
Terminating Tableaux for

Hybrid Logic with Eventualities

Mark Kaminski and Gert Smolka

Saarland University

June 25, 2010

We present the first terminating tableau system for hybrid logic with even-

tualities. The system is designed as a basis for gracefully degrading rea-

soners. Eventualities are formulas of the form ♦∗s that hold for a state if

it can reach in n ≥ 0 steps a state satisfying the formula s. The system

is prefix-free and employs a novel clausal form that abstracts away from

propositional reasoning. It comes with an elegant correctness proof. We

discuss some optimizations for decision procedures.

1 Introduction

We consider basic modal logic extended with nominals and eventualities. We call

this logic H∗. Nominals are formulas of the form x that hold exactly for the

state x. Eventualities are formulas of the form ♦∗s that hold for a state if it

can reach in n ≥ 0 steps a state satisfying the formula s. Nominals equip modal

logic with equality and are the characteristic feature of hybrid logic [4, 2]. Even-

tualities extend modal logic with reflexive transitive closure and are an essential

feature of PDL [11, 15] and temporal logics [19, 9, 10]. One can see H∗ either

as hybrid logic extended with eventualities or as stripped-down PDL extended

with nominals. Due to the inductive nature of eventualities, H∗ is not compact

(consider ♦∗¬p, p, �p, ��p, . . .). On the other hand, the satisfiability problem

for H∗ is decidable and EXPTIME-complete. Decidability can easily be shown

with filtration [4]. Decidability in deterministic exponential time follows from a

corresponding result for the hybrid µ-calculus [21], a logic that subsumes H∗.

EXPTIME-hardness follows from Fischer and Ladner’s [11] proof for PDL, which

also applies to modal logic with eventualities. See Blackburn et al. [4] for a dis-

cussion and an elegant proof (Theorem 6.52).

1

We are interested in a terminating tableau system for H∗ that can serve as

a basis for gracefully degrading reasoners. Given that there are terminating

tableau systems for both PDL [20, 3, 8, 1, 13] and hybrid logic [7, 5, 16, 17, 18],

one would hope that coming up with a terminating system for H∗ is not dif-

ficult. Once we attacked the problem we found it rather difficult. First of all,

the approaches taken by the two families of systems are very different. Hybrid

systems rely on fine-grained prefix-based propagation of equational information

and lack the structure needed for checking eventualities. PDL systems do not

provide the propagation needed for nominals and this propagation is in conflict

with the and-or graph representation [20, 13] and the existing techniques for

proving correctness.

After some trial an error, we decided to first construct a terminating tableau

system for modal logic with eventualities and nothing else. The goal was to ob-

tain a simple system with a simple correctness proof that would scale to the ex-

tension with nominals. In the end we found a convincing solution that uses some

new ideas. In contrast to existing systems for hybrid logic, our system is prefix-

free and does not rely on fine-grained propagation of equational constraints.

Following the PDL systems of Baader [3] and De Giacomo and Massacci [8], our

system avoids a posteriori eventuality checking by disallowing bad loops. The

novel feature of our system is the use of a clausal form that abstracts away

from propositional reasoning and puts the focus on modal reasoning. This way

termination and bad loop checking become obvious. The crucial part of the cor-

rectness proof, which shows that branches with bad loops can be safely ignored,

employs the notion of a straight model. A straight model requires that the links

on the branch make maximal progress towards the fulfillment of the eventuality

they serve. The notion of a straight model evolved in work with Sigurd Schnei-

der [22] and builds on an idea in Baader’s [3] correctness proof (Proposition 4.7).

Due to the clausal form, the extension of our system to nominals is straight-

forward. When we add a new clause to a branch, we add to the new clause all

literals that occur in clauses of the branch that have a nominal in common with

the new clause. This takes care of nominal propagation. Clauses and links that

are already on the branch remain unchanged. Our approach yields a novel and

particularly simple tableau system for hybrid logic.

The paper is organized as follows. First, we introduce formulas, interpreta-

tions, and the clausal form. We then present the tableau system and its correct-

ness proof in three steps, first for modal logic, then for hybrid logic, and finally

for hybrid logic with eventualities. Finally, we discuss some optimizations for

decision procedures.

2010/6/25 2

2 The Logic

We assume that two kind of names, called nominals and predicates, are given.

Nominals (x, y) denote states and predicates (p, q) denote sets of states. For-

mulas are defined as follows:

s ::= p | ¬p | s ∧ s | s ∨ s | ♦s | �s | ♦∗s | �∗s | x | ¬x | @xs

For simplicity we employ only a single transition relation and consider only

formulas in negation normal form. Generalization of our results to multiple

transition relations is straightforward. We use the notations ♦+s := ♦♦∗s and

�+s := ��∗s. An eventuality is a formula of the form ♦∗s or ♦+s. All other

diamond formulas ♦s are called simple. An interpretation I consists of the

following components:

• A set |I| of states.

• A transition relation →I ⊆ |I| × |I|.

• A set Ip ⊆ |I| for every predicate p.

• A state Ix ∈ |I| for every nominal x.

