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Abstract. We formalise the axiomatic set theory second-order ZF in the
constructive type theory of Coq assuming excluded middle. In this set-
ting we prove Zermelo’s embedding theorem for models, categoricity in all
cardinalities, and the correspondence of inner models and Grothendieck
universes. Our results are based on an inductive definition of the cumula-
tive hierarchy eliminating the need for ordinals and transfinite recursion.

1 Introduction

Second-order ZF is different from first-order ZF in that the replacement axiom
quantifies over all relations at the class level. This is faithful to Zermelo’s [22]
informal view of axiomatic set theory and in sharp contrast to the standard first-
order axiomatisation of ZF (cf. [8,6]). The difference between the two theories
shows in the possibility of artificial and counterintuitive models of first-order ZF
that are excluded by the more determined second-order ZF [17].

Zermelo [22] shows in an informal higher-order setting a little noticed em-
bedding theorem saying that given two models of second-order ZF one embeds
isomorphically into the other. From Zermelo’s paper it is clear that different
models of second-order ZF differ only in the height of their cumulative hierarchy
and that higher models admit more Grothendieck universes [20] (i.e., sets closed
under all set constructions).

The present paper studies second-order ZF in the constructive type theory of
Coq [16] assuming excluded middle. We sharpen Zermelo’s result by showing that
second-order ZF is categorical in every cardinality, which means that equipotent
models are always isomorphic. Using the fact that the height of a model is
determined by its universes, we show that second-order ZF extended with an
axiom fixing the number of universes to a finite n is categorical (i.e., all models
are isomorphic).

For our results we employ the cumulative hierarchy, which is a well-ordered
hierarchy of sets called stages such that every set appears in a stage and every
universe appears as a stage. The usual way the cumulative hierarchy is estab-
lished is through the ordinal hierarchy and transfinite recursion. We replace
this long-winded first-order approach with a direct definition of the cumulative
hierarchy as an inductive predicate, which leads to an elegant and compact de-
velopment. While an inductive definition of the cumulative hierarchy has not
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been proposed before, inductive definitions of this form are known as tower con-
structions [14,12]. Tower constructions go back to Zermelo [21] and Bourbaki [4],
and are used by Smullyan and Fitting [14] to obtain the ordinal hierarchy.

The development of this paper is formalised and verified with the Coq proof
assistant. Coq proves as an ideal tool for our research since types and thus models
are first-class, inductive predicates and inductive proofs are well supported, and
unnecessary assumptions (e.g. choice functions) are not built in. We assume
excluded middle throughout the development and do not miss further built-in
support for classical reasoning. The Coq development accompanying this paper
has less than 1500 lines of code (about 500 for specifications and 1000 for proofs)
and can be found at https://www.ps.uni-saarland.de/extras/itp17-sets.
The theorems and definitions of the PDF version of this paper are hyperlinked
with the Coq development.

The paper is organised as follows. We first discuss our formalisation of ZF
and pay attention to the notion of inner models. Then, we study the cumulative
hierarchy and prove that Grothendieck universes appear as stages. Next we prove
the embedding theorem and show that ZF is categorical in every cardinality.
Then we discuss categorical extensions of ZF. We end with remarks comparing
our type-theoretic approach to ZF with the standard first-order approach.

2 Axiom System and Inner Models

We work in the type theory of Coq augmented by excluded middle for classi-
cal reasoning. Our model-theoretical approach is to study types that provide
interpretations for the relations and constructors of set theory as follows:

Definition 1. A set structure is a type M together with constants

_ ∈ _ :M →M → Prop
⋃

:M →M

∅ :M P :M →M

_@_ : (M →M → Prop)→M →M

for membership, empty set, union, power, and replacement.

Most of the following definitions rely on some fixed set structure M . We call
the members x, y, z, a, b, c : M sets and the members p, q : M → Prop classes.
Further, we use set-theoretical notation where convenient, for instance we write
x ∈ p if px and x ⊆ p if y ∈ p for all y ∈ x. We say that p and x agree if p ⊆ x
and x ⊆ p and we call p small if there is some agreeing x. We take the freedom
to identify a set x with the agreeing class (λy. y ∈ x).

ZF-like set theories assert every set to be free of infinitely descending ∈-chains,
in particular to be free of any ∈-loops. This can be guaranteed by demanding all
sets to contain a ∈-least element, the so-called regularity axiom. From this asser-
tion one can deduce the absence of infinitely descending ∈-chains and hence an
induction principle that implies x ∈ p for all x if one can show that y ∈ p when-
ever y ⊆ p. Given a type theory that provides inductive predicates, ∈-induction
can be obtained with an inductive predicate defining well-ordered sets.

https://www.ps.uni-saarland.de/extras/itp17-sets
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Model.html#SetStruct
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Definition 2. We define the class of well-founded sets inductively by:

x ⊆WF
x ∈WF

Then the induction principle of WF is exactly ∈-induction and the wished
axiom can be formulated as x ∈ WF for all x. This and the other usual axioms
of ZF yield the notion of a model:

Definition 3. A set structure M is a model (of ZF) if

Ext : ∀x, y. x ⊆ y → y ⊆ x→ x = y

Eset : ∀x. x 6∈ ∅

Union : ∀x, z. z ∈
⋃
x↔ ∃y. z ∈ y ∧ y ∈ x

Power : ∀x, y. y ∈ Px↔ y ⊆ x
Rep : ∀R ∈ F(M).∀x, z. z ∈ R@x↔ ∃y ∈ x.Ryz
WF : ∀x. x ∈WF

where R ∈ F(M) denotes that R : M → M → Prop is a functional relation.
We denote the predicate on structures expressing this collection of axioms by ZF
and write M |= ZF for ZFM .

Apart from the inductive formulation of the foundation axiom, there are
further ways in which our axiomatisation ZF differs from standard textbook
presentations. Most importantly, we employ the second-order version of rela-
tional replacement which is strictly more expressive than any first-order scheme
and results in a more determined model theory. Moreover, we do not assume the
axiom of infinity because guaranteeing infinite sets is an unnecessary restriction
for our investigation of models. Finally, we reconstruct the redundant notions of
pairing, separation, and description instead of assuming them axiomaticly in or-
der to study some introductory example constructions. The following definition
of unordered pairs can be found in [15]:

Definition 4. We define the unordered pair of x and y by:

{x, y} := (λab. (a = ∅ ∧ b = x) ∨ (a = P∅ ∧ b = y))@P(P∅)

As usual we abbreviate {x, x} by {x} and call such sets singletons.

Lemma 5. z ∈ {x, y} if and only if z = x or z = y.

Proof. The given defining relation is obviously functional. So by applying Rep
we know that z ∈ {x, y} if and only if there is z′ ∈ P(P∅) such that z′ = ∅ and
z = x or z′ = P∅ and z = y. This is equivalent to the statement z = x or z = y
since we can simply pick z′ to be the respective element of P(P∅). ut

The next notion we recover is separation, allowing for defining subsets of the
form x∩p = { y ∈ x | y ∈ p } for a set x and a class p. By the strong replacement
axiom we can show the separation axiom again in higher-order formulation.

https://www.ps.uni-saarland.de/extras/itp17-sets/website/Model.html#WF
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Model.html#ZF
https://www.ps.uni-saarland.de/extras/itp17-sets/website/ST.html#upair
https://www.ps.uni-saarland.de/extras/itp17-sets/website/ST.html#upair_el
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Definition 6. We define separation by x ∩ p := (λab. a ∈ p ∧ a = b)@x.

Lemma 7. y ∈ x ∩ p if and only if y ∈ x and y ∈ p.

Proof. The defining relation is again functional by construction. So Rep states
that y ∈ x ∩ p if and only if there is z ∈ x such that z ∈ p and z = y. This is
equivalent to y ∈ x and y ∈ p. ut

Finally, relational replacement implies the description principle in the form
that we can construct a function that yields the witness of uniquely inhabited
classes. The construction we employ can be found in [9]:

Definition 8. We define a description operator by δp :=
⋃
((λab. b ∈ p)@ {∅}).

Lemma 9. If p is uniquely inhabited, then δp ∈ p.

Proof. Let x be the unique inhabitant of p. By uniqueness we know that the
relation (λab. b ∈ p) is functional, so Rep implies that (λab. b ∈ p)@ {∅} = {x}
and Union implies that δp =

⋃
{x} = x ∈ p. ut

We note that functional replacement, i.e. the existence of a set f@x for a
function f : M → M and a set x is logically weaker than the relational re-
placement we work with. First, it is clear that such functions can be turned into
functional relations by (λxy. fx = y). So relational replacement implies func-
tional replacement and we will in fact use the latter where possible. Conversely,
functional relations can only be turned into actual functions in the presence of
a description operator. Hence description, which can be seen as a weak form of
choice, must be assumed separately when opting for functional replacement.

At this point we can start discussing the model-theory of ZF. A first result is
in direct contrast to the existence of countable models of first-order ZF guaran-
teed by the Löwenheim-Skolem Theorem. To this end, we employ the inductive
data type N of natural numbers n for a compact formulation of the infinity ax-
iom: we assume an injection n that maps numbers to sets together with a set ω
that exactly contains the sets n.

Lemma 10. If M is a model of ZF with infinity, then M is uncountable.

Proof. Suppose f : N → M were a surjection from the inductive data type of
natural numbers onto M . Then consider the set X := {n ∈ ω | n 6∈ fn }. Since
f is assumed surjective, there is m : N with fm = X. But this implies the
contradiction m ∈ X ↔ m 6∈ fm = X. ut

When studying the cumulative hierarchy in the next section we will frequently
encounter classes or, more specifically, sets that are closed under the set con-
structors. Such classes resemble actual models of ZF and we use the remainder
of this section to make this correspondence formal.

