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Abstract We formalise second-order ZF set theory in the dependent type theory of
Coq. Assuming excluded middle, we prove Zermelo’s embedding theorem for models,
categoricity in all cardinalities, and the categoricity of extended axiomatisations fixing
the number of Grothendieck universes. These results are based on an inductive defi-
nition of the cumulative hierarchy eliminating the need for ordinals and set-theoretic
transfinite recursion.

Following Aczel’s sets-as-trees interpretation, we give a concise construction of an
intensional model of second-order ZF with a weakened replacement axiom. Whereas
this construction depends on no additional logical axioms, we obtain intensional and
extensional models with full replacement assuming a description operator for trees and
a weak form of proof irrelevance. In fact, these assumptions yield large models with n
Grothendieck universes for every number n.

Keywords dependent type theory, second-order set theory, categoricity, model
constructions, sets-as-trees interpretation, Coq

1 Introduction

Some operations in ZF set theory have a higher-order character: starting from some
set x, separation yields subsets { y ∈ x | P y } based on predicates P , and replacement
yields image sets { z | ∃y ∈ x.R y z } based on functional relations R. Second-order ZF
differs from first-order ZF in that the separation and replacement axioms quantify
over all predicates and relations at the class level, respectively. This is faithful to Zer-
melo’s informal view of axiomatic set theory [30] and in sharp contrast to the standard
first-order axiomatisation of ZF relying on axiom schemes (cf. [14,10]). The difference
between the two theories shows in the existence of artificial and counterintuitive models
of first-order ZF that are excluded by the more determined second-order ZF [25].
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Zermelo [30] shows in an informal higher-order setting a little noticed embedding
theorem saying that given two models of second-order ZF one embeds isomorphically
into the other. From Zermelo’s paper it is clear that different models of second-order
ZF differ only in the height of their cumulative hierarchy and that higher models admit
more Grothendieck universes [28] (i.e. sets closed under all set constructions).

The present paper studies second-order ZF in the dependent type theory of Coq [23]
augmented by excluded middle (XM). We sharpen Zermelo’s result by showing that
our concrete axiomatisation ZF is categorical in every cardinality, which means that
equipotent models are always isomorphic. Using the fact that the height of a model is
determined by its universes, we show that ZFn, which is ZF extended by an axiom
asserting exactly n universes, is categorical (i.e. all models are isomorphic).

We subsequently apply Aczel’s sets-as-types interpretation [1,27] to construct mod-
els for our concrete axiomatisations. This interpretation employs the inductive type of
well-founded trees to model the membership structure of sets. All set operations but
the non-constructive component of replacement called description can be implemented
using their type-theoretical counterparts. Also, since different trees may share the same
structure, the tree model does not satisfy the usual extensionality of ZF. Assuming a
strong quotient axiom in the form of a description operator for trees (TD) together with
a weak form of proof irrelevance (PIγ), we close the gap and obtain an actual model of
the axiomatisation ZF. Moreover, the same assumptions allow for constructing large
models of all ZFn.

For our results we employ the cumulative hierarchy, a well-ordered hierarchy of
sets called stages such that every set appears in a stage and every universe appears
as a stage. The usual way to establish the cumulative hierarchy is through transfinite
recursion on ordinals. We replace this long-winded first-order approach by a direct def-
inition of the cumulative hierarchy as an inductive predicate, which leads to an elegant
and compact development. While an inductive definition of the cumulative hierarchy
has not been proposed before, inductive definitions of this form are known as tower
constructions [20,19]. Tower constructions go back to Zermelo [29] and Bourbaki [6],
and are used by Smullyan and Fitting [20] to obtain the ordinal hierarchy.

This paper is an extended version of a previous conference publication [11] including
material from a follow-up paper [12]. The mathematical development is formalised and
verified with the Coq proof assistant. Coq proves as an ideal tool for our research since
types and thus models are first-class, inductive predicates and inductive proofs are well
supported, and unnecessary assumptions (e.g. choice functions) are not built in. We
assume excluded middle in some parts of the development and do not miss further built-
in support for classical reasoning. The Coq development accompanying this paper has
less than 4500 lines of code (about 1600 for specifications and 2700 for proofs) and can
be found at https://www.ps.uni-saarland.de/extras/jar-sets. The theorems and
definitions of the PDF version of this paper are hyperlinked with the Coq development:
by a single click one reaches the corresponding position in the Coq development.

The paper is organised in three technical main sections. In Section 2, we introduce
our axiomatisation ZF and study its internal theory including Grothendieck universes,
different forms of replacement, and the cumulative hierarchy. This is followed by a
proof of Zermelo’s embedding theorem and derived categoricity results in Section 3. In
Section 4, regarding consistency, we first construct an axiom-free intensional model and
then obtain extensional and large models assuming proof-irrelevant tree description.
We end with remarks comparing our type-theoretic approach to ZF set theory with
the standard first-order approach and a discussion of further consistency results.

https://www.ps.uni-saarland.de/extras/jar-sets
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2 Second-Order ZF

Using a type-theoretic approach, an axiomatisation of set theory can be expressed
as a predicate on types providing the necessary structure for set-theoretic language.
Types satisfying the axioms are models and assuming a model allows for developing the
internal theory of the axiomatisation. Following this paradigm, this section is concerned
with our concrete axiomatisation ZF and internal constructions such as Grothendieck
universes and the cumulative hierarchy.

2.1 Structures and Axiomatisations

We begin by introducing some preliminary notation and jargon. We distinguish the
sorts Type and Prop of types and propositions, respectively. The symbol = denotes
the standard inductive charaterisation of Leibniz equality. For any type A we call a
unary predicate P : A→ Prop a class over A and write a ∈ P for P a. In every context
of the symbol ∈ we employ the canonical meaning of ⊆, so for instance P ′ ⊆ P denotes
that a ∈ P for all a ∈ P ′. Furthermore, for a binary relation R : A → B → Prop on
two types A and B we define classes dom(R) := λa. ∃b.R a b and ran(R) := λb. ∃a.R a b
representing domain and range of R. For any type A and class P over A we write
〈a : A | a ∈ P 〉 for the refinement type Σa : A. a ∈ P and ∃!a. a ∈ P if there is a
unique a : A with a ∈ P . Finally, two types A and B are called equipotent if there
are mutually inverse functions f : A→ B and f−1 : B → A.

Definition 1 A set structure is a typeM with a relation ∈:M→M→ Prop called
membership.M is a ZF-structure if it further provides the following constants:

∅ :M (empty set)

{_,_} :M→M→M (unordered pair)⋃
:M→M (union)

P :M→M (power set)

_ ∩_ : (M→ Prop)→M→M (separation)

_@_ : (M→M)→M→M (replacement)

δ : (M→ Prop)→M (description/unique choice)

Note that the upper four constants are first-order, whereas the lower three opera-
tions take classes or functions as arguments. A class P over a set structureM is called
small if there exists x :M that agrees with P , i.e. y ∈ x iff y ∈ P for all y :M. Given
any ZF-structure, we employ the usual shorthands {x} := {x, x} and x∪y :=

⋃
{x, y}.

Moreover, we identify sets x with their corresponding classes λy. y ∈ x.

Definition 2 For a set structureM we define the class WF of well-founded sets by

∀y ∈ x. y ∈WF
x ∈WF

The corresponding induction principle eliminating into Prop is called ∈-induction and
the recursion principle eliminating into Type is called ∈-recursion.

https://www.ps.uni-saarland.de/extras/jar-sets/website/Prelims.html#SetStruct
https://www.ps.uni-saarland.de/extras/jar-sets/website/Prelims.html#WF
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In Coq’s type theory, x ∈WF can indeed be eliminated to arbitrary types sinceWF
is defined using a single constructor taking only parameters and proofs as arguments.
So one can define functions F : M → X for a type X with the definition of F x
depending on the values F y for all y ∈ x. See Definition 70 for an example.

Definition 3 A ZF-structureM is a model of ZF if the following propositions hold:

Ext : x ⊆ y → y ⊆ x→ x = y

Found : x ∈WF
Inf : ∃ω.∀x. x ∈ ω ↔ ∃n : N. x = Pn ∅

Eset : x 6∈ ∅
Pair : z ∈ {x, y} ↔ z = x ∨ z = y

Union : z ∈
⋃
x↔ ∃y ∈ x. z ∈ y

Power : y ∈ Px↔ y ⊆ x

Sep : y ∈ P ∩ x↔ y ∈ x ∧ y ∈ P (P :M→ Prop)

Frep : z ∈ F@x↔ ∃y ∈ x. z = F y (F :M→M)

Desc : (∃!x. x ∈ P )→ δP ∈ P (P :M→ Prop)

We writeM |= ZF ifM is a model of ZF and use the same notation for all upcoming
axiomatisations. We define ZF to be ZF without Inf.

Note that the first three axioms determine structural aspects of the available mod-
els whereas the other axioms clarify the membership laws of the first- respectively
second-order set operations. Our axiomatisation is similar to a formulation of inten-
sional second-order ZF given by Barras [4]. In comparison, ZF imposes extensionality
via Ext, however, we will also encounter intensional versions in Section 4. We further
use a version of replacement for functions together with a description operator and re-
construct the equivalent relational formulation from Barras [4] in Section 2.3. Thereby
we separate relational replacement into a constructive and a non-constructive compo-
nent, where the former is definable for the axiom-free tree model in Section 4.2 and
the latter is not. Description expresses unique choice on ZF-structures.