We write →∗
I for the reflexive transitive closure of →I . The satisfaction relation

I , a ⊨ s between interpretations I , states a ∈ |I|, and formulas s is defined by

induction on s:

I, a ⊨ p ⇐⇒ a ∈ Ip I, a ⊨ s ∧ t ⇐⇒ I, a ⊨ s and I, a ⊨ t

I, a ⊨ ¬p ⇐⇒ a ∉ Ip I, a ⊨ s ∨ t ⇐⇒ I, a ⊨ s or I, a ⊨ t

I, a ⊨ x ⇐⇒ a = Ix I, a ⊨ ♦s ⇐⇒ ∃b : a →I b and I, b ⊨ s

I, a ⊨ ¬x ⇐⇒ a ≠ Ix I, a ⊨ �s ⇐⇒ ∀b : a →I b implies I, b ⊨ s

I, a ⊨ @xs ⇐⇒ I, Ix ⊨ s I, a ⊨ �∗s ⇐⇒ ∀b : a →∗
I b implies I, b ⊨ s

I, a ⊨ ♦∗s ⇐⇒ ∃b : a →∗
I b and I, b ⊨ s

We interpret sets of formulas conjunctively. Given a set A of formulas, we write

I , a ⊨ A if I , a ⊨ s for all formulas s ∈ A. An interpretation I satisfies (or is a

model of) a formula s or a set A of formulas if there is a state a ∈ |I| such that

I , a ⊨ s or, respectively, I , a ⊨ A. A formula s (a set A) is satisfiable if s (A) has

a model.

We say that two formulas s and t are equivalent and write s ≅ t if the equiv-

alence I , a ⊨ s ⇐⇒ I , a ⊨ t holds for all interpretations I and all states a ∈ |I|.

Two important equivalences are ♦∗s ≅ s ∨♦+s and �∗s ≅ s ∧�+s.

2010/6/25 3

We write H∗@ for the full logic and define several sublogics:

K p | ¬p | s ∧ s | s ∨ s | ♦s | �s | �∗s

K∗ K extended with ♦∗s

H K extended with x, ¬x

H∗ H extended with ♦∗s

H∗@ H∗ extended with @xs

Note that K is basic modal logic plus positive occurrences of �∗s, and H is basic

hybrid logic plus positive occurrences of �∗s.

3 Clausal Form

We define a clausal form for our logic. The clausal form allows us to abstract

from propositional reasoning and to focus on modal reasoning.

A literal is a formula of the form p, ¬p, ♦s, �s, x, ¬x, or @xs. A clause

(C , D) is a finite set of literals that contains no complementary pair (p and ¬p

or x and ¬x). Clauses are interpreted conjunctively. Satisfaction of clauses (i.e.,

I , a ⊨ C) is a special case of satisfaction of sets of formulas (i.e., I , a ⊨ A), which

was defined in §2. For instance, the clause {♦p, �¬p} is unsatisfiable. Note that

every clause not containing literals of the forms ♦s and @xs is satisfiable. We

will show that for every formula one can compute n ≥ 0 clauses such that the

disjunction of the clauses is equivalent to the formula.

The syntactic closure SA of a set A of formulas is the least set of formulas

that contains A and is closed under the rules

¬s

s

s ∧ t

s , t

s ∨ t

s , t

♦s

s

�s

s

�∗s

s , �+s

♦∗s

s , ♦+s

@xs

x , s

Note that SA is finite if A is finite, and that the size of SA is linear in the size

of A (sum of the sizes of the formulas appearing as elements of A).

The support relation C ⊲ s between clauses C and formulas s is defined by

induction on s:

C ⊲ s ⇐⇒ s ∈ C if s is a literal

C ⊲ s ∧ t ⇐⇒ C ⊲ s and C ⊲ t

C ⊲ s ∨ t ⇐⇒ C ⊲ s or C ⊲ t

C ⊲�∗s ⇐⇒ C ⊲ s and C ⊲�+s

C ⊲♦∗s ⇐⇒ C ⊲ s or C ⊲ ♦+s

We say C supports s if C ⊲ s. We write C ⊲ A and say C supports A if C ⊲ s for

every s ∈ A. Note that C ⊲D ⇐⇒ D ⊆ C if C and D are clauses.

2010/6/25 4

Proposition 3.1 If I , a ⊨ C and C ⊲A, then I , a ⊨ A.

Proposition 3.2 If C ⊲A and C ⊆ D and B ⊆ A, then D ⊲ B.

We define a function D that yields for every set A of formulas the set of all

minimal clauses supporting A:

DA := {C | C ⊲A and ∀D ⊆ C : D ⊲A implies D = C }

We call DA the DNF of A.

Example 3.3 Consider s = p∧q∨¬p∧q. Then D{s} = {{p, q}, {¬p, q}}. Hence

{q} ⋫ {s} even though q and s are equivalent. �

If X is a set, we use the notation X ;x := X ∪ {x}.

Proposition 3.4

1. I , a ⊨ A ⇐⇒ ∃C ∈ DA : I , a ⊨ C .

2. If C ∈ DA, then C ⊆ SA.

3. C ⊲A ⇐⇒ ∃D ∈ DA : D ⊆ C .

4. D(A ; s) ⊆ D(A ;♦∗s).

Proposition 3.5 If A is a finite set of formulas, then DA is finite.

Proof The claim follows with Proposition 3.4 (2) since SA is finite.

The DNF of a finite set of formulas can be computed with the following

tableau rules:

s ∧ t

s , t

s ∨ t

s | t

�∗s

s , �+s

♦∗s

s | ♦+s

To obtain DA, one develops A into a complete tableau. The literals of each open

branch yield a clause. The minimal clauses obtained this way constitute DA.