Definition 11. A class p :M → Prop is called inner model if the substructure
of M consisting of the subtype induced by p and the correspondingly restricted
set constructors is a model in the sense of Definition 3. We then write p |= ZF.

https://www.ps.uni-saarland.de/extras/itp17-sets/website/ST.html#sep
https://www.ps.uni-saarland.de/extras/itp17-sets/website/ST.html#sep_el
https://www.ps.uni-saarland.de/extras/itp17-sets/website/ST.html#delta
https://www.ps.uni-saarland.de/extras/itp17-sets/website/ST.html#delta_spec
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Uncountable.html#false
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Instances.html#IM
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Definition 12. A class p is transitive whenever x ∈ y ∈ p implies x ∈ p and
swelled (following the wording in [14]) whenever x ⊆ y ∈ p implies x ∈ p.
Transitive and swelled sets are defined analogously.

Definition 13. A transitive class p with ∅ ∈ p is ZF-closed if for all x ∈ p:
(1)

⋃
x ∈ p (closure under union),

(2) Px ∈ p (closure under power),
(3) R@x ∈ p if R ∈ F(M) and R@x ⊆ p (closure under replacement).
If p is small, then we call the agreeing set a (Grothendieck) universe.

Lemma 14. If p is ZF-closed, then p |= ZF.

Proof. Most axioms follow mechanically from the closure properties and transi-
tivity. To establish WF we show that the well-foundedness of sets x ∈ p passes
on to the corresponding sets in the subtype by ∈-induction. ut

3 Cumulative Hierarchy

It is a main concern of ZF-like set theories that the domain of sets can be
stratified by a class of ⊆-well-ordered stages. The resulting hierarchy yields a
complexity measure for every set via the first stage including it, the so-called
rank. One objective of our work is to illustrate that studying the cumulative
hierarchy becomes very accessible in a dependent type theory with inductive
predicates.

Definition 15. We define the inductive class S of stages by the following rules:

x ∈ S
Px ∈ S

x ⊆ S⋃
x ∈ S

Fact 16. The following hold:
(1) ∅ is a stage.
(2) All stages are transitive.
(3) All stages are swelled.

Proof. We prove the respective statements in order.
(1) is by the second definitional rule as ∅ ⊆ S.
(2) is by stage induction using that power and union preserve transitivity.
(3) is again by stage induction. ut

The next fact expresses that union and separation maintain the complexity
of a set while power and pairing constitute an actual rise.

Fact 17. Let x be a stage, p a class and a, b ∈ x then:
(1)

⋃
a ∈ x

(2) Pa ∈ Px
(3) {a, b} ∈ Px
(4) a ∩ p ∈ x

https://www.ps.uni-saarland.de/extras/itp17-sets/website/Model.html#trans
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Instances.html#ZF_closed
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Instances.html#IM_ZF
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#Stage
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#Stage_eset
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#Stage_eset
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#Stage_trans
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#Stage_swelled
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#Stage_union
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#Stage_union
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#Stage_power
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#Stage_upair
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#Stage_sep
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Proof. Again we show all statements independently.
(1) is by stage induction with transitivity used in the first case.
(2) is also by stage induction.
(3) is direct from Lemma 5.
(4) follows since x is swelled and a ∩ p ⊆ a. ut

We now show that the class S is well-ordered by ⊆. Since ⊆ is a partial
order we just have to prove linearity and the existence of least elements, which
bot An economical proof of linearity employs the following double-induction
principle [14]:

Fact 18. For a binary relation R on stages it holds that Rxy for all x, y ∈ S if
(1) R(Px)y whenever Rxy and Ryx and
(2) R(

⋃
x)y whenever Rzy for all z ∈ x.

Proof. By nested stage induction. ut

Lemma 19. If x, y ∈ S, then either x ⊆ y or Py ⊆ x.

Proof. By double-induction we just have to establish (1) and (2) for R instanti-
ated by the statement that either x ⊆ y or Py ⊆ x. Then 1 is directly by case
analysis on the assumptions Rxy and Ryx and using that x ⊆ Px for stages x.
The second follows from a case distinction whether or not y is an upper bound
for x in the sense that z ⊆ y for all z ∈ x. If so, we know (

⋃
x) ⊆ y. If not, there

is some z ∈ x with z 6⊆ y. So by the assumption Rzy only Py ⊆ z can be the
case which implies Py ⊆

⋃
x. ut

Fact 20. The following alternative formulations of the linearity of stages hold:
(1) ⊆-linearity: x ⊆ y or y ⊆ x
(2) ∈-linearity: x ⊆ y or y ∈ x
(3) trichotomy: x ∈ y or x = y or y ∈ x

Proof. (1) and (2) are by case distinction on Lemma 19. Then (3) is by (2). ut

Lemma 21. If p is an inhabited class of stages, then there exists a least stage
in p. This means that there is x ∈ p such that x ⊆ y for all y ∈ p.

