
Undecidability, Incompleteness, and Completeness
of Second-Order Logic in Coq

Mark Koch

Saarland University

Saarland Informatics Campus, Saarbrücken, Germany

Dominik Kirst

Saarland University

Saarland Informatics Campus, Saarbrücken, Germany

kirst@cs.uni-saarland.de

Abstract
We mechanise central metatheoretic results about second-

order logic (SOL) using the Coq proof assistant. Concretely,

we consider undecidability via many-one reduction from

Diophantine equations (Hilbert’s tenth problem), incom-

pleteness regarding full semantics via categoricity of second-

order Peano arithmetic, and completeness regarding Henkin

semantics via translation to mono-sorted first-order logic

(FOL). Moreover, this translation is used to transport fur-

ther characteristic properties of FOL to SOL, namely the

compactness and Löwenheim-Skolem theorems.

CCSConcepts: •Theory of computation→Type theory;
Constructive mathematics; Higher order logic.

Keywords: second order logic, undecidability, completeness

ACM Reference Format:
Mark Koch and Dominik Kirst. 2022. Undecidability, Incomplete-

ness, and Completeness of Second-Order Logic in Coq. In Proceed-

ings of the 11th ACM SIGPLAN International Conference on Certified

Programs and Proofs (CPP ’22), January 17–18, 2022, Philadelphia,

PA, USA. ACM, New York, NY, USA, 17 pages. https://doi.org/10.
1145/3497775.3503684

1 Introduction
Second-order logic (SOL) extends the standard formalism

of first-order logic (FOL) with quantifiers for relations and,

depending on the presentation, functions over individuals.

As a consequence, SOL can be seen as a more suitable general

purpose language for mathematics than FOL (for instance

argued by Shapiro [33]), capturing the intuitive treatment

of relations and functions as first-class objects in common

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

CPP ’22, January 17–18, 2022, Philadelphia, PA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-9182-5/22/01. . . $15.00

https://doi.org/10.1145/3497775.3503684

mathematical practice. For instance, the induction principle

in first-order Peano arithmetic is typically stated as a scheme

Ind𝜑 := 𝜑 (0) → (∀𝑛. 𝜑 (𝑛) → 𝜑 (𝑛 + 1)) → ∀𝑛. 𝜑 (𝑛)
approximating unary relations by first-order formulas 𝜑 ,

while it can be formulated by the single axiom

Ind2 := ∀𝑃 . 𝑃 (0) → (∀𝑛. 𝑃 (𝑛) → 𝑃 (𝑛 + 1)) → ∀𝑛. 𝑃 (𝑛)
in second order Peano arithmetic (PA2), quantifying over all

unary predicates 𝑃 .

It is well-known that the metatheoretical properties of

SOL differ heavily depending on how the second-order quan-

tifiers are interpreted (for instance contrasted by Vänää-

nen [38]). In the rather natural full semantics, the induction

principle Ind2 ranges over the full relation space over natural
numbers – admitting just a single model of PA2 and conse-

quently ruling out completeness for instance by Gödel’s first

incompleteness theorem [12]. On the other hand, in the more

versatile Henkin semantics generalising to variable relation

spaces, Ind2 behaves similarly like the scheme Ind𝜑 – allow-

ing enough models to maintain completeness as in the case

of FOL [15].

In this paper, we investigate these and related metatheo-

retical properties of SOL using the Coq proof assistant [37]

and driven by computational aspects. Using a proof assis-

tant to formally develop the metatheory of SOL is beneficial

since the extension over FOL considerably increases the com-

plexity of notions like substitution, that are typically kept

informal on paper and make metatheoretic proofs prone to

error. For instance, the folklore translation of SOL to FOL

(straightforward targetting multi-sorted FOL but intricate for

the more common mono-sorted case) is only sketched in Van

Dalen’s textbook [39] and in fact found inadequate by Nour

and Raffalli [29]. We mechanise Nour and Raffalli’s proposed

correction and derive transportation theorems of the form

“if FOL has property 𝑃 , then so does SOL", orthogonalising

from the proofs that FOL satisfies 𝑃 itself.

The particular choice of Coq is well-suited to express the

computational aspects involved. Implementing a construc-

tive logic, Coq’s type theory allows for a synthetic treatment

of computability [1, 32], based on the fact that all functions

definable in axiom-free Coq are computable. Therefore spar-

ing tedious encodings in a concrete model of computation

such as Turing machines, the mechanisation of positive prop-

erties like enumerability of deduction systems and negative

https://doi.org/10.1145/3497775.3503684
https://doi.org/10.1145/3497775.3503684
https://doi.org/10.1145/3497775.3503684

CPP ’22, January 17–18, 2022, Philadelphia, PA, USA Mark Koch and Dominik Kirst

properties like undecidability of validity becomes feasible. In

previous work, this approach has already been employed for

synthetic undecidability [8, 21] and synthetic incomplete-

ness [20] of FOL, and with this paper, we illustrate that the

same methods scale to the case of SOL.

To the best of our knowledge, we provide the first mechani-

sation
1
of general SOL, including the following main results:

• Soundness and enumerability of the standard natural

deduction system with full comprehension.

• Categoricity of second-order Peano arithmetic PA2.

• Undecidability and incompleteness by synthetic many-

one reduction fromDiophantine equations, contributed

to the Coq Library of Undecidability Proofs [10].

• Translation of SOL in Henkin semantics to mono-

sorted FOL, transporting completeness, compactness,

and Löwenheim-Skolem theorems from FOL to SOL.

These main results are covered in Sections 3 through 8,

respectively, where the translation from SOL to FOL is or-

ganised in the latter three sections. The technical material

is enclosed by preliminaries on constructive type theory

and synthetic computability (Section 2) as well as a discus-

sion of the Coq development and related and future work

(Section 9).

2 Preliminaries
2.1 Constructive Type Theory
We work in the calculus of inductive constructions [4, 30]

as implemented in the Coq proof assistant [37]. It features a

cumulative hierarchy of predicative universes T𝑖 (we omit

the universe level 𝑖 : N throughout the paper) and an im-

predicative universe P ⊆ T of propositions. On the level of

T we have function spaces 𝑋 → 𝑌 , products 𝑋 × 𝑌 , sums

𝑋 + 𝑌 , dependent products ∀𝑥 : 𝑋 . 𝐹 𝑥 , and dependent sums

Σ𝑥 : 𝑋 . 𝐹 𝑥 . The corresponding propositional versions are

denoted by the usual logical notation, i.e.→, ∧, ∨, ∀, and ∃,
along with ⊤ and ⊥ denoting truth and falsity. Elimination

of ∨ and ∃ into T is prohibited, whereas sums and dependent

sums can be eliminated.

We use inductive types for Booleans (B ::= true | false),
Peano natural numbers (N ::= 0 | 𝑛+1), option types (O(𝑋) ::=
𝑥 | ∅), and lists (L(𝑋) ::= nil | 𝑥 ::𝐴). We write 𝐴 ++ 𝐵 for

concatenation, 𝑥 ∈ 𝐴 for membership, |𝐴| for length and

𝐴 ⊆ 𝐵 for inclusion. We overload the function application

notation such that 𝑓 𝐴 denotes the point-wise application of

a function 𝑓 : 𝑋 → 𝑌 to a list 𝐴 : L(𝑋). We use the type

𝑋𝑛
constructed by nil : 𝑋 0

and (𝑥 :: 𝒗) : 𝑋𝑛+1
for 𝒗 : 𝑋𝑛

to

denote vectors 𝒗 of length 𝑛 and reuse the definitions and

notations introduced for lists.

Furthermore, we make use of a bijective Cantor pairing

function ⟨· , ·⟩ : N × N → N, embedding pairs of natur´al
numbers into the natural numbers.

1
Systematically hyperlinked with the PDF version of this paper and accessi-

ble via the project page www.ps.uni-saarland.de/extras/cpp22-sol/.

2.2 Synthetic Computability Theory
The standard notions of computability theory can be synthe-

sised in constructive type theory since every constructively

definable function is computable. Instead of an explicit model

of computation such as Turing machines or the lambda cal-

culus, the synthetic approach relies on this intrinsic notion

of computation [1, 8]:

Definition 2.1 (Decidability). A predicate 𝑝 : 𝑋 → P is

decidable if there is a Boolean decider 𝑓 : 𝑋 → B such that

∀𝑥 . 𝑝 𝑥 ↔ 𝑓 𝑥 = true. This notion generalises to predicates

with multiple arguments by implicit uncurrying.

Definition 2.2 (Discreteness). A type 𝑋 is called discrete if

there is an equality decider for 𝜆𝑥𝑦 : 𝑋 . 𝑥 = 𝑦.

Similarly, (recursive) enumerability is witnessed by an

enumerating function:

Definition 2.3 (Enumerability).
1. A predicate 𝑝 : 𝑋 → P is enumerable, if there is an enu-

merator 𝑓 : N→ O(𝑋) with ∀𝑥 . 𝑝𝑥↔∃𝑛. 𝑓 𝑛 = 𝑥 . We

say that 𝑝 is co-enumerable if its complement 𝑝 , defined

as 𝑝 = 𝜆𝑥 .¬𝑝 𝑥 , is enumerable. We call 𝑝 bi-enumerable

if 𝑝 is both enumerable and co-enumerable. These no-

tions generalise to predicates with multiple arguments

by implicit uncurrying.

2. A type 𝑋 is called enumerable, if there is an enumerator

𝑓 : N→ O(𝑋), such that ∀𝑥 . ∃𝑛. 𝑓 𝑛 = 𝑥 .

A standard result from computability theory known as

Post’s theorem states that bi-enumerable predicates are de-

cidable. Establishing this fact in constructive type theory

requires the synthetic version of Markov’s principle [1, 8]:

Definition 2.4. Markov’s principleMP is the following propo-

sition: ∀𝑓 : N→ B.¬¬(∃𝑛. 𝑓 𝑛 = true) → ∃𝑛. 𝑓 𝑛 = true

MP is independent in Coq’s type theory [5] and a conse-

quence of the law of excluded middle LEM := ∀𝑃 : P. 𝑃 ∨¬𝑃 .
MP is sufficient and necessary to obtain Post’s theorem:

Fact 2.5 (Post’s Theorem). MP is equivalent to the decidabil-

ity of all bi-enumerable predicates on discrete types.