Let C and D be clauses. The request of C is RC := { t | �t ∈ C }. We say D re-

alizes ♦s in C if D ⊲RC ; s.

Proposition 3.6 If ♦s ∈ C and I satisfies C , then I satisfies some clause D ∈

D(RC ; s).

Proof Follows with Proposition 3.4 (1).

2010/6/25 5

4 Tableaux for K

We start with a terminating tableau system for the sublogic K to demonstrate the

basic ideas of our approach. A branch of the system is a finite and nonempty

set of clauses. A model of a branch is an interpretation that satisfies all clauses

of the branch. A branch is satisfiable if it has a model. Let Γ be a branch, C be a

clause, and ♦s be a literal. We say that

• Γ realizes ♦s in C if D ⊲RC ; s for some clause D ∈ Γ .

• Γ is evident if Γ realizes ♦s in C for all ♦s ∈ C ∈ Γ .

The syntactic closure SΓ of a branch Γ is the union of the syntactic closures of

the clauses C ∈ Γ . Note that the syntactic closure of a branch is finite. Moreover,

C ⊆ SΓ for all clauses C ∈ Γ .

Every evident branch describes a finite interpretation that satisfies all its

clauses. The states of the interpretation are the clauses of the branch, and the

transitions of the interpretation are the pairs (C,D) such that D ⊲RC .

Theorem 4.1 (Model Existence) Every evident branch has a finite model.

Proof Let Γ be an evident branch and I be an interpretation as follows:

• |I| = Γ

• C →I D ⇐⇒ D ⊲RC

• C ∈ Ip ⇐⇒ p ∈ C

We show ∀s ∈ SΓ ∀C ∈ Γ : C⊲s =⇒ I , C ⊨ s by induction on s. Let s ∈ SΓ , C ∈ Γ ,

and C ⊲ s. We show I , C ⊨ s by case analysis. The cases are all straightforward

except possibly for s = �∗t. So let s = �∗t. Let C = C1 →I . . .→I Cn. We show

I , Cn ⊨ t by induction on n. If n = 1, we have Cn ⊲ s by assumption. Hence

Cn⊲t and the claim follows by the outer inductive hypothesis. If n > 1, we have

s ∈ RC1 since �s ∈ C1 since C1 ⊲ �s since C1 ⊲ s. Thus C2 ⊲ s and the claim

follows by the inner inductive hypothesis.

The tableau system for K is obtained with a single rule.

Expansion Rule for K

If ♦s ∈ C ∈ Γ and Γ does not realize ♦s in C ,

then expand Γ to all branches Γ ;D such that D ∈ D(RC ; s).

The expansion rule for K has the obvious property that it applies to a branch

if and only if the branch is not evident. It is possible that the expansion rule

applies to a branch but does not produce an extended branch. We call a branch

closed if this is the case. Note that a branch is closed if and only if it contains a

clause C that contains a literal ♦s such that the DNF of RC ; s is empty.

2010/6/25 6

Example 4.2 Consider the clause C = {♦p, �¬p}. Since ♦p is not realized in C

in Γ = {C}, the expansion rule applies to the branch Γ . Since D(RC ;p) = 0, the

expansion rule fails to produce an extension of Γ . Thus Γ is closed. �

Example 4.3 Here is a complete tableau for a clause C1.

C1 = {♦♦p, ♦(q ∧♦p), �(q ∨�¬p)}

C2 = {♦p, q} C3 = {♦p,�¬p}

C4 = {p}

The development of the tableau starts with the branch {C1}. Application of

the expansion rule to ♦♦p ∈ C1 yields the branches {C1, C2} and {C1, C3}. The

branch {C1, C3} is closed. Expansion of ♦p ∈ C2 ∈ {C1, C2} yields the evident

branch {C1, C2, C4}. Note that C2 realizes ♦(q ∧♦p) in C1. �

Theorem 4.4 (Termination) The tableau system for K terminates.

Proof Let a branch Γ ′ be obtained from a branch Γ by the expansion rule such

that Γ ⊊ Γ ′. By Proposition 3.4 (2) we have SΓ ′ = SΓ and Γ ⊊ Γ ′ ⊆ 2SΓ
′
= 2SΓ . This

suffices for termination since SΓ is finite.

Theorem 4.5 (Soundness) Let I be a model of a branch Γ and ♦s ∈ C ∈ Γ . Then

there exists a clause D ∈ D(RC ; s) such that Γ ;D is a branch and I is a model

of Γ ;D.

Proof Follows with Proposition 3.6.

We now have a tableau-based decision procedure that decides the satisfiabil-

ity of branches. Given a branch Γ , the procedure either extends Γ to an evident

branch that describes a model of Γ , or it constructs a closed tableau that proves

that Γ is unsatisfiable. The procedure is recursive. It checks whether the current

branch contains a diamond formula that is not yet realized. If no such formula

exists, the branch is evident and the procedure terminates. Otherwise, the DNF

of the body of such a formula and the request of the clause containing it are

computed. If the DNF is empty, the branch is closed and thus unsatisfiable. Oth-

erwise, the branch is expanded into as many branches as the DNF has clauses and

the procedure continues recursively. The correctness of the procedure follows

from the theorems and propositions stated above.

