
Correctness of an

Incremental and Worst-Case Optimal

Decision Procedure for

Modal Logic with Eventualities

Mark Kaminski and Gert Smolka

Saarland University

February 11, 2011

We present a simple theory explaining the construction and the correct-

ness of an incremental and worst-case optimal decision procedure for

modal logic with eventualities. The procedure gives an abstract account

of important aspects of Goré and Widmann’s PDL prover. Starting from an

input formula, the procedure grows a Pratt-style graph tableau until the

tableau proves or disproves the satisfiability of the formula. The proce-

dure provides a basis for practical provers since satisfiability and unsatis-

fiability of formulas can often be determined with small tableaux.

1 Introduction

We are interested in practical decision procedures for modal logics with even-

tualities. The standard logic in this area is PDL [5], which is the propositional

fragment of dynamic logic [15, 10], a formal system for reasoning about pro-

grams. Fischer and Ladner [5] establish the decidability of PDL with a small

model theorem, which states that every formula has a syntactic model obtained

over a finite universe now known as Fischer-Ladner closure. They also show that

the satisfiability problem of the fragment of PDL just consisting of basic modal

logic and eventualities is EXPTIME-hard. Based on Fischer and Ladner’s model

construction, Pratt [16] gives an elegant decision procedure for PDL that runs in

deterministic exponential time. Variants of Pratt’s procedure appear with cor-

rectness proofs in [10, 3].

1

Although worst-case optimal, Pratt’s [16] procedure is not practical since it

starts with all subsets of the Fischer-Ladner closure. Pratt [17] thus devises

a more elaborate procedure that employs graph-like structures we call graph

tableaux. Given a formula, this procedure constructs a complete graph tableau

for the formula and checks whether the tableau contains a model of the formula.

While Pratt’s tableau procedure [17] is an improvement over his abstract pro-

cedure [16], it is still unsatisfactory since the construction of a complete graph

tableau is often too expensive. Goré and Widmann [8, 9, 18] thus devise an incre-

mental method that interleaves the tableau construction with model checking.

Their method is realized in an impressive prover [7, 11], which often decides the

satisfiability of a formula without building a complete tableau.

In their papers [8, 9], Goré and Widmann report in detail about the algorithms

used in their prover but do not include correctness proofs. Correctness proofs

appear in Widmann’s thesis [18], but they are monolithic and refer to complex

algorithms.

In this paper we present a simple theory explaining the construction and the

correctness of an incremental and worst-case optimal decision procedure for

modal logic with eventualities. The key idea is to have two complementary algo-

rithms called eager and cautious pruning, which check whether a graph tableau

certifies the satisfiability or the unsatisfiability of a formula. The decision pro-

cedure then incrementally constructs a tableau certificate for the input formula,

where eager and cautious pruning guide the expansion of the tableau.

Our theory explains important aspects of Goré and Widmann’s [8, 18] method

for PDL that are not addressed in their work. For simplicity, we do not treat

full PDL but consider basic modal logic with simple eventualities. We expect

that our theory extends smoothly to full PDL. Goré and Widmann [9, 18] have

extended their method to PDL with converse. The extension to converse is not

straightforward and will require a significant update of our theory.

The paper is organized as follows. We first introduce the underlying logic and

define a class of syntactic models called demos. We show that a formula is satisfi-

able if and only if it is supported by a demo. We then introduce abstract pruning,

which captures Pratt’s abstract decision method and serves as the blueprint for

the pruning operations on tableaux. Then we define graph tableaux and estab-

lish the subclass of evident tableaux, which certify the satisfiability of formulas.

We then consider eager and cautious pruning, two complementary algorithms

identifying satisfiable and, respectively, unsatisfiable clauses in tableaux. Now

everything is in place for the incremental decision procedure. We conclude with

remarks on branching tableau search.

2011/2/11 2

2 Formulas and Models

We consider basic modal logic extended with the star modalities ♦∗ and �∗. We

call this logic K∗. Formulas are defined with the grammar

s ::= p | ¬p | s ∨ s | s ∧ s | ♦s | �s | ♦∗s | �∗s

where p ranges over a nonempty set of names called predicates. We consider

only formulas in negation normal form. Formulas with general negation can be

translated in linear time into negation normal form. We write ♦+s for ♦♦∗s and

�+s for ��∗s. An eventuality is a formula of the form ♦∗s or ♦+s. A model M

consists of the following components:

• A nonempty set |M| of states.

• A transition relation →M ⊆ |M| × |M|.

• A set Mp ⊆ |M| for every predicate p.

We write →∗
M for the reflexive and transitive closure of the transition relation.

