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Abstract
We discuss and compare two Coq mechanisations of Sier-
piński’s result that the generalised continuum hypothesis
(GCH) implies the axiom of choice (AC). The first version
shows the result, originally stated in first-order ZF set-theory,
for a higher-order set theory convenient to work with in Coq.
The second version presents a corresponding theorem for
Coq’s type theory itself, concerning type-theoretic formu-
lations of GCH and AC. Both versions rely on the classical
law of excluded middle and extensionality assumptions but
we localise the use of axioms where possible.

CCS Concepts: • Theory of computation → Type the-
ory; Constructive mathematics; Higher order logic.
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1 Introduction
An early but somewhat surprising result in axiomatic set the-
ory states that the generalised continuum hypothesis (GCH)
implies the axiom of choice (AC), already announced by
Tarski in 1926 [27] and proven by Sierpiński in 1947 [35].
GCH, generalising Cantor’s continuum hypothesis stating
that there are no cardinalities between the set N of natu-
ral numbers and its power set P(N), rules out cardinalities
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between X and P(X ) for every infinite X . Therefore, GCH
narrows the range of the power set operation otherwise left
rather underspecified by the usual Zermelo-Fraenkel (ZF)
axioms. AC, in one typical set-theoretic formulation, states
that every set X of non-empty sets admits a choice function
f such that f (x) ∈ x for all x ∈ X .
That GCH as a statement about power sets and cardinal-

ity implies AC, a statement providing a means to uniformly
pick elements from non-empty sets, may seem surprising
indeed [14]. However, since AC is equivalent to the well-
ordering theorem (WO), asserting that every (infinite) set
can be well-ordered, and since well-orders transport along in-
jections, there is a well-established strategy how Sierpiński’s
result can be deduced. Intuitively, given an infinite set X , the
intermediate step is to construct a well-ordered setH (X ), for
instance the Hartogs number of X [18], which is not embed-
dable into X but bounded by a finite iteration of the power
set on X , i.e. with |H (X )| ̸≤ |X | but |H (X )| ≤ |Pk (X )| for
some number k . Deducing |X | ≤ |H (X )| would now suffice
in order to transport the well-order of H (X ) onto X and to
concludeWO and thus AC. However, since cardinalities need
not be comparable in the absence of AC, just |H (X )| ̸≤ |X |

is not enough to deduce |X | ≤ |H (X )|. Yet applying GCH on
a suitable instance yields that either |X | ≤ |H (X )| as desired
or |H (X )| ≤ |Pk−1(X )|, the latter allowing for iterating the
argument ultimately terminating since |H (X )| ̸≤ |X |.1

Sierpiński’s theorem as a result in first-order set theory has
been canonised in standard textbooks (e.g. [38], we follow
their wording of “Sierpiński’s theorem” for simplicity and
are conscious of other results referred to by the same name)
and in fact mechanised in Metamath by Carneiro [9].2 In
this paper, in contrast, we study Sierpiński’s theorem as a
statement in higher-order set theory, disposing of the need
for first-order encodings, as well as in dependent type the-
ory, disposing of the axiomatic framework altoghether, and
provide respective mechanisations in Coq [42].3

As argued in a previous paper [24], higher-order set theory
is a natural framework for mechanising set-theoretic results
in proof assistants implementing a higher-order logic. Specif-
ically, the ZF axiom scheme used to express replacement for

1Sierpiński’s original proof works with k = 3 and hence applies GCH three
times. A proof applying GCH only twice was later given by Specker [40].
2See Section 8.3 for a more detailed comparison to Carneiro’s work.
3Available at https://www.ps.uni-saarland.de/extras/sierpinski/.
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every first-order formula ϕ(x ,y) describing a functional rela-
tion can be condensed into a single axiom simply quantifying
over all relations, not just the first-order definable ones. So
in consequence there is no need to represent the syntax of
first-order logic and the full expressivity of the meta-logic
can be used. In particular regarding Sierpiński’s theorem,
every function on the meta-level can be encoded as a set-
theoretic representation, which makes the central notion of
cardinality coincide on both levels. This is a fundamental
difference from first-order set theory, where, for instance, ex-
ternally countable models with internally uncountable sets
exist as noted early on by Skolem [36].
This simplification of axiom schemes, together with fur-

ther streamlining of the foundation and infinity axioms,
yields a higher-order version of ZF very convenient to work
with in Coq. Therefore complementing [9], we give a com-
pact Coq mechanisation using features like inductive pred-
icates and recursive function definitions although still pre-
senting the argument in its typical set-theoretic outline. Es-
pecially, this framework admits a notion of inductively char-
acterised ordinals similar to the inductive treatment of the
cumulative hierarchy in [24]. Going one step further, in the
second part of the paper, we will contrast this set-theoretic
development with a type-theoretic version of Sierpiński’s
result that does without any intermediate axiomatisation.

The fact that, if one interprets sets as types in a type uni-
verse T, statements usually rendered in set theory have natu-
ral counterparts in dependent type theory (possibly extended
with axioms regarding extensionality and classical logic) has
been illustrated in many places, for instance in [19], [43],
and [37] with type-theoretic versions of Zermelo’s result that
AC implies WO. In particular, type theories as implemented
in Coq with its impredicative universe P of propositions, pro-
viding the necessary notions of anonymous propositional
existence and power sets, are well-suited for such a synthetic
reformulation of set-theoretic results.
In our case, we can formulate GCH in Coq by
GCHT : P := ∀XY : T. |N| ≤ |X | ≤ |Y | ≤ |X → P|

→ |Y | ≤ |X | ∨ |X → P| ≤ |Y |

where |X | ≤ |Y | now formally denotes the propositional
existence of an injective function f : X → Y , and AC by

ACT : P := ∀XY : T. ∀R : X → Y → P. (∀x . ∃y.Rxy)
→ ∃f : X → Y . ∀x .Rx(f x)

which is notably a proposition weaker than a type-level
choice operator such as the one assumed in the Lean proof
assistant. In contrast to the axiom of choice, the continuum
hypothesis seems not to be a typical axiom in dependent
type theory but is considered as a target for type-theoretic
forcing in [20]. The consistency of both ACT andGCHT is jus-
tified by the standard set-theoretical interpretation of Coq’s
type theory [45], provided one works in a strong enough set
theory satisfying AC and GCH itself.

Regarding the role of additional axioms, it is obvious
that a result from classical set theory does not necessar-
ily transport to Coq’s constructive type theory directly. In
fact, we will assume functional extensionality (FE), proposi-
tional extensionality (PE), and the law of excluded middle
LEM := ∀P : P. P ∨ ¬P throughout this paper. Note that
FE and PE together imply that predicates p : X → P are
determined by their elements and that both PE and LEM sep-
arately imply proof irrelevance (PI) and hence the existence
of well-behaved subtypes Σx : X .px . While FE and PE are
only needed for the mentioned shortcuts and could possibly
be circumvented, the necessity of LEM shall be subject of
further investigation. Furthermore, we first give a proof vari-
ant relying on a unique choice operator (UC) to identify total
functional relations with functions for a simplified presenta-
tion in alignment with the usual set-theoretic practice. That
this requirement can be eliminated is shown afterwards.
The remaining text is organised as follows. We begin by

introducing the general notions of cardinality and orderings
in Section 2. Then, in the first part of the paper, the set-
theoretic version of Sierpiński’s theorem will be presented,
with a focus on the representation of ordinals (Section 3)
and the Hartogs numbers (Section 4). The second part then
outlines the type-theoretic version, comprising the encod-
ing of the Hartogs numbers as types (Section 5) and the
remaining argument with (Section 6) and without (Section 7)
employing UC. Both parts can be read independently, only
the analogous conclusion of Sierpiński’s theorem after con-
structing the Hartogs numbers is left out in the first part
to avoid redundancy. We conclude with some remarks on
the comparison of both versions, on their respective Coq
mechanisations, as well as on related and future work in
Section 8. All statements in this PDF version are hyperlinked
with HTML documentation of the Coq development.