Proof. Let x ∈ p. By ∈-induction we can assume that every y ∈ x with y ∈ p
admits a least stage in p. So if there is such a y there is nothing left to show.
Conversely, suppose there is no y ∈ x with y ∈ p. In this case we can show that
x is already the least stage in p by ∈-linearity. ut

The second standard result about the cumulative hierarchy is that it exhausts
the whole domain of sets and hence admits a total rank function.

Definition 22. We call a ∈ S the rank of a set x if x ⊆ a but x 6∈ a. Since the
rank is unique by trichotomy we can refer to it via a function ρ.

Lemma 23. ρx =
⋃
P@(ρ@x) for every x. Thus every set has a rank.

https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#Stage_double_ind
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#Stage_lin_succ
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#Stage_lin
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#Stage_lin
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#Stage_lin_el
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#Stage_tricho
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#Stage_least
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#rank
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#rho'_rank
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Proof. For a set x we can assume that every y ∈ x has rank ρy by ∈-induction.
Then consider the stage z :=

⋃
P@(ρ@x). Since for every y ∈ x we know y ∈

P(ρy), we deduce x ⊆ z. Moreover, suppose it were x ∈ z, so x ∈ P(ρy) for some
y ∈ x. Then this would imply the contradiction y ∈ ρ(y), so we know x 6∈ z. Thus
z is the rank of x. As a consequence, for every set x we know that x ∈ P(ρx).
Hence every set occurs in a stage. ut

Fact 24. The hierarchy of stages exhausts all sets.

Proof. Holds since every set x is an element of the stage P(ρx). ut

We now turn to study classes of stages that are closed under some or all
set constructors. The two introductory rules for stages already hint at the usual
distinction of successor and limit stages. However, since we do not require x to
contain an infinitely increasing chain in the second rule this distinction will not
exactly mirror the non-exclusive rule pattern.

Definition 25. We call x ∈ S a limit if x =
⋃
x and a successor if x = Py

for some y ∈ S. Note that this means ∅ is a limit.

Fact 26. If x ⊆ S, then either
⋃
x ∈ x or x ⊆

⋃
x.

Proof. Suppose it were x 6⊆
⋃
x so there were y ∈ x with y 6∈

⋃
x. Then to

establish
⋃
x ∈ x it suffices to show that y =

⋃
x. Since

⋃
x is the unique

⊆-greatest element of x, it is enough to show that y is a ⊆-greatest element, i.e.
that z ⊆ y for all z ∈ x. So let z ∈ x, then by linearity of stages it must be either
z ⊆ y or y ∈ z. The latter case implies y ∈

⋃
x contradicting the assumption. ut

Lemma 27. Every stage is either a limit or a successor.

Proof. Let x be a stage and apply stage induction. In the first case we know
that x is a successor. In the second case we know that x is a set of stages that
are either successors or limits and want to derive a decision for

⋃
x. Now we

distinguish the two cases of Fact 26. If
⋃
x ∈ x, the inductive hypothesis yields

the decision. If x ⊆
⋃
x, it follows that

⋃
x is a limit. ut

Lemma 28. If x is an inhabited limit, then x is transitive, contains ∅, and is
closed under union, power, pairing, and separation.

Proof. Transitivity and closure under union and separation hold for arbitrary
stages by Facts 16 and 17. Further, x must contain ∅ since it can be constructed
from the set witnessing inhabitance by separation. The closure under power
follows from the fact that every set y ∈ x occurs in a stage a ∈ x. Then finally,
the closure under pairing follows from Fact 17. ut

Hence, inhabited limits almost satisfy all conditions that constitute universes,
only the closure under replacement is not necessarily given. So in order to study
actual inner models one can examine the subclass of inhabited limits closed
under replacement. In fact, this subclass turns out to be exactly the universes.

https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#WF_reachable
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#succ
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#Stage_dicho
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#Stage_succ_limit
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#limit_union
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Lemma 29. If a ∈ u for a universe u, then ρa ∈ u.

Proof. By ε-induction we may assume that ρb ∈ u for all b ∈ a, so we know
ρ@a ∈ u by the closure of u under replacement. Also, we know ρa =

⋃
P@(ρ@a)

by Lemma 23. Thus ρa ∈ u follows from the closure properties of u. ut

Lemma 30. Universes are exactly inhabited limits closed under replacement.

Proof. The direction from right to left is simple given that limits are already
closed under all set constructors but replacement. Conversely, a universe is closed
under replacement by definition and it is also easy to verify u =

⋃
u given that for

x ∈ u we know x ∈ P(ρx) ∈ u by the last lemma. So we just need to justify that
u is a stage. We do this by showing that u =

⋃
(u∩S). The inclusion u ⊇

⋃
(u∩S)

is by transitivity. For the converse suppose x ∈ u. Then x ⊆
⋃
(u ∩ S) again by

knowing x ∈ P(ρx) ∈ u. ut

We remark that inhabited limits are models of the set theory Z which is
usually defined to be ZF with pairing and separation instead of replacement.
Also note that in our concrete axiomatisation ZF without infinity it is undecided
whether there exists a universe, whereas assuming the existence of an infinite
set allows for constructing the universe of all hereditarily finite sets.