The satisfaction relation M,w ⊨ s between models M, states w ∈ |M|, and

formulas s is defined by induction on s:

M,w ⊨ p ⇐⇒ w ∈Mp

M,w ⊨ ¬p ⇐⇒ w ∉Mp

M,w ⊨ s ∨ t ⇐⇒ M,w ⊨ s or M,w ⊨ t

M,w ⊨ s ∧ t ⇐⇒ M,w ⊨ s and M,w ⊨ t

M,w ⊨ ♦s ⇐⇒ ∃v : w →M v and M, v ⊨ s

M,w ⊨ �s ⇐⇒ ∀v : w →M v implies M, v ⊨ s

M,w ⊨ ♦∗s ⇐⇒ ∃v : w →∗
M v and M, v ⊨ s

M,w ⊨ �∗s ⇐⇒ ∀v : w →∗
M v implies M, v ⊨ s

A model M satisfies (or is a model of) a formula s if M,w ⊨ s for some state

w ∈ |M|. A formula s is satisfiable if s has a model. The letter A ranges over sets

of formulas. We interpret sets of formulas conjunctively and write M,w ⊨ A if

M,w ⊨ s for every formula s ∈ A. Moreover, M satisfies (or is a model of) A if

M,w ⊨ A for some state w ∈ |M|. Finally, a set A is satisfiable if M,w ⊨ A for

some model M and some state w ∈ |M|. We write A ; s for A∪ {s}.

Note that K∗ is not compact (consider ♦∗¬p, p, �p, ��p, . . .), and that the

satisfiability problem for K∗ is EXPTIME-complete. The lower bound follows from

Fischer and Ladner’s proof for PDL (see [3], Theorem 6.52), and the upper bound

is inherited from PDL [17], of which K∗ is a sublanguage.

A formula universe is a finite, nonempty set F of formulas satisfying the

following properties:

2011/2/11 3

• If s ∈ F and t is a subformula of s, then t ∈ F .

• If ♦∗s ∈ F , then ♦+s ∈ F .

• If �∗s ∈ F , then �+s ∈ F .

For every formula s there exists a (least) formula universe F containing s such

that the cardinality of F is linear in the size of s. We will consider the follow-

ing decision problem: Given a formula universe F and a formula s ∈ F , decide

whether s is satisfiable. We assume F to be a global parameter and tacitly as-

sume s ∈ F and A ⊆ F for every formula s and every set of formulas A. Thus a

set of formulas is always finite (since F is finite).

Finally, we fix some notations for binary relations. Let → ⊆ X ×X.

→0 := { (x, x) | x ∈ X } →∗ :=
⋃

n≥0

→n

→n+1 := → ◦→n →+ := → ◦→∗

֏ := { (x,y) ∈ →∗ | ∀z : (y, z) ∉ →}

For all relations shown above we use infix notation (i.e., x →n y for (x,y) ∈ →n).

3 Demos

Decision procedures often construct syntactic descriptions of finite models. We

introduce an abstract form of such descriptions and call them demos. The class

of demos is adequate in that a formula is satisfiable if and only if it is supported

by a demo. We use demos to establish the small model property and as the basis

for the correctness proofs of our incremental tableau procedure. Technically, a

demo is a set of clauses, where a clause is a set of formulas. Since we restrict

formulas to a finite universe, there are only finitely many clauses and demos.

This section builds on ideas in [13, 12] where the notion of support appears first.

We call formulas of the form s ∧ t and �∗s conjunctive and the remaining

formulas aconjunctive. A clause is a nonempty set C ⊆ F of aconjunctive for-

mulas. Our semantic definitions apply to clauses since they are sets of formulas.

In particular, M,w ⊨ C if and only if M,w ⊨ s for every formula s ∈ C . A lit-

eral is a formula of the form p, ¬p, ♦s or �s. A clause containing only literals is

called an α-clause provided it contains no complementary pair p and ¬p. We de-

fine the support relation C ⊲ s between α-clauses C and formulas s by induction

on s:

C ⊲ s ⇐⇒ s ∈ C if s is a literal

C ⊲ s ∧ t ⇐⇒ C ⊲ s and C ⊲ t C ⊲ s ∨ t ⇐⇒ C ⊲ s or C ⊲ t

C ⊲♦∗s ⇐⇒ C ⊲ s or C ⊲♦+s C ⊲�∗s ⇐⇒ C ⊲ s and C ⊲�+s

2011/2/11 4

♦+p, �¬p ♦+p, ¬p p

Figure 1: A demo and its transition relation

We say C supports s if C ⊲ s. Given an α-clause C , the set { s | C ⊲ s } satisfies

the closure properties of a Hintikka set. Thus, we can see α-clauses as a repre-

sentation of certain Hintikka sets and the support relation as the concomitant

membership relation. We write C ⊲ A and say C supports A if C ⊲ s for every

s ∈ A.

Lemma 3.1 Let M be a model such that M,w ⊨ C and C ⊲ s. Then M,w ⊨ s.