Proof. Theorem 2.20 in [8]. □

Note that negative notions like undecidability cannot sim-

ply be defined as the negation of the positive notions as con-

structive type theory is consistent with the assumption that

every predicate is decidable (in the synthetic sense). Instead,

synthetic undecidability can be characterised by chains of

reductions from a problem that is known to be undecidable,

for example the halting problem on Turing machines.

Definition 2.6 (Many-One Reductions). Given predicates

𝑝 : 𝑋 → P and 𝑞 : 𝑌 → P, a function 𝑓 : 𝑋 → 𝑌 is a

(many-one) reduction if ∀𝑥 . 𝑃 𝑥 ↔𝑄 (𝑓 𝑥). We say 𝑝 reduces

to 𝑞 and write 𝑝 ≼ 𝑞 if such a function exists.

Fact 2.7. If 𝑝 ≼ 𝑞 and 𝑞 is decidable, then so is 𝑝 .

www.ps.uni-saarland.de/extras/cpp22-sol/
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Decidable.html#decidable
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Decidable.html#eq_dec
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Enumerable.html#enumerable
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Enumerable.html#enumerable
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Enumerable.html#enumerable__T
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Decidable.html#MP
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Enumerable.html#Post
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Decidable.html#reduces
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Decidable.html#decidable_transport_red

Undecidability, Incompleteness, and Completeness of SOL in Coq CPP ’22, January 17–18, 2022, Philadelphia, PA, USA

3 Second-Order Syntax, Standard
Semantics, and Natural Deduction

In this section, we introduce the syntax, standard Tarski

semantics, and natural deduction system for FOL and SOL,

following [33].

3.1 Syntax
We parametrise the syntax over a signature specifying the

non-logical symbols:

Definition 3.1 (Signature). A signature Σ = (ΣF, ΣP) con-
sists of a type ΣF of function symbols and a type ΣP of predi-

cate symbols, where all symbols come with a specific arity. We

write F : ΣF and P : ΣP for members of those types. The arity

of the symbols is denoted by |F | : N and |P | : N. Constants
can be represented by nullary function symbols.

Fixing a signature Σ, we give the syntax of first-order

logic featuring individual quantifiers and the usual logical

connectives:

Definition 3.2 (First-Order Syntax). The type of terms 𝔗

and first-order formulas𝔉1 is defined by

𝑡 : 𝔗 ::= x𝑖 | F 𝒕

𝜑,𝜓 : 𝔉1 ::= ¤⊥ | P 𝒕 | 𝜑 ¤→𝜓 | 𝜑 ¤∧𝜓 | 𝜑 ¤∨𝜓 | ¤∀𝜑 | ¤∃𝜑

where 𝑖 : N, F : ΣF , P : ΣP , and the vectors 𝒕 are of the
expected length |F | and |P |. We write ¤¬𝜑 for 𝜑 ¤→ ¤⊥ and

𝜑 ¤↔𝜓 for (𝜑 ¤→𝜓) ¤∧ (𝜓 ¤→ 𝜑). Furthermore, we use ¤□ as a

placeholder for any of the connectives ¤→, ¤∧, and ¤∨, and ¤∇ for

¤∀ and ¤∃. We write 𝔗(Σ) and 𝔉1 (Σ) if we want to emphasise

the dependency on a concrete signature Σ.

We employ a de Bruijn representation of variables where

a bound variable is encoded as the number of quantifiers

shadowing its binder [6]. For example, the formula ∃𝑎. 𝑃 (𝑎)∧
∀𝑏.𝑄 (𝑎, 𝑏) is represented by ¤∃ 𝑃 (x0)∧ ¤∀𝑄 (x1, x0). For further
explanation of de Bruijn syntax we refer to [35]. For the sake

of legibility, we fall back to named binders when giving

examples or stating concrete formulas, and keep in mind

that the formalisation uses the de Bruijn paradigm behind

the scenes.

The terms of SOL are exactly the terms 𝔗 of FOL. The

type𝔉2 of second-order formulas is obtained by extending𝔉1

with two new constructs: Besides the individual quantifiers

¤∀ and ¤∃ we add 𝑛-ary predicate quantifiers
¤∀𝑛p and ¤∃𝑛p , along

with 𝑛-ary predicate variables p𝑛𝑖 for all 𝑛 : N:

Definition 3.3 (Second-Order Syntax). The type 𝔉2 of second-

order formulas is defined by extending Definition 3.2 with

𝜑,𝜓 : 𝔉2 ::= ... | p𝑛𝑖 𝒕 | ¤∀𝑛p 𝜑 | ¤∃𝑛p 𝜑 (𝑖, 𝑛 : N, 𝒕 : 𝔗𝑛)

The type𝔓𝑛 denotes all 𝑛-ary predicates, that is variables p𝑛𝑖
and predicate symbols P : Σp with |P | = 𝑛. The | · | notation
is also extended to predicate variables.

Note, that quantifiers are annotated with the arity of

the predicate they quantify over. Otherwise, unintuitive

formulas like ∀𝑃 . 𝑃 (𝑥) → 𝑃 (𝑎, 𝑏) where 𝑃 is unary and

binary at the same time would need to be ruled out by

further well-formedness constraints. In our approach, the

quantifier instead specifies the arity of 𝑃 . For example, if 𝑃

is unary then the binary occurrence would be considered

free. This of course requires predicate variables to count

de Bruijn indices independently of individual variables and

of predicate variables with other arities. For example, the

formula ∀𝑎. ∃𝑃 . 𝑃 (𝑎) → ∃𝑄.∀𝑏. ∃𝑅. 𝑃 (𝑎) ∧𝑄 is represented

by
¤∀ ¤∃1p p10 (x0) ¤→ ¤∃0p ¤∀ ¤∃1p p11 (x1) ∧ p00.
When writing concrete formulas on paper, we usually

drop the subscript 𝑝 annotation of second-order quantifiers

and distinguish the different kinds of variables by names,

using lower case letters for individuals and upper case letters

for predicates. We also leave out the aritiy annotations if

arities can be derived from the context.

Besides predicate quantifiers, some authors also consider

function quantifiers in SOL (for example [33, 42]). We discuss

this in Appendix A.

Definition 3.4 (Substitutions). Capture avoiding individual
instantiation 𝜑 [𝜎] with a parallel substitution 𝜎 : N→ 𝔗 is

defined by

x𝑖 [𝜎] := 𝜎 𝑖

(F 𝒕) [𝜎] := F (𝒕 [𝜎])
(P 𝒕) [𝜎] := P (𝒕 [𝜎])
(p𝑛𝑖 𝒕) [𝜎] := p𝑛𝑖 (𝒕 [𝜎])

¤⊥[𝜎] := ¤⊥
(𝜑 ¤□𝜓) [𝜎] := 𝜑 [𝜎] ¤□𝜓 [𝜎]
(¤∇𝜑) [𝜎] := ¤∇ 𝜑 [x0 · ↑𝜎]
(¤∇𝑛𝑝 𝜑) [𝜎] := ¤∇𝑛𝑝 𝜑 [𝜎]

where x0 · ↑𝜎 maps 0 to x0 and 𝑖 + 1 to (𝜎 𝑖) [𝜆𝑖. x𝑖+1]. We in

general write 𝜑 [↑] for the shift substitution 𝜑 [𝜆𝑖. x𝑖+1] and
𝜑 [𝑡] as a shorthand for 𝜑 [𝑡 · 𝜆𝑖. x𝑖], instantiating the index 0
with 𝑡 and reducing the other indices by one.

Predicate instantiation 𝜑 [𝜎]𝑛p with a parallel substitution 𝜎 :

N→ 𝔓𝑛 for arity 𝑛 is defined in a similar way. In particular:

(p𝑚𝑖 𝒕) [𝜎]𝑛p :=

{
(𝜎 𝑖) 𝒕 if𝑚 = 𝑛

p𝑚
𝑖
𝒕 otherwise

(¤∇𝑚𝑝 𝜑) [𝜎]𝑛p :=

{
¤∇𝑚𝑝 𝜑 [p𝑛

0
· ↑𝜎]𝑛p if𝑚 = 𝑛

¤∇𝑚𝑝 𝜑 otherwise

Note that only variables of matching arities are substituted.

As with individual substitution, we use the shorthand 𝜑 [𝑃]𝑛p
to denote the substitution 𝜑 [𝑃 · 𝜆𝑖. p𝑛𝑖]𝑛p .
Finally, we observe that discreteness and enumerability

transport from the signature to the syntax.

Fact 3.5 (Discreteness and Enumerability).
1. If Σ is discrete, then so are𝔉1 and𝔉2.