2010/6/25 7

5 Tableaux for H

We now develop a terminating tableau system for the sublogic H, which extends K

with nominals. The system is very different from existing systems for hybrid

logic [7, 5, 16, 17, 18] since it does not employ prefixes. The key observation is

that two clauses that contain a common nominal must be satisfied by the same

state in every model of the branch. Thus if two clauses on a branch contain a

common nominal, we can always add the union of the two clauses to the branch.

Proposition 5.1 Suppose an interpretation I satisfies two clauses C and D that

contain a common nominal x ∈ C ∩D. Then I satisfies C ∪D and the set C ∪D

is a clause.

We call a clause nominal if it contains a nominal. Let Γ be a set of clauses

and A be a set of formulas. We define two notations to realize what we call

nominal propagation:

AΓ := A∪ { s | ∃x ∈ A ∃C ∈ Γ : x ∈ C ∧ s ∈ C }

DΓA := {CΓ | C ∈ DA and CΓ is a clause }

Note that AΓ is the least set of formulas that contains A and all clauses C ∈ Γ

that have a nominal in common with A. Thus (AΓ)Γ = AΓ . Moreover, AΓ = A if A

contains no nominal.

Proposition 5.2 Let A be a set of formulas, I be a model of a branch Γ , and a be

a state of I . Then I , a ⊨ A ⇐⇒ I , a ⊨ AΓ .

Proof Follows with Proposition 5.1.

The branches of the tableau system for H are finite and nonempty sets Γ of

clauses that satisfy the following condition:

• Nominal coherence: If C ∈ Γ , then CΓ ∈ Γ .

Satisfaction, realization, evidence, and the syntactic closure of branches are

defined as for K. The core CΓ := {C ∈ Γ | CΓ = C } of a branch Γ is the set of all

clauses of Γ that are either maximal or not nominal.

Proposition 5.3 Let Γ be a branch. Then:

1. CΓ is a branch.

2. An interpretation satisfies Γ iff it satisfies CΓ .

3. Γ is evident iff CΓ is evident.

Proof Claims (1) and (2) are obvious, and (3) follows with Proposition 3.2.

2010/6/25 8

Theorem 5.4 (Model Existence) Every evident branch has a finite model.

Proof Let Γ be an evident branch. Without loss of generality we can assume

that for every nominal x ∈ SΓ there is a unique clause C ∈ CΓ such that x ∈ C

(add clauses {x} as necessary). We choose an interpretation I that satisfies the

conditions

• |I| = CΓ

• C →I D ⇐⇒ D ⊲RC

• C ∈ Ip ⇐⇒ p ∈ C

• Ix = C ⇐⇒ x ∈ C for all x ∈ SΓ

The last condition can be satisfied since Γ is nominally coherent. We show

∀s ∈ SΓ ∀C ∈ CΓ : C ⊲ s =⇒ I , C ⊨ s by induction on s. Let s ∈ SΓ , C ∈ CΓ , and

C ⊲ s. We show I , C ⊨ s by case analysis. The proof now proceeds as the proof

of Theorem 4.1. The additional cases for nominals can be argued as follows.

Let s = x. Then x ∈ C and thus Ix = C . Hence I , C ⊨ s.

Let s = ¬x. Then ¬x ∈ C and thus x ∉ C and Ix 6= C . Hence I , C ⊨ s.

Nominal coherence acts as an invariant for the tableau system for H. The

expansion rule for H refines the expansion rule for K such that the invariant is

maintained. The tableau system for H is obtained with the following rule.

Expansion Rule for H

If ♦s ∈ C ∈ CΓ and Γ does not realize ♦s in C ,

then expand Γ to all branches Γ ;D such that D ∈ DΓ (RC ; s).

As in the system for K, the expansion rule for H has the property that it applies to

a branch if and only if the branch is not evident. Moreover, termination follows

as for K. The adaption of the soundness theorem is also straightforward.

Theorem 5.5 (Soundness) Let I be a model of a branch Γ and ♦s ∈ C ∈ Γ . Then

there exists a clause D ∈ DΓ (RC ; s) such that Γ ;D is a branch and I is a model

of Γ ;D.

Proof Since I satisfies C , we know by Proposition 3.6 that I satisfies some clause

D ∈ D(RC ; s). The claim follows with Proposition 5.2.

We have now arrived at a decision procedure for the sublogic H.

Example 5.6 Consider the following closed tableau.

2010/6/25 9

♦(♦♦(x ∧¬p) ∧ (♦(x ∧ p)∨ x ∧ p))
0

♦♦(x ∧¬p), ♦(x ∧ p)
1

x, ♦♦(x ∧¬p), p
2

♦(x ∧¬p)
3

♦(x ∧¬p)
5

x, ¬p
4

The numbers identifying the clauses indicate the order in which they are intro-

duced. Once clause 4 is introduced, ♦(x ∧ p) in clause 1 cannot be realized due

to nominal propagation from clause 4. Hence the left branch is closed. The right

branch is also closed since the diamond formula in clause 5 cannot be realized

due to nominal propagation from clause 2. �

The example shows that nominals have a severe impact on modal reasoning.

The impact of nominals is also witnessed by the fact that in K the union of two

branches is a branch while this is not the case in H (e.g., {{x,p}} and {{x,¬p}}).

Remark 5.7 To obtain the optimal worst-case run time for tableau provers, one

must avoid recomputation. In the absence of nominals this can be accomplished

with a minimal and-or graph representation [20, 13]. Unfortunately, the minimal

and-or graph representation is not compatible with nominal propagation. To see

this, consider the minimal and-or graph representing the tableau of Example 5.6.

