of the paper.

Proposition 5.3

1. I , X ⊨ 〈α〉s ⇐⇒ ∃ Bβ ∈ Dα : I , X ⊨ B ;〈β〉s

2. I , X ⊨ [α]s ⇐⇒ ∀ Bβ ∈ Dα : (∃ t ∈ B : I , X ⊨ ¬t) or I , X ⊨ [β]s

Proof Follows with Proposition 4.1. �

6 Propositional DNF

The propositional reasoner relies on a support relation from clauses to formulas

that abstracts from most modal aspects of the language. We define the support

2010/3/16 8

relation C ⊲ s by recursion on s.

C ⊲ s ⇐⇒ s ∈ C if s is a literal

C ⊲¬¬s ⇐⇒ C ⊲ s

C ⊲ s ∧ t ⇐⇒ C ⊲ s and C ⊲ t

C ⊲ s ∨ t ⇐⇒ C ⊲ s or C ⊲ t

C ⊲ 〈1〉s ⇐⇒ C ⊲ s

C ⊲ [1]s ⇐⇒ C ⊲ s

C ⊲ 〈α〉s ⇐⇒ ∃Bβ ∈ Dα : (∀t ∈ B : C ⊲ t) and C ⊲ 〈β〉s if α not normal

C ⊲ [α]s ⇐⇒ ∀Bβ ∈ Dα : (∃t ∈ B : C ⊲¬t) or C ⊲ [β]s if α not normal

The last two equivalences of the definition employ the finitary regular DNF D

fixed above. The recursion terminates since either the size of the formula is

reduced (verify with Proposition 2.1) or the recursion is on a formula 〈β〉s or [β]s

where β is normal and s is unchanged. We say C supports s if C ⊲ s. We write

C ⊲A and say C supports A if C ⊲ s for every s ∈ A. Note that C ⊲D ⇐⇒ D ⊆ C

if C and D are clauses.

Proposition 6.1 If C ⊲A and C ⊆ D and B ⊆ A, then D ⊲ B.

Proposition 6.2 If I , X ⊨ C and C ⊲A, then I , X ⊨ A.

Proof Follows with Proposition 5.3. �

A propositional DNF is a function D that maps every finite set A of formulas

to a finite set of clauses such that:

1. I , X ⊨ A ⇐⇒ ∃D ∈ DA : I , X ⊨ D.

2. C ⊲A ⇐⇒ ∃D ∈ DA : D ⊆ C .

For the termination of the modal reasoner the propositional DNF must have

some additional finiteness property. We need a few preparatory definitions. The

variants of a program α are the basic programs β such that Bβ ∈ Dα for some B.

A base is a set U of basic formulas such that 〈β〉s ∈ U whenever 〈aα〉s ∈ U and β

is a variant of α. A base U supports a formula s if the following conditions are

satisfied:

1. U contains every basic formula that occurs in s.

2. If 〈α〉t occurs in s, α is not basic, and β is a variant of α, then 〈β〉t ∈ U .

A base supports a set of formulas A if it supports every formula s ∈ A.

Proposition 6.3 Every set of formulas is supported by a finite base.

2010/3/16 9

Proof Follows from the fact that the underlying regular DNF is finitary. �

A propositional DNF D is finitary if for every finite set of formulas A and

every base U supporting A and every clause C ∈ DA it holds that U supports C .

Proposition 6.4 There is a computable finitary propositional DNF.

Proof The definition of the support relation can be seen as a tableau-style de-

composition procedure for formulas. The clauses of a propositional DNF can

be obtained with the literals the decomposition produces. The direction “⇐” of

property (1) for propositional DNFs follows with Proposition 6.2. That the DNF

is finitary follows from the fact that the decomposition does not introduce new

formulas except for diamond formulas obtained with the finitary regular DNF. �

Example 6.5 Take the regular DNF given in §5 and the propositional DNF given

in the proof of Proposition 6.4. We have:

D{〈b∗〉p} = {{p}, {〈bb∗〉p}}

D{〈b∗〉p, [b∗](q ∧¬p)} = {{〈bb∗〉p, q, ¬p, [bb∗](q ∧¬p)}}

D{〈a∗〉p, [a∗]¬p} = 0

D{〈(a + b)∗〉p} = {{p}, {〈a(a+ b)∗〉p}, {〈b(a+ b)∗〉p}}

D{〈(a+ b)∗〉p, [b∗]¬p} = { {〈a(a+ b)∗〉p, ¬p, [bb∗]¬p},

{〈b(a+ b)∗〉p, ¬p, [bb∗]¬p} }

For the third example note that [a∗]¬p is the complement of 〈a∗〉p. �

We fix some computable and finitary propositional DNF D for the rest of the

paper.

7 Diamond Expansion and Nominal Propagation

We now return to the modal reasoner, which was first explained in §3. The

modal reasoner builds a tableau where each branch contains clauses and links.

The goal consists in constructing a branch where every claim is realized with a

link and some further conditions are satisfied. We first make precise how the

modal reasoner derives new clauses.

An expansion of a claim C〈aα〉s is a claim D〈β〉s such that Bβ ∈ Dα and

D ∈ D(B ;〈β〉s ∪RaC) for some B.

Proposition 7.1 Let Cs be a claim such that s ∈ C and let I satisfy C . Then there

exists an expansion Dt of Cs such that I satisfies D.

2010/3/16 10

Proof We have s = 〈aα〉t and I , X ⊨ {〈α〉t} ∪RaC since s ∈ C and I satisfies C .

By Proposition 5.3 we have I , X ⊨ B ;〈β〉s ∪RaC for some Bβ ∈ Dα. The claim

follows by (1) in the definition of propositional DNFs. �

A link is a pair CsDt of two claims such that s ∈ C and there is an expansion

Et of Cs such that E ⊆ D. A quasi-branch is a finite set Γ of clauses and links

such that {C, D} ⊆ Γ whenever CsDt ∈ Γ . A quasi-branch Γ realizes a claim Cs

if Γ contains some link CsDt . A base supports a quasi-branch Γ if it supports

every clause of Γ . A model of a quasi-branch Γ is an interpretation that satisfies

every clause in Γ .

We call a clause nominal if it contains a nominal. Let Γ be a quasi-branch

and A be a set of formulas. We realize nominal propagation with the notation

AΓ := A∪ { s | ∃x ∈ A ∃C ∈ Γ : x ∈ C ∧ s ∈ C }

Note that AΓ is the least set of formulas that contains A and all clauses C ∈ Γ

that have a nominal in common with A. Thus (AΓ)Γ = AΓ . Moreover, AΓ = A if A

contains no nominal.

Proposition 7.2 If an interpretation satisfies Γ and C , it satisfies CΓ .

Proposition 7.3 Let U be a base that supports a quasi-branch Γ , Cs be a claim

such that s ∈ C ∈ Γ , and Dt be an expansion of Cs . Then U supports DΓ .

8 Branches and Expansion Rule

A quasi-branch that realizes all its claims does not necessarily have a model.

To guarantee the existence of a model, we impose certain conditions on quasi-

branches that act as invariants of the modal reasoner. One of the conditions is

loop freeness.

Example 8.1 Consider the clause C = {〈aa∗〉¬p, p, q, [aa∗](p ∧ q)}. Note

that C is unsatisfiable, and that {C, C〈aa
∗〉¬pC〈aa

∗〉¬p} is a quasi-branch that

realizes every claim. The link of this quasi-branch describes a loop. �

A path in a quasi-branch Γ is a sequence C1
s1 . . . Cn

sn of claims such that:

1. ∀i ∈ [1, n] : CΓi = Ci.

2. ∀i ∈ [1, n− 1] ∃D : Ci
siDsi+1 ∈ Γ and DΓ = Ci+1.

A loop in a quasi-branch Γ is a path C1
s1 . . . Cn

sn in Γ such that n ≥ 2 and

Cn
sn = C1

s1 . A branch is a quasi-branch Γ that satisfies the following conditions:

• Functionality: If CsDt ∈ Γ and CsEu ∈ Γ , then Dt = Eu.