Also note that Inf is a non-standard (but equivalent) formulation of the infinity
axiom in using power sets instead of the von Neumann successor σx := x∪ {x} and in
referring to the external notion of natural numbers. The power set operation naturally
matches to the structure of the cumulative hierarchy studied in Section 2.4 and using
external numbers is anyway unavoidable for the forthcoming Definition 6.

2.2 Grothendieck universes

We now turn to the question what it means for a set or model to be large. A natural
criterion is to ask whether a set is closed under the set operations, meaning that it
may serve as a full universe for set-theoretic constructions and in fact constitutes a
submodel (Lemma 78). Then a nested hierarchy of universes is an indicator for increas-
ing size. An alternative approach would be to explicitly examine the set cardinalities,
where so-called strongly inaccessible cardinals witness largeness. In fact, in the
presence of choice, both approaches coincide [28] and in this work we develop the more
elementary approach via universes. We fix a ZF-structureM.

https://www.ps.uni-saarland.de/extras/jar-sets/website/Prelims.html#iZS
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Definition 4 We call a class P over M transitive if y ∈ x ∈ P implies y ∈ P .
Similarly, we say that P is swelled if y ⊆ x ∈ P implies y ∈ P .

Consider the von Neumann ordinal 3 := σ3 ∅ = {∅, {∅} , {∅, {∅}}}. It is easy to
verify that 3 is transitive – a general property of von Neumann ordinals n := σn ∅.
However, 3 is not swelled given that {{∅}} ⊆ {∅, {∅}} ∈ 3 but {{∅}} 6∈ 3.

Definition 5 A transitive class U over M is ZF-closed if it is closed under all set
operations. That is, for all x, y ∈ U , classes P :M→ Prop and functions F :M→M

(1) ∅ ∈ U (4) Px ∈ U
(2) {x, y} ∈ U (5) P ∩ x ∈ U
(3)

⋃
x ∈ U (6) F@x ∈ U if F@x ⊆ U

If U is ZF-closed and small, we call it (and the corresponding set) a universe.

Note that a ZF-closed class U yields a submodelMU that satisfies ZF (Lemma 78).
As ZF-closed classes are not demanded to contain ω in general, the submodelMU does
not necessarily satisfy Inf.

Definition 6 We define the strength of sets by saying that every set has strength 0
and that x has strength n+1 if there is a universe U ∈ x of strength n. Then we define:
(1) ZF≥n is ZF plus asserting a set of strength n,
(2) ZFn is ZF≥n plus excluding sets of strength n+ 1,
(3) ZF≥ω is ZF plus asserting sets of all strengths n.
IfM |= ZF≥n for some n we say thatM has strength n.

Note that the notion of set and model strength is only a lower bound and hence
not unique, given that every set respectively model of strength n also has strength m
for all m < n. Further, see [11], [12], and the Coq development for a proof that models
of ZF are uncountable and that ZF is equivalent to ZF≥1. Due to this equivalence
and hence to avoid ZF0 being contradictory, the definition of ZF≥n must be based on
ZF from Definition 3 rather than ZF.

2.3 Relational Replacement

We assume a modelM of ZF. As mentioned before, functional replacement, separation
and description can be combined into relational replacement:

Definition 7 R@x := (λy. δ(Ry))@(dom(R) ∩ x)

Relational replacement (Rep) then holds for the class F(M) of functional relations
R :M→M→ Prop, i.e. relations R with y = y′ whenever Rxy and Rxy′.

Fact 8 R ∈ F(M)→ (z ∈ R@x↔ ∃y. y ∈ x ∧Ry z)

Proof Let R be functional and let z ∈ R@x. Then by the above definition and the
functional replacement axiom we know there is y ∈ dom(R) ∩ x with z = δ(Ry). By
y ∈ dom(R) and the functionality of R we know that the description axiom applies, so
Ry (δ(Ry)) and thus Ry z.

Conversely, suppose that there is y ∈ x with Ry z. By this assumption we can
again deduce Ry (δ(Ry)) and hence z = δ(Ry). Since we also know y ∈ dom(R) the
functional replacement axiom implies z ∈ R@x. ut

https://www.ps.uni-saarland.de/extras/jar-sets/website/Prelims.html#ctrans
https://www.ps.uni-saarland.de/extras/jar-sets/website/Prelims.html#closed_ZF
https://www.ps.uni-saarland.de/extras/jar-sets/website/Prelims.html#strength
https://www.ps.uni-saarland.de/extras/jar-sets/website/Basics.html#rep
https://www.ps.uni-saarland.de/extras/jar-sets/website/Basics.html#Rep
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Relational replacement in turn is strong enough to easily express the operations of
pairing, separation, functional replacement and description (cf. [22], [16], [11]).

Fact 9 The following equations hold:
(1) {x, y} = (λab. (a = ∅ ∧ b = x) ∨ (a = P∅ ∧ b = y))@P(P∅)
(2) P ∩ x = (λab. a ∈ P ∧ a = b)@x

(3) F@x = (λab. b = F a)@x

(4) δP =
⋃
((λab. b ∈ P )@P∅) if there is a unique x ∈ P

Proof Since all relations employed are functional, the equations are straight-forward
by Rep and the other membership axioms. ut

This means that the axiomatisation ZF is actually redundant, as pairing can be
defined, and that we can give a simplified criterion for ZF-closed classes:

Fact 10 A class U over M is ZF-closed iff it is transitive, contains ∅ and is closed
under union, power and relational replacement.

Proof Suppose U is ZF-closed, we just have to show that it is closed under relational
replacement. That is, we assume x ∈ U and R@x ⊆ U for a functional relation R

and have to show that R@x ∈ U . Since U is closed under separation we know that
dom(R)∩x ∈ U . Thus we can apply the closure under functional replacement to obtain
R@x ∈ U where the necessary condition is exactly R@x ⊆ U .

Now let U be closed under union, power and relational replacement, then we have to
show closure under pairing, separation and functional replacement. This follows since
we can express these operations by relational replacement. ut

Henceforth, by just saying replacement we always refer to the functional form.

2.4 Cumulative Hierarchy

It is a main feature of ZF-like set theories that the domain of sets can be stratified by a
class of ⊆-well-ordered cumulative stages. The resulting hierarchy yields a complexity
measure for every set via the first stage including it, the so-called rank. One objective of
our work is to illustrate that studying the cumulative hierarchy becomes very accessible
in a dependent type theory with inductive predicates. However, since establishing the
linearity and least elements of the well-ordering relies on classical reasoning, we have
to assume excluded middle (XM) as an axiom.

Axiom (XM) ∀A : Prop. A ∨ ¬A

Excluded middle implies proof irrelevance (PI), a statement first established by
Coquand [7] and formalised in the Coq standard library based on [3].

Fact 11 ∀(A : Prop) (H,H ′ : A). H = H ′

We further assume a modelM |= ZF.

Definition 12 We define the inductive class V of stages by the following rules:

x ∈ V
Px ∈ V

x ⊆ V⋃
x ∈ V

https://www.ps.uni-saarland.de/extras/jar-sets/website/Basics.html#rep_upair
https://www.ps.uni-saarland.de/extras/jar-sets/website/Basics.html#rep_upair
https://www.ps.uni-saarland.de/extras/jar-sets/website/Basics.html#rep_sep
https://www.ps.uni-saarland.de/extras/jar-sets/website/Basics.html#rep_frep
https://www.ps.uni-saarland.de/extras/jar-sets/website/Basics.html#rep_delta
https://www.ps.uni-saarland.de/extras/jar-sets/website/Basics.html#ZF_rep
https://www.ps.uni-saarland.de/extras/jar-sets/website/Stage.html#Stage
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Fact 13 The following hold:
(1) ∅ is a stage.
(2) All stages are transitive.
(3) All stages are swelled.

Proof We prove the respective statements in order.
(1) is by the second definitional rule as ∅ ⊆ V.
(2) is by stage induction using that power and union preserve transitivity.
(3) is again by stage induction. ut

The next fact expresses that union and separation maintain the complexity of a set
while power and pairing constitute an actual rise.

Fact 14 Let x be a stage, P a class and a, b ∈ x then:

(1)
⋃
a ∈ x (3) {a, b} ∈ Px

(2) Pa ∈ Px (4) P ∩ a ∈ x

Proof Again we show all statements independently.
(1) is by stage induction with transitivity used in the first case.
(2) is also by stage induction.
(3) is straight-forward using the membership axiom for pairs.
(4) follows since x is swelled and P ∩ a ⊆ a. ut

We now show that the class V is well-ordered by ⊆. Since ⊆ is a partial order we just
have to prove linearity and the existence of least elements, which both rely on XM. An
economical proof of linearity employs the following double-induction principle [20]:

Fact 15 For a binary relation R on stages it holds that Rxy for all x, y ∈ V if
(1) R (Px) y whenever Rxy and Ry x and
(2) R (

⋃
x) y whenever Rz y for all z ∈ x.

Proof By nested stage induction. ut

Lemma 16 If x, y ∈ V, then either x ⊆ y or Py ⊆ x.