This graph represents clauses 3 and 5 with a single node. This is not correct since

the nominal context of the clauses is different. While clause 3 can be expanded,

clause 5 cannot. �

6 Evidence for H∗

Next, we consider the sublogic H∗, which extends H with eventualities ♦∗s. We

define branches and evidence for H∗ and prove the corresponding model exis-

tence theorem. As one would expect, realization of eventualities ♦+s is more

involved than realization of simple diamond formulas.

Example 6.1 Consider the clause C = {♦+¬p, �+p, p}. We have RC = {�∗p}.

Hence C ⊲RC ;♦∗¬p. If we extend our definitions for H to H∗, the branch {C}

is evident. However, the clause C is not satisfiable. �

To obtain an adequate notion of realization for eventualities, branches for

H∗ will contain links in addition to clauses. A link is a triple C(♦s)D such that

2010/6/25 10

♦+p, �¬p, ¬p

♦+p, ¬p

p

♦+p, �¬p

♦+p, ¬p

♦+p

p

♦+p, �+¬p

♦+p, �+¬p, ¬p

Figure 1: Three quasi-branches drawn as graphs

♦s ∈ C and D ⊲RC ; s. A quasi-branch Γ is a finite and nonempty set of clauses

and links such that Γ contains the clauses C and D if it contains a link C(♦s)D.

A model of a quasi-branch is an interpretation that satisfies all of its clauses.

Note that a model is not required to satisfy the links of a quasi-branch. A quasi-

branch is satisfiable if it has a model. A quasi-branch Γ realizes ♦s in C if Γ

contains some link C(♦s)D. Quasi-branches can be drawn as graphs with links

pointing from diamond formulas to clauses. Figure 1 shows three examples.

The first two graphs describe models of the clauses. This is not the case for the

rightmost graph where both clauses are unsatisfiable. Still, all diamond formulas

are realized with links. The problem lies in the “bad loop” that leads from the

lower clause to itself.

The notations AΓ and DΓA are defined for quasi-branches in the same way as

they are defined for the branches of H. Let Γ be a quasi-branch. A path for ♦+s

in Γ is a sequence C1 . . . Cn of clauses such that n ≥ 2 and:

1. ∀i ∈ [1, n] : CΓi = Ci.

2. ∀i ∈ [1, n− 1] ∃D : Ci(♦
+s)D ∈ Γ and DΓ = Ci+1.

3. ∀i ∈ [2, n− 1] : Ci ⋫ s.

A run for ♦+s in C in Γ is a path C . . .D for ♦+s in Γ such that D ⊲ s. A bad

loop for ♦+s in Γ is a path C . . .C for ♦+s in Γ such that C ⋫ s. A branch is a

quasi-branch Γ that satisfies the following conditions:

• Nominal coherence: If C ∈ Γ , then CΓ ∈ Γ .

• Functionality: If C(♦s)D ∈ Γ and C(♦s)E ∈ Γ , then D = E.

• Bad-loop-freeness: There is no bad loop in Γ .

The first two quasi-branches in Fig. 1 are branches. The third quasi-branch in

Fig. 1 is not a branch since it contains a bad loop.

The core CΓ of a branch Γ is CΓ := {C ∈ Γ | CΓ = C }. A branch Γ is evident

if Γ realizes ♦s in C for all ♦s ∈ C ∈ CΓ . The syntactic closure SΓ of a branch Γ

is the union of the syntactic closures of the clauses C ∈ Γ .

2010/6/25 11

Proposition 6.2 Let Γ be an evident branch and ♦+s ∈ C ∈ CΓ . Then there is a

unique run for ♦+s in C in Γ .

Proof Since Γ realizes every eventuality in every clause in CΓ and Γ is finite,

functional and bad-loop-free, there is a unique run for ♦+s in C in Γ .

Theorem 6.3 (Model Existence) Every evident branch has a finite model.

Proof Let Γ be an evident branch. Without loss of generality we can assume

that for every nominal x ∈ SΓ there is a unique clause C ∈ CΓ such that x ∈ C

(add clauses {x} as necessary). We choose an interpretation I that satisfies the

following conditions:

• |I| = CΓ

• C →I D ⇐⇒ ∃s, E : C(♦s)E ∈ Γ and D = EΓ

• C ∈ Ip ⇐⇒ p ∈ C

• Ix = C ⇐⇒ x ∈ C for all x ∈ SΓ

We show ∀s ∈ SΓ ∀C ∈ CΓ : C ⊲ s =⇒ I , C ⊨ s by induction on s. Let s ∈ SΓ ,

C ∈ CΓ , and C ⊲ s. We show I , C ⊨ s by case analysis. Except for s = ♦∗t the

claim follows as in the proofs of Theorems 4.1 and 5.4.

Let s = ♦∗t. Since C ⊲s, we have either C ⊲t or C ⊲♦+t. If C ⊲t, then I , C ⊨ t

by the inductive hypothesis and the claim follows. Otherwise, let C ⊲ ♦+t. Then

♦+t ∈ C ∈ CΓ . By Proposition 6.2 we know that there is a run for ♦+t in C in Γ .

Thus C →∗
I D and D⊲ t for some clause D ∈ CΓ . Hence I , D ⊨ t by the inductive

hypothesis. The claim follows.

7 Tableaux for H∗

The tableau system for H∗ is obtained with the following rule.