2010/3/16 11

• Loop-freeness: There is no loop in Γ .

• Nominal coherence: If C ∈ Γ , then CΓ ∈ Γ .

The core of a branch Γ is CΓ := {C ∈ Γ | CΓ = C }. A branch Γ is evident if

Γ realizes C〈α〉s for all 〈α〉s ∈ C ∈ CΓ . We will show that every evident branch

has a model. The modal reasoner works on branches and applies the following

expansion rule:

Expansion Rule

If 〈α〉s ∈ C ∈ CΓ and Γ does not realize C〈α〉s ,

then expand Γ to all branches Γ ;DΓ ;C〈α〉s(DΓ)t

such that Dt is an expansion of C〈α〉s and DΓ is a clause.

Note that a single clause always yields a branch. So the modal reasoner can start

with any clause.

Proposition 8.2 The modal reasoner terminates on every branch.

Proof Since branches are finite by definition, we know by Proposition 6.3 that

the initial branch is supported by a finite base. By Proposition 7.3 we know that

the expansion rule only adds clauses that are supported by the initial base. The

claim follows since a finite base can only support finitely many clauses. �

Given termination, the correctness of the modal reasoner can be established

by showing two properties:

1. Model Existence: Every evident branch has a model.

2. Soundness: Every satisfiable clause can be developed into an evident branch.

9 Model Existence

Proposition 9.1 Let Γ be an evident branch and 〈α〉s ∈ C ∈ CΓ . Then there exists

a unique path C〈α〉s . . . D〈1〉s in Γ .

Proof The path exists since Γ is loop-free and realizes every claim with a clause

in CΓ . The path is unique since Γ is functional. �

Lemma 9.2 If X
a
-→I Y and I , Y ⊨ B ;〈β〉s and Bβ ∈ Dα, then I , X ⊨ 〈aα〉s.

Proof Follows with Propositions 4.1 and 5.3. �

The model existence proof requires a somewhat involved induction, which we

realize with the following lemma.

2010/3/16 12

Lemma 9.3 Let Γ be an evident branch and I be an interpretation such that:

• |I| = CΓ

• C
a
→I D ⇐⇒ ∃α, s, t, E : C〈aα〉sEt ∈ Γ and D = EΓ for all actions a

• C ∈ Ip ⇐⇒ p ∈ C for all predicates p

• Ix = C ⇐⇒ x ∈ C for all nominals x that occur in Γ

Let |Fα| := max{ |s| | s ∈ Fα }. Then for all n ∈ N:

1. For every path C〈α〉s . . . D〈1〉s in Γ such that |Fα|, |s| < n:

If C ⊲ 〈α〉s, then I , C ⊨ 〈α〉s.

2. For all C , D, σ , α, s such that |Fα|, |s| < n− 1:

If C ⊲ [α]s, σ ∈ Lα, and C
σ
-→I D, then D ⊲ s.

3. For all C , s such that C ∈ CΓ and |s| = n:

If C ⊲ s, then I , C ⊨ s.

Proof By induction on n. Let n ∈ N.

1. Let π = C〈α〉s . . . D〈1〉s be a path in Γ such that |Fα|, |s| < n and C ⊲ 〈α〉s. We

show I , C ⊨ 〈α〉s by induction on the length of π . Case analysis.

• α = 1. Then C ⊲ s and thus I , C ⊨ s by (3) of the outer inductive hypothesis.

The claim follows.

• α = aβ. Then π = C〈aβ〉sE〈γ〉s . . . D〈1〉s for some E and γ. It follows that

E ⊲ 〈γ〉s, C
a
-→I E, Bγ ∈ Dβ, and E ⊲ B for some B. We have I , E ⊨ 〈γ〉s

by the inner inductive hypothesis and I , E ⊨ B by (3) of the outer inductive

hypothesis. The claim follows by Lemma 9.2.