2. If Σ is enumerable, then so are𝔉1 and𝔉2.

3.2 Standard Semantics
Next, we define the standard Tarski semantics for SOL, de-

termining the validity of formulas:

https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.SOL.html#funcs_signature
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.FOL.html#form
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.SOL.html#form
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Subst.html#subst_form_i
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.SOL.html#form_eq_dec
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.SOL.html#form_enumerable

CPP ’22, January 17–18, 2022, Philadelphia, PA, USA Mark Koch and Dominik Kirst

Definition 3.6 (Standard Semantics). A modelM consists of

a domain 𝐷 : T and an interpretation I for function and pred-

icate symbols given by F I : 𝐷 |F | → 𝐷 and PI : 𝐷 |P | → P
for each F and P. Environments 𝜌 = (𝜌i, 𝜌p) consist of assign-
ments 𝜌i : N→ 𝐷 and 𝜌𝑛p : N→ 𝐷𝑛 → P for individual and
predicate variables of each arity 𝑛 : N, respectively. Term eval-

uation ⟦·⟧𝜌 : 𝔗 → 𝐷 and formula satisfaction 𝜌 ⊨ · : 𝔉2 → P
are defined by

⟦x𝑖⟧𝜌 := 𝜌i 𝑖

⟦F 𝒕⟧𝜌 := F I ⟦𝒕⟧𝜌
𝜌 ⊨ P 𝒕 := PI ⟦𝒕⟧𝜌
𝜌 ⊨ p𝑛𝑖 𝒕 := 𝜌𝑛p 𝑖 ⟦𝒕⟧𝜌

𝜌 ⊨ ¤⊥ := ¤⊥
𝜌 ⊨ 𝜑 ¤□𝜓 := (𝜌 ⊨ 𝜑) □ (𝜌 ⊨ 𝜓)
𝜌 ⊨ ¤∇𝜑 := ∇𝑑 : 𝐷.𝑑 · 𝜌 ⊨ 𝜑

𝜌 ⊨ ¤∇𝑛𝑝 𝜑 := ∇𝑃 : 𝐷𝑛 → P. 𝑃 · 𝜌 ⊨ 𝜑

where □ and ∇ are the meta-logical counterparts of the logical

symbols ¤□ and ¤∇, respectively. The modified environment 𝑑 · 𝜌i
maps 0 to 𝑑 and 𝑥 + 1 to 𝜌i 𝑥 . The predicate quantifier only
extends the predicates environment for the corresponding arity:

(𝑃 · 𝜌 |𝑃 |p) 0 := 𝑃 (𝑃 · 𝜌 |𝑃 |p) (𝑖 + 1) := 𝜌
|𝑃 |
p 𝑖

(𝑃 · 𝜌𝑛p) 𝑖 := 𝜌𝑛p 𝑖 if 𝑛 ≠ |𝑃 |

We write M, 𝜌 ⊨ 𝜑 and ⟦𝑡⟧M𝜌 when we want to make the

used model explicit. We also extend satisfiability to theories

T : 𝔉2 → P and writeM, 𝜌 ⊨ T ifM, 𝜌 ⊨ 𝜑 for all 𝜑 ∈ T .
Furthermore, we writeM ⊨ 𝜑 ifM, 𝜌 ⊨ 𝜑 for all 𝜌 . Similarly,

we say thatM is a model of T , writtenM ⊨ T , ifM, 𝜌 ⊨ T
for all 𝜌 . Finally, we say that𝜑 is valid under T , written T ⊨ 𝜑 ,
ifM, 𝜌 ⊨ 𝜑 for allM and 𝜌 withM, 𝜌 ⊨ T .

3.3 Natural Deduction
We represent the natural deduction (ND) system as an in-

ductive predicate of type L(𝔉2) → 𝔉2 → P. We use two

versions of the deduction system denoted by ⊢𝑐 and ⊢𝑖 distin-
guishing between classical and intuitionistic provability. The

following (Peirce) axiom is only available in the classical

system ⊢𝑐 and may not be used in ⊢𝑖 :
Peirce

Γ ⊢𝑐 ((𝜑 ¤→𝜓) ¤→ 𝜑) ¤→ 𝜑

It allows to enforce classicality without relying on ¤⊥. We

write ⊢ if the choice between ⊢𝑐 and ⊢𝑖 does not matter. The

remaining rules characterising the two ND systems are listed

in Appendix B. Since most of them are standard, we only

highlight the rules specific to SOL:

Γ [↑]𝑛p ⊢ 𝜑
AllIp

Γ ⊢ ¤∀𝑛p 𝜑
Γ ⊢ ¤∀𝑛p 𝜑

AllEp
Γ ⊢ 𝜑 [𝑃]𝑛p

Γ ⊢ 𝜑 [𝑃]𝑛p
ExIp

Γ ⊢ ¤∃𝑛p 𝜑
Γ ⊢ ¤∃𝑛p 𝜓 Γ [↑]𝑛p,𝜓 ⊢2 𝜑

ExEp
Γ ⊢ 𝜑

𝑃 not free in 𝜑
Compr

Γ ⊢ ¤∃𝑃 . ¤∀𝑥1 ...𝑥𝑛 . 𝑃 (𝑥1, ..., 𝑥𝑛) ¤↔ 𝜑

The quantifier rules are a trivial extension of their first-order

counterparts. Note that the 𝑛-ary predicate variable 0 be-

comes free in the shifted context Γ [↑]𝑛p , thus taking the role

as an arbitrary but fixed predicate. Hence, we can conclude

Γ ⊢ ¤∀𝑛p 𝜑 from Γ [↑]𝑛p ⊢ 𝜑 as expressed by (AllIp). The (ExEp)
makes similar use of shifts. This approach allows for an easier

mechanisation of abstract properties like weakening. How-

ever, the more traditional approach of replacing the index

0 with a fresh variable can also be shown admissible (see

Lemma 3.9).

Finally, ⊢ also includes the so called comprehension axiom

(Compr). It states that for each formula𝜑 there is a predicate

𝑃 that extensionally behaves the same as the 𝑛-ary property

expressed by𝜑 . Importantly, 𝑃 may not occur freely in𝜑 , oth-

erwise the axiom would be inconsistent. We write Compr𝑛𝜑
for a concrete instance of the comprehension scheme for the

formula 𝜑 and arity 𝑛.

While the context of ⊢ is represented by finite lists Γ, the
notion of provability naturally extends to potentially infinite

theories T : 𝔉2 → P:

Definition 3.7 (Deduction under Theories). A formula 𝜑 is

provable under a theory T : 𝔉2 → P, written T ⊢ 𝜑 , if there
is a list Γ ⊆ T , such that Γ ⊢ 𝜑 . We also extend the classicality

annotations ⊢𝑐 and ⊢𝑖 to provability under theories.

The usual weakening properties allow for reformulations

of the (AllIp) and (ExEp) rules that are helpful when deriv-

ing concrete statements:

Lemma 3.8 (Weakening). The following rules hold for ⊢:
Γ′ ⊢ 𝜑 Γ′ ⊆ Γ

Weak
Γ ⊢ 𝜑

Γ ⊢ 𝜑
Subst

Γ [𝜎] ⊢ 𝜑 [𝜎]
Γ ⊢ 𝜑

Substp
Γ [𝜎]𝑛p ⊢ 𝜑 [𝜎]𝑛p

Lemma 3.9 (Named Quantifier Rules). The following rules
hold for ⊢:

Γ ⊢ 𝜑 [p𝑖]𝑛p p𝑛
𝑖
∉ Γ, ¤∀𝑛p𝜑

AllI
′
p

Γ ⊢ ¤∀𝑛p𝜑

Γ ⊢ ¤∃𝑛p𝜓 Γ, 𝜑 [p𝑖]𝑛p ⊢ 𝜓 p𝑛
𝑖
∉ Γ, ¤∀𝑛p𝜑

ExE
′
p Γ ⊢ 𝜑

where p𝑛𝑖 ∉ Γ denotes that the variable does not occur in Γ.
Similar rules (AllI′) and (ExE′) also hold for the first-order
quantifiers (cf. Lemma 4 in [8]).

Finally, we establish enumerability and soundness of ⊢:

Fact 3.10. Let Σ be discrete and enumerable. Then 𝜆𝜑. Γ ⊢ 𝜑
is enumerable for all Γ.

Proof. Via the techniques discussed in [8]. □

Theorem 3.11 (Soundness). Let T and 𝜑 be given, then:

1. T ⊢𝑖 𝜑 → T ⊨ 𝜑
2. T ⊢𝑐 𝜑 → T ⊨ 𝜑 iff LEM holds

Proof. We discuss both cases:

1. It suffices to show soundness for contexts Γ ⊆ T which

follows by induction on the derivation.

https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Tarski.html#sat
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Deduction.html#tprv
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Deduction.html#Weak
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Deduction.html#subst_Weak_i
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Deduction.html#subst_Weak_p
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Deduction.html#nameless_equiv_all_p'
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Deduction.html#nameless_equiv_ex_p'
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Deduction.html#prv_enumerable
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Deduction.html#SoundnessIT
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Deduction.html#SoundnessCT

Undecidability, Incompleteness, and Completeness of SOL in Coq CPP ’22, January 17–18, 2022, Philadelphia, PA, USA

2. Similar to (2) requiring LEM to verify the (Peirce)
axiom since we work in constructive logic. Classical

soundness in turn also entails LEM since ⊢𝑐 𝑃 ¤∨ ¤¬𝑃 for

all nullary predicate variables 𝑃 . □

4 Second-Order Peano Arithmetic
An important property where SOL differs from FOL is the

notion of categoricity [31]. A theory T is called categorical,

if all models of T are equal up to isomorphism. Thus, T
is strong enough to uniquely characterise its own intended

structure.

FOL is not able to characterise any infinite structures in a

categorical way as a consequence of the Löwenheim-Skolem

theorem. SOL on the other hand allows for categorical ax-

iomatisations of many infinite structures. We demonstrate

this in this section using the example of second-order Peano

arithmetic (PA2), characterising the natural numbers.

The signature ΣPA of PA2 contains symbols for the con-

stant zero, the successor, addition and multiplication func-

tions, as well as an equality predicate:

(𝑂, 𝑆_, _ ⊕ _, _ ⊗ _ ; _ ≡ _)
The addition of an equality symbol might seem puzzling at

first glance, since equality is actually second-order definable

via the Leibniz characterisation 𝑥 = 𝑦 ∼ ¤∀𝑃 . 𝑃 (𝑥) ¤→ 𝑃 (𝑦).
We settled on the more uncommon symbol approach to stay

in closer correspondence to first-order Peano arithmetic and

allow for easier arguments in the FOL-fragment later on.