Proof By induction on s. �

The request of a clause C is RC := { s | �s ∈ C }. Given a set S of α-clauses,

we define the transition relation →S ⊆ S × S as follows: C →S D ⇐⇒ D ⊲RC . A

demo is a nonempty set D of α-clauses such that:

1. If ♦s ∈ C ∈ D, then C →D D ⊲ s for some D ∈ D.

2. If ♦+s ∈ C ∈ D, then C →+
D D ⊲ s for some D ∈ D.

Figure 1 shows a demo D consisting of three clauses {♦+p, �¬p}, {♦+p, ¬p},

and {p}. The edges between the clauses depict the transition relation →D.

A demo supports a formula s or a set A if it contains a clause that supports s

or A. For every nonempty set S of α-clauses we obtain a model MS as follows:

|MS| = S, →MS = →S, and MSp = {C ∈ S | p ∈ C }. We show that the model MS

obtained from a demo S satisfies every formula supported by S.

Lemma 3.2 If C ⊲�∗s and C →n
S D, then D ⊲�∗s.

Proof By induction on n. �

Lemma 3.3 Let D be a demo. Then ∀s∀C ∈ D : C ⊲ s =⇒ MD, C ⊨ s.

Proof By induction on s. Let C ∈ D and C ⊲ s. We show MD, C ⊨ s by case

analysis on s. All cases are straightforward except s = �∗t. Here the claim

follows with Lemma 3.2. �

Theorem 3.4 If D is a demo, then MD satisfies every formula that D supports.

2011/2/11 5

Proof Immediate by Lemma 3.3. �

Next we show that every satisfiable formula is supported by some demo. Let

M be a model and w ∈ |M|. Then CM,w := { s literal | M,w ⊨ s } is an α-clause.

We show that DM := {CM,w |w ∈ |M| } is a demo.

Lemma 3.5 Let M be a model and M,w ⊨ s. Then CM,w ⊲ s.

Proof By induction on s. �

Lemma 3.6 Let M be a model and v →M w. Then CM,v →DM CM,w .

Proof Follows with Lemma 3.5. �

Theorem 3.7 Let M be a model. Then DM is a demo. Moreover, DM supports a

formula s if and only if M satisfies s.

Proof First we show that DM is a demo. Let ♦s ∈ CM,v ∈ DM. We show that

CM,v →DM CM,w ⊲ s for some state w. Since ♦s ∈ CM,v , there is a state w

such that v →M w and M,w ⊨ s. The claim follows with Lemmas 3.6 and 3.5.

The second demo condition follows with a similar argument. Next we show that

support by DM and satisfaction by M coincide.

Suppose CM,w ⊲ s. Since M,w ⊨ CM,w , we have M,w ⊨ s by Lemma 3.1.

Suppose M,w ⊨ s. Then CM,w ⊲ s by Lemma 3.5. Thus DM supports s. �

We formulate two immediate consequences of Theorems 3.4 and 3.7.

Corollary 3.8 A formula is satisfiable if and only if it is supported by a demo.

Corollary 3.9 Every satisfiable formula is satisfied by a finite model obtained

from a demo.

Corollary 3.9 states a small model property for our logic. Corollary 3.8 gives

us a purely syntactic decision method (support is decidable in polynomial time).

It is easy to see that demos are closed under union. Hence there is a largest

demo.

Corollary 3.10 A formula is satisfiable if and only if it is supported by the largest

demo.

2011/2/11 6

4 Abstract Pruning

Given a set U of α-clauses, it is straightforward to compute the largest demo

contained inU. One starts fromU and stepwise deletes clauses inU that cannot

occur in a demo contained in U. We call this process abstract pruning. Abstract

pruning terminates with the largest demo contained in U. If we apply abstract

pruning to the set of all α-clauses, it computes the largest demo. This yields a

decision procedure since a clause is satisfiable if and only if it is supported by

the largest demo. Given that there are only exponentially many clauses, support

can be decided in polynomial time, and a pruning step can be performed in

exponential time, it is clear that the procedure can be realized so that it runs in

deterministic exponential time (everything with respect to |F|).

The sketched decision method is a reformulation of Pratt’s [16] worst-case

optimal decision method for PDL. Our α-clauses replace the Hintikka sets used

in Pratt’s formulation. Proofs of the correctness of Pratt’s method appear

in [14, 10, 3]. These proofs argue semantically since they lack the notion of a

demo. In contrast, our correctness argument delegates all semantic concerns to

Corollary 3.10.

While abstract pruning will not be employed by our final decision procedure,

it provides a helpful blueprint for the more elaborate pruning methods to be

used.

Let U be a set of α-clauses. We define the abstract pruning relation
AP
→U as a

binary relation on clause sets: S
AP
→U S′ ⇐⇒ S ⊊ S′ ⊆ U and there is a clause C

such that S ∪ {C} = S′ and one of the following conditions holds:

1. There is some ♦s ∈ C for which there is no D such that C →U\S D ⊲ s.

2. There is some ♦+s ∈ C for which there is no D such that C →+
U\S D ⊲ s.

It is helpful to think of the clauses in S and of C as bad clauses that are pruned

from U. Note that
AP
→U is a terminating relation (since U ⊆ 2F and F is finite).