2. Let C ⊲ [α]s, σ ∈ Lα, C
σ
-→I D, and |Fα|, |s| < n − 1. We show D ⊲ s by

induction on |σ |. Case analysis.

• α = 1. Then C ⊲ s and C = D. The claim follows.

• α = aβ. Then σ = Aaτ , τ ∈ Lβ, and [aβ]s ∈ C for some A and τ . Moreover,

I , C ⊨ A and C
a
-→I E

τ
-→I D for some E. Thus E ⊲RaC . Hence E ⊲ [β]s since

[aβ]s ∈ C . The claim follows by the inner inductive hypothesis.

• α not normal. Then Bβ ∈ Dα and σ ∈ L(Bβ) for some B and β. Thus σ ∈ Lβ

and I , C ⊨ B. Hence we know by (3) of the outer induction hypothesis that

C ⊲¬u for no u ∈ B. Thus C ⊲[β]s since C ⊲[α]s. Since β is normal, we now

obtain the claim by arguing as in the first two cases.

3. Let C ∈ CΓ such that C ⊲ s and |s| = n. We show I , C ⊨ s. Case analysis:

• s = p. Then p ∈ C and hence C ∈ Ip. The claim follows.

• s = ¬p. Then ¬p ∈ C . Hence p ∉ C and so C ∉ Ip. The claim follows.

• s = x and s = ¬x. Analogously to the above two cases.

• s = ¬¬t. Then C ⊲ t. The claim follows by (3) of the inductive hypothesis.

2010/3/16 13

• s = t1 ∧ t2 and s = t1 ∨ t2. Analogously.

• s = 〈α〉t. Case analysis.

– α = 1. Then C ⊲ t. Thus I , C ⊨ t by (3) of the inductive hypothesis. The

claim follows.

– α basic. Then 〈α〉t ∈ C . By Proposition 9.1 we know that there is a path

C〈α〉t . . . D〈1〉t in Γ . The claim follows by (1) of the inductive hypothesis.

– α not normal. Then C ⊲ B ;〈β〉t for some Bβ ∈ Dα. Thus I , C ⊨ B by

(3) of the inductive hypothesis. Since β is normal, we obtain I , C ⊨ 〈β〉t by

arguing as in the first two cases. The claim follows with Proposition 5.3 (1).

• s = [α]t. Let σ ∈ Lα and C
σ
-→I D. By Proposition 4.1 (3) it suffices to show

that I , D ⊨ t. We have D ⊲ t by (2) of the inductive hypothesis. Thus I , D ⊨ t

by (3) of the inductive hypothesis. �

Theorem 9.4 (Model Existence) Every evident branch has a finite model.

Proof Let Γ be an evident branch. If Γ = 0, the claim is trivial. Let Γ ≠ 0. Without

loss of generality we assume that for every nominal that occurs in Γ there is a

unique clause C ∈ CΓ such that x ∈ C (add clauses {x} as necessary). Now an

interpretation I as required by Lemma 9.3 exists. Let C ∈ CΓ . It suffices to show

I , C ⊨ C . Let s ∈ C . Then C ⊲ s. The claim follows with Lemma 9.3 (3). �

10 Soundness

We have now arrived at the crucial part of the correctness proof. Ideally, we

would like to show that a satisfiable branch with an unrealized claim can always

be expanded. However, this is not true.

Example 10.1 Consider the following branch where s := [aa∗](q ∨ [a]¬p):

〈aa∗〉p, ¬p, q, s

〈aa∗〉p, [a]¬p, s

〈aa∗〉p, ¬p, [a]¬p, s

The branch is satisfiable. Still it is impossible to realize the claim for the third

clause since each of the two possible expansions introduces a loop. �

Following [9], we solve the problem with the notion of a straight model. A

straight model requires that all links on the branch make maximal progress

2010/3/16 14

towards the fulfillment of the diamond literal they serve. Every satisfiable ini-

tial branch has a straight model, and every unrealized claim on a branch with a

straight model I can be expanded such that I is a straight model of the expanded

branch.