Proof By double-induction we just have to establish (1) and (2) for R instantiated by
the statement that either x ⊆ y or Py ⊆ x. Then (1) is directly by case analysis on
the assumptions Rxy and Ry x and using that x ⊆ Px for stages x. (2) follows from
a case distinction whether or not y is an upper bound for x in the sense that z ⊆ y for
all z ∈ x. If so, we know (

⋃
x) ⊆ y. If not, there is some z ∈ x with z 6⊆ y. So by the

assumption Rz y only Py ⊆ z can be the case which implies Py ⊆
⋃
x. ut

Fact 17 The following alternative formulations of the linearity of stages hold:
(1) ⊆-linearity: x ⊆ y or y ⊆ x
(2) ∈-linearity: x ⊆ y or y ∈ x
(3) trichotomy: x ∈ y or x = y or y ∈ x

Proof (1) and (2) are by case distinction on Lemma 16. Then (3) is by (2). ut

Lemma 18 If p is an inhabited class of stages, then there exists a least stage in p.
This means that there is x ∈ p such that x ⊆ y for all y ∈ p.

https://www.ps.uni-saarland.de/extras/jar-sets/website/Stage.html#Stage_eset
https://www.ps.uni-saarland.de/extras/jar-sets/website/Stage.html#Stage_eset
https://www.ps.uni-saarland.de/extras/jar-sets/website/Stage.html#Stage_trans
https://www.ps.uni-saarland.de/extras/jar-sets/website/Stage.html#Stage_swelled
https://www.ps.uni-saarland.de/extras/jar-sets/website/Stage.html#Stage_union
https://www.ps.uni-saarland.de/extras/jar-sets/website/Stage.html#Stage_union
https://www.ps.uni-saarland.de/extras/jar-sets/website/Stage.html#Stage_upair
https://www.ps.uni-saarland.de/extras/jar-sets/website/Stage.html#Stage_power
https://www.ps.uni-saarland.de/extras/jar-sets/website/Stage.html#Stage_sep
https://www.ps.uni-saarland.de/extras/jar-sets/website/Stage.html#Stage_double_ind
https://www.ps.uni-saarland.de/extras/jar-sets/website/Stage.html#Stage_lin_succ
https://www.ps.uni-saarland.de/extras/jar-sets/website/Stage.html#Stage_lin
https://www.ps.uni-saarland.de/extras/jar-sets/website/Stage.html#Stage_lin
https://www.ps.uni-saarland.de/extras/jar-sets/website/Stage.html#Stage_lin_el
https://www.ps.uni-saarland.de/extras/jar-sets/website/Stage.html#Stage_tricho
https://www.ps.uni-saarland.de/extras/jar-sets/website/Stage.html#Stage_least
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Proof Let x ∈ p. By ∈-induction we can assume that every y ∈ x with y ∈ p admits a
least stage in p. So if there is such a y there is nothing left to show. Conversely, suppose
there is no y ∈ x with y ∈ p. In this case we can show that x must be the least stage
in p by ∈-linearity. ut

The second standard result about the cumulative hierarchy is that it exhausts the
whole domain of sets and hence admits a total rank function.

Definition 19 We call a ∈ V the rank of a set x if x ⊆ a but x 6∈ a. Since the rank is
unique by trichotomy we can refer to it via a function ρ using description.

Lemma 20 ρx =
⋃
P@(ρ@x) for every x. Thus every set has a rank.

Proof For a set x we can assume that every y ∈ x has rank ρy by ∈-induction. Then
consider the stage z :=

⋃
P@(ρ@x). Since for every y ∈ x we know y ∈ P(ρy), we

deduce x ⊆ z. Moreover, suppose it were x ∈ z, so x ∈ P(ρy) for some y ∈ x. Then
this would imply the contradiction y ∈ ρ(y), so we know x 6∈ z. Thus z must be the
rank of x. ut

It follows that every set occurs in a stage:

Fact 21 The hierarchy of stages exhausts all sets.

Proof Holds since every set x is an element of the stage P(ρx). ut

We now turn to studying classes of stages that are closed under some or all set
constructors. The two introduction rules for stages already hint at the usual distinction
of successor and limit stages. However, since we do not require x to contain an infinitely
increasing chain in the second rule, this distinction will not exactly mirror the non-
exclusive rule pattern.

Definition 22 We call x ∈ V a limit if x =
⋃
x and a successor if x = Py for some

y ∈ V. Note that this means that ∅ is a limit.

Fact 23 If x ⊆ V, then either
⋃
x ∈ x or x ⊆

⋃
x.

Proof Suppose it were x 6⊆
⋃
x so there were y ∈ x with y 6∈

⋃
x. Then to establish⋃

x ∈ x it suffices to show that y =
⋃
x. Since

⋃
x is the unique ⊆-greatest element

of x, it is enough to show that y is a ⊆-greatest element, i.e. that z ⊆ y for all z ∈ x.
So let z ∈ x, then by linearity of stages it must be either z ⊆ y or y ∈ z. The latter
case implies y ∈

⋃
x contradicting the assumption. ut

Lemma 24 Every stage is either a limit or a successor.

Proof Let x be a stage and apply stage induction. In the first case we know that x is a
successor. In the second case we know that x is a set of stages that are either successors
or limits and want to derive a decision for

⋃
x. Now we distinguish the two cases of

Fact 23. If
⋃
x ∈ x, the inductive hypothesis yields the decision. If x ⊆

⋃
x, it follows

that
⋃
x is a limit. ut

Lemma 25 If x is an inhabited limit, then x is transitive, contains ∅, and is closed
under union, power, pairing, and separation.

https://www.ps.uni-saarland.de/extras/jar-sets/website/Stage.html#rank
https://www.ps.uni-saarland.de/extras/jar-sets/website/Stage.html#rho'_rank
https://www.ps.uni-saarland.de/extras/jar-sets/website/Stage.html#WF_reachable
https://www.ps.uni-saarland.de/extras/jar-sets/website/Stage.html#succ
https://www.ps.uni-saarland.de/extras/jar-sets/website/Stage.html#Stage_dicho
https://www.ps.uni-saarland.de/extras/jar-sets/website/Stage.html#Stage_succ_limit
https://www.ps.uni-saarland.de/extras/jar-sets/website/Stage.html#limit_union
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Proof Transitivity and closure under union and separation hold for arbitrary stages by
Facts 13 and 14. Further, x must contain ∅ since it can be constructed from the set
witnessing inhabitance by separation. The closure under power follows from the fact
that every set y ∈ x occurs in a stage a ∈ x. Then finally, the closure under pairing
follows from Fact 14. ut

Hence, inhabited limits almost satisfy all conditions that constitute universes, only
the closure under replacement is not necessarily given. So in order to study actual inner
models one can examine the subclass of inhabited limits closed under replacement. In
fact, this subclass turns out to be exactly the universes.

Lemma 26 If a ∈ u for a universe u, then ρa ∈ u.

Proof By ε-induction we may assume that ρb ∈ u for all b ∈ a, so we know ρ@a ∈ u by
the closure of u under replacement. Also, we know ρa =

⋃
P@(ρ@a) by Lemma 20.

Thus ρa ∈ u follows from the closure properties of u. ut

Lemma 27 Universes are exactly inhabited limits closed under replacement.

Proof The direction from right to left is simple given that limits are already closed
under all set constructors but replacement. Conversely, a universe is closed under re-
placement by definition and it is also easy to verify u =

⋃
u given that for x ∈ u

we know x ∈ P(ρx) ∈ u by the last lemma. So we just need to justify that u is a
stage. This is done by showing that u =

⋃
(V ∩ u). The inclusion u ⊇

⋃
(V ∩ u) is by

transitivity of u. For the converse suppose x ∈ u. Then x ⊆
⋃
(V ∩u) again by knowing

x ∈ P(ρx) ∈ u. ut

We remark that inhabited limits are models of the set theory Z which is ZF without
replacement and description. Furthermore, the existence of an infinite set ω asserted
by Inf induces the existence of the initial universe

⋃
ω of hereditarily finite sets, as

formalised in [12].

3 Categoricity

Turning to model-theoretic considerations, in this section we prove the embedding
theorem given by Zermelo [30]. Phrased for our concrete axiomatisation, it states that
of any two models of ZF one embeds as a universe into the other. We derive that ZF
is categorical in every cardinality and that controlling the height of the cumulative
hierarchy yields categorical axiomatisations. The embedding theorem and the derived
results rely on classical reasoning, so we still assume XM throughout this section.

3.1 Zermelo’s Embedding Theorem

Given two models M and N of ZF, we define a structure-preserving embedding ≈,
called ∈-bisimilarity, and prove it either total or surjective. In this case we call ≈
maximal, and if it is both total and surjective, we call it full. If ≈ is full, we callM
and N isomorphic. As a convention, we let x, y, z range over the sets inM and a, b, c
range over the sets in N for the remainder of this section.

https://www.ps.uni-saarland.de/extras/jar-sets/website/Stage.html#universe_rank
https://www.ps.uni-saarland.de/extras/jar-sets/website/Stage.html#universe_limit
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Definition 28 We define an inductive predicate ≈:M→N → Prop by

∀y ∈ x ∃b ∈ a. y ≈ b ∀b ∈ a∃y ∈ x. y ≈ b
x ≈ a

We call the left defining condition (bounded) totality on x and a, denoted by x . a.
The right condition is called (bounded) surjectivity on x and a, denoted by x / a.
We call ≈ membership-bisimilarity and if x ≈ a we call x and a bisimilar.

The following lemma captures the symmetry present in the definition:

Lemma 29 x ≈ a iff a ≈ x and x . a iff a / x.

Proof We first show that a ≈ x whenever x ≈ a, the converse is symmetric. By
∈-induction on x we may assume that b ≈ y whenever y ≈ b for some y ∈ x. Now
assuming x ≈ a we show a . x. So for b ∈ a we have to find y ∈ x with b ≈ y. By x / a
we already know there is y ∈ x with y ≈ b. Then the inductive hypothesis implies b ≈ y
as wished. That x . a follows analogously and the second statement is a consequence
of the first. ut

It turns out that ≈ is a partial ∈-isomorphism between the models:

Lemma 30 The relation ≈ is functional, injective, and respects membership.