Expansion Rule for H∗

If ♦s ∈ C ∈ CΓ and Γ does not realize ♦s in C ,

then expand Γ to all branches Γ ;D ;C(♦s)D such that D ∈ DΓ (RC ; s).

Example 7.1 Here is a tableau derivation of an evident branch from an initial

clause with eventualities.

♦+p, ¬p, �(x ∧ ♦+p ∧¬p), ♦�¬p
0

x, ♦+p, ¬p
1

x, ♦+p, ¬p, �¬p
3

p
2

♦+p, ¬p
4

1

2

3

4

5

2010/6/25 12

The numbers indicate the order in which the links and clauses are introduced. In

the final branch, the clauses 0, 3, 4, 2 constitute a run for ♦+p in clause 0.

The dashed link is not on the branch. We use it to indicate the implicit redi-

rection of link 1 that occurs when clause 3 is added. The implicit redirection is

due to nominal propagation and is realized in the definition of paths. Note that

before link 3 is added, the clauses 0, 1, 2 constitute a run for ♦+p in clause 0.

When clause 3 is added, this run disappears since clause 1 is no longer in the

core. �

As in the system for H, the expansion rule for H∗ has the property that it

applies to a branch if and only if the branch is not evident. Moreover, termi-

nation follows essentially as for H. There is, however, an essential difference as

it comes to soundness. Due to our definition of branches a candidate exten-

sion Γ ;D ;C(♦s)D is only admissible if it is a bad-loop-free quasi-branch. We

now encounter the difficulty that the analogue of the soundness property for H

(Theorem 5.5) does not hold since there are satisfiable branches to which the ex-

pansion rule applies but fails to produce extended branches since all candidate

branches contain bad loops. This is shown by the next example.

Example 7.2 Consider the literal s := �+(q ∨�¬p) and the following branch:

♦+p, ¬p, q, s

♦+p, �¬p, s

♦+p, ¬p, �¬p, s

Note that the branch is satisfiable. Since the eventuality in the third clause is not

realized, the branch is not evident. The expansion rule applies to the eventuality

in the third clause but does not produce an extended branch since both candidate

extensions contain bad loops (one extension adds a link from the third clause to

the first clause, and the other adds a link from the third clause to itself).

Note that the branch can be obtained by starting with the first clause. The

link for the literal ♦+p in the first clause does not make progress and leads to

the bad loop situation. There are two alternative links for this literal that point

to the clauses {p, q, s} and {p, �¬p, s}. Both yield evident branches. �

We solve the problem with the notion of a straight link. The idea is that a

straight link for an eventuality ♦+s reduces the distance to a clause satisfying s

as much as possible. We will define straightness with respect to a model.

Let I be an interpretation, A be a set of formulas, and s be a formula. The

distance from A to s in I is defined as follows:

δIAs := min{n ∈ N | ∃a, b : a→n
I b and I , a ⊨ A and I , b ⊨ s }

2010/6/25 13

where min0 = ∞ and n <∞ for all n ∈ N. The relations →n
I are defined as usual:

a →0
I b iff a = b and a ∈ |I|, and a→n+1

I b iff a →I a
′ and a′ →n

I b for some a′.

Proposition 7.3 δIAs <∞ iff I satisfies A;♦∗s.

Proposition 7.4 Let I be a model of a quasi-branch Γ . Then δIAs = δIA
Γ s.

A link C(♦+s)D is straight for an interpretation I if the following conditions

are satisfied:

1. δIDs ≤ δIEs for every E ∈ D(RC ;♦∗s).

2. If δIDs = 0, then D ⊲ s.

A straight model of a quasi-branch Γ is a model I of Γ such that every link

C(♦+s)D ∈ Γ is straight for I .

Lemma 7.5 (Straightness) A quasi-branch that has a straight model does not

have a bad loop.

Proof By contradiction. Let I be a straight model of a quasi-branch Γ and let

C1 . . . Cn be a bad loop for ♦+s in Γ . Then Cn = C1 and n ≥ 2. To obtain a

contradiction, it suffices to show that δICis > δICi+1s for all i ∈ [1, n− 1]. Let

i ∈ [1, n− 1].

1. We have Ci ∈ CΓ , Ci ⋫ s, Ci(♦+s)D ∈ Γ , and DΓ = Ci+1 for some D ∈ Γ .

2. We show δICis < ∞. By (1) we have ♦+s ∈ Ci ∈ Γ . The claim follows by

Proposition 7.3 since I satisfies Ci.

3. We show 0 < δICis. Case analysis.

a) i > 1. Then Ci−1(♦
+s)E ∈ Γ and EΓ = Ci for some E. By Proposition 7.4

and the second condition for straight links it suffices to show E ⋫ s. This

holds by Proposition 3.2 since Ci ⋫ s by (1).

b) i = 1. Then Cn−1(♦
+s)E ∈ Γ and EΓ = C1 for some E. By Proposition 7.4

and the second condition for straight links it suffices to show E ⋫ s. This

holds by Proposition 3.2 since C1 ⋫ s by (1).