4 Embedding Theorem

In this section we prove Zermelo’s embedding theorem for models of second-
order ZF given in [22]. Given two modelsM and N of ZF, we define a structure-
preserving embedding ≈, called ∈-bisimilarity, and prove it either total, surjec-
tive or both. We call this property of≈maximality. By convention, we let x, y, z
range over the sets in M and a, b, c range over the sets in N in the remainder of
this document.

Definition 31. We define an inductive predicate ≈:M → N → Prop by

∀y ∈ x. ∃b ∈ a. y ≈ b ∀b ∈ a.∃y ∈ x. y ≈ b
x ≈ a

We call the first condition (bounded) totality on x and a and write x . a. The
second condition is called (bounded) surjectivity on x and a, written x / a.
We call ≈ ∈-bisimilarity and if x ≈ a we call x and a bisimilar.

The following lemma captures the symmetry present in the definition.

Lemma 32. x ≈ a iff a ≈ x and x . a iff a / x.

Proof. We first show that a ≈ x whenever x ≈ a, the converse is symmetric. By
∈-induction on x we may assume that b ≈ y whenever y ≈ b for some y ∈ x. Now
assuming x ≈ a we show a . x. So for b ∈ a we have to find y ∈ x with b ≈ y. By
x / a we already know there is y ∈ x with y ≈ b. Then the inductive hypothesis
implies b ≈ y as wished. That x.a follows analogously and the second statement
is a consequence of the first. ut

https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#universe_rank
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Stage.html#universe_limit
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Embedding.html#Iso
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Embedding.html#Iso_sym
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It turns out that ≈ is a partial ∈-isomorphism between the models:

Lemma 33. The relation ≈ is functional, injective, and respects membership.

Proof. We show that ≈ is functional. By induction on x ∈ WF we establish
a = a′ whenever x ≈ a and x ≈ a′. We show the inclusion a ⊆ a′, so first
suppose b ∈ a. Since x / a there must be y ∈ x with y ≈ b. Moreover, since x . a′
there must be b′ ∈ a′ with y ≈ b′. By induction we know that b = b′ and hence
b ∈ a′. The other inclusion is analogous and injectivity is by symmetry.

It remains to show that ≈ respects membership. Hence let x ≈ a and x′ ≈ a′
and suppose x ∈ x′. Then by x′ . a′ there is b ∈ a′ with x ≈ b. Hence a = b by
functionality of ≈ and thus a ∈ a′. ut

Since the other set constructors are uniquely determined by their members,
it follows that they are also respected by the ∈-bisimilarity:

Fact 34. ∅ ≈ ∅

Proof. Both ∅ . ∅ and ∅ / ∅ hold vacuously. ut

Lemma 35. If x ≈ a, then
⋃
x ≈

⋃
a

Proof. By symmetry (Lemma 32) we just have to prove
⋃
x .

⋃
a. So suppose

y ∈
⋃
x, so y ∈ z ∈ x. By x . a we have c ∈ a with z ≈ c and applying z . c we

have b ∈ c with y ≈ b. So c ∈ b ∈ a and thus b ∈
⋃
a. ut

Lemma 36. If x ≈ a, then Px ≈ Pa

Proof. Again, we just show Px . Pa. Hence let y ∈ Px, so y ⊆ x. Then we can
construct the image of y under ≈ by b := { c ∈ a | ∃z ∈ y.z ≈ c }. Clearly b ⊆ a
so b ∈ Pa and by x ≈ a it is easy to establish y ≈ b. ut

Before we can state the corresponding lemma for replacement we first have
to make precise how binary relations in one model are expressed in the other.

Definition 37. For R :M →M → Prop we define R : N → N → Prop by

Rab := ∃xy. x ≈ a ∧ y ≈ b ∧Rxy

In particular, if R ∈ F(M) is functional then it follows that R ∈ F(N).

Lemma 38. If x ≈ a, R ∈ F(M), and R@x ⊆ dom(≈), then R@x ≈ R@a.

Proof. We first show that R@x.R@a, so let y ∈ R@x. Then by R@x ⊆ dom(≈)
there is b with y ≈ b. It suffices to show b ∈ R@a which amounts to finding c ∈ a
with Rcb. Now by y ∈ R@x there is z ∈ x with Rzy. Hence there is c ∈ a with
z ≈ c since x . a. This implies Rcb.

We now show R@x / R@a, so let b ∈ R@a. Then there is c ∈ a with Rcb.
By definition this already yields z and y with z ≈ c, y ≈ b, and Rzy. Since ≈
respects membership we know z ∈ x and hence y ∈ R@x. ut

https://www.ps.uni-saarland.de/extras/itp17-sets/website/Embedding.html#Iso_fun
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Embedding.html#Iso_eset
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Embedding.html#Iso_union
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Embedding.html#Iso_power
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Embedding.html#MtoN
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Embedding.html#Iso_rep
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Note that these properties immediately imply the following:

Lemma 39. If dom(≈) is small, then it agrees with a universe.