Proof We show that ≈ is functional. By induction on x ∈ WF we establish a = a′

whenever x ≈ a and x ≈ a′. We show the inclusion a ⊆ a′, so first suppose b ∈ a. Since
x / a there must be y ∈ x with y ≈ b. Moreover, since x . a′ there must be b′ ∈ a′

with y ≈ b′. By induction we know that b = b′ and hence b ∈ a′. The other inclusion
is analogous and injectivity is by symmetry.

It remains to show that ≈ respects membership. Hence let x ≈ a and x′ ≈ a′ and
suppose x ∈ x′. Then by x′ .a′ there is b ∈ a′ with x ≈ b. Hence a = b by functionality
of ≈ and thus a ∈ a′. ut

This justifies callingM and N isomorphic if ≈ is full. Since all set operations are
uniquely determined by their membership laws, they are also respected by ≈.

Fact 31 ∅ ≈ ∅

Proof Both ∅ . ∅ and ∅ / ∅ hold vacuously. ut

Lemma 32 If x ≈ a, then
⋃
x ≈

⋃
a

Proof By symmetry (Lemma 29) we just have to prove
⋃
x .

⋃
a. So suppose y ∈

⋃
x,

so y ∈ z ∈ x. By x . a we have c ∈ a with z ≈ c and applying z . c we have b ∈ c with
y ≈ b. So c ∈ b ∈ a and thus b ∈

⋃
a. ut

Lemma 33 If x ≈ a, then Px ≈ Pa

Proof Again, we just show Px.Pa. Hence let y ∈ Px, so y ⊆ x. Then we can construct
the image of y under ≈ by b := { c ∈ a | ∃z ∈ y.z ≈ c }. Clearly b ⊆ a so b ∈ Pa and by
x ≈ a it is easy to establish y ≈ b. ut

Before we can state a corresponding lemma for relational replacement, we first have
to make precise how binary relations in one model are expressed in the other.

https://www.ps.uni-saarland.de/extras/jar-sets/website/Zermelo.html#Iso
https://www.ps.uni-saarland.de/extras/jar-sets/website/Zermelo.html#Iso_sym
https://www.ps.uni-saarland.de/extras/jar-sets/website/Zermelo.html#Iso_fun
https://www.ps.uni-saarland.de/extras/jar-sets/website/Zermelo.html#Iso_eset
https://www.ps.uni-saarland.de/extras/jar-sets/website/Zermelo.html#Iso_union
https://www.ps.uni-saarland.de/extras/jar-sets/website/Zermelo.html#Iso_power
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Definition 34 For R :M→M→ Prop we define R : N → N → Prop by

Ra b := ∃xy. x ≈ a ∧ y ≈ b ∧Rxy

In particular, if R ∈ F(M) is functional then it follows that R ∈ F(N ).

Lemma 35 If x ≈ a, R ∈ F(M), and R@x ⊆ dom(≈), then R@x ≈ R@a.

Proof We first show that R@x .R@a, so let y ∈ R@x. Then by R@x ⊆ dom(≈) there
is b with y ≈ b. It suffices to show b ∈ R@a which amounts to finding c ∈ a with Rc b.
Now by y ∈ R@x there is z ∈ x with Rz y. Hence there is c ∈ a with z ≈ c since x . a.
This implies Rc b.

We now show R@x / R@a, so let b ∈ R@a. Then there is c ∈ a with Rc b. By
definition this already yields z and y with z ≈ c, y ≈ b, and Rz y. Since ≈ respects
membership we know z ∈ x and hence y ∈ R@x. ut

Note that these properties immediately imply the following:

Lemma 36 dom(≈) is ZF-closed.

Proof First, ∅ ∈ dom(≈) since ∅ ≈ ∅. Further, dom(≈) is transitive by the totality part
of x ≈ a for every x ∈ dom(≈). The remaining closure properties left by Fact 10 were
established in the previous lemmas. ut

The dual statement for ran(≈) holds by symmetry. Now given that ≈ preserves all
structure of the models, every internally specified property holds simultaneously for
bisimilar sets. In particular, ≈ preserves the notion of stages and universes:

Lemma 37 If x ≈ a and x is a stage, then a is a stage.

Proof We show that all a with x ≈ a must be stages by stage induction on x. So
suppose x is a stage and we have Px ≈ b. Since x ∈ Px, by Px . b there is a ∈ b with
x ≈ a. Then by induction a is a stage. Moreover, Lemma 33 implies that Px ≈ Pa.
Then by functionality we know that b equals the stage Pa.

Now suppose x is a set of stages and we have
⋃
x ≈ b. Since P(P(

⋃
x)) ≈ P(Pb)

by Lemma 33 and x ∈ P(P(
⋃
x)) there is some a ∈ P(Pb) with x ≈ a. But then we

know that
⋃
x ≈

⋃
a by Lemma 32 and b =

⋃
a by functionality, so it remains to show

that a is a set of stages. Indeed, if we let c ∈ a then x / a yields y ∈ x with y ≈ c and
since x is a set of stages we can apply induction hypothesis for y to establish that c is
a stage. ut

Lemma 38 If x ≈ a and x is a universe, then a is a universe.

Proof We first show that a is transitive, so let c ∈ b ∈ a. By bounded surjectivity there
are z ∈ y ∈ x with z ≈ c and y ≈ b. Then z ∈ x since x is transitive, which implies
c ∈ a since ≈ preserves membership.

The proofs that a is closed under the set constructors are all similar. Consider
some b ∈ a, then for instance we show

⋃
b in a. The assumption x ≈ a yields y ∈ x

with y ≈ b. Since x is closed under union it follows
⋃
y ∈ x and since

⋃
y ≈

⋃
b by

Lemma 32 it follows that
⋃
b ∈ a. The proof for power is completely analogous and for

relational replacement one first mechanically verifies that R@y ⊆ x for every functional
relation R ∈ F(N ) with R@b ⊆ a. ut

https://www.ps.uni-saarland.de/extras/jar-sets/website/Zermelo.html#MtoN
https://www.ps.uni-saarland.de/extras/jar-sets/website/Zermelo.html#Iso_rep
https://www.ps.uni-saarland.de/extras/jar-sets/website/Zermelo.html#domain_ZF
https://www.ps.uni-saarland.de/extras/jar-sets/website/Zermelo.html#Iso_Stage
https://www.ps.uni-saarland.de/extras/jar-sets/website/Zermelo.html#Iso_universe
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In order to establish the maximality of ≈ we first prove it maximal on stages:

Lemma 39 Either VM ⊆ dom(≈) or VN ⊆ ran(≈).

Proof Suppose there were stages x 6∈ dom(≈) and a 6∈ ran(≈), then we can in par-
ticular assume x and a to be the least such stages by Lemma 18. We will derive the
contradiction x ≈ a. By symmetry, we just have to show x . a which we do by stage
induction for x. The case P(x) for some stage x is impossible given that, by least-
ness of Px 6∈ dom(≈), necessarily x ∈ dom(≈) holds which would, however, imply
Px ∈ dom(≈) by Lemma 33.

In the case
⋃
x for a set of stages x we may assume that x ⊆

⋃
x by Fact 23. Now

suppose y ∈ z ∈ x, then we want to find b ∈ W with y ≈ b. We distinguish the cases
whether or not z ∈ dom(≈). If so, then there is c with z ≈ c. Since z ∈ x we know that
z is a stage and so must be c by Lemma 37. Then by linearity it must be c ∈ W and
z . c yields the wished b ∈ W with y ≈ b. If z were not in dom(≈), we have

⋃
x ⊆ z

since
⋃
x is the least stage not in the domain. But since z ∈ x and x ⊆

⋃
x this yields

z ∈ z contradicting well-foundedness. ut

Theorem 40 Bisimilarity ≈ is maximal.

Proof Suppose ≈ were neither total nor surjective, so there were x 6∈ dom(≈) and
a 6∈ ran(≈). By Fact 21 we know that x ∈ P(ρx) and a ∈ P(ρa). Then by Lemma 39
it is either P(ρx) ∈ dom(≈) or P(ρa) ∈ ran(≈). But then it follows either x ∈ dom(≈)
or a ∈ ran(≈) contradicting the assumption. ut

From this theorem we can already conclude that embeddability is a linear preorder
on models of ZF. We can further strengthen the result by proving one side of ≈ small
ifM and N are not already isomorphic.

Lemma 41 If x is a stage with x 6∈ dom(≈), then dom(≈) ⊆ x.

Proof Since x 6∈ dom(≈) we know that ≈ is surjective by Theorem 40. So let y ≈ a,
then we want to show that y ∈ a. By exhaustiveness a occurs in some stage b and since
≈ is surjective there is z with z ≈ b. Then Lemma 37 justifies that z is a stage. By
linearity we have either z ⊆ x or x ∈ z. In the former case we are done since y ∈ z
given that ≈ respects the membership a ∈ b. The other case is a contradiction since it
implies x ∈ dom(≈). ut

The dual holds for the stages of N and ran(≈), hence we summarise:

Theorem 42 Exactly one of the following statements holds:
(1) ≈ is full, soM and N are isomorphic.
(2) ≈ is surjective and dom(≈) is a universe ofM.
(3) ≈ is total and ran(≈) is a universe of N .