2 Cardinality and Well-Orderings
We use common notation for dependent product ∀x . Fx , de-
pendent sum Σx . Fx , (binary) product X × Y , (binary) sum
X +Y , and function types X → Y in the type universe (hier-
archy) T. In the universe P of propositions, we employ the
usual logical notation for the corresponding notions. More-
over, we call P(X ) := X → P the power type of X and define
inclusion p ⊆ q for predicates p,q : P(X ) by ∀x .px → qx .
We extend Coq’s type theory with the propositional ax-

ioms for (simply typed) functional extensionality, proposi-
tional extensionality, and excluded middle:

FE := ∀XY . ∀f ,д : X → Y . (∀x . f x = дx) → f = д

PE := ∀PQ : P. (P ↔ Q) → P = Q

LEM := ∀P : P. P ∨ ¬P

We use FE and PE tacitly but indicate if LEM is needed
in the label of each statement. FE and PE together induce
predicate extensionality, proof irrelevance, and subtypes:

https://www.ps.uni-saarland.de/extras/sierpinski/types/html/Sierpinski.Prelim.html#FE
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Fact 2.1. The following statements hold.
1. ∀X . ∀pq : P(X ). (∀x .px ↔ qx) → p = q
2. Proof irrelevance PI := ∀P : P. ∀h,h′ : P .h = h′

3. Elements (x ,h) and (x ′,h′) of Σx .px are equal if x = x ′.

Proof. We prove the three claims one by one.
1. From ∀x .px ↔ qx we obtain ∀x .px = qx by PE and

thus p = q by FE.
2. If P : P is inhabited, then P = ⊤ by PE. Thus P is a

singleton since ⊤ is.
3. After eliminating x = x ′ the proofs h and h′ of px are

equal by PI. □

Note that the latter justifies that we can identify elements
(x ,h) of a subtype Σx .px with x where convenient.
Having fixed the logical basis, we now first introduce

injections, inducing cardinality comparisons |X | ≤ |Y |.

Definition 2.2. A function f : X → Y is called injective if
f x = f y implies x = y for all x ,y : X . We write |X | ≤ |Y | if
there exists an injection from X to Y .

Fact 2.3. |X | ≤ |Y | is a preorder respected by sums, products,
and powers.

Proof. All but the last are witnessed by the obvious construc-
tions. If f : X → Y is injective, then Fp := λy. ∃x .px ∧ y =
f x defines an injection fromP(X ) toP(Y ). Indeed, assuming
Fp = Fq and w.l.o.g. px , we obtain Fp(f x) and hence Fq(f x).
But then f x = f x ′ for some x ′ with qx ′ and by injectivity
of f we conclude qx . □

Fact 2.4. For all X and p : X → P we have |Σx .px | ≤ |X |

and |X | ≤ |P(X )|.

Proof. The former is by injectivity of the first projection
π1 : (Σx .px) → X given in (3) of Fact 2.1 and the latter is
witnessed by λxy. x = y. □

Employing the inductive type N of natural numbers, car-
dinality comparisons yield a natural definition of infinity:

Definition 2.5. We call X infinite if |N| ≤ |X |.

Fact 2.6. If X is infinite, then so is P(X ).

Proof. This holds by Fact 2.4 and transitivity. □

We next define bijections, inducing equipotency |X | = |Y |.

Definition 2.7. A function f : X → Y is a bijection if it has
an inverse д : Y → X . We write |X | = |Y | if there exists a
bijection between X and Y .

Note that |X | = |Y | is indeed stronger than only requiring
both |X | ≤ |Y | and |Y | ≤ |X | since the Cantor-Bernstein
theorem for this setting relies on LEM [33] and likely even
on unique choice since we are employing type-theoretic
functions and not just total functional relations.

Fact 2.8. |X | = |Y | is an equivalence congruent for sums,
products, and powers.

Proof. The injections in Fact 2.3 have obvious inverses. □

Fact 2.9. |X | = |Y | implies |X | ≤ |Y |.

Proof. Trivial since invertible functions are injective. □

Having established the relevant notion of cardinality, we
now approach the second key notion involved in Sierpinski’s
theorem, namely (well-)orderings.We first consider inclusion
as a canonical partial order on power types.

Fact 2.10. Inclusion p ⊆ q for p,q : P(X ) is a partial order.

Proof. Reflexivity and transitivity are trivial and antisymme-
try holds by (1) of Fact 2.1. □

The missing property defining a well-order can be ex-
pressed abstractly via least elements for arbitrary (and pos-
sibly undecidable) inhabited predicates.

Definition 2.11. Let R : X → X → P be a partial order.
We say that x : X is a least element of p : P(X ) if px and
if Rxy for all y : X with py. We call R a well-order if it is
well-founded, i.e. if for every inhabited p : P(X ) there exists
a least element.

We also employ the related notion of strict well-orderings:

Definition 2.12. Given a relation R : X → X → P, we
characterise its accessible points TR : P(X ) inductively by
inferring TRx whenever TRy for all y with Ryx :

∀y.Ryx → TRy

TRx

We call R a strict well-order if it is transitive, trichotomous
(∀xy.Rxy ∨ x = y ∨ Ryx), and terminating (∀x .TRx).

Given a strict well-order R, we refer to the propositional
elimination principle of TR as well-founded induction and
to the computational elimination principle as well-founded
recursion.
Employing LEM, one can easily verify the usual transla-

tions of well-orders R to strict well-orders R′xy := Rxy ∧

x , y and, conversely, of strict well-orders S to well-orders
S ′xy := Sxy ∨ x = y. Already without LEM, given that
they yield least and not just minimal elements as frequently
required, we can show that well-orders are linear:

Fact 2.13. Well-orders R are linear, i.e. Rxy ∨Ryx for all x ,y.

Proof. Given R and x ,y : X , consider pz := z = x ∨ z = y.
Since p is obviously inhabited, we obtain a least element
z. Since either z = x or z = y, we obtain the expected
comparisons Rxy or Ryx , respectively. □

Next, we show that well-orders transport along injections.

Fact 2.14. If X has a (strict) well-order and |Y | ≤ |X |, then
Y has a (strict) well-order.

https://www.ps.uni-saarland.de/extras/sierpinski/types/html/Sierpinski.Prelim.html#predicate_ext
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https://www.ps.uni-saarland.de/extras/sierpinski/types/html/Sierpinski.Prelim.html#injective
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Proof. If RX is a (strict) well-order on X and f : Y → X an
injection, then it is easy to verify that RYyy ′ := RX (f y)(f y

′)

is a (strict) well-order on Y . □

Finally, we introduce order embeddings and isomorphisms.
Definition 2.15. Given two relations R : X → X → P and
S : Y → Y → P, a function f : X → Y is an order embedding
if it is a morphism from R to S , i.e. if Rxx ′ ↔ S(f x)(f x ′) for
all x ,x ′ : X . We write X ⪯ Y if there is an order embedding
from X to Y for relations clear from the context.

Fact 2.16. X ⪯ Y is a preorder.

Definition 2.17. An order embedding f : X → Y is an order
isomorphism if it has an inverse д : Y → X . We call X and
Y (strongly) isomorphic, written X ≈ Y , if there is an order
isomorphism for X and Y for relations clear from the context.

Fact 2.18. X ≈ Y is an equivalence relation.

3 Ordinals in Higher-Order ZF
In this section, we axiomatise a higher-order set theory and
develop the basic theory of ordinals. Concretely, we work in
a fixed model of higher-order ZF (cf. [24]), i.e. we assume a
type S with constants

_ ∈ _ : S → S → P (membership)
∅ : S (empty set)

{_, _} : S → S → S (unordered pair)⋃
: S → S (union)

P : S → S (power set)
_@ _ : F (S) → S → S (replacement)

ω : S (natural numbers)
where F (S) denotes the type of functional relations of

type R : S → S → P. We call the elements A,x : S sets
and predicates p,q : S → P classes, the latter borrowing
the notation A ∈ p for pA where convenient. Moreover, we
frequently identify sets A with their corresponding classes
λx . x ∈ A and classes p with their subtypes ΣA.pA. Similarly,
we simply say that a class p is a set, if there is a set A with
p = λx . x ∈ A or, with the above identification p = A.

In order to equip the introduced constants with their in-
tended meaning, we assume that they are characterised by
the following axioms:

∀AB.A = B ↔ ∀x . x ∈ A ↔ x ∈ B (Extensionality)
∀A.A < ∅ (Empty Set)

∀ABx . x ∈ {A,B} ↔ x = A ∨ x = B (Pairing)
∀Ax . x ∈

⋃
A ↔ ∃y ∈ A. x ∈ y (Union)

∀Ax . x ∈ P(A) ↔ x ⊆ A (Power Set)
∀RAy.y ∈ R@A ↔ ∃x ∈ A.Rxy (Replacement)
∀x . x ∈ ω ↔ ∃n : N. x = σn(∅) (Infinity)

∀A.T∈A (Foundation)

Here, x ⊆ A is the usual notation for ∀y.y ∈ x → y ∈ A
and the von Neumann successor σ : S → S is defined by
σ (A) := A∪ {A} whereA∪B :=

⋃
{A,B} and {A} := {A,A}.