4. By (2) and (3) there are states a,b, c such that I , a ⊨ Ci, a →I b →
δICis−1
I c

and I , c ⊨ s. We have I , b ⊨ RCi ;♦∗s. By Proposition 3.4 (1) there is a

clause E ∈ D(RCi ;♦∗s) such that I , b ⊨ E. Thus δIEs ≤ δICis − 1. By

Proposition 7.4 and the first condition for straight links we have δICi+1s =

δIDs ≤ δIEs < δICis, which yields the claim. �

Theorem 7.6 (Soundness) Let I be a straight model of a branch Γ and let

♦s ∈ C ∈ Γ . Moreover, let Γ not realize ♦s in C . Then there exists a clause

D ∈ DΓ (RC ; s) such that Γ ;D ;C(♦s)D is a branch and I is a straight model

of Γ ;D ;C(♦s)D.

2010/6/25 14

Proof Since I is a model of C and ♦s ∈ C , there is a clause D ∈ DΓ (RC ; s) that

is satisfied by I (Propositions 3.6 and 5.2). For every such clause, Γ ;D ;C(♦s)D

is a quasi-branch that has I as a model and satisfies the nominal coherence and

functionality conditions. By Lemma 7.5 it suffices to show that we can choose D

such that I is straight for C(♦s)D. If ♦s is not an eventuality, this is trivially the

case. Otherwise, let ♦s = ♦+t and s = ♦∗t. We proceed by case analysis.

1. I satisfies RC ; t. We pick a clause D ∈ DΓ (RC ; t) that is satisfied by I .

By Proposition 3.4 (4), we have D(RC ; t) ⊆ D(RC ;♦∗t), and consequently

DΓ (RC ; t) ⊆ DΓ (RC ;♦∗t). Thus D ∈ DΓ (RC ;♦∗t) as required. It remains

to show that I is straight for C(♦+t)D. This is the case since δIDt = 0 since

D ⊲ t and I satisfies D (Proposition 3.1).

2. I does not satisfy RC ; t. This time we choose D ∈ DΓ (RC ;♦∗t) such that I

satisfies D and δIDt is minimal. We show that I is straight for C(♦+t)D.

Let E ∈ D(RC ;♦∗t). We show δIDt ≤ δIEt. If I does not sat-

isfy E, the claim holds by Proposition 7.3. If I satisfies E, I satisfies EΓ

and EΓ ∈ DΓ (RC ;♦∗t). Hence δIDt ≤ δIE
Γ t. The claim follows by Propo-

sition 7.4.

We show δIDt > 0. For contradiction, let δIDt = 0. Then I , a ⊨ D ; t for

some a. Thus I , a ⊨ RC ; t by Proposition 3.4 (1). Contradiction. �

We have now arrived at a decision procedure for the sublogic H∗.

8 Tableaux for H∗ with @

It is straightforward to extend our results to the full logic H∗@, which adds formu-

las of the form @xs to H∗. A quasi-branch Γ realizes a literal @xs if it contains a

clause D such that D⊲ {x, s}. A branch Γ is evident if it is evident as defined for

H∗ and in addition realizes every literal @xs such that @xs ∈ C for some clause

C ∈ Γ . It is easy to verify that the model existence theorem for H∗ extends to the

full logic H∗@. The realization condition for @ leads to an additional expansion

rule.

Expansion Rule for @

If @xs ∈ C ∈ CΓ and Γ does not realize @xs,

then expand Γ to all branches Γ ;D such that D ∈ DΓ{x, s}.

Since the new rule respects the subterm closure, termination is preserved. The

soundness of the new rule is easy to show.

Proposition 8.1 (Soundness of Rule for @) Let I be a straight model of a

branch Γ and let @xs ∈ C ∈ Γ . Then there exists a clause D ∈ DΓ{x, s} such

that Γ ;D is a branch and I is a straight model of Γ ;D.

2010/6/25 15

9 Optimizations

We give two additional rules that realize certain diamond literals with links to

already present clauses, thus avoiding the introduction of unnecessary clauses

and unnecessary branchings. This way the size of the tableaux the decision

procedure has to explore can be reduced.

Additional Expansion Rule for Simple Diamonds

If ♦s ∈ C ∈ CΓ and Γ does not realize ♦s in C

and ♦s is simple and D ∈ Γ and D ⊲RC ; s,

then expand Γ to Γ ;C(♦s)D.

Additional Expansion Rule for Eventualities

If ♦+s ∈ C ∈ CΓ and Γ does not realize ♦+s in C

and D ∈ Γ and D ⊲RC ; s,

then expand Γ to Γ ;C(♦+s)D.

Both rules preserve straight models and yield extensions that are branches. This

suffices for their correctness.

A branch Γ is quasi-evident if there is some set ∆ of links such that Γ ∪ ∆ is

an evident branch. It suffices if the decision procedure stops with quasi-evident

branches rather than evident branches. This provides for optimizations since it

allows the decision procedure not to introduce new clauses and branchings for

diamond formulas that can be realized with links to existing clauses. The two

expansion rules given above are subsumed by this optimization.

Let Γ be a branch. A clause C is subsumed in Γ if C contains no eventualities

and there is a clause D ∈ Γ such that C ⊊ D. There is no need to realize literals

in subsumed clauses.

Proposition 9.1 A branch that realizes all literals of the form ♦s or @xs in non-

subsumed clauses is quasi-evident and hence has a finite model.

The left branch in Fig. 1 explains why subsumed clauses must not contain

eventualities.

Finally, we remark that bad-loop checking can be done in quasi-constant time

when a branch is extended with a new link. For this, one maintains a data struc-

ture that for every clause C and every unrealized eventuality ♦+s ∈ C provides

all clauses D such that a link C(♦+s)D would result in a bad loop. Such a data

structure can be maintained in quasi-constant time. History variables as used in

De Giacomo and Massacci [8] are one possibility to realize such a data structure.