Proof Suppose ≈ were not full, then it is still maximal by Theorem 40. So for instance
let ≈ be surjective but not total, then we show (2). Being not total, ≈ admits a stage x
with x 6∈ dom(≈). Then by Lemma 41 we know dom(≈) ⊆ x, so the domain is realised
by dom(≈) ∩ x. This set is a universe by Lemma 36. ut

Note that description turns the relation ≈ into an actual embedding i in the sense
of Section 4.1 with direction depending on the outcome of Theorem 42.

https://www.ps.uni-saarland.de/extras/jar-sets/website/Zermelo.html#Iso_Stage_max
https://www.ps.uni-saarland.de/extras/jar-sets/website/Zermelo.html#Iso_max
https://www.ps.uni-saarland.de/extras/jar-sets/website/Zermelo.html#domain_Stage_sub
https://www.ps.uni-saarland.de/extras/jar-sets/website/Zermelo.html#Iso_tricho
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3.2 Categoricity Results

Applying Zermelo’s embedding theorem, we can now examine to what extent the model
theory of ZF is determined and study categorical extensions. Formally, an axiomatisa-
tion is called categorical ifM ≈ N for any two modelsM and N . As a first result,
we can prove ZF categorical in every cardinality:

Fact 43 Equipotent models of ZF are isomorphic.

Proof If modelsM and N are equipotent, we have a function F :M→N with inverse
G : N → M. Then from either of the cases (2) and (3) of Theorem 42 we can derive
a contradiction. So for instance suppose ≈ is surjective and X = dom(≈) is a universe
of M. We use a variant of Cantor’s argument where G simulates the surjection of
X onto the power set of X. Hence define Y := {x ∈ X | x 6∈ G(i x) } where i is the
function obtained from ≈ by description. Then Y has preimage y := i−1 (FY ) and
we know that y ∈ X by surjectivity. Hence, by definition of Y we have y ∈ Y iff
y 6∈ G(i y) = G(i (i−1 (FY ))) = G(F (Y )) = Y , contradiction. Thus case (1) holds and
so ≈ is indeed full. ut

An internal way to determine the cardinality of models and hence to obtain full
categoricity is to control the number of universes guaranteed by the axioms. In partic-
ular, it follows that the axiomatisations ZFn are categorical. We hence may call the
models of ZFn unique, provided they exist.

Fact 44 ZFn is categorical for all n : N.

Proof LetM and N be models of ZFn. Again Theorem 42 admits three cases, whereof
(1) yields the claim. Otherwise, if (2) holds, then ran(≈) : N is a universe. Since M
has strength n by assumption, it follows that ran(≈) has strength n and thus that N
has strength n+ 1, contradicting N |= ZFn. The case (3) is symmetric. ut

As a consequences of categoricity, all properties expressible in set-theoretic language
are evaluated equally in any two models of ZFn. For instance, if one model of ZFn
satisfies the axiom of choice, any other model does as well. Consider the following
natural definition of global choice in dependent type theory:

Definition 45 We say that a type A is a choice type if there is a function c of type
∀(P : A→ Prop). (∃a : A. a ∈ P )→ 〈a : A | a ∈ P 〉.

First of all, categoricity implies that global choice is not independent from ZFn.

Fact 46 IfM and N are models of ZFn, thenM is a choice type iff N is.

Proof By symmetry we just have to show one direction, so suppose there is a choice
function cM forM. In order to construct a choice function for N , we assume a propo-
sitionally inhabited class P on N . SinceM and N are isomorphic by Fact 44, we know
that i is a bijection. So cM applies to the class P ◦ i overM, where we know that P ◦ i
is propositionally inhabited since P is. Hence cM yields a witness x for P ◦ i which is
turned into a witness i x for P . ut

We can further compare this type-theoretic version of choice to an internal set-
theoretic version. The following introduces one of the many equivalent formulations of
the axiom of choice.

https://www.ps.uni-saarland.de/extras/jar-sets/website/Categoricity.html#cat_card
https://www.ps.uni-saarland.de/extras/jar-sets/website/Categoricity.html#cat_ZFn
https://www.ps.uni-saarland.de/extras/jar-sets/website/Categoricity.html#choice_type
https://www.ps.uni-saarland.de/extras/jar-sets/website/Categoricity.html#choice_ZFn
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Definition 47 LetM be a set structure. A set X is called a partition if the elements
of X are non-empty and pairwise disjoint. A set Y is called a trace of a partition X
if for every element x ∈ X there is a unique y ∈ Y with y ∈ x. We sayM satisfies the
axiom of choice (AC) if every partition has a trace.

By the expressive strength of second-order ZF, type-theoretic choice always implies
set-theoretic choice and AC is not independent from ZFn.

Fact 48 IfM is a model of ZF and a choice type, thenM satisfies AC.

Proof Let c be the choice function for M and X be a partition. For simplicity, for
x ∈ X we write c x for the application of c to the proof that x is not empty. Now set
Y := (λy.∃x ∈ X. y = c x) ∩ (

⋃
X). Then for x ∈ X we have that c x ∈ Y is unique

with c x ∈ x, so Y is a trace of X. ut

Fact 49 IfM and N are models of ZFn, thenM satisfies AC iff N does.

Proof Again, by symmetry one direction suffices. So assumeM satisfies AC and let X ′

be a partition in N . SinceM and N are isomorphic by Fact 44, we can setX := i−1X ′.
It follows that X is a partition as well and so there is a trace Y for X by AC forM.
Using i again, we obtain the trace Y ′ := i Y of X ′. ut

We remark that the idea of controlling the number of universes underlying ZFn
can be extended to transfinite ordinalities by asserting that the class of universes is
oder-isomorphic to some given well-order.

4 Model Constructions

So far we have developed the theory of second-order ZF simply assuming various models
and studying their internal and external properties. In the remainder of this paper, we
discuss under which conditions such models exist. Specifically, we show that ZF≥n has
a model for all numbers n if we assume a proof-irrelevant description operator for the
inductive type of well-founded trees, and that ZFn has a unique model for all n if we
further assume excluded middle. Up to the conclusive remark concerning the models
of ZFn in Section 4.5, XM will not be used.

4.1 Intensional Axiomatisation and Embeddings

Given that Coq’s type theory is intensional and constructive, we cannot expect to freely
obtain extensional models of full ZF. Hence we first consider some weakened versions
of structures and axiomatisations, which have models without additional assumptions.

Definition 50 ZF ′-structures are ZF-structures without a constant for description.

Definition 51 LetM be a set structure. We define the relation x ≡ y := x ⊆ y∧y ⊆ x
called set equivalence with equivalence classes [x] := λy. y ≡ x. Further, we say that
classes P and functions F overM respect ≡, if
(1) ∀x, x′. x ≡ x′ → x ∈ P → x′ ∈ P and
(2) ∀x, x′. x ≡ x′ → F x ≡ F x′.
For these properties we write P :M ≡→ Prop and F :M ≡→M.

https://www.ps.uni-saarland.de/extras/jar-sets/website/Categoricity.html#parti
https://www.ps.uni-saarland.de/extras/jar-sets/website/Categoricity.html#choice_AC
https://www.ps.uni-saarland.de/extras/jar-sets/website/Categoricity.html#AC_ZFn
https://www.ps.uni-saarland.de/extras/jar-sets/website/Prelims.html#ZFStruct'
https://www.ps.uni-saarland.de/extras/jar-sets/website/Prelims.html#equiv
https://www.ps.uni-saarland.de/extras/jar-sets/website/Prelims.html#cres
https://www.ps.uni-saarland.de/extras/jar-sets/website/Prelims.html#fres
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Definition 52 A ZF-structureM is an intensional model if the following hold:

Morph : x ≡ x′ → x ∈ y → x′ ∈ y
Found : x ∈WF
Inf : ∃ω.∀x. x ∈ ω ↔ ∃n : N. x ≡ Pn ∅

Eset : x 6∈ ∅
Pair : z ∈ {x, y} ↔ z ≡ x ∨ z ≡ y
Union : z ∈

⋃
x↔ ∃y ∈ x. z ∈ y

Power : y ∈ Px↔ y ⊆ x

Sep : y ∈ P ∩ x↔ y ∈ x ∧ y ∈ P (P :M ≡→ Prop)

Frep : z ∈ F@x↔ ∃y ∈ x. z ≡ F y (F :M ≡→M)

Desc1 : (∃x∀y. y ∈ P ↔ y ∈ [x])→ δP ∈ P (P :M ≡→ Prop)

Desc2 : (∀x. x ∈ P ↔ x ∈ P ′)→ δP = δP ′ (P, P ′ :M ≡→ Prop)

We denote the class of ZF-structures satisfying these axioms by ZF≡. Further, ZF′≡
denotes the class of ZF ′-structures satisfying all axioms of ZF≡ but Desc1 and Desc2.

Note that ZF≡ essentially expresses ZF with equalities replaced by equivalences
and with extensionality substituted by asserting membership to be a morphism for
equivalence. Furthermore, the higher-order membership laws have additional side con-
ditions requiring the argument classes and functions to respect equivalence. Description
is strengthened to providing witnesses for equivalence classes. In total, extending ZF≡
by Ext is exactly equivalent to ZF.

One recurring pattern in the remainder of this paper is the situation where we
have one model embedded into another, witnessed by a ∈-preserving injection. For such
embeddings, both models agree on the notion of universes and strength of corresponding
sets. LetM and N be models of ZF≡.