Specifically the last three axioms are stronger than their
first-order versions, in that first-order replacement only ap-
plies to functional relations R coinciding with a first-order
formula ϕ(x ,y), in that first-order infinity just asserts the ex-
istence of a set closed under ∅ and σ with no reference to the
external type N, and in that foundation is usually assumed
in form of the weaker first-order regularity axiom. So every
model of higher-order ZF satisfies the axioms of first-order
ZF while the converse does not hold in general.

Note that the conditions under which such a higher-order
model S exists in Coq’s type theory are analysed in [45]
and [26]. Also note that this axiomatisation is not minimal
since the replacement axiom is strong enough to define ∅

from ω and unordered pairs from ∅ and power sets, the
latter actually done in the Coq development. Given its ex-
pressiveness, replacement for arbitrary functional relations
also yields separation, replacement for functions, and a de-
scription operator:
Lemma 3.1. There are operations as follows.

_ ∩ _ : (S → P) → S → S s.t. x ∈ p ∩A ↔ x ∈ A ∧ px

_@ _ : (S → S) → S → S s.t. y ∈ f @A ↔ ∃x ∈ A.y = f x

δ : ∀p : S → P. (∃!A.pA) → ΣA.pA

Proof. The respective constructions can be given as follows:
• separation: p ∩A := (λxy. x = y ∧ px)@A
• function replacement: f @A := (λxy.y = f x∧px)@A
• description: δp :=

⋃
(λxy.py)@P(∅) □

Note that functional replacement together with descrip-
tion is in fact equivalent to relational replacement, we choose
the latter as axiom due to its proximity to the corresponding
first-order axiom scheme. With functional replacement, we
can define the common notation

⋃
x ∈A f x :=

⋃
(f @A) for

indexed union and for separation we will also use the more
customary notation {x ∈ A | px} := p ∩A.
Before we continue, there is need to justify the reuse of

the power type notation P(A) for power sets, leading to the
core why higher-order ZF is more convenient to mechanise
than first-order ZF.

Definition 3.2. We call a type X : T set-like if it can be
encoded as a set, i.e. if there is a set X : S with an encoding
function eX : X → X that is injective and surjective.4

Lemma 3.3 (LEM). N, every proposition P : P, and P itself
are set-like and if types X and Y are set-like, then so are X ×Y ,
X + Y , X → Y , and P(X ).

Proof. The infinity axiom exactly states thatω is an encoding
of N witnessed by the numeral function eN := λn. σn(∅).
4Note that the stronger property |X | = |X | would require assuming a
stronger elimination principle for S in most cases.

https://www.ps.uni-saarland.de/extras/sierpinski/types/html/Sierpinski.Prelim.html#relation_embedding
https://www.ps.uni-saarland.de/extras/sierpinski/types/html/Sierpinski.Prelim.html#relation_embedding_refl
https://www.ps.uni-saarland.de/extras/sierpinski/types/html/Sierpinski.Prelim.html#relation_isomorphism
https://www.ps.uni-saarland.de/extras/sierpinski/types/html/Sierpinski.Prelim.html#relation_isomorphism_refl
https://www.ps.uni-saarland.de/extras/sierpinski/sets/html/Sierpinski.Basics.html#comprehension
https://www.ps.uni-saarland.de/extras/sierpinski/sets/html/Sierpinski.Basics.html#comprehension
https://www.ps.uni-saarland.de/extras/sierpinski/sets/html/Sierpinski.Basics.html#fun_replacement
https://www.ps.uni-saarland.de/extras/sierpinski/sets/html/Sierpinski.Basics.html#description
https://www.ps.uni-saarland.de/extras/sierpinski/sets/html/Sierpinski.Basics.html#setlike
https://www.ps.uni-saarland.de/extras/sierpinski/sets/html/Sierpinski.Basics.html#setlike_nat
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Similarly, the power set axiom ensures that the power set
P(X ) encodes the power type P(X ), since predicates on X

and subsets of X are in one-to-one correspondence due to
the strong replacement axiom. Further overloading the type-
level notations, the remaining encodings are standard using
the Kuratowski ordered pairs (x ,y) := {{x}, {x ,y}} forX×Y ,
the disjoint unionX+Y := ({∅}×X )∪({{∅}}×Y ), and the set-
theoretic function space X → Y ⊆ X × Y of total functional
graphs. Finally, given P : P, we define P := (λx . P) ∩ {∅}

with eP := λh. ∅ and P := {∅, {∅}} with eP := λP . P . □

This means that the type-theoretic fragment relevant to
state GCH and AC has a faithful representation within the as-
sumed model S of higher-order ZF and all notions from Sec-
tion 2 regarding cardinality and orderings carry over without
need for reformulation. If S were just a model of first-order
ZF, neither power types, function spaces, nor propositions
could be shown set-like and the stricter first-order versions
of these constructs and the related notions of cardinality
and orderings were necessary to define. Sidestepping this
problem, we freely reuse all type-theoretic notation and hide
the particular encodings. The only statement concretely de-
pending on a chosen encoding is the following:
Lemma 3.4. A ×A ⊆ P2(A) and hence |A ×A| ≤ |P2(A)|.

Proof. The elements (x ,y) ∈ A×A are Kuratowski pairs of the
form {{x}, {x ,y}} that are obviously subsets of P(A). □

Although formulated for sets here, the bound |X × X | ≤

|P2(X )| can be analogously shown for arbitrary types X .
After having established the framework of higher-order

set theory, we now introduce ordinals. As common in a set-
theoretic foundation, ordinals are sets that serve two pur-
poses. First, ordinals are well-ordered by the element relation
and represent equivalence classes of well-ordered sets: for ev-
ery well-ordered set, there is exactly one isomorphic ordinal.
Secondly, we can regard ordinals as a generalisation of natu-
ral numbers that allows us to count beyond infinities: there is
a zero element, a successor function, and, additionally, every
set of ordinals has a least upper bound.
There are many possible definitions of ordinals but it

seems difficult to find one that expresses both properties
at once. We consider a definition that can only be formu-
lated in a higher-order logic but is most convenient for our
purposes. To this end, we use the notion of transitive sets.
Definition 3.5. We call a set A transitive if for all sets x and
y, whenever x ∈ A and y ∈ x then y ∈ A. In other words, a set
is transitive if every element is also a subset.

Definition 3.6. We define the classO of ordinals inductively:
an ordinal is a transitive set of ordinals, i.e. α ∈ O if α is
transitive and α ⊆ O.

Note that this inductive definition of ordinals is not ex-
pressible in first-order ZF but remains an equivalent charac-
terisation once one of the first-order encodings of ordinals is

chosen as definition. Analogously, we prove our definition
equivalent to a first-order characterisation (Fact 3.11) once
we have established the expected ordering properties, where
we only give the proofs that differ from the standard setting.

The transitivity condition is exactly what makes the ele-
ment relation on the class of ordinals transitive. Moreoever,
even if we didn’t have the axiom of foundation, the inductive
definition would imply that the element relation on ordinals
is well-founded. So only trichotomy is needed to conclude:

Lemma 3.7 (LEM). The class O is strictly well-ordered by ∈.

Proof. Transitivity follows from transitivity of ordinals as
sets and well-foundedness of the element relation on the
class of ordinals follows by induction from the axiom of
foundation.

To show trichotomy, we fix two ordinals α and β and need
to deduce α ∈ β , α = β or β ∈ α . We apply well-founded
induction on both, α and β . By LEM, we have that α = β
or α , β . The first case is trivial and in the second case
we know that α ⊈ β or β ⊈ α , yielding an ordinal γ ∈ α
with γ < β (or vice versa) suitable to apply the inductive
hypothesis for. □

Thus as announced before, ordinals represent well-orders:

Lemma3.8 (LEM). Every α ∈ O is strictly well-ordered by ∈.

Proof. Trivial since every ordinal is a subclass of O. □

Lemma 3.9. Isomorphic ordinals are equal: α ≈ β → α = β .

Proof. Fix α , β ∈ O with an isomorphism f : α → β . We
apply well-founded induction on both. We need to show that
α ⊆ β and β ⊆ α . W.l.o.g., we focus on the former. So fix
some ξ ∈ α . It suffices to show that ξ ≈ f (ξ ) since, by the
inductive hypothesis on ξ , this implies ξ = f (ξ ) ∈ β .

So consider the restriction f |ξ : ξ → β . This is actually a
function ξ → f (ξ ) since for all x ∈ ξ , we have f (x) ∈ f (ξ )
by the morphism property of f . As the inverse, we have
f −1 |f (ξ ). The function f |ξ is still a morphism since it is the
restriction of a morphism. □

A characteristic property of ordinals is that membership
and strict inclusion coincide, so the previous results hold for
the latter as well.