Lemma 4.1 Let D ⊆ U \ S be a demo and S
AP
→U S′. Then D ⊆ U \ S′.

Lemma 4.2 Let S
AP
֏U S′. Then U \ S′ is either empty or a demo.

Theorem 4.3 Let 0
AP
֏U S. Then U \ S is either empty or the largest demo

contained in U. Moreover, U contains a demo if and only if U \ S 6= 0.

Proof Follows with Lemmas 4.1 and 4.2. �

5 Tableaux

A decision procedure that starts from the set of all α-clauses cannot be practical.

Instead, we aim at a procedure that starts from a clause representing the input

2011/2/11 7

s = �+(♦∗p ∧♦∗¬p)

♦∗p, ♦∗¬p, s

p, ♦∗¬p, s ♦+p, ♦∗¬p, s

p, ♦+¬p, s p, ¬p, s ♦+p, ¬p, s ♦+p, ♦+¬p, s

1 5

23 6 8

4

7

9

10

Figure 2: A complete tableau

formula and that incrementally builds a graph tableau by adding clauses and

links. A link is a triple CξD where the annotation ξ documents how the clause D

was obtained from the clause C . The procedure stops if the tableau determines

the satisfiability or unsatisfiability of the input formula. Since the satisfiability

or unsatisfiability of a formula can often be determined with a small tableau, the

procedure provides for a practical prover. Figure 2 gives a first impression of

how a graph tableau looks like. Graph tableaux seem to appear first in Pratt [17].

Given a formula s, we define the induced clause ⌊s⌋ by induction on s:

⌊s ∧ t⌋ := ⌊s⌋ ∪ ⌊t⌋

⌊�∗s⌋ := ⌊s⌋ ;�+s

⌊s⌋ := {s} if s aconjunctive

Intuitively, the induced clause is obtained by decomposing all top-level conjunc-

tions. The induced clause ⌊A⌋ for a set A of formulas is the union of the induced

clauses for the formulas in A. We have M,w ⊨ A if and only if M,w ⊨ ⌊A⌋.

We partition the set of clauses into clashed clauses, α-clauses, and β-clauses.

A clashed clause is a clause that contains a pair p and ¬p. A β-clause is a clause

that is not clashed and that contains a formula of the form s ∨ t or ♦∗s.

We distinguish between α-links and β-links. An α-link is a triple C
(

⋄s
s

)

D

such that C is an α-clause, ⋄s ∈ C , and D = ⌊RC ; s⌋. A β-link is a triple C
(

u
v

)

D

such that C is a β-clause, u ∈ C , D = (C\{u}) ∪ ⌊v⌋, and one of the following

conditions holds:

• u = s ∨ t and v ∈ {s, t}

• u = ♦∗s and v ∈ {s,♦+s}

2011/2/11 8

A tableau T is a set of clauses and links such that the following conditions

are satisfied:

1. If C
(

s
t

)

D ∈ T , then C and D are in T .

2. If C
(

s
t

)

D and C
(

u
v

)

E are β-links in T , then s = u.

A graphical representation of a tableau appears in Figure 2. Links are represented

as arrows. More concretely, a link C
(

s
t

)

D is represented as an arrow that departs

from the formula s in C and points to the formula t in D. We see a tableau as a

directed graph where the nodes are clauses and the edges are labeled with one or

several binomial annotations. Given a tableau, we call a clause D a ξ-successor

of a clause C if the tableau contains the link CξD. Note that a β-clause can have

at most two successors in a tableau.

A path is a possibly empty sequence (C0ξ0C1)(C1ξ1C2) . . . (Cn−1ξn−1Cn) of

links. We say that a tableau contains a path or that a path is in a tableau

if the tableau contains every link of the path. Given a tableau T , a clause D

is reachable from a clause C if T contains a path whose first clause is C and

whose last clause is D. In the tableau in Figure 2, every clause is reachable from

the topmost clause, which is a β-clause with two successors.

Let T and T ′ be two tableaux such that T ⊆ T ′. Then we call T a sub-

tableau of T ′ and T ′ a supertableau of T . Moreover, we call a clause C ∈ T

expanded if every link CξD that appears in some supertableau of T already ap-

pears in T . We call a tableau complete if each of its clauses is expanded. Note

that the tableau in Figure 2 is complete. Given a tableau T , one can compute a

complete tableau that contains T . Since only one disjunction in a β-clause can

be expanded (condition (2) in the definition of tableaux), there may be different

completions of a tableau.

Let T be a tableau and S be a set of clauses. We write T |S for the largest sub-

tableau of T containing only clauses from S, and T−S for the largest subtableau

of T not containing a clause from S.

6 Evidence

The idea of a demo carries over to tableaux. We define a class of evident tableaux

such that we obtain two properties:

1. The α-clauses of an evident tableau comprise a demo supporting all clauses

of the tableau.