Definition 53 h :M→N is called an embedding if
(1) x ∈ y ↔ hx ∈ h y and
(2) for all x′ ∈ h y there is x ∈ y with hx ≡ x′.
We define the image of a class P by h[P ] := λx′.∃x. h x ≡ x′ ∧ x ∈ P .

We now further assume such an embedding h.

Fact 54 P is ZF-closed iff h[P ] is ZF-closed.

Proof Clearly h respects all set operations since these are uniquely specified by their
membership laws. This implies properties like h ∅ = ∅, h (

⋃
x) =

⋃
(hx), etc., ulti-

mately transporting all structure from a ZF-closed class P to h[P ] and back. Also note
the similarity to Lemma 38. ut

Corollary 55 U is a universe iff hU is a universe.

Proof Follows since h[U ] agrees with hU . ut

Fact 56 x has strength n iff hx has strength n.

https://www.ps.uni-saarland.de/extras/jar-sets/website/Prelims.html#iZF
https://www.ps.uni-saarland.de/extras/jar-sets/website/Embeddings.html#Mor.h
https://www.ps.uni-saarland.de/extras/jar-sets/website/Embeddings.html#img_ZF
https://www.ps.uni-saarland.de/extras/jar-sets/website/Embeddings.html#h_universe
https://www.ps.uni-saarland.de/extras/jar-sets/website/Embeddings.html#h_strength
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Proof By induction on n. The case of n = 0 is trivial, so suppose x has strength n+1.
Then there is a universe U ∈ x of strength n. By the inductive hypothesis we know
that hU has strength n and by hU ∈ hx we conclude that hx has strength n+1. The
converse direction is analogous. ut

See the Coq development and [12] for a fully-detailed proof of the above facts.

4.2 Aczel’s Intensional Model

The dependent type theory underlying Coq comes with a countably infinite hierarchy
of type levels Typei. From now on, we make the universe levels explicit where neces-
sary and admit definitions that are polymorphic for all type levels, as implemented in
Coq [21]. Our main instance of a universe-polymorphic definition is the following:

Definition 57 We define the universe-polymorphic family of inductive types Ti : Typei
of well-founded trees with a term constructor τ : ∀(A : Typej). (A → Ti) → Ti for
j < i. We define projections p1(τ A f) := A and p2(τ A f) := f .

Following Aczel [1], we interpret the trees in Ti as sets, where the direct subtrees f a
of trees τ A f correspond to the elements of sets. However, since intensionally distinct
types and functions can yield bisimilar trees, one first has to impose a notion of tree
equivalence and then to define a respectively generalised version of membership.

Definition 58 Equivalence ≡Ti : Ti → Ti → Prop of trees is defined by

∀a : A∃b : B. f a ≡Ti g b ∀b : B ∃a : A. f a ≡Ti g b
τ A f ≡Ti τ B g

Membership is defined by s ∈ τ A f := ∃a. s ≡Ti f a, making Ti a set structure.

Fact 59 ≡Ti is an equivalence and respected by ∈.

Proof Reflexivity, symmetry and transitivity of ≡Ti all follow by structural induction
on Ti. Now let s ≡Ti s

′, t ≡Ti t
′ and s ∈ t. By definition of s ∈ t we have a : p1 t

with s ≡Ti p2 t a. Now since t ≡Ti t
′ we obtain a′ : p1 t′ with p2 t a ≡Ti p2 t

′ a′. Then
by transitivity s′ ≡Ti p2 t

′ a′ and so s′ ∈ t′. It follows that inclusion respects ≡Ti as
well. ut

Before we implement the set operations for trees we need to justify the reuse of the
notation ≡. In fact, tree equivalence agrees with the abstract notion of set equivalence
(Definition 51), so we can use the relations interchangeably.

Fact 60 s ≡ t↔ s ≡Ti t

Proof For the first direction we assume τ A f ≡ τ B g, so τ A f ⊆ τ B g and τ B g ⊆
τ A f . Then τ A f ≡Ti τ B g follows since, showing one half of the definition, for a : A
we know f a ∈ τ A f and hence obtain b : B with f a ≡Ti g b from τ A f ⊆ τ B g. The
converse direction follows since s ≡Ti t implies s ⊆ t using Fact 59. ut

https://www.ps.uni-saarland.de/extras/jar-sets/website/Aczel.html#Acz
https://www.ps.uni-saarland.de/extras/jar-sets/website/Aczel.html#Aeq
https://www.ps.uni-saarland.de/extras/jar-sets/website/Aczel.html#aeq_equiv
https://www.ps.uni-saarland.de/extras/jar-sets/website/Aczel.html#Aeq_equiv
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All set operations of ZF but description have counterparts in constructive type
theory: the empty set in the empty type ⊥, pairing in booleans B and conditionals,
union in tree concatenation, power sets in predicate types, separation in refinement
types, and replacement in function composition. Along those lines, one can define the
set operations for trees as follows:

Definition 61 We turn Ti into a ZF ′-structure by defining

∅ := τ ⊥ elim⊥
{s, t} := τ B (λb. if b then s else t)⋃

(τ A f) := τ (Σa : A. p1(f a)) (λ(a, b). p2(f a) b)

P(τ A f) := τ (A→ Prop) (λP. τ 〈a : A | a ∈ P 〉 (f ◦ π1))
P ∩ (τ A f) := τ 〈a : A | (f a) ∈ P 〉 (f ◦ π1)
F@(τ A f) := τ A (λa. F (f a))

Then Ti satisfies all intensional ZF axioms but Desc.

Theorem 62 Ti |= ZF′≡

Proof Morph was already shown in Fact 59. Concerning Found, we show τ A f ∈ WF
by structural induction on Ti. By the inductive hypothesis we know f a ∈ WF for all
a : A and conclude s ∈WF for all s ∈ τ A f by the fact that WF respects ≡.

The membership axioms are fairly routine and we refer to the Coq development
for full detail. As instances, we justify Eset and Pair. For the former, we have to show
s 6∈ ∅ for all s : Ti. This is the case, since the definition of s ∈ ∅ carries an inhabitant
of ⊥.

Now for the latter let s, t : Ti and u ∈ {s, t}. Hence there is b : B with u ≡
(if b then s else t) and by a boolean case analysis we obtain either u ≡ s or u ≡ t. Now
conversely, suppose we start with either u ≡ s or u ≡ t. To show u ∈ {s, t} we have to
give a matching b : B and obviously, depending on the case concerning u, we just pick
the respectively correct boolean value.

Finally concerning Inf, we set ωTi := τ N (λn.Pn ∅). The assertion that ωTi agrees
with λx.∃n : N. x ≡ Pn ∅ is straight-forward. ut

4.3 An Extensional Model

In general, the intensional type theory of Coq does not provide quotient types. As
a remedy, we assume further logical axioms in order to construct extensional models
based on the tree model Ti. In this paper, we only employ a description operator for
trees. See the discussion in Section 5, the Coq development, and previous work [12] for
other approaches.

Axiom (TD) We assume a function δ : (Ti → Prop)→ Ti satisfying Desc1 and Desc2.

First note that this assumption makes Ti a full ZF-structure satisfying ZF≡.

Fact 63 Ti |= ZF≡

Proof Follows from Theorem 62 and TD. ut

https://www.ps.uni-saarland.de/extras/jar-sets/website/Aczel.html#ACZ'
https://www.ps.uni-saarland.de/extras/jar-sets/website/Aczel.html#Acz_ZF'
https://www.ps.uni-saarland.de/extras/jar-sets/website/Quotient_TD.html#tdelta
https://www.ps.uni-saarland.de/extras/jar-sets/website/Quotient_TD.html#Acz_ZF
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Seen as a quotient axiom, TD yields a normaliser for tree equivalence classes.

Definition 64 γs := δ[s]

Fact 65 The following properties of γ hold:
(1) γs ≡ s (3) γ(γs) = γs

(2) s ≡ t→ γs = γt (4) γs = γt→ s ≡ t

Proof Properties (1) and (2) express Desc1 and Desc2, respectively. Idempotency (3)
follows from applying (2) to (1) and if γs = γt we have s ≡ γs = γt ≡ t. ut

The representatives picked by γ then yield an extensional model.

Definition 66 We define Si to be the type 〈s : Ti | γs = s〉 of canonical represen-
tatives. We write s for the elements in Si where s ∈ Ti and by idempotency we can
judge γs : Si for every s : Ti. Membership is inherited from Ti, i.e. s ∈ t := s ∈ t.

Definition 67 We turn Si into a ZF-structure by setting

∅Si := γ∅ P ∩ s := γ((P ◦ γ) ∩ s)
{s, t} := γ({s, t}) F@s := γ((F ◦ γ)@s)⋃

s := γ(
⋃
s) δSiP := γ(δ(P ◦ γ))

Ps := γ(Ps)

To make the quotient construction work properly we further have to assume the
proofs of identities γs = s to be unique.

Axiom (PIγ) ∀(s : Ti) (H,H ′ : γs = s). H = H ′

Then the type Si satisfies all axioms of extensional ZF.

Theorem 68 Si |= ZF

Proof We first establish Ext, so assume s ⊆ t and t ⊆ s. Then s ⊆ t and t ⊆ s and
thus s ≡ t. Since s = γs and t = γt we obtain s = t. Hence the first components of
s and t agree. Applying PIγ yields equality of the second components so we conclude
that s = t.

Morph holds trivially and Found as well as Desc follow directly from the correspond-
ing axioms of Ti. Furthermore, Inf is witnessed by γωTi .