Lemma 3.10 (LEM). For α , β ∈ O we have α ∈ β iff α ⊊ β .

It is now easy to show the agreement of our inductive def-
inition to a common first-order characterisation of ordinals
as the transitive sets well-ordered by membership:

Fact 3.11 (LEM). The class O contains exactly the transitive
sets α that are strictly well-ordered by ∈ in the first-order sense,
i.e. with ∈-least elements for every non-emtpy subset of α .

Proof. The first direction is straightforward with Lemma 3.8.
For the converse direction, we can directly show that every
β ∈ α is an ordinal employing the foundation axiom. □
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One could proceed and also show that every well-ordered
set has an isomorphic ordinal, its order type. But we do not
need that fact and will not prove it here.

Instead, turning to the second announced property of or-
dinals, we briefly discuss how they generalise the natural
numbers by deriving constructors as well as the respective
elimination principle. These results are not needed to de-
rive Sierpiński’s theorem either but illustrate one alternative
inductive characterisation of ordinals in higher-order ZF.

Lemma 3.12. 1. The empty set is an ordinal.
2. The successor σ (α) of an ordinal α is an ordinal.
3. If A is a set of ordinals then

⋃
A is an ordinal.

Proof. 1. Both conditions are trivial since ∅ is empty.
2. Assume that α is an ordinal. We need to show that

every element of α is a subset of σ (α) and an ordinal.
Fix such an element x . By definition of the successor,
x = α or x ∈ α . The first case is trivial. In the second
case, x ⊆ α ⊆ σ (α) by transitivity of α and definition
of the successor. Moreover, as an element of an ordinal,
x is also an ordinal.

3. Fix a set of ordinals A. We need to show that every
element of

⋃
A is a subset of

⋃
A and an ordinal. Fix

such an element x . By the union axiom, there is an
ordinal α ∈ A, such that x ∈ α . Then x ⊆ α ⊆

⋃
A by

transitivity of α . Moreover, as an element of an ordinal,
x is also an ordinal. □

Since O contains ∅ and is closed under the successors, we
can see by induction that it contains the encodings σn(∅)

of all natural numbers n : N. Note that these constructors
could equally be taken as the inductive definition of ordinals,
with Definition 3.6 then becoming a provable property.

The constructors that we provided are not disjoint since
α =

⋃
σ (α) for all α . To formulate useful elimination princi-

ples, we distinguish the ordinals that can only be constructed
by the third constructor.

Definition 3.13. A limit ordinal is an ordinal that is neither
the empty set nor the successor of another ordinal. We use λ as
an identifier that implicitly ranges over limit ordinals.

It is easy to show that λ is a limit ordinal exactly iff it is non-
empty and satisfies λ =

⋃
α ∈λ α =

⋃
λ. There are versions

of this definition that include the empty set as a limit ordinal
but it is standard to treat the empty set separately in the
following transfinite induction principle.

Lemma 3.14 (LEM). Fix a predicate P : O → P as follows:
• The empty set satisfies P .
• If α satisfies P then the successor σ (α) satisfies P .
• If all elements of a limit λ satisfy P then λ satisfies P .

Then every ordinal satisfies P .

Proof. By well-founded induction on ∈ using the fact that
every ordinal is either empty, a successor, or a limit. □

4 Sierpiński’s Result in Higher-Order ZF
We now outline the set-theoretic proof of Sierpiński’s the-
orem with a focus on the steps utilising ordinals. The re-
maining steps that agree with the type-theoretic proof are
deferred to Section 6. We begin with the formal statements
of the generalised continuum hypothesis and the axiom of
choice in higher-order set theory.

GCHS := ∀AB : S. |ω | ≤ |A| ≤ |B | ≤ |P(A)|

→ |B | ≤ |A| ∨ |P(A)| ≤ |B |

ACS := ∀AB : S. ∀R : A → B → P. (∀x . ∃y.Rxy)
→ ∃f : A → B. ∀x : A.Rx(f x)

Recall that we can use the type-level function space to
state GCHS and ACS since, in higher-order set theory, it
agrees with the set-level function space (Lemma 3.3). So in
particular GCHT implies GCHS and ACT implies ACS .

Fact 4.1. ACS is equivalent to the statement that every set A
of non-empty sets admits a choice function f : A →

⋃
A with

f x ∈ x for all x .

Proof. For such a set A the relation R : A →
⋃
A → P

given by Rxy := y ∈ x is turned into a choice function
f : A →

⋃
A by ACS . Conversely, given a total relation

R : A → B → P, a choice function f for the range defined
as D := {C ∈ P(B) | ∃x ∈ A.C = Rx} yields д : A → B with
Rx(дx) by setting дx := f (Rx). □

A standard argument shows that the assumption that ev-
ery set can be well-ordered (WOS) implies ACS .

Fact 4.2. WOS implies ACS .

Proof. Given a total relation R : A → B → P, a well-order on
B, and an element a ∈ A, there exists a unique least element
of Ra. The corresponding function f : A → B can be defined
with the description operator δ . □

With this fact we are left to show that GCHS impliesWOS .
To this end, we introduce the Hartogs numbers as a means
to obtain arbitrarily large ordinals.

Definition 4.3. The Hartogs number of a set A is the class

ℵ(A) := λα ∈ O. |α | ≤ |A|.

Once we have shown that the Hartogs number is an or-
dinal, then the crucial property |ℵ(A)| ̸≤ |A| follows imme-
diately from this definition because otherwise, the Hartogs
number would contain itself. We proceed in three steps:

1. We show that |ℵ(A)| ≤ |P6(A)|.
2. We show that the Hartogs number is an ordinal.
3. We conclude that ℵ(A) ̸≤ A.

Fact 4.4 (LEM). ℵ(A) satisfies |ℵ(A)| ≤ |P6(A)|.
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Proof. Employing the bound for the cartesian product estab-
lished in Lemma 3.4 twice, we deduce

|P (P(A) × P(A ×A)) | ≤ |P
(
P(A) × P3(A)

)
|

≤ |P
(
P3(A) × P3(A)

)
|

≤ |P6(A)|.

By transitivity, it suffices to define the injection

f : ℵ(A) → P(P(A) × P(A ×A))

f (α) := {x ∈ P(A) × P(A ×A) | x ≈ α },

where we treat every x ∈ P(A) × P(A ×A) as a subset of A
with a relation on it that might satisfy x ≈ α . To see that f is
injective, fix two ordinals α , β ∈ ℵ(A) with f (α) = f (β). By
definition of the Hartogs number, there is an injectionα → A.
We embed the order on α along this injection to obtain an
x ∈ P(A)×P(A×A). Note that x ≈ α . Therefore x ∈ f (α) =
f (β) and hence x ≈ β by definition of f . Together, we have
α ≈ x ≈ β which implies α = β since isomorphic ordinals
are equal (Lemma 3.9). □

We could use a different encoding of ordered subsets to get
the bound down to P3(A) as illustrated in the type-theoretic
variant of Sierpiński’s theorem (cf. Section 5). In the pres-
ence of set-theoretic ordinals, however the above proof is
charmingly compact and leaves the set-theoretic notion of
orderings on A as subsets of A ×A explicit.
We next show that the Hartogs number is an ordinal.

Lemma 4.5. Classes p with |p | ≤ |A| for some set A are sets.

Proof. Fix an arbitrary class p and a set A with |p | ≤ |A|. By
definition, we have an injection f : p → A. Then the class p
coincides with the set (λyx .y = f x)@A. □

Corollary 4.6 (LEM). The Hartogs number ℵ(A) ofA is a set.

Proof. This follows from the previous two lemmas. □

Fact 4.7 (LEM). The Hartogs number ℵ(A) of A is an ordinal.

Proof. We know that the Hartogs number ℵ(A) contains only
ordinals by definition and that it is a set by the previous
corollary. It hence remains to show that the Hartogs number
is transitive. Fix two ordinals α and β with β ∈ α ∈ ℵ(A). Our
goal is to prove that β ∈ ℵ(A). By definition of the Hartogs
number, we have |α | ≤ |A| and need to show |β | ≤ |A|. From
β ∈ α we obtain β ⊆ α and thus already |β | ≤ |α |. □

Theorem 4.8 (LEM). For all sets A, we have ℵ(A) ̸≤ A.

Proof. Assume that ℵ(A) ≤ A. By definition of ℵ(A), we get
the contradiction ℵ(A) ∈ ℵ(A). □

Theorem 4.9 (LEM). GCHS impliesWOS .