PA2 is finite and contains the following formulas:

⊕-zero : ¤∀𝑥 .𝑂 ⊕ 𝑥 ≡ 𝑥 ⊕-rec : ¤∀𝑥𝑦. (𝑆𝑥) ⊕ 𝑦 ≡ 𝑆 (𝑥 ⊕ 𝑦)
⊗-zero : ¤∀𝑥 .𝑂 ⊗ 𝑥 ≡ 𝑂 ⊗-rec : ¤∀𝑥𝑦. (𝑆𝑥) ⊗ 𝑦 ≡ 𝑦 ⊕ 𝑥 ⊗ 𝑦
𝑂-succ : ¤∀𝑥 .𝑂 ≡ 𝑆𝑥 ¤→ ¤⊥ 𝑆-inj : ¤∀𝑥𝑦. 𝑆𝑥 ≡ 𝑆𝑦 ¤→ 𝑥 ≡ 𝑦
≡-refl : ¤∀𝑥 . 𝑥 ≡ 𝑥 ≡-sym :

¤∀𝑥𝑦. 𝑥 ≡ 𝑦 ¤→ 𝑦 ≡ 𝑥

Ind2 : ¤∀𝑃 . 𝑃 (𝑂) ¤→ (¤∀𝑥 . 𝑃 (𝑥) ¤→ 𝑃 (𝑆𝑥)) ¤→ ¤∀𝑥 . 𝑃 (𝑥)
Instead of ≡-refl and ≡-sym, one could also axiomatise ≡

via the Leibniz characterisation mentioned above. But inter-

estingly, the first-order properties reflexivity and symmetry

already suffice, with neither transitivity, nor congruence ax-

ioms for 𝑆 , ⊕, and ⊗ being necessary, because of the strong

Ind2 axiom:

Fact 4.1 (Equality). LetM be a model of PA2 with domain 𝐷

and interpretation I. Then 𝑥 ≡I 𝑦 iff 𝑥 = 𝑦 for all 𝑥,𝑦 : 𝐷 .

Proof. By induction on 𝑥 and case analysis on 𝑦 using the

Ind2 axiom. The different cases follow with 𝑂-succ, 𝑆-inj,
≡-refl and ≡-sym. □

Note that this fact immediately implies the usual transi-

tivity and congruence axioms.

In first-order Peano arithmetic (PA1) the induction axiom

is usually replaced by an axiom scheme:

Ind𝜑 : 𝜑 [𝑂] ¤→ (¤∀𝑥 . 𝜑 [𝑥] ¤→ 𝜑 [𝑆𝑥]) ¤→ ¤∀𝑥 . 𝜑 [𝑥]

Thus, PA1 only allows to induce on first-order definable prop-

erties, which is of course weaker than the induction principle

obtained in PA2. For example, Fact 4.1 cannot be established

for PA1.
2

The natural choice for the standard model of PA2 is the

type N of natural numbers:

Fact 4.2 (Standard Model). The standard model of PA2 con-

sists of the domain N and interprets the signature with the

usual operations on N. We also denote this model by N.

4.1 Categoricity
The categoricity of PA2 is originally due to Dedekind [7], but

we follow the more contemporary proof by Shapiro [33]. We

fix two modelsM1 andM2 of PA2 and write 𝐷1 and 𝐷2 for

the domains, as well as I1 and I2 for the interpretations.
Next, we construct an isomorphism betweenM1 andM2.

There is not much hope for being able to define this isomor-

phism as a computable function 𝐷1 → 𝐷2. The only means

of determining the structure of 𝑥 : 𝐷1 is via the induction

axiom which is inherently propositional and cannot be used

to compute a corresponding 𝑦 : 𝐷2. Thus, we need to give

the isomorphism as a relation 𝐷1 → 𝐷2 → P:

Definition 4.3. We define the relation � : 𝐷1 → 𝐷2 → P
inductively by𝑂I1 � 𝑂I2 and 𝑆I1 𝑥 � 𝑆I2 𝑦 if 𝑥 � 𝑦. We also

extend � to vectors, functions, predicates and environments in

the pointwise way.

Fact 4.4. � is an isomorphism, i.e. it is total, surjective, func-

tional, injective, and a congruence relation. Totality and sur-

jectivity also extended to vectors and predicates.

Proof. All properties follow by induction using the Ind2 ax-
iom. The congruence properties use the axioms for ⊕ and ⊗,
as well as Fact 4.1. □

This shows that PA2 is indeed categorical. As a direct

consequence, satisfiability of formulas agrees in both models:

Lemma 4.5 (Agreement). Let 𝜌1 and 𝜌2 be environments

with 𝜌1 � 𝜌2. ThenM1, 𝜌1 ⊨ 𝜑 iff M2, 𝜌2 ⊨ 𝜑 for all 𝜑 : 𝔉2.

Proof. By induction on 𝜑 with 𝜌1 and 𝜌2 generalised. In the

case of atomic formulas, we verify ⟦𝑡⟧M1

𝜌1 � ⟦𝑡⟧
M2

𝜌2 for all

𝑡 : 𝔗 by induction using the congruence properties of �.
For first-order quantifiers, we use totality and surjectivity to

obtain 𝑑2 : 𝐷2 from 𝑑1 : 𝐷1 with 𝑑1 � 𝑑2 and vice versa, and

use the inductive hypothesis with 𝑑1 · 𝜌1 � 𝑑2 · 𝜌2. Second-
order quantifiers are handled in the same way. □

Finally, we remark that � becomes computational if a

recursion principle is available for the domains:

2
Consider the intensional model N × B with (𝑛1, _) ≡I (𝑛2, _) := 𝑛1 = 𝑛2,

which satisfies the axioms of PA1 but violates Ind2.

https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.PA.html#eq_sem
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.PA.html#Standard_Model
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.PA.html#F
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.PA.html#Iso_vec
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.PA.html#Iso_func
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.PA.html#Iso_pred
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.PA.html#Iso_env
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.PA.html#Isomorphism
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.PA.html#F_total
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.PA.html#F_surjective
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.PA.html#F_functional
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.PA.html#F_functional
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.PA.html#F_injective
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.PA.html#F_add
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.PA.html#v1_to_v2_ex
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.PA.html#P1_to_P2
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.PA.html#sat_iff_funcfree
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.PA.html#F_term_funcfree

CPP ’22, January 17–18, 2022, Philadelphia, PA, USA Mark Koch and Dominik Kirst

Fact 4.6. If 𝐷1 satisfies the computational recursion principle

∀𝑃 : 𝐷1 → T. 𝑃 𝑂I1 → (∀𝑥 . 𝑃 𝑥 → 𝑃 (𝑆I1 𝑥)) → ∀𝑥 . 𝑃 𝑥
we have ∀𝑥 . Σ𝑦. 𝑥 � 𝑦. The same holds symmetrically for 𝐷2.

4.2 Consequences of Categoricity
Since all models of PA2 are isomorphic to the standard model

N, the upward Löwenheim-Skolem theorem fails for SOL:

Fact 4.7 (Failure of Löwenheim-Skolem). There is a count-
able second-order theory with only countably infinite models.

Proof. PA2 is finite and thus countable. LetM be a model of

PA2 with domain 𝐷 . 𝐷 is in bijection with N via � (Fact 4.4)

and therefore countably infinite. □

Similarly, the downwards Löwenheim-Skolem theorem

can be refuted by showing the categoricity of second-order

real analysis [33] or set theory
3
[44]. Thus, SOL is expressive

enough to distinguish different infinite cardinalities. Fur-

thermore, the categoricity result can be used to refute yet

another of the main properties of FOL:

Fact 4.8 (Failure of Compactness). There is a second-order
theory whose finite subsets all have a model, but the theory

itself does not.

Proof. Consider the infinite theory

T≠ := PA2, x0 ≠ 𝑂, x0 ≠ 𝑆 𝑂, x0 ≠ 𝑆 (𝑆 𝑂), ...
Every finite subset Γ ⊆ T≠ has a model. Take for example

the standard model N and choose a number for x0 that is
not ruled out by the constraints in Γ. However, suppose that
T≠ itself also has a model. By categoricity this model would

be isomorphic to the standard model N. But N cannot be a

model of T≠ since there is no numeral to assign to x0. Thus,
T≠ cannot have a model. □

We can use the proof above to show another major point

of disagreement between FOL and SOL. There is no sound

deduction system ⊢ : L(𝔉2) → 𝔉2 → P that is strongly com-

plete when lifted to theories as described in Definition 3.7.

The argument is surprisingly simple (see for example [36]):

Theorem 4.9 (Failure of Strong Completeness). Every sound

second-order deduction system ⊢ : L(𝔉2) → 𝔉2 → P is not
strongly complete (i.e. T ⊨ 𝜑 does not imply T ⊢ 𝜑 in general).

In fact, strong completeness already fails for decidable T .
Proof. Let ⊢ be sound and strongly complete. In the proof

of Fact 4.8 we showed that T≠ does not have a model. Thus,

T≠ ⊨ ¤⊥ and by strong completeness T≠ ⊢ ¤⊥. Hence, there is
a finite context Γ ⊆ T≠ with Γ ⊢ ¤⊥. This contradicts the fact
that every finite Γ ⊆ T≠ has a model (cf. proof of Fact 4.8).

Moreover, observe that T≠ is decidable. Therefore, strong

completeness for decidable theories already suffices to arrive

at the contradiction, emphasising that we do not exploit the

computational power of the theories. □

3
Second-order ZF is categorical for equipotent models.

Remarkably, no computability properties like enumerabil-

ity of the proof system are required to rule out strong com-

pleteness. The only assumption we have is that the system

is sound and that it is naturally lifted to theories.

Corollary 4.10 (Incompleteness of ⊢).
1. ⊢𝑖 is not strongly complete.

2. ⊢𝑐 is not strongly complete under LEM.

Proof. Follows by Theorem 4.9 since ⊢ is sound. Recall that
classical soundness requires LEM. □

However, the proof above does not rule out (weak) com-

pleteness. For example, the “system” Γ ⊢ 𝜑 := Γ ⊨ 𝜑 is

sound and weakly complete, but not strongly complete by

Theorem 4.9. It suffices to require enumerability of deduc-

tion systems in order to rule out the one above and show

that no complete system can exist. Establishing this stronger

incompleteness result requires a more intricate argument

involving computability and Gödel’s first incompleteness

theorem, which is investigated in the next section.

5 Undecidability and Incompleteness
In this section we derive the undecidability of PA2 and SOL

by reduction from Diophantine equations. By the same re-

duction, we also establish the incompleteness of SOL in a

more general way than already recorded in Theorem 4.9.

5.1 Reduction from Diophantine Equations
Hilbert’s tenth problem (H10) is about deciding whether Dio-

phantine equations 𝑠 = 𝑡 (where 𝑠 and 𝑡 are polynomials with

natural coefficients) have a solution in the natural numbers.