Regarding the membership axioms, this time we discuss Sep and Frep. So let t ∈
P ∩s, we have to show t ∈ s and t ∈ P . By the definition of membership and separation
on Si we know that t ∈ (P ◦ γ) ∩ s. Note that P ◦ γ respects ≡ since if s ≡ t we know
that γs = γt and hence that γs ∈ P trivially implies γt ∈ P . Thus Sep for Ti yields
t ∈ s and γt ∈ P which implies t ∈ s and t ∈ P as wished. The converse is similar.

Now we assume u ∈ F@s and want to find some t ∈ s with u = F t. By plugging
in the definitions, we obtain that u ∈ (F ◦ γ)@s. Now F ◦ γ respects ≡ for similar
reasons as P ◦ γ did, so Frep for Ti applies. This yields t ∈ s with u ≡ F (γt) and we
may conclude t ∈ s as well as u = F t. Again, the converse is similar. ut

The following establishes that the intensional model Ti and the extensional model
Si agree on universes and strength:

Fact 69 γ seen as a function γ : Ti → Si is an embedding.

Proof Both conditions are immediate by the definition of Si. ut

https://www.ps.uni-saarland.de/extras/jar-sets/website/Quotient_TD.html#N
https://www.ps.uni-saarland.de/extras/jar-sets/website/Quotient_TD.html#CR1
https://www.ps.uni-saarland.de/extras/jar-sets/website/Quotient_TD.html#SET
https://www.ps.uni-saarland.de/extras/jar-sets/website/Quotient_TD.html#SET
https://www.ps.uni-saarland.de/extras/jar-sets/website/Quotient_TD.html#PI
https://www.ps.uni-saarland.de/extras/jar-sets/website/Quotient_TD.html#SET_ZF
https://www.ps.uni-saarland.de/extras/jar-sets/website/Quotient_TD.html#ATS_mor
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4.4 Large Models

Coq’s type theory with countably many type levels admits the construction of large
models of ZF. Intuitively, the type levels correspond to set universes and indeed, for
every number n, the model Si at a universe level high enough satisfies ZF≥n. Thereby
the strength of Si at a high level is witnessed by recursively embedding Sj at lower
levels j < i. In fact, every intensional model embeds into some Si by ∈-recursion. Note
that we still assume TD and PIγ .

Definition 70 For an intensional modelM |= ZF≡ we define a function ι :M→ Ti

ι x := τ 〈y :M | y ∈ x〉 (ι ◦ π1)

by ∈-recursion and set UM := τM ι . This assumesM : Typej for j < i.

Lemma 71 ι respects equivalence and membership, that is:

(1) x ≡ y ↔ ι x ≡ ι y (2) x ∈ y ↔ ι x ∈ ι y

Proof (1) Suppose x ≡ y. We have to show that for every z ∈ x there is z′ ∈ y with
ι z ≡ ι z′ and vice versa. So let z ∈ x, hence by the assumption x ≡ y we know z ∈ y
and by reflexivity of ≡ we know ι z ≡ ι z.

The converse is by ∈-induction on x for all y. We assume ι x ≡ ι y and have to
show x ⊆ y and y ⊆ x. We just show x ⊆ y since both cases are similar, so let z ∈ x.
By ι x ≡ ι y there is z′ ∈ y with ι z ≡ ι z′. Then the inductive hypothesis yields z ≡ z′
and thus we conclude z ∈ y.

(2) The direction from left to right is immediate by definition. For the converse
suppose ι x ∈ ι y, so there is z ∈ y with ι x ≡ ι z. Then by (1) we know x ≡ z and thus
x ∈ y. ut

Lemma 72 ι is an embedding.

Proof The first condition was shown in Lemma 71 and the second condition is straight-
forward by definition. ut

Lemma 73 IfM |= ZF≡ then UM is a universe.

Proof By definition UM agrees with ι [λ_.>] and is ZF-closed by Fact 54. ut

Furthermore the strength ofM is reflected by UM:

Lemma 74 IfM |= ZF≥n then UM has strength n.

Proof If M |= ZF≥n there is x ∈ M with strength n. Then ι x ∈ UM has the same
strength by Fact 56 and Lemma 72. Hence, being transitive, UM has the same strength.

ut

Fact 75 If ZF≥n has a model, then ZF≥n+1 has a model.

Proof LetM |= ZF≥n withM : Typei. Then by Lemma 74 we know that γ UM : Si+1

has strength n and hence P(γ UM) has strength n+1. Thus Si+1 is a model of ZF≥n+1

ut

Therefore we can conclude the following outside of Coq:

https://www.ps.uni-saarland.de/extras/jar-sets/website/Large.html#em
https://www.ps.uni-saarland.de/extras/jar-sets/website/Large.html#equiv_em
https://www.ps.uni-saarland.de/extras/jar-sets/website/Large.html#em_mor
https://www.ps.uni-saarland.de/extras/jar-sets/website/Large.html#U_universe
https://www.ps.uni-saarland.de/extras/jar-sets/website/Large.html#U_strength
https://www.ps.uni-saarland.de/extras/jar-sets/website/Large.html#step
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Metatheorem 76 For every number n, ZF≥n has a model.

Proof We construct the large models by iterating Fact 75. First, by Theorem 68 we
know that in particular Si |= ZF≥0. For the inductive step suppose we have a model
M |= ZF≥n. Then Fact 75 yields a model of ZF≥n+1. ut

This metatheorem has no formal counterpart in Coq as the type levels of the
models of ZF≥n depend on n. Coq’s syntax only admits instances ∃M.M |= ZF≥k
or a statement like

∀n : N ∃M : Typei.M |= ZF≥n

for some fixed type level Typei. However, this statement is not an inductive consequence
of Fact 75 as in the inductive step we assume a model M : Typei of ZF≥n but only
know that Si+1 |= ZF≥n+1 where Si+1 : Typei+1. In fact, if the statement would
be provable, it would induce the existence of a model of ZF≥ω which lies beyond the
consistency strength of a type theory with only countably many type levels [2,27]:

Fact 77 (∀n : N∃M : Typei.M |= ZF≥n)→ Si+1 |= ZF≥ω

Proof We have to show that Si+1 contains sets of every finite strength. So let n : N,
then given the assumption there is a model M : Typei such that M |= ZF≥n. Thus
by Fact 75 we know that γUM : Si+1 has strength n. ut

4.5 Model Truncation

We finally study a truncation method for pruning models of ZF≥n to models of ZFn.
Together with the previous model construction for ZF≥n (Metatheorem 76) and the
categoricity of ZFn (Fact 44) this implies that ZFn has a unique model for all natural
numbers n. We now assume XM again.

Lemma 78 If M |= ZF and U is ZF-closed, then MU := 〈x :M | x ∈ U〉 with the
accordingly restricted set operations is a model of ZF as in Definition 3.

Proof Since U is ZF-closed, the restrictions of the set operations of M to MU are
well-defined. For separation and replacement the argument classes P : MU → Prop

and functions F :MU →MU are translated to

P ′ := λx. x ∈ U ∧ x ∈ P

F ′ := λx. δ(λy. x ∈ U ∧ y ∈ U ∧ y = F x)

operating on M, where we write x for the elements of MU with x : M and x ∈ U .
The description operator ofMU is

δU P := (λ_. ∃!x. x ∈ P ) ∩ δP ′

where the separation ensures that δU P = ∅ ∈ U in the case where δ is not well-defined.
Concerning the axioms, Ext relies on PI (Fact 11) since the members ofMU carry

proofs as second component. Found follows from U ⊆ M ⊆ WF and the membership
axioms hold inMU as they do inM. ut

The following ensures that universes and strength are preserved in submodels:

https://www.ps.uni-saarland.de/extras/jar-sets/website/Large.html#ZFn_ZFw
https://www.ps.uni-saarland.de/extras/jar-sets/website/Truncation.html#IM_ZF
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Lemma 79 IfM |= ZF and U is ZF-closed, then π1 :MU →M is an embedding.

Proof π1 respects membership by definition of MU . Further, if x ∈ π1 y = y for
y :MU we have x ∈ U by transitivity of U and x ∈ y. Then x :MU satisfies x ∈ y
and π1 x = x. ut

Fact 80 If ZF≥n has a model, then ZFn has a model.

Proof LetM be a model of ZF≥n, so there is x :M with strength n. We use XM to
analyse whether there is x′ :M with strength n+1. If not, thenM is already a model
of ZFn by definition. So suppose there is such x′, then we know there is a universe
U ∈ x′ with strength n. Then because of the well-ordering of stages, we can assume U
to be the least universe of strength n.

We show that MU |= ZFn. By Lemma 78 we know that MU is a model of ZF.
Further, MU has strength n since U does, so MU |= ZF≥n. Finally, suppose there
were a set x′ ∈ MU with strength n+ 1 and hence a universe U ′ ∈ x′ with strength
n. Then by transitivity of U it follows that U ′ ∈ U , contradicting the assumption that
U is the least universe of strength n. ThusMU |= ZFn. ut

Metatheorem 81 For every number n, ZFn has a unique model.

Proof Fix a number n. By Metatheorem 76 we have a model of ZF≥n. Applying Fact 80
yields a model of ZFn and Fact 44 implies uniqueness (up to isomorphism). ut

5 Discussion

In this paper, we have formalised the quasi-categoricity of second-order ZF first es-
tablished by Zermelo [30] in Coq’s type theory assuming excluded middle (XM). As
a consequence, we have illustrated that axiomatisations controlling the ordinality of
the class of Grothendieck universes such as ZFn are categorical. Moreover, we have
shown that further assuming a description operator on well-founded trees (TD) and
local proof irrelevance (PIγ) proves the systems ZFn consistent. An overview of all
main results and their underlying assumptions is given in Table 1.