Corollary 4.10 (LEM). GCHS implies ACS .

We leave Theorem 4.9 without proof here since the remain-
ing argument is completely analogous to the type-theoretic
version presented in Section 6, Theorem 6.7. In order to pre-
pare this result, we first discuss in the next section a way to
represent the Hartogs numbers in type theory.

5 Hartogs Numbers in Coq’s Type Theory
Turning to the second part concerned with a type-theoretic
version of Sierpiński’s theorem, we begin with a construction
of arbitrarily large well-ordered types. More precisely, we fix
a type X and construct a type H (X ) such that H (X ) is well-
ordered and |H (X )| ̸≤ |X | but |H (X )| ≤ |P3(X )|. In contrast
to set-theory, Coq’s type theory lacks a canonical notion of
ordinals natural to work with and so we directly work on a
representation of the well-orders of subsets of X . This time
we opt for the tighter representation with |H (X )| ≤ |P3(X )|

compared to the previous bound |ℵ(A)| ≤ |P6(A)| since in
a type-theoretic setting both are equally indirect. The idea
is to consider inclusion p ⊆ q for predicates p,q : P(X )

to isolate the well-founded orders P ,Q : P2(X ) and their
corresponding equivalence classes α , β : P3(X ).

As done with sets and classes before, we continue on iden-
tifying predicates p : P(Y ) on a type Y with their subtypes
Σy.py. So in particular we are able to apply the abstract
notions of well-orders, embeddings, and isomorphisms intro-
duced in Section 2 to P ,Q : P2(X ) ordered by inclusion. In
this particular setting, we moreover establish the following
properties regarding embeddability.

Fact 5.1. If P ⪯ Q and Q is well-founded, then so is P .

Proof. Suppose that f embeds P into Q and that Q is well-
founded. Then for some inhabited P ′ ⊆ P we obtain that
Q ′ := λq. ∃p. P ′p ∧ q = f p is included in Q and inhabited as
well. Hence it contains a least elementq which is f p for some
p with P ′p and since f respects inclusion it is straightforward
to show that p is indeed least in P ′. □

Fact 5.2. If P ⊆ Q then P ⪯ Q .

Complementing the notion of strong isomorphism P ≈ Q ,
we consider a weaker notion easier to show constructively.

Definition 5.3. We say that P andQ are weakly isomorphic,
written P ∼ Q , if both P ⪯ Q and Q ⪯ P .

Fact 5.4. P ≈ Q implies P ∼ Q and both P ≈ Q and P ∼ Q
respect well-foundedness.

Proof. If f is an isomorphism between P and Q , then it is an
embeddingwitnessing P ⪯ Q and its inverse is an embedding
witnessing Q ⪯ P . Moreover, f respects well-foundedness
by Fact 5.1. □

Wewill later see that also P ∼ Q implies P ≈ Q (employing
LEM). Furthermore (and without referring to additional ax-
ioms), it suffices to come up with relational embeddings and
isomorphisms to establish P ⪯ Q and P ≈ Q , respectively:
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Lemma 5.5. Assume R : P → Q → P such that p ⊆ p ′ ↔
q ⊆ q′ whenever Rpq and Rp ′q′. If R is total, then P ⪯ Q and
if, additionally, R is surjective, then P ≈ Q .

Proof. Let R be total. If we were to assume some form of
unique choice, we could directly reify R into a function.
However, even without unique choice we can simulate this
reification since the codomain is a power type. We define
f ′ : P → P(X ) by f ′p := λx . ∀q.Qq → Rpq → qx . First,
we show that Q(f ′p) for all p. Indeed, since R is total, we
have Rpq for some q with Qq and can show f ′p = q relying
on the fact that R respects inclusion and is hence functional.
Then f ′ can be lifted to a function f : P → Q respecting
inclusion since R does. Moreover, if R is also surjective, we
symmetrically obtain an embedding д : Q → P that is easily
verified to invert f . □

This is an instance of the more general fact that total
functional relations with a power type as codomain can be
turned into functions constructively.
We next introduce the notion of initial segments and es-

tablish the characteristic property that well-orders do not
embed into their initial segments.
Definition 5.6. Given P : P2(X ), we define initial segments
P↓ : P(X ) → P2(X ) by P↓p := λq. Pq ∧ q ⊆ p ∧ p ⊈ q.

Lemma 5.7. If P : P2(X ) is well-founded, then so is P↓p.

Proof. Straightforward since P↓p ⊆ P . □

Fact 5.8. We always have P↓p ⪯ P . Contrarily, P ⪯̸ P↓p if P
is well-founded and Pp.

Proof. P ↓ p ⪯ P follows from Fact 5.2. Now suppose P is
well-founded with P ⪯ P↓p ′ for some p ′ with Pp ′. By well-
foundedness, there is a least element p with this property.
However, if f witnesses the embedding of P into P↓p, then
iterating f twice witnesses P ⪯ P↓(f p) and hence p ⊆ f p,
contradicting P↓p(f p). □

Moreover, embeddability of segments is reflected by ⊆.
Lemma 5.9 (LEM). If P : P2(X ) is well-founded with Pp and
Pq, then p ⊆ q ↔ P↓p ⪯ P↓q.

Proof. From p ⊆ q we obtain P ↓ p ⊆ P ↓ q and hence P ↓
p ⪯ P↓q. Conversely, let P↓p ⪯ P↓q and, employing LEM,
suppose p ⊈ q. Then by linearity of P we have q ⊆ p and
thus P↓q = (P↓p)↓q. But then P↓p ⪯ (P↓p)↓q in conflict
with Fact 5.8 □

We now proceed to the embedding theorem, stating that
well-orders are comparable. Afterwards, this will be the main
ingredient to show that the type of well-orders internal to X
is itself well-ordered (Theorem 5.13).
Theorem 5.10 (LEM). If P : P2(X ) and Q : P2(X ) are well-
founded, then either P andQ are strongly isomorphic or one of
them embeds into a proper initial segment of the other:

P ≈ Q ∨ (∃q.Qq ∧ P ≈ Q↓q) ∨ (∃p. Pp ∧Q ≈ P↓p)

Proof. We employ the relationp ≈ q := Pp∧Qq∧P↓p ≈ Q↓q.
It is a morphism for inclusion by Fact 5.2, so for its domain
dom := λp. ∃q.p ≈ q and range ran := λq. ∃p.p ≈ q it
induces an isomorphism dom ≈ ran via Lemma 5.5. We now
employ LEM to distinguish four cases.

• If dom = P and ran = Q we can conclude P ≈ Q .
• If dom = P but there is q with Qq and ¬ranq, we may
assume that q is the least such element. It suffices to
show that Q↓q = ran since then P ≈ Q↓q as wished.
First, if (Q↓q)q′ we get a the contradiction q ⊆ q′ if it
were ¬ranq′. Conversely, if ranq′ we have to justify
q′ ⊆ q and q ⊈ q′. The latter holds since q ⊈ q′ would
imply that ranq since ran is downwards closed and
then the former follows with linearity.

• This is analogous to the previous case.
• If there are (least) p and q inQ and P but not in ran and

dom, respectively, we similarly obtain that P↓p ≈ Q↓q.
But then ranp and domq, contradiction. □

Corollary 5.11 (LEM). P ∼ Q implies P ≈ Q .

Proof. Assume P ∼ Q . By Theorem 5.10 we obtain either
P ≈ Q as claimed or w.l.o.g. P ≈ Q↓q for some q with Qq.
But then from P ∼ Q we have Q ⪯ P and hence Q ⪯ Q↓q
with Fact 5.4, in contradiction to Fact 5.8. □

We can now introduce the notion of (small) ordinals in-
ternal to X as equivalence classes of well-orders and prove
that they are indeed well-ordered by embeddability.

Definition 5.12. We call sets of orderings α : P3(X ) an
ordinal if α = [P] := (λQ . P ∼ Q) for some well-founded P .
We further define the canonical ordering on ordinals by

α ≤ β := ∃P ,Q . αP ∧ βQ ∧ P ⪯ Q

and denote the ordinal subtype of P3(X ) by H (X ).

Theorem 5.13 (LEM). H (X ) is well-ordered by α ≤ β .

Proof. We prove the necessary properties separately.
• Reflexivity and transitivity follow directly from the
corresponding facts about order embeddings.

• For antisymmetry, supposeα and β are the equivalence
classes of P and Q , respectively. Then from α ≤ β and
β ≤ α we obtain P ∼ Q and thus α = β .