This problem is undecidable [28] which was mechanised by

reduction from the halting problem for Turing machines as

part of the Coq Library of Undecidability Proofs [10, 26].

Definition 5.1 (Diophantine Equations). Polynomials con-

sist of constants, variables, addition and multiplication:

𝑠, 𝑡 : poly ::= num 𝑛 | var 𝑥 | add 𝑠 𝑡 | mul 𝑠 𝑡 (𝑛, 𝑥 : N)
Evaluation ⟨⟨𝑠⟩⟩𝛼 of polynomials under a variable assignment

𝛼 : N→ N is defined by

⟨⟨num 𝑛⟩⟩𝛼 := 𝑛

⟨⟨var 𝑥⟩⟩𝛼 := 𝛼 𝑥

⟨⟨add 𝑠 𝑡⟩⟩𝛼 := ⟨⟨𝑠⟩⟩𝛼 + ⟨⟨𝑡⟩⟩𝛼
⟨⟨mul 𝑠 𝑡⟩⟩𝛼 := ⟨⟨𝑠⟩⟩𝛼 · ⟨⟨𝑡⟩⟩𝛼

A Diophantine equation 𝑠 = 𝑡 has a solution, written H10 (𝑠, 𝑡),
if there is an assignment 𝛼 such that ⟨⟨𝑠⟩⟩𝛼 = ⟨⟨𝑡⟩⟩𝛼 .

H10 is well suited to reduce into PA2 since the solvability

condition can easily be expressed as an arithmetic formula.

We start with encoding polynomials as terms by defining a

translation function 𝜂, following Kirst and Hermes [20]:

Definition 5.2. We define 𝜂 : poly→ 𝔗(ΣPA) by
𝜂 (num 𝑛) := 𝑛

𝜂 (var 𝑖) := x𝑖

𝜂 (add 𝑠 𝑡) := 𝜂 𝑠 ⊕ 𝜂 𝑡
𝜂 (mul 𝑠 𝑡) := 𝜂 𝑠 ⊗ 𝜂 𝑡

https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.PA.html#F_total_comp
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.PA.html#Upwards_Loewenheim_Skolem_Failure
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.PA.html#Compactness_Failure
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.PA.html#InfinitaryIncompleteness
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Deduction.html#InfinitarilyIncompleteI
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Deduction.html#InfinitarilyIncompleteC
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Incompleteness.html#polynomial
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Incompleteness.html#encode_polynomial

Undecidability, Incompleteness, and Completeness of SOL in Coq CPP ’22, January 17–18, 2022, Philadelphia, PA, USA

with 0 = 𝑂 and 𝑛 + 1 = 𝑆 𝑛.

A Diophantine equation can now be encoded by binding

all variables with existential quantifiers:

Definition 5.3. We define 𝜑𝑠,𝑡 := ∃ 𝜂 𝑠 ≡ 𝜂 𝑡 where ∃ adds
existential quantifiers to the formula until all variables are

bound, thus closing the formula.

The following fact fully characterises the behaviour of the

existential closure operation ∃:
Fact 5.4. Let M be a model and 𝜑 a formula whose free

variables are all first-order. ThenM ⊨ ∃𝜑 iff there is an envi-

ronment 𝜌 withM, 𝜌 ⊨ 𝜑 .

Proof. We only discuss the general intuition for the proof.

Let 𝑛 be the number of quantifiers required to close 𝜑 .

→ IfM ⊨ ∃𝜑 , then in particularM, 𝜌 ⊨ ∃𝜑 for some 𝜌

(e.g. 𝜌 = (𝜆𝑥.𝑂I, 𝜆𝑥𝑛𝒗 .⊤)). Hence, there exist𝑑1, ..., 𝑑𝑛
such thatM, 𝑑1 · ... · 𝑑𝑛 · 𝜌 ⊨ 𝜑 .

← If there is 𝜌 withM, 𝜌 ⊨ 𝜑 , then the existential quan-

tifiers can be satisfied by 𝜌i 0, ..., 𝜌i (𝑛 − 1) and the

remaining environment is 𝜌 ′ = (𝜆𝑥 . 𝜌i (𝑥 + 𝑛), 𝜌p),
such that M, 𝜌 ′ ⊨ ¤∃𝑛𝜑 . Since ∃𝜑 is closed, we can

switch to any other environment and haveM ⊨ ∃𝜑 . □

H10 reduces to validity in the standard model:

Lemma 5.5. Let 𝑠 be a polynomial, 𝛼 an assignment and 𝜌p

a predicate environment. Then ⟦𝜂 𝑠⟧N(𝛼,𝜌p) = ⟨⟨𝑠⟩⟩𝛼 .

Lemma 5.6 (Undecidability of N). H10 (𝑠, 𝑡) iff N ⊨ 𝜑𝑠,𝑡 .
Proof. We show both directions separately:

→ Let 𝛼 be a solution to 𝑠 = 𝑡 . By Fact 5.4 it suffices to

give an environment 𝜌 with N, 𝜌 ⊨ 𝜂 𝑠 ≡ 𝜂 𝑡 which

reduces to ⟦𝜂 𝑠⟧N𝜌 = ⟦𝜂 𝑡⟧N𝜌 . By Lemma 5.5 this holds

for the environment (𝛼, 𝜌p) for arbitrary 𝜌p.

← If N ⊨ 𝜑𝑠,𝑡 , we have 𝜌 with N, 𝜌 ⊨ 𝜂 𝑠 ≡ 𝜂 𝑡 by Fact 5.4.

Thus, 𝜌i is a solution to 𝑠 = 𝑡 by Lemma 5.5. □

Because of categoricity, we can replaceNwith any abstract

model of PA2:

Corollary 5.7. LetM ⊨ PA2. Then H10 (𝑠, 𝑡) iff M ⊨ 𝜑𝑠,𝑡 .
Proof. By Lemma 5.6, Lemma 4.5, and the fact that 𝜑𝑠,𝑡 is

closed. □

This yields undecidability of PA2 as follows:

Corollary 5.8 (Undecidability of PA2).
1. H10 (𝑠, 𝑡) iff 𝜑𝑠,𝑡 is valid in PA2.

2. H10 (𝑠, 𝑡) iff 𝜑𝑠,𝑡 is satisfiable in PA2.

More precisely, those problems are also not enumerable:

Corollary 5.9 (Non-Enumerability of PA2).
1. Enumerability of validity inPA2 implies co-enumerability

of H10 .

2. Enumerability of satisfiability in PA2 implies co-enumer-

ability of H10.

Proof. We only discuss (1): Co-enumerability of H10 is equiv-

alent to enumerability of 𝜆𝑠𝑡 .¬(PA2 ⊨ 𝜑𝑠,𝑡) by Corollary 5.8.

By categoricity, this is in turn equivalent to enumerability

of 𝜆𝑠𝑡 . PA2 ⊨ ¤¬𝜑𝑠,𝑡 which follows from the assumption. □

Since H10 ≼ Halt [26, 28] and the fact that the halting

problem is not co-enumerable it follows that validity and

satisfiability in PA2 are not enumerable. Alternatively, one

can assumeMP to show that enumerablity of those problems

would imply decidability of the halting problem via Post’s

theorem (Fact 2.5) since H10 is enumerable.

5.2 Incompleteness
The results from the previous section directly yield incom-

pleteness of SOL, because if SOL were complete (i.e. Γ ⊨ 𝜙
would imply Γ ⊢ 𝜙), then we could enumerate all closed

formulas that are valid in PA2:

Lemma 5.10. A sound, complete, and enumerable second-

order deduction system for the signature ΣPA enumerates all

valid formulas in PA2.

Thus, SOL cannot be complete:

Theorem 5.11 (Incompleteness). The existence of a sound,
complete, and enumerable deduction system in ΣPA implies

bi-enumerability of H10.

Proof. Immediate by Corollary 5.9 and Lemma 5.10. □

Corollary 5.12 (Incompleteness of ⊢).
1. Completeness of ⊢𝑖 implies co-enumerability of H10.

2. Completeness of ⊢𝑐 implies co-enumerability of H10

under LEM.

Proof. Follows from Theorem 5.11 since ⊢ is sound and enu-

merable. Soundness for ⊢𝑐 requires LEM. □

5.3 Extension to Arbitrary Signatures
The previous results can be extended to arbitrary signatures

since SOL allows us to encode finite signatures and axioma-

tisations into formulas themselves. Function quantifiers are

very useful for this task as they can directly embed the func-

tion symbols from the signature. A formal introduction of the

function quantifier fragment𝔉𝐹
2
is contained in Appendix A.

Lemma5.13 (Signature Embedding in𝔉𝐹
2
). Let𝜑 : 𝔉𝐹

2
(ΣPA2

)
be a formula and Σ′ an arbitrary signature. Then there is a

formula 𝜑 ′ : 𝔉𝐹
2
(Σ′) and theory PA′

2
in Σ′ such that

1. 𝜑 is valid in PA2 iff ⊨ ¤∀ 𝑓𝑂 𝑓𝑆 𝑓⊕ 𝑓⊗ . ¤∀𝑃≡ . PA′2 ¤→ 𝜑 ′,
2. 𝜑 is satisfiable in PA2 iff

¤∃ 𝑓𝑂 𝑓𝑆 𝑓⊕ 𝑓⊗ . ¤∃ 𝑃≡ . PA′2 ¤∧ 𝜑 ′
is satisfiable.

Proof. We obtain 𝜑 ′ and PA′
2
by replacing function and pred-

icate symbols with variables referencing the corresponding

https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Incompleteness.html#encode_problem
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Incompleteness.html#exists_n_sat
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Incompleteness.html#eval_encoding
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Incompleteness.html#H10_to_PA_standard_model_sat
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Incompleteness.html#H10_to_PA_model_sat
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Incompleteness.html#H10_to_PA_validity
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Incompleteness.html#H10_to_PA_satisfiability
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Incompleteness.html#PA_validity_not_enumerable
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Incompleteness.html#PA_satisfiability_not_enumerable
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Incompleteness.html#PA_validity_not_enumerable'
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Incompleteness.html#validity_enumerable_PA
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Incompleteness.html#Incompleteness_PA
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Deduction.html#IncompleteI
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Deduction.html#IncompleteC
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.PA.html#PA_model_valid_iff_model_valid
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.PA.html#PA_model_sat_iff_model_sat

CPP ’22, January 17–18, 2022, Philadelphia, PA, USA Mark Koch and Dominik Kirst

quantifier at the beginning. We only discuss (1), as (2) is

proven in a similar way.