2. Evidence of a tableau can be checked without checking support by just look-

ing at the clauses and links of the tableau.

An evident tableau T must contain for every eventuality ♦∗s ∈ C ∈ T a fulfilling

path that starts at C and ends with a β-link annotated with
(

♦∗s
s

)

. We call such

2011/2/11 9

paths runs. In the tableau in Figure 2, the eventuality ♦∗¬p in the topmost

clause has a run consisting of the links 5 and 6. Furthermore, the eventuality

♦+p in the rightmost clause has a run consisting of the links 9 and 1. Precise

definitions follow.

We use the notation ♦σ s to denote eventualities of the form ♦∗s or ♦+s. A

claim ♦σ s | C is a pair of a clause C and an eventuality ♦σ s ∈ C . We define

inductively what it means that a path π is a run for a claim γ:

1. If π = C
(

♦∗s
s

)

D, then π is a run for ♦∗s | C .

2. If π = (C
(

♦+s
♦∗s

)

D)π ′ and π ′ is a run for ♦∗s | D, then π is a run for ♦+s | C .

3. If π = (C
(

s
t

)

D)π ′, C is a β-clause, and π ′ is a run for ♦σ s | D, then π is a run

for ♦σ s | C .

A tableau T is evident if it satisfies the following conditions:

1. T contains no clashed clause.

2. If ♦s ∈ C ∈ T and C is an α-clause, then T contains a link C
(

♦s
s

)

D.

3. If C ∈ T is a β-clause, then C has at least one successor in T .

4. If ♦σs ∈ C ∈ T , then T contains a run for ♦σs | C .

A clause C is evident in a tableau T if C is contained in an evident subtableau

of T . We use ET to denote the set of all clauses that are evident in T . Note that

the union of evident tableaux is an evident tableau. Hence T | ET is the largest

evident subtableau of T .

Consider the tableau in Figure 2. The largest evident evident subtableau of

this tableau is obtained by deleting link 2 and the clashed clause it points to.

The situation changes if we delete link 5. Then the largest evident subtableau is

empty. The example tells us that non-evident clauses may be satisfiable.

Proposition 6.1 Let U and T be tableaux such that U ⊆ T . Then EU ⊆ ET .

Proposition 6.2 If CξD is a β-link and E ⊲D, then E ⊲ C .

Lemma 6.3 Let T be an evident tableau and C ∈ T be a clause. Then there

exists an α-clause D ∈ T that supports C .

Proof By induction on the sum of the sizes of the non-literal formulas in C using

Proposition 6.2. �

Theorem 6.4 The α-clauses of a nonempty evident tableau comprise a demo

that supports every clause of the tableau.

Corollary 6.5 If a clause is evident in a tableau, then it is satisfiable.

2011/2/11 10

Proof Follows with Theorems 6.4 and 3.4. �

Next, we lift Theorem 3.7 from demos to evident tableaux. Let T be a tableau

and M be a model. We define T |M := T | {C ∈ T | M satisfies C }.

Lemma 6.6 Let T be a complete tableau, M be a model, C ∈ T |M be a clause,

♦σ s ∈ C , M,w ⊨ C , w →n
M v , M, v ⊨ s, and n > 0 if σ = +. Then ♦σs | C has a

run in T |M.

Proof By lexicographic induction on n and the sum of the sizes of the non-literal

formulas in C . �

Lemma 6.7 Let T be a complete tableau and M be a model. Then T |M is an

evident subtableau of T .

Proof Follows with Lemma 6.6. �

Theorem 6.8 Let T be a complete tableau. Then a clause C ∈ T is satisfiable if

and only if C is evident in T .

Proof Follows with Lemma 6.7 and Corollary 6.5. �

Corollary 6.9 Let T be a complete tableau and ⌊s⌋ ∈ T . Then s is satisfiable if

and only if ⌊s⌋ is evident in T .

7 Eager Pruning

The idea of pruning carries over from demos to tableaux. Given a tableau, one

stepwise marks clauses that cannot appear in an evident subtableau. We call this

process eager pruning. When eager pruning terminates, exactly the non-evident

clauses of the tableau are marked. Eager pruning gives us a worst-case optimal

decision method: Given a formula s, construct a complete tableau containing

⌊s⌋ and run eager pruning. Then s is satisfiable if and only if ⌊s⌋ has not been

marked. A similar method appears first in Pratt [17].

Let T be a tableau. We define the eager pruning relation
EP
→T as a binary

relation on clause sets: S
EP
→T S′ ⇐⇒ S ⊊ S′ ⊆ T and there is a clause C such

that S ∪ {C} = S′ and one of the following conditions holds:

1. C is clashed.

2. C is an α-clause that is not expanded in T .

3. C is an α-clause that has a successor in T that is in S.

4. C is a β-clause all of whose successors in T are in S.

2011/2/11 11

5. C contains an eventuality s such that every run for s | C in T contains a

clause in S.