Let I be an interpretation and A be a set of formulas. The depth of A and

〈α〉s in I is defined as

δIA(〈α〉s) := min{ |σ | | σ ∈ Lα and

∃X,Y ∈ |I| : I , X ⊨ A and X
σ
-→I Y and I , Y ⊨ s }

where min0 = ∞ and n < ∞ for all n ∈ N. A link CsDt is straight for an

interpretation I if δIDt ≤ δIEu for every expansion Eu of Cs . A straight model

of a quasi-branch Γ is a model of Γ such that every link CsDt ∈ Γ is straight for I .

Proposition 10.2 δIAs <∞ iff I satisfies A ; s.

Proof Follows with Proposition 4.1. �

Proposition 10.3 Let I be a model of a quasi-branch Γ . Then δIAs = δIA
Γ s.

Lemma 10.4 (Straightness) A quasi-branch that has a straight model contains

no loops.

Proof By contradiction. Let I be a straight model of a quasi-branch Γ and

C1
s1 . . . Cn

sn be a loop in Γ . Then n ≥ 2 and C1
s1 = Cn

sn . It suffices to show

that δICisi > δICi+1si+1 for all i ∈ [1, n− 1]. Let i ∈ [1, n− 1]. Then si = 〈aα〉t,

Ci
siDsi+1 ∈ Γ , and DΓ = Ci+1 for some a, α, t, and D. By Proposition 10.2,

δICisi < ∞ since I satisfies Ci and si ∈ Ci. Let σ ∈ L(aα) and X,Y ∈ |I| be

such that |σ | = δICisi and I , X ⊨ Ci and X
σ
-→I Y and I , Y ⊨ t. Then σ = Aaτ

for some A and some τ ∈ Lα. Let Z ∈ |I| be such that X
a
-→I Z and Z

τ
-→I Y .

Let Bβ ∈ Dα such that τ ∈ L(Bβ). Then I , Z ⊨ B and I , Z ⊨ 〈β〉t by Proposi-

tion 4.1 (2). Moreover, I , Z ⊨ RaCi. Thus there is some E ∈ D(B ;〈β〉t ∪RaCi)

such that I , Z ⊨ E. Clearly, E〈β〉t is an expansion of Ci
si and, since τ ∈ L(Bβ),

δIE(〈β〉t) ≤ |τ| = |σ | − 1 < δICisi. Moreover, δIDsi+1 ≤ δIE(〈β〉t) since

Ci
siDsi+1 is straight for I . Hence δICi+1si+1 < δICisi by Proposition 10.3 since

DΓ = Ci+1. �

Theorem 10.5 (Soundness) Let I be a straight model of a branch Γ and let

〈α〉s ∈ C ∈ Γ such that Γ does not realize C〈α〉s . Then there is an expansion Dt

of C〈α〉s such that Γ ;DΓ ;C〈α〉s(DΓ)t is a branch and I is a straight model of

Γ ;DΓ ;C〈α〉s(DΓ)t .

2010/3/16 15

Proof Since I is a model of C and 〈α〉s ∈ C , there is an expansion Dt of

C〈α〉s such that D is satisfied by I (by Propositions 7.1). For every such clause,

Γ ;DΓ ;C〈α〉s(DΓ)t is a quasi-branch that has I as a model (by Proposition 7.2) and

satisfies the nominal coherence and functionality conditions. By Lemma 10.4, it

suffices to show that we can choose Dt such that I is straight for C〈α〉s(DΓ)t .

We choose an expansion Dt of C〈α〉s such that D is satisfied by I and

δIDt is minimal. Let Eu be an expansion of C〈α〉s . It suffices to show that

δI(D
Γ)t ≤ δIEu. If I does not satisfy E, the claim follows by Proposition 10.2.

If I satisfies E, we have δIDt ≤ δIEu, so the claim follows by Proposition 10.3.�

11 Final Remarks

The main innovation of the present paper over our previous paper [9] is the

notion of a finitary regular DNF. This makes it possible to cover all PDL programs

and still have transparent correctness proofs.