→ We have to showM ′, 𝑓𝑂 · 𝑓𝑆 · 𝑓⊕ · 𝑓⊗ ·𝑃≡ ·𝜌 ⊨ PA′2 ¤→𝜑 ′ for
allM ′, 𝑓𝑂 , 𝑓𝑆 , 𝑓⊕ , 𝑓⊗ , 𝑃≡, and 𝜌 . We construct a model

M of PA2 by using the domain ofM ′ and interpreting
𝑂 using 𝑓𝑂 , 𝑆 using 𝑓𝑆 , and so on. We haveM ′, 𝑓𝑂 · 𝑓𝑆 ·
𝑓⊕ · 𝑓⊗ · 𝑃≡ · 𝜌 ⊨ 𝜑 ′ since 𝜑 is valid in every model of

PA2.

← We get a modelM of PA2 and construct a modelM ′
in Σ′ by choosing an arbitrary interpretation. Then,

we instantiate 𝑓𝑂 , 𝑓𝑆 , etc. in the assumption with the

symbol interpretations ofM, yieldingM ′,𝑂I · 𝑆I ·
⊕I · ⊗I · ≡I · 𝜌 ⊨ PA′

2
¤→ 𝜑 ′. This suffices, since the

interpretations satisfy PA2. □

Hence, we get undecidability, non-enumerability, and in-

completeness of SOL in particular in the empty signature:

Corollary 5.14 (Undecidability of SOL).
1. 𝑠 = 𝑡 has a solution iff

¤∀ 𝑓𝑂 𝑓𝑆 𝑓⊕ 𝑓⊗ . ¤∀𝑃≡ . PA′2 ¤→𝜑 ′𝑠,𝑡 is
valid in the empty signature.

2. 𝑠 = 𝑡 has a solution iff
¤∃ 𝑓𝑂 𝑓𝑆 𝑓⊕ 𝑓⊗ . ¤∃ 𝑃≡ . PA′2 ¤∧ 𝜑 ′𝑠,𝑡 is

satisfiable in the empty signature.

Corollary 5.15 (Non-Enumerability of SOL).
1. Enumerability of validity in the empty signature implies

bi-enumerability of H10.

2. Enumerability of satisfiability in the empty signature

implies bi-enumerability of H10.

Corollary 5.16 (Incompleteness). The existence of a sound,
weakly complete, and enumerable deduction system for𝔉𝐹

2
in

the empty signature implies co-enumerability of H10.

6 Henkin Semantics
In 1950, Henkin introduced an alternative semantics for SOL

and simple type theory with the aim of recovering complete-

ness [15]. In Henkin semantics, second-order quantifiers no

longer range over all predicates of a given domain, but only

over some subset U of them that is provided by the model.

This predicate universe U should at least contain all second-

order definable properties, so that the comprehension rule

of the ND-system is sound.

Definition 6.1 (Henkin Semantics). A Henkin model H
consists of a domain 𝐷 : T, an interpretation function I
for function and predicate symbols and a family of relations

U𝑛 : (𝐷𝑛 → P) → P for each 𝑛 : N. The predicate interpre-
tations should be included in U, in other words U𝑛 PI𝑛 for all

𝑛-ary predicate symbols P𝑛 : ΣP .
The model must satisfy H ⊨𝐻 Compr𝑛𝜑 for all 𝜑 and 𝑛,

where ⊨𝐻 is defined by

𝜌 ⊨𝐻 ¤∀𝑛p 𝜑 := ∀𝑃 : 𝐷𝑛 → P.U𝑛 𝑃 → 𝑃 · 𝜌 ⊨𝐻 𝜑

𝜌 ⊨𝐻 ∃𝑛p 𝜑 := ∃𝑃 : 𝐷𝑛 → P.U𝑛 𝑃 ∧ 𝑃 · 𝜌 ⊨𝐻 𝜑

The remaining cases are defined in the same way as for stan-

dard semantics. We say a formula 𝜑 is valid in H , written

H ⊨𝐻 𝜑 , if H , 𝜌 ⊨𝐻 𝜑 for all environments 𝜌 with U𝑛 (𝜌𝑛p 𝑥)
for all 𝑥, 𝑛 : N. Those environments are called Henkin environ-

ments.

In the remainder of this paper we will mostly work with

Henkin semantics. Therefore, we write ⊨ instead of ⊨𝐻 if it

is clear from the context that we are in the Henkin setting.

Henkin semantics agree with the standard semantics if

U𝑛 𝑃 for all 𝑃 : 𝐷𝑛 → P:4

Fact 6.2. LetM be a model in standard semantics. Then we

can also interpret 𝑀 as a Henkin model with U𝑛 𝑃 := ⊤. It
holds thatM, 𝜌 ⊨ 𝜑 iff M, 𝜌 ⊨𝐻 𝜑 for all 𝜌 and 𝜑 .

Therefore, we have T ⊨𝐻 𝜑 → T ⊨ 𝜑 . The converse does
not hold, since there are many more Henkin models than

there are models for standard semantics.

Finally, we remark that the ND-system is also sound for

Henkin semantics:

Theorem 6.3 (Soundness for Henkin Semantics). Let𝑇 be a

theory and 𝜑 a formula. Then:

1. T ⊢𝑖 𝜑 → T ⊨𝐻 𝜑

2. T ⊢𝑐 𝜑 → T ⊨𝐻 𝜑 iff LEM

Proof. Analogous to the proof of Theorem 3.11. The com-

prehension axiom is sound since every Henkin model H
satisfiesH ⊨ Compr𝑛𝜑 by definition. □

7 Translation to First-Order Logic
While the usual Henkin-style completeness proof used for

FOL can also be adapted to second-order Henkin seman-

tics [33], we follow a different strategy in this paper to obtain

completeness. Interestingly, the switch to Henkin semantics

not only yields completeness, but also brings many of the

other (in)famous properties of FOL like compactness or the

Löwenheim-Skolem theorems with it [33]. SOL interpreted

in Henkin semantics actually reduces to FOL [27, 29, 39],

meaning that given a second-order formula 𝜑 , one can con-

struct a first-order formula 𝜑★
, that preserves validity and

provability. In particular, this allows us to transport com-

pleteness from FOL to SOL:

T ⊨2 𝜑

T★ ⊨1 𝜑
★ T★ ⊢1 𝜑★

T ⊢2 𝜑
(a)

FOL Completeness

(b)

The Completeness theorem for FOL is a well-known re-

sult due to Gödel [11] and has already been mechanised in

Coq [9]. To keep the formalisation compact, we factor out

this dependency and only verify that completeness of FOL

implies completeness of SOL using properties (a) and (b).

4
Comprehension is trivially satisfied by such a model.

https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Incompleteness.html#H10_to_PA_validity
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Incompleteness.html#H10_to_PA_satisfiability
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Incompleteness.html#validity_not_enumerable
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Incompleteness.html#satisfiability_not_enumerable
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Incompleteness.html#Incompleteness
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Henkin.html#sat
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Henkin.html#sat_full_henkin
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Deduction.html#HenkinSoundnessIT
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Deduction.html#HenkinSoundnessCT

Undecidability, Incompleteness, and Completeness of SOL in Coq CPP ’22, January 17–18, 2022, Philadelphia, PA, USA

We call (a) semantic reduction (Theorem 7.17) and (b) de-

ductive reduction (Theorem 7.31). Note, that we write ⊢2 and
⊨2 for the classical second-order natural deduction system

and Henkin validity to make the distinction between first-

and second-order derivations and the different semantics

clearer.

It is easy to see that Henkin semantics collapses SOL to

many-sorted FOL [27], where quantifiers can range over

different sorts unlike the mono-sorted case. For example, the

second-order formula

𝜑 := ¤∀𝑃 . ¤∃𝑄. ¤∀𝑥 . 𝑃 (𝑥) ¤↔ ¤¬𝑄 (𝑥)
corresponds to many-sorted first-order formula

𝜑★
:= ¤∀𝑝P1 . ¤∃𝑞P1 . ¤∀𝑥I .App

1
(𝑝, 𝑥) ¤↔ ¤¬App

1
(𝑞, 𝑥)

with sorts I for individuals and P1 for unary predicates

where the custom symbol App
1
replaces the unary predicate

application.

However, we want to focus on the mono-sorted case in

this paper since it is the more common formalism and also

compatible with the FOL development in the Coq Library of

Undecidability Proofs [10]. A common approach, for example

taken by Van Dalen [39], simulates the sorts by guarding the

quantifiers with custom predicates:

𝜑★
:= ¤∀𝑝. isPred1 (𝑝) ¤→ ¤∃𝑞. isPred1 (𝑞) ¤∧ ¤∀𝑥 . isIndi(𝑥)

¤→(App
1
(𝑝, 𝑥) ¤↔ ¤¬App

1
(𝑞, 𝑥))

While proving the semantic reduction property for this trans-

lation is straightforward, showing the deductive part is chal-

lenging. Van Dalen mentions that there is a “tedious but

routine proof” [39], but he only gives a very brief sketch.

Nour and Raffalli investigated this claim and “were not able

to end his proof” [29]. They point out the problem, that this

translation is not surjective, meaning that the formulas oc-

curring in a proof of 𝜑★
do not necessarily have the shape

𝜓★
. Thus, it is not obvious how to translate such a proof in

the first-order system to the second-order one (at least we

are not aware of any proposed solution to this problem and

also were not able to come up with one on our own).

Instead, Nour and Raffalli suggest a slightly simpler reduc-

tion that avoids this issue by staying closer to the original

structure of the second-order formula [29]:

𝜑★
:= ¤∀𝑝. ¤∃𝑞. ¤∀𝑥 . (App

1
(𝑝, 𝑥) ¤↔ ¤¬App

1
(𝑞, 𝑥))

They get rid of the sorts entirely and have 𝑝 and 𝑞 repre-

sent individuals and predicates of all all arities at the same

time. The semantics of the App symbol then interprets them

differently based on their position in the arguments.