Proof. First, ∅ ∈ dom(≈) since ∅ ≈ ∅. Further, dom(≈) is transitive by the
totality part of x ≈ a for every x ∈ dom(≈). The necessary closure properties of
universes were established in the last lemmas. ut

The dual statement for ran(≈) holds as well by symmetry. Now given that
≈ preserves all structure of the models, every internally specified property holds
simultaneously for similar sets. In particular, ≈ preserves the notion of stages
and universes:

Lemma 40. If x ≈ a and x is a stage, then a is a stage.

Proof. We show that all a with x ≈ a must be stages by stage induction on x.
So suppose x is a stage and we have Px ≈ b. Since x ∈ Px, by Px . b there is
a ∈ b with x ≈ a. Then by induction a is a stage. Moreover, Lemma 36 implies
that Px ≈ Pa. Then by functionality we know that b equals the stage Pa.

Now suppose x is a set of stages and we have
⋃
x ≈ b. Since P(P(

⋃
x)) ≈

P(Pb) by Lemma 36 and x ∈ P(P(
⋃
x)) there is some a ∈ P(Pb) with x ≈ a.

But then we know that
⋃
x ≈

⋃
a by Lemma 35 and b =

⋃
a by functionality,

so it remains to show that a is a set of stages. Indeed, if we let c ∈ a then x / a
yields y ∈ x with y ≈ c and since x is a set of stages we can apply the inductive
hypothesis for y to establish that c is a stage. ut

Lemma 41. If x ≈ a and x is a universe, then a is a universe.

Proof. We first show that a is transitive, so let c ∈ b ∈ a. By bounded surjectivity
there are z ∈ y ∈ x with z ≈ c and y ≈ b. Then z ∈ x since x is transitive, which
implies c ∈ a since ≈ preserves membership.

The proofs that a is closed under the set constructors are all similar. Consider
some b ∈ a, then for instance we show

⋃
b in a. The assumption x ≈ a yields

y ∈ x with y ≈ b. Since x is closed under union it follows
⋃
y ∈ x and since⋃

y ≈
⋃
b by Lemma 35 it follows that

⋃
b ∈ a. The proof for power is completely

analogous and for replacement one first mechanically verifies that R@y ⊆ x for
every functional relation R ∈ F(N) with R@b ⊆ a. ut

In order to establish the maximality of ≈ we first prove it maximal on stages:

Lemma 42. Either SM ⊆ dom(≈) or SN ⊆ ran(≈).

Proof. Suppose there were x 6∈ dom(≈) and a 6∈ ran(≈), then we can in particular
assume x and a to be the least such stages by Lemma 21. We will derive the
contradiction x ≈ a. By symmetry, we just have to show x . a which we do by
stage induction for x. The case P(x) for some stage x is impossible given that, by
leastness of Px 6∈ dom(≈), necessarily x ∈ dom(≈) holds which would, however,
imply Px ∈ dom(≈) by Lemma 36.

https://www.ps.uni-saarland.de/extras/itp17-sets/website/Embedding.html#domain_universe
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Embedding.html#Iso_Stage
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Embedding.html#Iso_universe
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Embedding.html#Iso_Stage_max
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In the case
⋃
x for a set of stages x we may assume that x ⊆

⋃
x by Fact 26.

Now suppose y ∈ z ∈ x, then we want to find b ∈ W with y ≈ b. We do case
analysis whether or not z ∈ dom(≈). If so, then there is c with z ≈ c. Since z ∈ x
we know that z is a stage and so must be c by Lemma 40. Then by linearity it
must be c ∈ W and z . c yields the wished b ∈ W with y ≈ b. If z were not in
dom(≈), we have

⋃
x ⊆ z since

⋃
x is the least stage not in the domain. But

since z ∈ x and x ⊆
⋃
x this yields z ∈ z contradicting well-foundedness. ut

Theorem 43. The relation ≈ is maximal, that is M ⊆ dom(≈) or N ⊆ ran(≈).

Proof. Suppose ≈ were neither total nor surjective, so there were x 6∈ dom(≈)
and a 6∈ ran(≈). By Fact 24 we know that x ∈ P(ρx) and a ∈ P(ρa). Then by
Lemma 42 it is either P(ρx) ∈ dom(≈) or P(ρa) ∈ ran(≈). But then it follows
either x ∈ dom(≈) or a ∈ ran(≈) contradicting the assumption. ut

From this theorem we can conclude that embeddebility is a linear pre-order
on models of ZF. We can further strengthen the result by proving one side of ≈
small if ≈ is not already full, meaning both total and surjective.

Lemma 44. If x is a stage with x 6∈ dom(≈), then dom(≈) ⊆ x.