• LetA : P4(X ) be an inhabited set of ordinals, i.e. there
is α = [P]withAα . Now using LEM, either α is already
least or there isQ such thatAβ for β = [Q]with P ⪯̸ Q .
Then by the embedding theorem (Theorem 5.10) we
obtain p with Pp such that Q ≈ P↓p. Since P is well-
founded, we can further assume that p is the least
element with A[P↓p].
We now claim that [P↓p] is the least element of A, so
for anyγ = [R]withAγ we need to show that P↓p ⪯ R.
Suppose otherwise, then again using Theorem 5.10 we
obtain that R ≈ (P↓p)↓r = P↓r for some r with (P↓p) r ,
contradicting the leastness of p. □
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We conclude this section by proving the expected proper-
ties regarding the cardinality of H (X ).

Theorem 5.14 (LEM). H (X ) ̸≤ X but H (X ) ≤ P3(X ).

Proof. The latter follows directly from Fact 2.4. For the for-
mer, suppose there were an injection F : H (X ) → X . In-
tuitively, we can derive a contradiction since F induces a
(partial) well-order in X that is too big to be accommodated.

Formally, consider PF := λp. ∃α .p = α↓ where α↓ :=
λx . ∀β . Fβ = x → β ≤ α . Clearly PF inherits the well-
foundedness from H (X ), so αF := [PF ] is an ordinal. More-
over, it is easy to verify that α ≤ β ↔ α↓ ⊆ β↓, so αF is
isomorphic to the full order on H (X ). But then we can show
that PF ⪯ PF↓αF ↓ witnessed by the function λp. [P↓p]↓ in
contradiction to Fact 5.8. □

6 Sierpiński’s Result in Coq’s Type Theory
In this section, we show that for GCHT and ACT as defined in
the introduction, the former implies the latter. Like in the set-
theoretic version, we now factor through the well-ordering
theorem WOT quantifying over all types by showing that
every type X embeds into H (Y ) for suitable Y . For the sake
of easy definitions of the necessary injections and bijections,
we assume a unique choice operator as follows.

UC := ∀X . ∀p : X → P. (∃!x .px) → Σx .px

As donewith LEM,wewill make explicit which statements
rely on UC but also show in the next section how to proceed
without this assumption. Notably, both assumptions together
yield an informative variant of excluded middle.

Fact 6.1 (LEM,UC). IEM := ∀P : P. P + ¬P holds.

Proof. Given P : P and employing LEMwe can show that the
predicate p : B → P defined by p tt := P and p ff := ¬P is
inhabited. This propositional ∃-witnesses cannot be analysed
to decide P + ¬P yet but with UC we can turn it into an
informative Σ-witness admitting the needed elimination. □

We begin with some elementary bijections concerning the
type B of booleans and the unit type 1 needed later.

Fact 6.2. There are bijections as follows:

|X + X | = |B × X | |N| = |1 + N|

|X | = |1 → X | |P(X + Y )| = |P(X ) × P(Y )|

Proof. All are obvious, the lower two of course rely on FE. □

Crucial for the proof of Sierpiński’s theorem is a criterion
for types X satisfying |X | = |X + X |. In the presence of AC,
this holds for all infinite X . Without AC, we can still obtain
this bijection for the power P(X ) of infinite X . To prepare
this result, we state some further bijections relying on UC.

Fact 6.3 (LEM,UC). Assume a predicate p : X → P and an
injection f : X → Y . There are bijections as follows:

|B| = |P| |X | = |Σx .px+Σx .¬px | |X | = |Σy. ∃x .y = f x |

Proof. We introduce the three bijections separately.
• The trivial injection defined by д tt := ⊤ and д ff := ⊥

can be inverted with IEM.
• The easy injection is (Σx .px + Σx .¬px) → X just
projecting out the witness. For the inverse we need
IEM to decide px + ¬px for a given x .

• The injection X → Σy. ∃x .y = f x just supplements
f x with the trivial proof of ∃x ′. f x = f x ′. We need
UC to extract the (unique) preimage from an element
y with ∃x .y = f x . □

The first key lemma |P(X )| = |P(X ) + P(X )| for infinite
X is now provable by composing the bijections established.

Lemma 6.4 (LEM,UC). If X is infinite, then |X | = |1 + X |

and |P(X )| = |P(X ) + P(X )|.

Proof. Let f : N→ X be injective and let rx := ∃n. x = f n
denote its range. Then we deduce:

|X | = |Σx .rx + Σx .¬rx | = |N + Σx .¬rx |

= |1 + N + Σx .¬rx | = |1 + Σx .rx + Σx .¬rx | = |1 + X |

Employing this fact, we further deduce:

|P(X )| = |P(1 + X )| = |P(1) × P(X )| = |(1 → B) × P(X )|

= |B × P(X )| = |P(X ) + P(X )|

Note the LEM and UC were needed only due to Fact 6.3 used
to obtain the first claim. □

The second key lemma states that for “big enough” X an
injection of P(X ) into X + Y already induces an injection
of P(X ) into Y . This holds intuitively since, given Cantor’s
theorem, X alone cannot contribute enough to the size of
X + Y to accommodate P(X ).

Fact 6.5. For every functional relation R : X → P(X ) one
can construct some p : P(X ) with ¬Rxp for all x .

Proof. By the diagonalisation p := λx . ∀q.Rxq → ¬qx . □

Lemma 6.6. If |P(X )| ≤ |X + Y | and |X + X | ≤ |X |, then
already |P(X )| ≤ |Y |.

Proof. We first deduce |P(X ) × P(X )| = |P(X + X )| ≤

|P(X )| ≤ |X + Y | using Fact 2.3 for the second step. Let
this be witnessed by an injection f : P(X ) × P(X ) → X +Y .
Then we can define a relation R : X → P(X ) → P by
Rxp := ∃q. f (p,q) = i1x . Using Cantor’s theorem (Fact 6.5)
there is pc such that ∀x .¬Rxpc .
We can now define an injection д′ : P(X ) → X + Y

by д′q := f (pc ,p) and observe that for every q it must be
д′q = i2y for some y since if it were д′q = i1x for some x
we would obtain Rxpc . Thus д′ can easily be refined to an
injection д : P(X ) → Y . □

With this second key lemma in place, we are now prepared
to establish the implication from GCHT to WOT.
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Theorem 6.7 (LEM,UC). GCHT yields |X | ≤ |H (P(N+X ))|,
so X can be well-ordered. Thus GCHT impliesWOT.

Proof. First note that N + X is infinite by injectivity of i1 :
N → N + X and hence so is X ′ := P(N + X ) by Fact 2.6.
Moreover, due to Lemma 6.4, X ′ satisfies the following:

(∗) : ∀n. |Pn(X ′) + Pn(X ′)| ≤ |Pn(X ′)|

We now show that every infinite Y satisfying (∗) in place of
X ′ with |H (Y )| ≤ |Pk (Y )| satisfies |Y | ≤ |H (Y )| by induction
on k . The original claim follows since then |X | ≤ |X ′ | ≤

|H (X ′)| given that |H (X ′)| ≤ |P3(X ′)| by Theorem 5.14.
So first considering k = 0 we would have |H (Y )| ≤ |Y | in

direct conflict with Theorem 5.14. Next considering k = k ′+1
with |H (Y )| ≤ |Pk (Y )| we observe

|Pk ′(Y )| ≤ |Pk ′(Y ) + H (Y )| ≤ |Pk (Y )|

given that |Pk ′(Y ) + H (Y )| ≤ |Pk (Y ) + Pk (Y )| ≤ |Pk (Y )|
using (∗) for k in the last step. We can now apply GCH to
this situation and obtain two cases:

• If |Pk ′(Y ) + H (Y )| ≤ |Pk ′(Y )| we can derive |H (Y )| ≤
|Pk ′(Y ) + H (Y )| ≤ |Pk ′(Y )| and thus conclude |Y | ≤
|H (Y )| with the inductive hypothesis for k ′.

• If |Pk (Y )| ≤ |Pk ′(Y ) + H (Y )| we obtain |Pk (Y )| ≤

|H (Y )| from Lemma 6.6 using (∗) for k ′ and thus con-
clude |Y | ≤ |H (Y )|. □

Finally, we complete the proof of Sierpiński’s theorem
with the type-theoretic variant of the fact that the well-
ordering theorem implies the axiom of choice.

Fact 6.8 (UC). WOT implies ACT.

Proof. Analogous to Fact 4.2 using UC in place of δ . □

Corollary 6.9 (LEM,UC). GCHT implies ACT.