Note that
EP
→T is a terminating relation.

Lemma 7.1 (Soundness) Let S ⊆ T \ ET and S
EP
→T S′. Then S′ ⊆ T \ ET .

Lemma 7.2 Let S
EP
֏T S′. Then T−S′ is an evident tableau.

Theorem 7.3 LetT be a tableau,R
EP
֏T S, andR be a set of unsatisfiable clauses.

Then ET = {C ∈ T | C ∉ S }.

Proof Follows with Lemmas 7.1 and 7.2. �

Consider the tableau in Figure 2. If we apply eager pruning to the tableau,

it marks the clashed clause and no other clause. The situation changes if we

apply eager pruning to the tableau with link 5 removed. Then all clauses of the

tableau are marked as non-evident. This is the case since all but one eventu-

ality for ¬p lose their runs. The remaining two clauses then lack runs for the

eventuality ♦+p.

8 Cautious Pruning

We define cautious pruning as a constrained form of eager pruning that marks

unsatisfiable clauses. We base cautious pruning on the following consequence of

Theorem 6.8.

Corollary 8.1 Let T be a tableau. Then a clause C ∈ T is unsatisfiable if and

only if there is no complete supertableau of T in which C is evident.

Cautious pruning will mark a clause in a tableau if it is clear that the clause

cannot become evident by adding further links and clauses. To account for even-

tualities, we need the notion of a plan. A plan is a path in a tableau that is either

a run or a partial run that ends with a non-expanded clause. If a claim has a plan,

it may have a run in a completion of the tableau. However, if a claim has no plan,

it cannot have a run in any completion of the tableau.

We define inductively what it means that a path π in a tableau T is a plan for

a claim γ in T :

1. If ♦+s ∈ C ∈ T , C is an α-clause, and C has no
(

♦+s
♦∗s

)

-successor in T , then

the empty path is a plan for ♦+s | C in T .

2. If ♦σ s ∈ C ∈ T and C is a β-clause that is not expanded in T , then the empty

path is a plan for ♦σs | C in T .

2011/2/11 12

♦+p, ¬p, �+¬p, ♦q

♦∗p, ¬p, �+¬p,

♦+p, ¬p, �+¬p p, ¬p, �+¬p

1

2
3

4

Figure 3: An incomplete tableau

3. If π = C
(

♦∗s
s

)

D, then π is a plan for ♦∗s | C in T .

4. If π = (C
(

♦+s
♦∗s

)

D)π ′ and π ′ is a plan for ♦∗s | D in T , then π is a plan for

♦+s | C in T .

5. If π = (C
(

s
t

)

D)π ′, C is a β-clause, and π ′ is a plan for ♦σ s | D in T , then π

is a plan for ♦σs | C in T .

Lemma 8.2 Let T be a tableau and γ be a claim whose clause is in T . Then:

1. Every run for γ in T is a plan for γ in T .

2. Every plan for γ in T containing only clauses expanded in T is a run for γ.

3. If γ has a plan π in a supertableau of T , then it has a plan in T that is a

prefix of π .

Let T be a tableau. We define the cautious pruning relation
CP
→T as a binary

relation on clause sets: S
CP
→T S′ ⇐⇒ S ⊊ S′ ⊆ T and there is a clause C such

that S ∪ {C} = S′ and one of the following conditions holds:

1. C is clashed.

2. C is an α-clause that has a successor in T that is in S.

3. C is a β-clause that is expanded in T and all successors of C in T are in S.

4. C contains an eventuality s such that every plan for s | C in T contains a

clause in S.

Consider the tableau in Figure 3. Cautious pruning will mark all clauses of the

tableau since they are either clashed or contain an eventuality that has no plan.

Note that the tableau is incomplete since the topmost clause has no successor for

the formula ♦q. If we replace q with a complex formula, completing the tableau

may be expensive.

2011/2/11 13

Proposition 8.3 Let T be a tableau. Then
CP
→T ⊆

EP
→T . Moreover,

CP
→T is terminat-

ing and confluent. Hence there exists a unique set R such that 0
CP
֏T R.

Proof We have
CP
→T ⊆

EP
→T since every run is a plan. Cautious pruning is termi-

nating since there are only finitely many clauses, and confluent since it satisfies

the diamond property [2]. �

Given a tableau T , we use RT to denote the unique set R of clauses such

that 0
CP
֏T R. We say that that a clause C is refuted in T if C ∈ RT .

Proposition 8.4 Let S
CP
→T S′ and S ⊆ RT . Then S′ ⊆ RT .

Proposition 8.5 If T is a complete tableau, then
CP
→T =

EP
→T .

Lemma 8.6 Let U and T be tableaux such that U ⊆ T . Then
CP
→U ⊆

CP
→T and

RU ⊆ RT .