Proof. Since x 6∈ dom(≈) we know that ≈ is surjective by Theorem 43. So let
y ≈ a, then we want to show that y ∈ a. By exhaustiveness a occurs in some
stage b and since ≈ is surjective there is z with z ≈ b. Lemma 40 justifies that z
is a stage. By linearity we have either z ⊆ x or x ∈ z. In the former case we are
done since y ∈ z given that ≈ respects the membership a ∈ b. The other case is
a contradiction since it implies x ∈ dom(≈). ut

The dual holds for the stages of N and ran(≈), hence we summarise:

Theorem 45. Exactly one of the following statements holds:
(1) ≈ is full, so M ⊆ dom(≈) and N ⊆ ran(≈).
(2) ≈ is surjective and dom(≈) is small and a universe of M .
(3) ≈ is total and ran(≈) is small and a universe of N .

Proof. Suppose ≈ were not full, then it is still maximal by Theorem 43. So for
instance let ≈ be surjective but not total, then we show (2). Being not total, ≈
admits a stage x with x 6∈ dom(≈). Then by Lemma 44 we know dom(≈) ⊆ x, so
the domain is realised by x ∩ dom(≈). This set is a universe by Lemma 39. ut

5 Categoricity Results

In the remainder of this work, we examine to what extent the model theory of ZF
is determined and study categorical extensions. If ≈ is full for modelsM and N ,
we call M and N isomorphic. An axiomatisation is called categorical if all of
its models are isomorphic. Without assuming any further axioms, we can prove
ZF categorical in every cardinality:

https://www.ps.uni-saarland.de/extras/itp17-sets/website/Embedding.html#Iso_max
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Embedding.html#domain_Stage_sub
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Embedding.html#Iso_tricho
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Theorem 46. Equipotent models of ZF are isomorphic.

Proof. If models M and N are equipotent, we have a function F : M → N
with inverse G : N → M . Then from either of the cases (2) and (3) of Theo-
rem 45 we can derive a contradiction. So for instance suppose ≈ is surjective
and X = dom(≈) is a universe of M . We use a variant of Cantor’s argument
where G simulates the surjection of X onto the power set of X. Hence define
Y := {x ∈ X | x 6∈ G(ix) } where i is the function obtained from ≈ by descrip-
tion. Then Y has preimage y := i−1(FY ) and we know that y ∈ X by surjectiv-
ity. Hence, by definition of Y we have y ∈ Y iff y 6∈ G(iy) = G(i(i−1(FY ))) =
G(F (Y )) = Y , contradiction. Thus case (1) holds and so ≈ is indeed full. ut

An internal way to determine the cardinality of models and hence to obtain
full categoricity is to control the number of universes guaranteed by the axioms.
For instance, one can add an axiom excluding the existence of any universe.

Definition 47. ZF0 is ZF plus the assertion that there exists no universe.

Note that ZF0 axiomatises exactly the structure of hereditarily finite sets
[1,13] and this is of course incompatible with an infinity axiom. That ZF0 is
consistent relative to ZF is guaranteed:

Lemma 48. Every model of ZF has an inner model without universes.

Proof. Let M be a model of ZF. If M contains no universe, then the full class
(λx.>) is an inner model of ZF0. Otherwise, ifM contains a universe u, then we
can assume u to be the least such universe since universes are stages by Lemma 30
and stages are well-ordered by Lemma 21. Then it follows that u constitutes an
inner model of ZF0. First, u is an inner model of ZF by Lemma 14. Secondly, if
there were a universe u′ in the sub-structure induced by u, then u′ would be a
universe that is smaller than u, contradiction. ut

Lemma 49. ZF0 is categorical.

Proof. Again from either of the cases (2) and (3) of Theorem 45 we can derive
a contradiction. So for instance suppose ≈ is surjective and X = dom(≈) is a
universe of M . This directly contradicts the minimality assumption of M . ut

The categoricity result for ZF0 can be generalised to axiomatisations that
guarantee exactly n universes. Note that stating axioms of such a form presup-
poses an external notion of natural numbers, for instance given by the inductive
type N. We avoid employing further external structure such as lists to express
finite cardinalities and instead make use of the linearity of universes as follows:

Definition 50. We define ZFn+1 to be ZF plus the following assertions:
(1) there exists a universe that contains at least n universes and
(2) there exists no universe that contains at least n+ 1 universes.
The notion that a universe u contains at least n universes is defined recursively
with trivial base case and where u is said to contain n+1 universes if there is a
universe u′ ∈ u that contains at least n universes.

https://www.ps.uni-saarland.de/extras/itp17-sets/website/Categoricity.html#Iso_bijective_equipotent
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Minimality.html#minimal
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Minimality.html#minimality_cons
https://www.ps.uni-saarland.de/extras/itp17-sets/website/Minimality.html#Iso_bijective_minimal
https://www.ps.uni-saarland.de/extras/itp17-sets/website/ZFn.html#unis
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Since it is undecided whether or not a given model contains a universe, we
cannot construct inner models that satisfy ZFn+1 for any n. Due to the connec-
tion of universes and inaccessible cardinals (cf. [20]), ZFn+1 constitutes a rise in
proof-theoretic strength over ZFn. Independent of the consistency question, we
can still prove all models of ZFn isomorphic for every n:

Lemma 51. ZFn is categorical for all n.