7 Eliminating Unique Choice
We now outline how to reformulate the development in the
previous section to avoid UC and refer to the Coq mechani-
sation for full detail. Recall that the necessity for UC stems
from the notion of injections and bijections based on type-
theoretic functions, which already renders the bijections in
Fact 6.3 undefinable. As a remedy, we now weaken these
notions to total functional relations.

Definition 7.1. We write |X | ≤r |Y | if there is a total func-
tional and injective relation R : X → Y → P and |X | =r |Y |
if R is surjective in addition.

It is clear that |X | ≤ |Y | and |X | = |Y | imply |X | ≤r |Y |
and |X | =r |Y |, respectively, and that the converse directions
hold in the presence of UC. Also, it is easy to verify that the
relational variants are still respected by sums, products, and
powers. Moreover, now the crucial bijections in Fact 6.3 only
rely on LEM while injections still transport well-orders:

Fact 7.2 (LEM). Assume a predicate p : X → P and an
injection f : X → Y . There are relational bijections |B| =r |P|,
|X | =r |Σx .px + Σx .¬p |, and |X | =r |Σy. ∃x .y = f x |.

Proof. It is straightforward to define the bijective functions
given in Fact 6.3 as relations without appealing to any axiom.
We then employ LEM to verify that those relations indeed
have the desired properties. □

Fact 7.3. If X has a (strict) well-order and |Y | ≤r |X |, then Y
has a (strict) well-order.

Proof. If RX is a well-order on X and S : Y → X → P shows
|Y | ≤r |X |, then RYyy

′ := ∀x ,x ′. Syx → Sy ′x ′ → RXxx
′ is

a well-order on Y . □

To proceed, we now also need to reformulate GCH since
it contributes both positively and negatively to the proof of
Theorem 6.7:

GCHP := ∀XY . |N| ≤ |X | ≤r |Y | ≤r |X → P|

→ |Y | ≤r |X | ∨ |X → P| ≤r |Y |

Finally, since the step fromWOT to ACT needed for Corol-
lary 6.9 relies on UC as well, we also need to weaken ACT

ACP := ∀XY . ∀R : X → Y → P. (∀x . ∃y.Rxy)
→ ∃R′ ⊆ R. ∀x . ∃!y.R′xy

where we write R′ ⊆ R to denote ∀xy.R′xy → Rxy. We
can then reformulate the main statements as follows:

Theorem 7.4 (LEM). GCHP yields |X | ≤r |H (P(N + X ))|,
so X can be well-ordered. Thus GCHP implies WOT.

Proof. The proof follows exactly the same outline as Theo-
rem 6.7 with all statements recast for functional total re-
lations in the fashion of Fact 7.2. Crucially, it is easy to
strengthen Theorem 5.14 to yield |H (X )| ̸≤r |X |. We then
conclude WOT with Fact 7.3. □

Fact 7.5. WOT implies ACP.

Proof. As in Fact 6.8 but without using UC to turn the con-
structed total functional relation into a function. □

Corollary 7.6 (LEM). GCHP implies ACP.

We conclude with the fact that, although ACP is a rather
weak choice axiom, it still implies LEM and hence Corol-
lary 7.6 is still a faithful rendering of Sierpiński’s theorem.

Fact 7.7. ACP implies LEM.

Proof. A proof adapting Diaconescu’s theorem that the ax-
iom of choice implies excluded middle can be found in the
Coq standard library.5 For an outline, consider the relation
R : (Σp : B → P. ∃b .pb) → B → P from inhabited predi-
cates over B to B defined by Rxb := π1xb. Since R is easily
proven total, ACP yields a total functional subrelation R′ ⊆ R.
5https://coq.github.io/doc/master/stdlib/Coq.Logic.Diaconescu.html
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Now given an arbitrary proposition P : P, consider the two
predicates Ub := b = tt ∨ P and Vb := b = ff ∨ P . Since
both are inhabited, we obtain unique b and b ′ with R′Ub
and R′Vb ′. Case analysis on b and b ′ directly yields P in
three cases, in the remaining case where b = ff and b ′ = tt
we show ¬P . Indeed, assuming P yields U = V but then
ff = b = b ′ = tt given that R′ is functional. □

8 Discussion
8.1 Comparison
We briefly compare both presented versions of Sierpiński’s
theorem with respect to their overall strategy as well as the
usage of excluded middle (LEM) and unique choice (UC).
In principle, both proof strategies are analogous and in

particular the second half of the argument following the con-
struction of the Hartogs numbers as sets ℵ(A) respectively
types H (X ) is identical up to formulation in the respective
framework. The first half differs in the usage of set-theoretic
ordinals to directly define ℵ(A), postponing the concrete rep-
resentation witnessing |ℵ(A)| ≤ |P6(A)| based on the usual
set-theoretic notion of well-orderings as subsets of A × A.
Given their natural ordering by membership (Lemma 3.8),
the relevant properties of set-theoretic ordinals are easy to
mechanise, particularly benefiting from the inductive char-
acterisation available in higher-order set theory. In the type-
theoretic version, one could of course approximate ordinals
as equivalence classes of abstract well-orders, but already
their ordering based on embeddings instead of primitive
membership would not be as direct. Therefore we did not
introduce those abstract ordinals altogether but only consid-
ered the “small” ordinals representable by elements of P3(X ),
hence obtaining the stricter bound |H (X )| ≤ |P3(X )|.

As must be expected, the set-theoretic development heav-
ily relies on LEM, especially to handle ordinals. Worth men-
tioning is that, in contrast to the usual first-order regularity
axiom, the foundation axiom we assume for S does not im-
ply LEM [30], so our axiomatisation of higher-order ZF, just
like the higher-order versions of CZF discussed in [4], can
in principle be used to mechanise set theory constructively.
Given the description operator definable from relational

replacement (Lemma 3.1), UC is available on sets. Thus, as
in first-order set-theory, there is no detectable difference be-
tween a total functional relation and a function on sets. On
the other hand, if we were to assume UC on all types, the en-
codings eX : X → X defined in Definition 3.2 could be lifted
to proper bijections |X | = |X | and especially eliminators like
a recursor on ordinals matching the transfinite induction
principle (Lemma 3.14) could be given. Since those properties
were not necessary for our purpose, however, we refrained
from assuming general UC in the set-theoretic development.

In the type-theoretic development, there are two decisions
necessitating LEM early on that could be avoided. First, if
we would treat ordinals abstractly as mentioned above, then

every ordinal would have a successor and the initial case
distinction in Theorem 5.13 to prove that ordinals are well-
ordered could be side-stepped. Secondly, instead of directly
employing the classical notion of well-foundedness via least
elements one could follow the more constructive (but classi-
cally equivalent) approach based on termination and exten-
sionality as chosen in the HoTT Book [43]. In this setting, the
type of ordinals can be shown to be an ordinal constructively.
However, as it still does not seem sufficient for a proof of ACT
to embed every type into a terminating extensional preorder,
LEM would be needed for this final step and therefore we
chose the setup as explained. In particular regarding the first
point, considering inclusion as the canonical ordering has
its advantages since then only requiring well-foundedness
is enough to represent the internal well-orders. Neverthe-
less, we do pay attention to constructivisation where easily
possible, most notably by incorporating the weak versions
of equipotence and isomorphism so to not depend on the
non-constructive Cantor-Bernstein theorem [33].

Regarding UC as a means to better align the type-theoretic
and set-theoretic version, we have illustrated that one can
avoid this assumption if one is willing to work with total
functional relationsX → Y → P instead of functionsX → Y .
However, we are convinced that assuming UC is a good
investment to develop a compact and easy-to-explain proof,
even if it can be eliminated afterwards. When translating set-
theoretic results to dependent type theory, it just seems more
natural to let the respective notions of functions coincide. As
for LEM, we refrained from using UC where easily possible,
for instance in the construction of functions from relations
into a power type used in Lemma 5.5. Note that assuming UC
only as a proposition in the form of ACT would be enough
for the existence of the bijections in Fact 6.3 but still does
not allow for their canonical definitions.