Proof Follows with Lemma 8.2 (3). �

Lemma 8.6 states that cautious pruning is monotone with respect to the underly-

ing tableau. This is not the case for eager pruning (consider the tableau {{♦p}}).

Lemma 8.7 Let every clause in S be unsatisfiable and S
CP
→T S′. Then every clause

in S′ is unsatisfiable.

Proof Consider the 4 cases in the definition of
CP
→T . Except for the 4th case the

claim is obvious. Now let C ∈ T be a clause that contains an eventuality s such

that every plan for s | C in T contains a clause in S. Furthermore, let T ′ be

a complete supertableau of T . Suppose C is satisfiable. By Theorem 6.8, C is

evident in T ′. Hence there is an evident subtableau of T ′ that contains a run π

for s | C . Since the clauses in S are unsatisfiable, it follows with Corollary 6.5

that π contains no clause in S. By Lemma 8.2 (3), some prefix of π is a plan for

s | C in T . Contradiction. �

Theorem 8.8 (Soundness) Every clause in RT is unsatisfiable.

Proof Follows from Lemma 8.7 �

Lemma 8.9 (Progress) Let RT EP
֏T S andRT ⊊ S. Then S\RT contains a clause

that is not expanded in T .

2011/2/11 14

Input: a formula s ∈ F

Variables: T := {⌊s⌋}, R := 0, E := 0

Invariants:

− T is a tableau such that every clause is reachable from ⌊s⌋

− R ⊆ RT and E ⊆ ET

while ⌊s⌋ ∉R∪E do one of the following:

− Grow T by adding a link to a clause in T \ (R∪E)

− Grow R with cautious pruning, that is, R := R′ where R
CP
→T R′

− Grow E with eager pruning, that is, E := {C ∈ T | C ∉ S } where R
EP
֏T S

Output: SAT if ⌊s⌋ ∈ E and UNSAT otherwise

Figure 4: Incremental decision procedure IDP

Proof By Theorem 7.3 and Theorem 8.8 we know that the tableau T−S is evident

and that the tableau T−RT is not evident. Hence there is a clause C ∈ S \ RT

that violates an evidence condition for T−RT .

We obtain the claim by contradiction. Suppose every clause in S \ RT is

expanded in T . Then C is expanded in T . Since C violates an evidence condition

for T−RT , there must be an eventuality s ∈ C such that s | C has no run in

T−RT . Since C ∉ RT , the claim s | C has a plan in T that does not contain

a clause in RT . By Lemma 8.2 (3), s | C then has a plan in T−RT . Since every

clause in S \ RT is expanded and every eventuality in T−S has a run in T−S

(since T−S is evident), s | C has a run in T−RT (follows with Lemma 8.2 (2)).

Contradiction. �

9 An Incremental Decision Procedure

We now have everything in place to formulate an incremental decision procedure.

Starting from an input formula s, the procedure grows a tableau T and two

clause sets R ⊆ T and E ⊆ T such that all clauses in R are refuted and all

clauses in E are evident in T . The set R is grown by cautious pruning, and the

set E is grown by eager pruning (taking complements). The procedure stops once

the initial clause ⌊s⌋ appears in R or E. Figure 4 gives a precise formulation of

the procedure, which we name IDP.

We argue the correctness of IDP as follows:

1. Preservation of the invariant for R follows from Lemma 8.6 and Proposi-

tion 8.4. Preservation of the invariant for E follows from Theorems 8.8

and 7.3, and Proposition 6.1.

2011/2/11 15

2. That the loop can perform at least one of the three possible steps follows

from the loop condition, the invariants, and Lemma 8.9.

3. The loop terminates since each iteration grows one of the sets T , R and E,

and each of these sets is bounded by the finite formula universe F .

4. Correctness of the output follows from the negated loop condition, the in-

variants, Corollary 6.5, and Theorem 8.8.

IDP runs in deterministic exponential time with respect to the size of s. To see

this, note that every traversal of the loop adds at least one element to one of the

sets T , R, and E, and that the cardinality of each of these sets is exponentially

bounded in |F|. Moreover, each of the three possible actions of the loop can be

realized in polynomial time with respect to the size of T , R, and E.

We call a tableau T a certificate for a formula s and say that T determines s

if ⌊s⌋ ∈ RT ∪ ET and every clause in T is reachable from ⌊s⌋. We speak of a

negative certificate if ⌊s⌋ ∈ RT , and of a positive certificate if ⌊s⌋ ∈ ET . For

example, the tableau in Figure 3 is a negative certificate for ♦+p∧�∗¬p∧♦q, and

the tableau in Figure 2 is a positive certificate for �∗(♦∗p ∧ ♦∗¬p). Note that

it can be decided in polynomial time whether a tableau is a positive or negative

certificate for a formula (with respect to the size of the tableau).

Proposition 9.1 IDP always terminates with a tableau that determines the input

formula. Thus every formula has a certificate.