7.1 Translation Function
We first fix a discrete and enumerable signature Σ in which

we will work for the remainder of this section. As illustrated

in the previous examples, the translation requires us to re-

place applications of predicate variables with corresponding

first-order primitives. Therefore, we extend the signature

with custom symbols that represent this operation:

Definition 7.1 (Extended Signature). The extended signature

Σ+ of Σ is obtained by adding (𝑛 + 1)-ary predicate symbols

App𝑛 for all 𝑛 : N, representing the application of 𝑛-ary predi-

cate variables.

To implement the translation in the de Bruijn encoding,

we need to map the independent scopes for individual and

predicate variables of different arities into the single variable

space provided by mono-sorted FOL. We use functions

𝜋i : N→ N 𝜋p : N→ N→ N
to keep track of which first-order de Bruijn index a given

second-order variable corresponds to. An individual variable

x𝑖 gets turned into the first-order variable 𝜋i 𝑖 and a predicate
variable p𝑛𝑖 gets turned into 𝜋p 𝑖 𝑛.

We carry those functions throughout the whole transla-

tion process and update them on each quantifier. For example,

when turning an individual quantifier into a first-order one,

the individual variable 0 should still bind to this quantifier,

while all other variables need to be shifted to accommodate

the new variable. We write this transformation as ↑i 𝜋 and

analogously ↑𝑛p 𝜋 for predicate quantifiers:

Definition 7.2. The ↑i 𝜋 and ↑𝑛p 𝜋 operations are defined by

(↑i 𝜋i) 0 := 0

(↑i 𝜋i) (𝑥 + 1) := (𝜋i 𝑥) + 1
(↑i 𝜋p) 𝑥 𝑛 := 𝑥 + 1

(↑𝑛p 𝜋i) 𝑥 := 𝑥 + 1
(↑𝑛p 𝜋p) 0𝑛 := 0

(↑𝑛p 𝜋p) (𝑥 + 1) 𝑛 := (𝜋p 𝑥 𝑛) + 1
(↑𝑛p 𝜋p) 𝑥 𝑚 :=𝑚, if𝑚 ≠ 𝑛

This allows us to define the translation function:

Definition 7.3 (Translation). The translation function _
★
𝜋 :

𝔉2 (Σ) → 𝔉1 (Σ+) and _★𝜋 : 𝔗(Σ) → 𝔉(Σ+) is defined by:
(x𝑖)★𝜋 := 𝑥𝜋i 𝑖

(F 𝒕)★𝜋 := F 𝒕★𝜋

(P 𝒕)★𝜋 := P 𝒕★𝜋

(p𝑛𝑖 𝒕)
★
𝜋 := App𝑛 (𝑥𝜋p 𝑖 𝑛 :: 𝒕★𝜋)

⊥★𝜋 := ⊥
(𝜑 ¤□𝜓)★𝜋 := 𝜑★𝜋 ¤□𝜓★

𝜋

(¤∇𝜑)★𝜋 := ¤∇𝜑★↑i𝜋
(¤∇𝑛p 𝜑)★𝜋 := ¤∇𝜑★↑𝑛p𝜋

Initially, each free individual and predicate variable should

be mapped to a unique first-order variable:

Definition 7.4. We define the variable translation functions

𝜋0

i 𝑥 := ⟨0, 𝑥⟩ and 𝜋0

p 𝑥 𝑛 := ⟨1, ⟨𝑥, 𝑛⟩⟩ and write 𝜑★
for 𝜑★

𝜋0
.

7.2 Semantic Reduction
We begin by verifying the semantic part of the reduction.

That is, we need to translate first-order models M into

Henkin modelsM⋄ that preserve validity in relation to _
★
.

However, we extend Nour and Raffalli’s approach and also

verify the converse direction, allowing us to transport fur-

ther meta-logical properties besides completeness. We begin

with this latter direction, translating Henkin modelsH into

first-order modelsH★
.

https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Henkin2FOL.html#FOLPreds
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Henkin2FOL.html#pcons
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Henkin2FOL.html#toFOLForm
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Henkin2FOL.html#toFOLForm'

CPP ’22, January 17–18, 2022, Philadelphia, PA, USA Mark Koch and Dominik Kirst

Let H be a Henkin model that consists of a domain 𝐷 ,

a predicate universe U and a symbol interpretation I. We

also assume that H is not empty, i.e. there is some 𝑑0 : 𝐷 .

By comprehension, we also get 𝑃𝑛
0
: 𝐷𝑛 → P with U𝑛 𝑃𝑛0 for

each 𝑛. Since first-order variables represent individuals and

predicates at the same time, the translated first-order domain

𝐷★
should contain both the individuals and the predicates

ofH :

Definition 7.5. We set 𝐷★
:= 𝐷 + Σ𝑛𝑃 .U𝑛 𝑃 and use injec-

tions fromIndi : 𝐷 → 𝐷★
and fromPred𝑛 : ∀𝑃 .U𝑛 𝑃 → 𝐷★

.

We just write fromPred𝑛 𝑃 if U𝑛 𝑃 is clear from the context.

We interpret every object in 𝐷★
as an individual and pred-

icate of every arity, using the dummy values 𝑑0 and 𝑃
𝑛
0
if the

types do not match up:

Definition 7.6. We define projections toIndi : 𝐷★→ 𝐷 and

toPred𝑛 : 𝐷★→ (𝐷𝑛 → P) by

toIndi (fromIndi𝑑) := 𝑑

toIndi (fromPred𝑛 _) := 𝑑0

toPred𝑛 (fromIndi _) := 𝑃𝑛
0

toPred𝑛 (fromPred𝑛 𝑃) := 𝑃

toPred𝑛 (fromPred𝑚 _) := 𝑃𝑛
0
, if 𝑛 ≠𝑚

Definition 7.7. The first-order interpretation I★ is given by

F I
★

𝒗 := fromIndi (F I (toIndi 𝒗))

PI
★

𝒗 := PI (toIndi 𝒗)

AppI
★

𝑛 (𝑑 :: 𝒗) := toPred𝑛 𝑑 (toIndi 𝒗)

The last step is to translate Henkin environments 𝜌 into

first-order environments 𝜌★. Here, we need to make sure

that 𝜌★ maps the free variables in a translated formula 𝜑★

to the same values as 𝜌 does in 𝜑 . Therefore, 𝜌★ needs to

reverse 𝜋0

i and 𝜋
0

p as defined in Definition 7.3:

Definition 7.8. Let 𝜌 be a Henkin environment. We set

𝜌★𝑛 :=

{
fromIndi (𝜌i 𝑥) if 𝑛 = ⟨0, 𝑥⟩
fromPred𝑚 (𝜌𝑚p 𝑥) if 𝑛 = ⟨𝑎 + 1, ⟨𝑥,𝑚⟩⟩

Fact 7.9. For all Henkin environments 𝜌 it holds that

1. ∀𝑥 . toIndi (𝜌★ (𝜋0

i 𝑥)) = 𝜌i 𝑥

2. ∀𝑥𝑛. toPred𝑛 (𝜌★ (𝜋0

p 𝑥 𝑛)) = 𝜌𝑛p 𝑥

Lemma 7.10 (Correctness ofH★
). Let 𝜌 be a Henkin envi-

ronment and 𝜑 : 𝔉2. ThenH , 𝜌 ⊨2 𝜑 iffH★, 𝜌★ ⊨1 𝜑
★
.

Proof. We show the stronger claim

∀𝜌1𝜌2𝜋. (∀𝑥 . toIndi (𝜌1 (𝜋i 𝑥)) = 𝜌2,i 𝑥)
→ (∀𝑥𝑛. toPred𝑛 (𝜌1 (𝜋p 𝑥 𝑛)) = 𝜌𝑛

2,p 𝑥)

→ (H , 𝜌2 ⊨2 𝜑 ↔H★, 𝜌1 ⊨1 𝜑
★
𝜋)

by induction on 𝜑 , which suffices according to Fact 7.9. In the

case of atomic formulas, we verify ⟦𝑡⟧H𝜌2 = toIndi ⟦𝑡★𝜋 ⟧H
★

𝜌1

for all 𝑡 : 𝔗 by induction on 𝑡 . For universal first-order

quantifiers we have to show

(∀𝑑 : 𝐷.H , 𝑑 · 𝜌2 ⊨2 𝜑) ↔ (∀𝑎 : 𝐷★.H★, 𝑎 · 𝜌1 ⊨1 𝜑★
↑i𝜋).

→ Let 𝑎 : 𝐷★
. If 𝑎 = fromIndi𝑑 , apply the IH with 𝑑 · 𝜌2.

The preconditions of the IH hold since ↑i 𝜋 matches

the updated environments (fromIndi𝑑) · 𝜌1 and 𝑑 · 𝜌2.
If 𝑎 = fromPred𝑛 𝑃 then use 𝑑0 · 𝜌2 instead.

← Let𝑑 : 𝐷 . Instantiate the assumptionwith (fromIndi𝑑),
yieldingH★, (fromIndi𝑑) · 𝜌1 ⊨1 𝜓★

↑i𝜋 which is equiv-

alent toH , 𝑑 · 𝜌2 ⊨2 𝜓 by the IH.

The remaining cases are trivial or handled similarly. □

For the second part of the semantic reduction, we have

to translate first-order modelsM into Henkin modelsM⋄.
LetM be a first-order model that consists of a domain 𝐷

and interpretation I. Since each object in 𝐷 represents an

individual, we set 𝐷⋄ := 𝐷 and I⋄ := I (excluding the

App symbol). The predicate universe U⋄ contains the set of
predicates induced by the interpretation of the App symbol:

Definition 7.11. U⋄𝑛 𝑃 := ∃𝑑 : 𝐷.∀𝒗 . 𝑃 𝒗 ↔ AppI𝑛 (𝑑 :: 𝒗).