It is straightforward to extend the clausal tableau method for HPDL to sat-

isfaction formulas @xs. To deal with such formulas, one adds an additional

expansion rule at the modal level as presented in [9].

The optimizations for the modal level of clausal tableaux discussed in [9]

carry over to HPDL.

Our approach yields a novel and particularly simple tableau method for hy-

brid logic. We are interested in extending the clausal method to difference modal-

ities and converse modalities.

Another interesting direction for future work is the implementation of a

prover based on the clausal method presented in this paper and to compare

its performance to existing provers for hybrid logic and PDL.

References

[1] Pietro Abate, Rajeev Goré, and Florian Widmann. An on-the-fly tableau-

based decision procedure for PDL-satisfiability. In Carlos Areces and

Stéphane Demri, editors, Proc. 5th Workshop on Methods for Modalities

(M4M-5), volume 231 of Electr. Notes Theor. Comput. Sci., pages 191–209.

Elsevier, 2009.

[2] Carlos Areces and Balder ten Cate. Hybrid logics. In Patrick Blackburn, Johan

van Benthem, and Frank Wolter, editors, Handbook of Modal Logic, volume 3

of Studies in Logic and Practical Reasoning, pages 821–868. Elsevier, 2007.

2010/3/16 16

[3] Franz Baader. Augmenting concept languages by transitive closure of roles:

An alternative to terminological cycles. Technical Report RR-90-13, DFKI,

1990.

[4] Gérard Berry and Ravi Sethi. From regular expressions to deterministic au-

tomata. Theor. Comput. Sci., 48(3):117–126, 1986.

[5] Giuseppe De Giacomo and Fabio Massacci. Combining deduction and model

checking into tableaux and algorithms for converse-PDL. Inf. Comput.,

162(1–2):117–137, 2000.

[6] Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of

regular programs. J. Comput. System Sci., pages 194–211, 1979.

[7] Rajeev Goré and Florian Widmann. An optimal on-the-fly tableau-based de-

cision procedure for PDL-satisfiability. In Renate A. Schmidt, editor, CADE

2009, volume 5663 of LNCS, pages 437–452. Springer, 2009.

[8] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. The MIT Press,

2000.

[9] Mark Kaminski and Gert Smolka. Terminating tableaux for hybrid logic with

eventualities. In IJCAR 2010. Springer, 2010. To appear.

[10] Dexter Kozen and Frederick Smith. Kleene algebra with tests: Completeness

and decidability. In Dirk van Dalen and Marc Bezem, editors, CSL’96, volume

1258 of LNCS, pages 244–259. Springer, 1996.

[11] Dexter Kozen and Jerzy Tiuryn. Logics of programs. In Handbook of The-

oretical Computer Science, Volume B: Formal Models and Sematics, pages

789–840. Elsevier, 1990.

[12] Solomon Passy and Tinko Tinchev. PDL with data constants. Inf. Process.

Lett., 20(1):35–41, 1985.

[13] Solomon Passy and Tinko Tinchev. An essay in combinatory dynamic logic.

Inf. Comput., 93(2):263–332, 1991.

[14] Dominique Perrin. Finite automata. In Handbook of Theoretical Computer

Science, Volume B: Formal Models and Sematics, pages 1–57. Elsevier, 1990.

[15] Vaughan R. Pratt. A near-optimal method for reasoning about action. J.

Comput. System Sci., 20(2):231–254, 1980.

2010/3/16 17

[16] Ulrike Sattler and Moshe Y. Vardi. The hybrid µ-calculus. In Rajeev Goré,

Alexander Leitsch, and Tobias Nipkow, editors, IJCAR 2001, volume 2083

of LNCS, pages 76–91. Springer, 2001.

2010/3/16 18

	Introduction
	Hybrid PDL
	Outline of the Method
	Language-Theoretic Semantics
	Regular DNF
	Propositional DNF
	Diamond Expansion and Nominal Propagation
	Branches and Expansion Rule
	Model Existence
	Soundness
	Final Remarks