Proof Follows from the invariants and the negated loop condition. �

Vice versa, let T determine s. Then IDP can first construct the tableau T and

then do the necessary pruning to establish T as a certificate of s. Thus IDP can

be efficient for formulas with small certificates. Of course, the question remains

how IDP selects the right tableau expansion steps. Given the complexity of the

problem, there will be no perfect answer. Nevertheless, it is a good idea to grow

R and E eagerly so that unnecessary expansions are avoided. Moreover, one can

show that it is unnecessary to expand clauses that can only be reached from the

input formula by a path that passes through a clause in R or E.

10 Branching Tableau Search

Provers for modal logic often employ branching and backtracking to search for

an evident tableau. Transferred to our setting, branching search branches on

β-clauses (admitting only one departing link per β-clause and branch) and stops

as soon as a branch contains a clashed clause or a bad loop. Consider the com-

plete tableau in Figure 2 for illustration. Branching search unrolls this tableau

2011/2/11 16

into four branches, containing the links {1,2}, {1,3,4}, {5,6,7}, and {5,8,9,10},

respectively. The branch {1,2} is failed (i.e., closed) since it contains a clashed

clause, and the other branches are failed since they contain bad loops leaving

eventualities unfulfilled. However, the tableau in Figure 2 becomes evident if we

delete the clashed clause. Thus the example tells us that branching search is

incomplete for our tableau system.

There are branching tableau systems that are complete for modal logic with

eventualities. The systems of Baader [1] and De Giacomo and Massacci [4] employ

prefixes and blocking, and a recent system of the authors [13] employs α-clauses

and a DNF operator replacing β-clauses. Although branching tableau search is

not worst-case optimal for modal logic with eventualities, it may still perform

well in practice due to its incrementality. Moreover, the branching system in [13]

accommodates nominals without sacrificing incrementality. So far it is open

whether one can have an incremental and worst-case optimal decision procedure

for modal logic with nominals and eventualities.

References

[1] Franz Baader. Augmenting concept languages by transitive closure of roles:

An alternative to terminological cycles. Technical Report RR-90-13, DFKI,

1990.

[2] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge

University Press, 1998.

[3] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic. Cam-

bridge University Press, 2001.

[4] Giuseppe De Giacomo and Fabio Massacci. Combining deduction and model

checking into tableaux and algorithms for converse-PDL. Inf. Comput.,

162(1–2):117–137, 2000.

[5] Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of

regular programs. J. Comput. System Sci., pages 194–211, 1979.

[6] Jürgen Giesl and Reiner Hähnle, editors. IJCAR 2010, volume 6173 of LNCS.

Springer, 2010.

[7] Rajeev Goré and Florian Widmann. Satisfiability checkers for PDL and CPDL.

users.cecs.anu.edu.au/∼rpg/software.html.

2011/2/11 17

http://users.cecs.anu.edu.au/~rpg/software.html

[8] Rajeev Goré and Florian Widmann. An optimal on-the-fly tableau-based deci-

sion procedure for PDL-satisfiability. In Renate A. Schmidt, editor, CADE-22,

volume 5663 of LNCS, pages 437–452. Springer, 2009.

[9] Rajeev Goré and Florian Widmann. Optimal tableaux for propositional dy-

namic logic with converse. In Giesl and Hähnle [6], pages 225–239.

[10] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. The MIT Press,

2000.

[11] Ullrich Hustadt and Renate A. Schmidt. A comparison of solvers for propo-

sitional dynamic logic. In PAAR-2010, 2010.

[12] Mark Kaminski and Gert Smolka. Clausal graph tableaux for hybrid logic

with eventualities and difference. In Christian G. Fermüller and An-

drei Voronkov, editors, LPAR-17, volume 6397 of LNCS, pages 417–431.

Springer, 2010.

[13] Mark Kaminski and Gert Smolka. Terminating tableaux for hybrid logic with

eventualities. In Giesl and Hähnle [6], pages 240–254.

[14] Dexter Kozen and Jerzy Tiuryn. Logics of programs. In Handbook of The-

oretical Computer Science, Volume B: Formal Models and Sematics, pages

789–840. Elsevier, 1990.

[15] Vaughan R. Pratt. Semantical considerations on Floyd-Hoare logic. In FOCS

’76, pages 109–121. IEEE Computer Society Press, 1976.

[16] Vaughan R. Pratt. Models of program logics. In FOCS ’79, pages 115–122.

IEEE Computer Society Press, 1979.

[17] Vaughan R. Pratt. A near-optimal method for reasoning about action. J.

Comput. System Sci., 20(2):231–254, 1980.

[18] Florian Widmann. Tableaux-based Decision Procedures for Fixed Point Logics.

PhD thesis, Australian National University, 2010. submitted.

2011/2/11 18

	Introduction
	Formulas and Models
	Demos
	Abstract Pruning
	Tableaux
	Evidence
	Eager Pruning
	Cautious Pruning
	An Incremental Decision Procedure
	Branching Tableau Search