8.2 Mechanisation Details
The accompanying Coq mechanisation consists of two sepa-
rate stand-alone developments for the set-theoretic (about
2700 lines) and the type-theoretic (about 1700 lines) ver-
sions of Sierpiński’s theorem. The shared prelims in Sec-
tion 2 are mostly linked to the latter. Both developments
assume excluded middle as well as functional and proposi-
tional extensionality as axioms. Notably, in the set-theoretic
development, excluded middle is assumed by importing the
Coq.Logic.Classical library to make it visible for the stan-
dard automation tactics. The set-theoretic development de-
pends on an assumed model of higher-order ZF as axioma-
tised in a previous development [26].
Especially the set-theoretic development employs a few

notable features to ease the mechanisation. First, implement-
ing the identification of classes and types, we employ a co-
ercion from classes to types which allows us to write for
example A → B to express the type of functions from a class
A to a class B. Formally, elements of a class A are dependent
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pairs consisting of a set x and a proof that x ∈ A. By proof
irrelevance, equality of such pairs is equivalent to equality
of the first components. We often need to turn elements of
classes into sets and sets into elements. For the first direction,
we have a simple coercion. To make the other direction more
convenient, we treat the element-property with a type class
and hide it as an implicit argument. Whenever the element-
property cannot be inferred automatically, then we often use
the command Program Definition. In proof scripts, we
achieve a similar effect with tactics like unshelve eexact,
unshelve eapply, and unshelve eexists. They introduce
the property as an existential variable and then unshelve
that variable to turn it into a goal.

Secondly, the formulations of constructors and recursors
on sets do not posses any useful conversion properties. Com-
putation has to be done by rewriting. For that purpose,
we generally register computation rules with autorewrite.
This tactic is also useful to apply the defining properties of
sets or set operations like the union. The tactics apply and
auto could be used in principle but are less helpful for that
purpose since we often rewrite on specific subterms.
The type-theoretic development employs fewer notable

features since it is does not add an additional layer of ax-
iomatisation. We only remark that setoid rewriting to handle
equivalence relations on types like |X | = |Y | seems not to
work well below sum and product types.6 Moreover, it would
have been a minor simplification of subtypes Σx .px if proof
irrelevance were to hold computationally as implemented
in the SProp universe of strict propositions [13]. It might be
possible to transfer the whole development to SProp but this
would require to reimplement a logic library in SProp first
and to check that no large eliminations other than from ⊥

were used.

8.3 Related Work
Mechanisedfirst-order set-theory involvingACorCH.

As mentioned in the introduction, Carneiro [9] mechanises
Sierpiński’s theorem in Metamath [29], based on an existing
library of first-order ZF. The mechanisation in principle fol-
lows Specker’s local version requiring just two instances of
GCH [22, 40] and reimplements one of the library lemmas to
avoid a dependency on AC. The present paper differs from
Carneiro’s work in three ways. First, we used the slightly
less local proof variants given in [38] and [14] since they
appeared simpler to generalise to type theory. Secondly, our
set-theoretic development is based on a higher-order axioma-
tisation natural to work with in an expressive meta-logic.
Concretely, this setting provides the instructive means of
inductive definitions for iterative constructions such as ordi-
nals and allows for reusing meta-level notions like function

6 For instance the rewriting step in infinite_unit only worked after
aliasing sums and products and inserting explicit type annotations. This
problem has been reported on Coq’s issue tracker.

spaces, cardinality, orderings etc. with no need for boilerplate
set encodings.7 Thirdly, our set-theoretic proof serves as a
bridge to the additionally presented type-theoretic version,
showcasing a new instance of a set-theoretic result abstract
enough to apply to dependent type theory.
Regarding work in other proof assistants, in Mizar, AC

holds as a consequence of Tarski’s axiom A [2]. The Is-
abelle/ZF library contains many results about ordinals and
cardinals as well as proofs of the equivalence between 20 for-
mulations of AC and 7 formulations of WO [32]. Moreover,
Paulson [31] mechanises the relative consistency of GCH
and AC based on the constructible universe L. Using Coq,
Sun and Yu [41] mechanise AC and some of its equivalences
in Morse-Kelley set theory. Working in Lean, Han and van
Doorn [16, 17] mechanise the independence of CH over ZFC.
Notably, they establish the consistency part by σ -closed forc-
ing instead of the classical approaches via constructibility.

Mechanised higher-order set theory. Higher-order ver-
sions of ZF and CZF have been formulated using Coq by
Werner [45] and Barras [4], respectively, with a focus on
model constructions. Kirst and Smolka mechanise a cate-
goricity result for higher-order ZF [24] and construct large
models containing finitelymanyGrothendieck universes [26].
In [25] they illustrate how assuming AC on type-level in-
duces AC on set-level, a property specific to higher-order
set theory and also true for GCH. Kirst [23] mechanises
an ordinal-theoretic proof that AC implies WO in a com-
parable setting and Kaiser [21] is concerned with an ax-
iomatisation of higher-order Tarski-Grothendieck set the-
ory in Coq. Brown and Pąk [8] compare the higher-order
Tarski-Grothendieck set theory implemented in Egal [6]
with its first-order counterpart implemented in Mizar [3].
Brown, Kaliszyk, and Pąk [7] show that higher-order Tarski-
Grothendieck set theory can serve as a common foundation
of the Isabelle/HOL and Isabelle/Mizar frameworks. The Lean
mathematical library [28] contains a model of higher-order
ZF with functional replacement.

Set-theoretic results in type theory. Chapter 10 of the
HoTT book [43] contains a body of set-theoretic results for-
mulated for the h-set fragment of homotopy type theory,
including a type-theoretical proof of the well-ordering the-
orem. This result was also mechanised in Agda [19] and
Coq [37]. De Rauglaudre [10] mechanises the Banach-Tarski
Paradox in Coq, stating that the axiom of choice implies
that a ball is equidecomposable with two balls of the same
size. The development assumes the axiom of choice in the
form TTCA formulated by Werner [45] and shows the claim
for an axiomatised type of real numbers. Jaber et al. [20]
propose a forcing translation for intuitionistic type theory,

7Of course library and tool support help to overcome the drawbacks of first-
order axiomatisations but we are convinced that the higher-order approach
used in this paper is a worthwhile alternative in a system like Coq.
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applied to force the negation of the continuum hypothesis
referring to the types N and N→ P. Grimm [15] works on a
mechanisation of Bourbaki’s set theory directly phrased in
Coq’s type theory.

Sources. Both versions of Sierpińki’s theorem discussed in
this paper are based on the presentations in [38] and [14]. The
set-theoretic version was developed in the second author’s
master’s project [34].

8.4 Future Work
We expect that a mechanisation of Sierpiński’s theorem for
instance carried out in CoqHoTT [5] or cubical Agda [44]
would offer an interesting comparison to our Coq develop-
ment. Then the assumed axioms hold on a less ad-hoc basis,
since the univalence axiom uniformly establishes the needed
extensionality and since PI and UC hold by the very notion
of mere propositions. Morover, the treatment of isomorphic
orders and equipotent types would benefit from the structure
identity principle induced by univalence. In particular, the
problematic setoid rewriting of bijections |X | = |Y | would
be replaced by rewriting with equalities X = Y .

Regarding the other prominent proof assistants based on
dependent type theory, it is clear that the Coq mechanisation
could in principle be ported to Lean. This would simplify
the subtyping a bit since PI holds definitionally in Lean but
one would have to pay attention not to use Lean’s choice
operator implicitly to keep the proof meaningful. Bearing
a closer connection to constructive rather than classical set
theory [1], pure Martin-Löf type theory as implemented in
Agda without a universe of propositions does not seem like
a well-suited system to even formulate Sierpiński’s theorem
directly. It is unlikely that approximating the impredicative
power set operation predicatively with X → Ti for some
type level Ti will work throughout the proof and just con-
sidering the decidable subsets X → B will complicate if not
impede some intermediate constructions.
Secondly, we plan to further investigate the role of LEM

at least for the type-theoretical version of Sierpinski’s the-
orem. Although LEM is necessary for some intermediate
statements, most notably the embedding theorem, it is not
clear whether Sierpinski’s theorem itself really relies on it.
Following the usual proof strategy, the embedding theorem
is needed to establish the type of well-orders as an arbitrarily
large well-order, while obtaining the latter might even be
possible constructively. Also the second part leading from
large enough well-orders to ACT might be done without
referring to LEM for the construction of the employed bijec-
tions. Given that ACT implies LEM, a constructive proof of
Sierpiński’s theorem would in particular yield that GCHT
implies LEM.
Thirdly, while it is unlikely that a model of higher-order

ZF satisfying GCHS can be constructed given the close con-
nection to GCHT (itself independent in Coq’s type theory),

it would be interesting to mechanise Gödel’s original model
of first-order ZF satisfying the generalised continuum hy-
pothesis, namely the constructible universe L. It would be
worthwhile to compare the existing Isabelle/ZF mechanisa-
tion of L to a Coq version, possibly employing MetaCoq [39]
support for the central notion of first-order definability.
Fourthly, we plan to mechanise the undecidability of de-

ductive consequence in ZF and other first-order axiom sys-
tems in the synthetic framework underlying the growing
Coq library of undecidability proofs [11, 12].
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