Proof. We have already proven ZF0 categorical in Lemma 49 so we just have to
consider ZFn+1. As in the two proofs above we suppose that ≈ is surjective as
well as that X = dom(≈) is a universe of M and derive a contradiction. In fact,
we show that X contains at least n + 1 universes and hence violates (2) of the
above definition for M . By (1) for N we know there is a universe u ∈ N that
contains at least n universes. Hence by surjectivity we know that i−1u ∈ X,
where i is again the function obtained from ≈. Then Lemma 41 implies that
i−1u is a universe ofM . Moreover, since ≈ preserves all structure, it follows that
i−1u contains at least n universes as u did. But then X contains a universe that
contains at least n universes, so it must contain at least n+ 1 universes. ut

We remark that this process can be extended to transfinite ordinalities. For
instance, one could consider axiomatisations ZFW relative to a well-ordered type
W with the axiom that W and the class of universes are order-isomorphic. Then
it follows that ZFW is categorical, subsuming our discussed examples.

6 Discussion

The formalisation of ZF in a type theory with inductive predicates as examined
in this work differs from common textbook presentations (cf. [14,8,6]) in several
ways, most importantly in the use of second-order replacement and the induc-
tive definition of the cumulative hierarchy. Now we briefly outline some of the
consequences.

Concerning the second-order version of the replacement axiom, it has been
known since Zermelo [22] that second-order ZF admits the embedding theorem
for models. It implies that models only vary in their external cardinality, i.e.
the notion of cardinality defined by bijections on type level or, equivalently, in
height of their cumulative hierarchy. Thus controlling these parameters induces
categorical axiomatisations.

As a consequence of categoricity, all internal properties (including first-order
undecided statements such as the axiom of choice or the continuum hypothesis)
become semantically determined in that there exist no two models such that a
property holds in the first but fails in the second (cf. [7,18]). This is strikingly
different from the extremely undetermined situation in first-order ZF, where
models can be arbitrarily incomparable and linearity of embeddability is only
achieved in extremely controlled situations (cf. [5]). This is related to the fact
that the inner models admitted by second-order ZF are necessarily universes
whereas those of first-order ZF can be subsets of strictly less structure.

https://www.ps.uni-saarland.de/extras/itp17-sets/website/ZFn.html#Iso_bijective_ZFn
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The main insight is that the second-order replacement axiom asserts the exis-
tence of all subsets of a given set contrarily to only the definable ones guaranteed
by a first-order scheme. This fully determines the extent of the power set oper-
ation whereas it remains underspecified in first-order ZF. Concretely, first-order
ZF admits counterexamples to Lemma 36. Furthermore, the notions of external
cardinality induced by type bijections and internal cardinality induced by type
bijections that can be encoded as sets coincide in second-order ZF since every
bijection witnessing external equipotence of sets can be represented by a replace-
ment set. That the two notions of cardinality differ for first-order set theory has
been pointed out by Skolem [11]. The Löwenheim-Skolem Theorem implies the
existence of a countable model of first-order ZF (that still contains internally
uncountable sets) whereas models of second-order ZF with infinity are provably
uncountable.

Inductive predicates make a set-theoretic notion of ordinals in their role as
a carrier for transfinitely recursive definitions superfluous. Consider that com-
monly the cumulative stages are defined by Vα := Pα∅ using transfinite recursion
on ordinals α. However, this presupposes at least a basic ordinal theory includ-
ing the recursion theorem, making the cumulative hierarchy not immediately
accessible. That this constitutes an unsatisfying situation has been addressed by
Scott [10] where an axiomatisation of ZF is developed from the notion of rank
as starting point.

In the textbook approach, the well-ordering of the stages Vα is inherited
directly from the ordinals by showing Vα ⊆ Vβ iff α ⊆ β. Without presupposing
ordinals, we have to prove linearity of ⊆ and the existence of least ⊆-elements
directly. As it was illustrated in this work these direct proofs are not substantially
harder than establishing the corresponding properties for ordinals.

We end with a remark on our future directions. We plan to first make the
axiomatisations ZFW precise and formalise the categoricity proof. Subsequently,
we will turn to the consistency question and construct actual models following
Aczel [2], Werner [19], and Barras [3]. Note that all these implement a flavour of
(constructive) second-order ZF whereas Paulson [9] develops classical first-order
ZF using the proof assistant Isabelle. We conjecture that the type theory of Coq
with excluded middle and a weak form of choice allows for constructing models
of ZFn for every n. Moreover, it would be interesting to formalise first-order
ZF in type theory by making the additional syntax for predicates and relations
explicit. Then the classical relative consistency results concerning choice and the
continuum hypothesis can be examined.
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