Table 1 Overview of main results and axioms used.

Statement Axioms #
Well-ordering of the class V of stages XM 16, 18
Every set appears in a stage XM 21
Every universe appears as a stage XM 27
Zermelo’s embedding theorem XM 42
Categoricity of ZF in every cardinality XM 43
Categoricity of ZFn for every n XM 44
Ti |= ZF′≡ – 62
Ti |= ZF≡ TD 63
Si |= ZF TD, PIγ 68
Consistency of ZF≥n for every n TD, PIγ 76
If ZF≥n has a model, then so does ZFn XM 80
Consistency of ZFn for every n TD, XM 81

https://www.ps.uni-saarland.de/extras/jar-sets/website/Truncation.html#pi_mor
https://www.ps.uni-saarland.de/extras/jar-sets/website/Truncation.html#shrink
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Type-theoretic approach to set theory. The formalisation of ZF in a type the-
ory with inductive predicates as examined in this work differs from common textbook
presentations (cf. [20,14,10]) in several ways, most importantly in the use of second-
order axioms and the inductive definition of the cumulative hierarchy. We briefly outline
some of the consequences.

Concerning the second-order version of the replacement axiom, it has been known
since Zermelo [30] that second-order ZF admits the embedding theorem for models. It
implies that models only vary in their external cardinality, i.e. the notion of cardinality
defined by bijections on type level or, equivalently, in the height of their cumulative
hierarchy. Thus controlling these parameters induces categorical axiomatisations.

As a consequence of categoricity, all internal properties (including statements un-
decided in first-order ZF) become semantically determined in that there exist no two
models such that a property holds in the first but fails in the second (cf. [13,26]).
Concretely, Fact 49 shows that the set-theoretic axiom of choice (AC) either holds or
fails in all models of ZFn. This is strikingly different from the undetermined situa-
tion in first-order ZF, where models can be arbitrarily incomparable and linearity of
embeddability is only achieved in extremely controlled situations (cf. [9]). This is a
consequence of the fact that inner models of second-order ZF are necessarily universes
whereas those of first-order ZF can be subsets of strictly less structure. Moreover, since
the type-theoretical version of choice as formulated in Definiction 45 is believed to be
independent from Coq’s type theory and violations of the set-theoretical AC induce
violations on type level (Fact 48), we expect that the second-order models discussed in
this paper do not invalidate the axiom of choice.

An explanation for those results is that the second-order separation axiom asserts
the existence of all subsets of a given set contrarily to only the definable subsets guar-
anteed by a first-order scheme. This strength fully determines the extent of the power
set, which remains underspecified in first-order ZF. Concretely, first-order ZF admits
counterexamples to Lemma 33. Furthermore, the notions of external cardinality in-
duced by type bijections and internal cardinality induced by bijections encodable as
sets coincide in second-order ZF since every external bijection can be represented by a
replacement set. That the two notions of cardinality differ for first-order set theory has
been pointed out by Skolem [18]. The Löwenheim-Skolem Theorem implies the exis-
tence of a countable model of first-order ZF (that still contains internally uncountable
sets) whereas models of second-order ZF are provably uncountable (cf. [11]).

Inductive predicates make a set-theoretic notion of ordinals in their role as a car-
rier for transfinitely recursive definitions superfluous. Consider that commonly the
cumulative stages are defined by Vα := Pα ∅ using transfinite recursion on ordinals α.
However, this presupposes at least a basic ordinal theory including the set-theoretic
recursion theorem, making the cumulative hierarchy not immediately accessible. That
this constitutes an unsatisfactory situation has been addressed by Scott [17] where an
axiomatisation of ZF is developed from the notion of rank as starting point. In the
textbook approach, the well-ordering of the stages Vα is inherited directly from the or-
dinals by showing Vα ⊆ Vβ iff α ⊆ β. Without presupposing ordinals, we have to prove
the linearity of ⊆ and the existence of least ⊆-elements directly. As it was illustrated
in this work, these direct proofs are not substantially harder than establishing the
corresponding properties for ordinals. Similarly, characterising the foundation axiom
using an inductive predicate seems superior to a first-order statement in that it gives
immediate access to ∈-induction and ∈-recursive definitions. Both were of substantial
use throughout this paper.
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Second-order set theory. Studying axiomatic systems in a formal meta theory
with internalised logic such as dependent type theory offers two approaches. First, one
can implement a full logical system based on an inductive object syntax and formalise
the axioms as concrete formulas within this language. Using such a deep embedding is
then complemented by a semantic interpretation of the domains, terms, and formulas
of the logic as types, objects, and properties at the meta level. Analogously, if one
considers a concrete deduction system for the object logic, proving soundness and,
if attainable, completeness with respect to the chosen semantics basically establishes
a connection of the object level deductions with the meta level deductions. These
parallels suggest the second, more semantic, approach to formalising axiomatic systems:
in a shallow embedding, formulas and in particular the axioms are stated directly in
the meta logic and the affiliated meta deduction system is employed to explore the
axiomatic consequences. This second approach is simpler but arguably not as obviously
faithful to the theory under consideration as an explicit formalisation of syntax and
deduction would be.

In this article, we present second-order set theory following the second approach.
This is in alignment with the work by Aczel [1] and Werner [27], as both consider
the second-order version of the axioms at type level. Of course, as the name suggests,
second-order ZF is an axiom system normally cast in the considerably weaker second-
order logic. In our presentation, however, we took the freedom to transcend the native
expressibility of the second-order fragment of Coq’s type theory by employing inductive
definitions such as the inductive predicates WF and V or the inductive type N in order
to illustrate some of the benefits of working in a rich type theory. Therefore calling
the resulting system “higher-order ZF” or even “ZF in dependent type theory” could
be reasonable options but these terms have their own drawbacks. Ultimately, since our
main internal results are in principle expressible and provable for second-order logic
we deem it appropriate to speak of second-order set theory as used in the literature.

Non-constructive assumptions. The use of excluded middle in the first two
technical sections of our development has two main reasons. First, the standard results
about the cumulative hierarchy as well as Zermelo’s embedding theorem depend on
classical reasoning and we see both as key results of an analysis of second-order ZF. One
could of course invest more time into finding constructive renderings of these statements
but our idea was to present a development of set theory close to the conservative
classical formulation. Secondly, the truncation method (Fact 80) for shrinking a model
of ZF≥n down to a model of ZFn is inherently non-constructive as it yields the least
universe of a given strength. Since one objective of this paper is to construct the unique
models of the axiomatisations ZFn, we have to include these classical results. However,
we emphasize that the consistency of the axiomatisations ZF≥n subject to the third
technical section does not rely on excluded middle.

Since Coq does not provide built-in quotient types, constructing extensional models
relies on additional axioms. Tree description (TD) yields a normaliser (Definition 64)
for tree equivalence and therefore provides the necessary means to obtain the quotient
models Si. Moreoever, relational replacement plays a crucial role in the development of
ZF, e.g. it is needed to prove that the stages exhaust all sets (Fact 21). Speaking more
generally, relational replacement is closer to first-order set theory than the functional
version, as the formulas φ(a, b) in a first-order replacement scheme need not always
be definable as type-level functions. So either relational replacement or functional re-
placement together with description ought to be included in a faithful axiomatisation
of second-order ZF, both making tree description necessary for a model construction.
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Further consistency results. We finish by discussing some related results from
previous work [12]. As it was mentioned in Section 2.2, the system ZF is equivalent to
ZF≥1 where the axiom of infinity is replaced by the assertion of at least one universe.
For the more interesting direction from ZF to ZF≥1 we assume an infinite set ω,
establish

⋃
ω as the set of hereditarily finite sets, and prove it to be the least universe.

Note that this direction relies on XM whereas the direction from ZF≥1 to ZF does
not. By the observed equivalence it is justified to see the variously strong assertions of
universe existence as a generalised form of the infinity axiom.

In addition to the quotient construction via tree description presented in Sec-
tion 4.3, in [12] we also explore alternative approaches using weaker assumptions. Solely
postulating classes of trees to be extensional, i.e. assuming P = Q whenever P s↔ Qs

for all trees s, allows for lifting all set operations but replacement and description to the
type 〈P : Ti → Prop | ∃s. P = [s]〉 of tree equivalence classes. The so obtained model
satisfies all axioms of the set theory Z which is ZF without replacement and descrip-
tion. Slighty stronger is the explicit assumption of a normaliser γ for trees, where the
type 〈s : Ti | γs = s〉 of canonical representatives is at least a model of ZF′. In general,
it should be noted that the axioms needed in order to obtain full models of ZF really
depend on the concrete type theory one is working in. For instance, in homotopy type
theory [24], a system coming with higher inductive types and the strong extensionality
principle of univalence, extensional models of (constructive) set theory do not rely on
additional quotient axioms [15,5,8].

As elaborated before, an independence proof of AC cannot be given for second-order
ZF. However, concerning the foundation axiom one can proceed in the usual manner,
as we formalised in [12]. Starting with a non-well-founded model, the class WF of well-
founded sets forms a well-founded submodel and, conversely, suitable permutations of
well-founded models induce non-well-founded models. The reason is that foundation in
contrast to AC does not reflect a property of the ambient meta theory.
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