2010/6/25 16

10 Conclusion

This paper presents the first terminating tableau system for hybrid logic with

eventualities. The system employs a novel clausal form that abstracts away from

propositional reasoning. In contrast to existing systems for hybrid logic, the

system presented here does not employ prefixes.

We are interested in extensions of the system. One interesting extension are

difference modalities [17, 18], which introduce equational constraints that seem

to require the introduction of fresh nominals. Another interesting extension are

converse modalities. Finally, there is the extension to hybrid PDL.

Another interesting direction for future work is the implementation of a

prover based on the system presented in this paper and to compare its perfor-

mance to existing provers for PDL [13, 12] on benchmarks with eventualities and

to our hybrid logic prover Spartacus [14] on benchmarks for modal and hybrid

logic.

References

[1] Pietro Abate, Rajeev Goré, and Florian Widmann. An on-the-fly tableau-

based decision procedure for PDL-satisfiability. In Carlos Areces and

Stéphane Demri, editors, Proc. 5th Workshop on Methods for Modalities

(M4M-5), volume 231 of Electr. Notes Theor. Comput. Sci., pages 191–209.

Elsevier, 2009.

[2] Carlos Areces and Balder ten Cate. Hybrid logics. In Patrick Blackburn, Johan

van Benthem, and Frank Wolter, editors, Handbook of Modal Logic, volume 3

of Studies in Logic and Practical Reasoning, pages 821–868. Elsevier, 2007.

[3] Franz Baader. Augmenting concept languages by transitive closure of roles:

An alternative to terminological cycles. Technical Report RR-90-13, DFKI,

1990.

[4] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic. Cam-

bridge University Press, 2001.

[5] Thomas Bolander and Patrick Blackburn. Termination for hybrid tableaus.

J. Log. Comput., 17(3):517–554, 2007.

[6] Thomas Bolander and Torben Braüner, editors. M4M-6, number 128 in Com-

puter Science Research Reports, Roskilde, Denmark, 2009. Roskilde Univer-

sity. To appear in ENTCS.

2010/6/25 17

[7] Thomas Bolander and Torben Braüner. Tableau-based decision procedures

for hybrid logic. J. Log. Comput., 16(6):737–763, 2006.

[8] Giuseppe De Giacomo and Fabio Massacci. Combining deduction and model

checking into tableaux and algorithms for converse-PDL. Inf. Comput.,

162(1–2):117–137, 2000.

[9] E. Allen Emerson and Edmund M. Clarke. Using branching time temporal

logic to synthesize synchronization skeletons. Sci. Comput. Programming,

2(3):241–266, 1982.

[10] E. Allen Emerson and Joseph Y. Halpern. “Sometimes” and “not never” revis-

ited: On branching versus linear time temporal logic. J. ACM, 33(1):151–178,

1986.

[11] Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of

regular programs. J. Comput. System Sci., pages 194–211, 1979.

[12] Oliver Friedmann and Martin Lange. A solver for modal fixpoint logics. In

Bolander and Braüner [6], pages 176–187. To appear in ENTCS.

[13] Rajeev Goré and Florian Widmann. An optimal on-the-fly tableau-based de-

cision procedure for PDL-satisfiability. In Renate A. Schmidt, editor, CADE

2009, volume 5663 of LNCS, pages 437–452. Springer, 2009.

[14] Daniel Götzmann, Mark Kaminski, and Gert Smolka. Spartacus: A tableau

prover for hybrid logic. In Bolander and Braüner [6], pages 201–212. To

appear in ENTCS.

[15] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. The MIT Press,

2000.

[16] Ian Horrocks and Ulrike Sattler. A tableau decision procedure for SHOIQ.

J. Autom. Reasoning, 39(3):249–276, 2007.

[17] Mark Kaminski and Gert Smolka. Terminating tableaux for hybrid logic with

the difference modality and converse. In Alessandro Armando, Peter Baum-

gartner, and Gilles Dowek, editors, IJCAR 2008, volume 5195 of LNCS, pages

210–225. Springer, 2008.

[18] Mark Kaminski and Gert Smolka. Terminating tableau systems for hybrid

logic with difference and converse. J. Log. Lang. Inf., 18(4):437–464, 2009.

[19] Amir Pnueli. The temporal logic of programs. In Proc. 18th Annual Symp.

on Foundations of Computer Science (FOCS’77), pages 46–57. IEEE Computer

Society Press, 1977.

2010/6/25 18

[20] Vaughan R. Pratt. A near-optimal method for reasoning about action. J.

Comput. System Sci., 20(2):231–254, 1980.

[21] Ulrike Sattler and Moshe Y. Vardi. The hybrid µ-calculus. In Rajeev Goré,

Alexander Leitsch, and Tobias Nipkow, editors, IJCAR 2001, volume 2083

of LNCS, pages 76–91. Springer, 2001.

[22] Sigurd Schneider. Terminating Tableaux for Modal Logic with Transitive

Closure. Bachelor’s thesis, Saarland University, 2009.

2010/6/25 19

	Introduction
	The Logic
	Clausal Form
	Tableaux for K
	Tableaux for H
	Evidence for H*
	Tableaux for H*
	Tableaux for H* with @
	Optimizations
	Conclusion