Definition 7.12. Let 𝜌 be a first-order environment. We set

𝜌⋄i 𝑥 := 𝜌 (𝜋0

i 𝑥) (𝜌𝑛p)⋄ 𝑥 := 𝜆𝒗 .AppI𝑛 (𝜌 (𝜋0

p 𝑥 𝑛) :: 𝒗)

Fact 7.13. 𝜌⋄ is a well-formed Henkin environment, that is

U⋄𝑛 ((𝜌𝑛p)⋄ 𝑥) for all 𝑥 and 𝑛.

Lemma 7.14 (Correctness of M⋄). Let 𝜌 be a first-order

environment and 𝜑 : 𝔉2. ThenM, 𝜌 ⊨1 𝜑
★
iff M⋄, 𝜌⋄ ⊨2 𝜑 .

Proof. Similar to the proof of Lemma 7.10. □

However,M⋄ does not necessarily satisfy comprehension.

By the definition of U⋄, this depends on howM interprets

the App symbol. We introduce a special theory to enforce

comprehension:

Definition 7.15. Let C be the second-order theory containing

the formulas ∀Compr𝑛𝜑 for all 𝑛 : N and 𝜑 : 𝔉2, where the ∀
operation closes the formulas with universal quantifiers.

Fact 7.16. IfM, 𝜌1 ⊨1 C★ for some first-order environment

𝜌1, thenM⋄ satisfies comprehension, i.e.M⋄ ⊨2 Compr𝑛𝜑 for

all 𝑛 and 𝜑 .

Proof. We haveM⋄, 𝜌⋄
1
⊨2 ∀Compr𝑛𝜑 by Lemma 7.14. Given

an arbitrary Henkin environment 𝜌2, we can instantiate the

quantifiers with the first values from 𝜌2 and replace 𝜌⋄
1
with

the remaining part of 𝜌2, yieldingM⋄, 𝜌2 ⊨2 Compr𝑛𝜑 . □

Theorem 7.17 (Semantic Reduction). For all second-order
theories T and second-order formulas 𝜑 it holds that

T ⊨2 𝜑 ↔ (T , C)★ ⊨1 𝜑★.

Proof. The first direction follows from Lemma 7.14. The other

direction uses Lemma 7.10 and the fact thatH , 𝜌 ⊨2 C for all

Henkin modelsH by definition. The Henkin models are also

non-empty since we are given an environment, justifying the

existence of the dummy individuals used in Definition 7.7. □

https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Henkin2FOL.html#D1
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Henkin2FOL.html#toIndi
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Henkin2FOL.html#I1
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Henkin2FOL.html#toFOLEnv
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Henkin2FOL.html#toFOLEnv_correct_i
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Henkin2FOL.html#toFOLEnv_correct_p
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Henkin2FOL.html#toFOLForm_correct_2To1'
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Henkin2FOL.html#toFOLForm_correct_2To1
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Henkin2FOL.html#preds
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Henkin2FOL.html#toSOLEnv
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Henkin2FOL.html#toSOLEnv_henkin_env
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Henkin2FOL.html#toFOLForm_correct_1To2'
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Henkin2FOL.html#C
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.FullSyntax.html#close
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Henkin2FOL.html#constructed_henkin_model_comprehension
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Henkin2FOL.html#henkin_valid_iff_firstorder_valid

Undecidability, Incompleteness, and Completeness of SOL in Coq CPP ’22, January 17–18, 2022, Philadelphia, PA, USA

7.3 Deductive Reduction
Next, we verify the reduction on the deductive level. To ob-

tain completeness, it suffices to show that (T , C)★ ⊢1 𝜑★

impliesT ⊢2 𝜑 . Note that the converse direction easily fol-

lows from first-order completeness and the previous results:

Fact 7.18. Assuming that FOL is complete, T ⊢2 𝜑 implies

(T , C)★ ⊢1 𝜑★
under LEM.

Proof. We have T ⊨2 𝜑 by soundness using LEM, hence

(T , C)★ ⊨1 𝜑★
by Theorem 7.17, and finally (T , C)★ ⊢1 𝜑★

by first-order completeness. □

Proving the opposite direction is more challenging. Nour

and Raffalli define a backwards translation function _
⋄
:

𝔉1 (Σ+) → 𝔉2 (Σ) that turns arbitrary first-order formulas in

the extended signature back into second-order formulas of

the original signature, fulfilling:

1. Γ ⊢1 𝜑 → Γ⋄ ⊢2 𝜑⋄ 2. ⊢2 𝜑★⋄ ¤↔ 𝜑

Using (1) one can turn (T , C)★ ⊢1 𝜑★
into (T , C)★⋄ ⊢1 𝜑★⋄

which is equivalent to T , C ⊢2 𝜑 according to (2), yielding

T ⊢2 𝜑 as ⊢2 proves comprehension. This avoids a direct

induction on (T , C)★ ⊢1 𝜑★
where intermediate formulas

might not have the shape𝜓★
.

To motivate the definition of _
⋄
, consider the formula

𝜑 := ¤∀𝑥 .App
0
(𝑥) ¤∧ App

1
(𝑥, 𝑥)

where 𝑥 is used as an individual as well as a nullary and

unary predicate. We split the different usages of 𝑥 into an

individual variable 𝑥 and predicate variables 𝑋 0
and 𝑋 1

that

each get bound by their own quantifier, and replace the App
symbols with the actual second-order atomic formulas:

𝜑⋄ := ¤∀𝑥 . ¤∀𝑋 1𝑋 0. 𝑋 0 ¤∧ 𝑋 1 (𝑥)
Implementing this in the de Bruijn encoding is straightfor-

ward, since the variables 𝑋 0
, 𝑋 1

, and 𝑥 still correspond to

the index 0 as they live in their own scopes. In general,

App𝑛 (𝑥𝑖 :: 𝒕) is turned into p𝑛𝑖 𝒕 and x𝑖 stays the same, leav-

ing terms unchanged by the backwards translation.

To ease the mechanisation, we over-approximate the num-

ber of second-order quantifiers needed to bind the different

variables, which does not alter the meaning of the formula.

To this end, we introduce the notion of arity bounds:

Definition 7.19 (Arity Bounds). 𝑏 is a bound on the arities

occuring in 𝜑 , if all predicate variables in 𝜑 have a smaller

arity than 𝑏. We write |𝜑 | for the lowest arity bound on 𝜙 .

Definition 7.20 (Predicate Closing Operation). We define

¤∇<𝑛p 𝜑 recursively by
¤∇<0p 𝜑 := 𝜑 and

¤∇<𝑛+1p 𝜑 := ¤∇𝑛p ¤∇<𝑛p 𝜑.

Finally, one needs to handle the case that the first argu-

ment of App is not a variable, but a function application

F 𝒕 . Since this cannot be turned into a second-order vari-

able, it is treated as an error case. While Nour and Raffalli

directly return ¤⊥, we introduce a special falsity symbol ¤⊥𝑛
for every arity, which eases the mechanisation later on (see

Footnote 5).

Definition 7.21. The extended signature Σ⊥ is obtained by
adding 𝑛-ary predicate symbols ¤⊥𝑛 for each 𝑛 : N to Σ.

Definition 7.22 (Backwards Translation Function). The back-

wards translation function _
⋄
: 𝔉1 (Σ+) → 𝔉2 (Σ⊥) is recur-

sively defined by

⊥⋄ := ¤⊥
(App𝑛 (𝑥𝑖 :: 𝒕))⋄ := p𝑛𝑖 𝒕

(App𝑛 (F 𝒗 :: 𝑡))⋄ := ¤⊥𝑛 𝒕

(P 𝒕)⋄ := P 𝒕

(𝜑 ¤□𝜓)⋄ := 𝜑⋄ ¤□𝜓 ⋄

(¤∇𝜑)⋄ := ¤∇ ¤∇< |𝜑 |
⋄

p 𝜑⋄

Next, we verify property (1):

Theorem 7.23. Γ ⊢1 𝜑 implies Γ⋄ ⊢2 𝜑⋄ for all Γ and 𝜑 .

Proof. By induction on the first-order derivation Γ ⊢1 𝜑 . We

only discuss the cases of all-introduction and -elimination:

(AllI): We get the inductive hypothesis (Γ [↑])⋄ ⊢2 𝜑⋄ and
have to show Γ⋄ ⊢2 ¤∀< |𝜑

⋄ |
p

¤∀𝜑⋄. We introduce the quantifiers

with (AllI′) and (AllI′p) and have to show

Γ⋄ ⊢2 (𝜑⋄) [x𝑖] [p𝑖]< |𝜑
⋄ |

p

where𝜓 [p𝑖]<𝑛p is notation for𝜓 [p0𝑖]0p ... [p𝑛−1𝑖]𝑛−1p and 𝑖 is an

unused index. The shift in the IH can be written as (Γ [↑])⋄ =
(Γ⋄) [↑] [↑]p, where [↑]p shifts variables of every arity. We

“undo” the shift using (Subst), a variant of (Substp), and
the fact that (Γ⋄) [↑] [↑]p [x𝑖] [p𝑖]p = Γ⋄, yielding

Γ⋄ ⊢2 (𝜑⋄) [x𝑖] [p𝑖]p.
This suffices, since all variables in 𝜑⋄ have arities smaller

than |𝜑⋄ | and hence (𝜑⋄) [x𝑖] [p𝑖]p = (𝜑⋄) [x𝑖] [p𝑖]< |𝜑
⋄ |

p .

(AllE): In the case of all elimination we get the inductive

hypothesis Γ⋄ ⊢2 ¤∀< |𝜑
⋄ |

p
¤∀𝜑⋄ and have to show Γ⋄ ⊢2 (𝜑 [𝑡])⋄

for some 𝑡 : 𝔗. Our next steps depend on whether 𝑡 is a

variable or not:

• If 𝑡 = x𝑖 , we have (𝜑 [𝑡])⋄ = (𝜑⋄) [x𝑖] [p𝑖]p. Thus, we
conclude by using (AllE) and (AllEp) on the IH.

• If 𝑡 = F 𝒕 , then the error case is triggered whenever

the substitution occurs at the first argument of App.
Thus, we have (𝜑 [𝑡])⋄ = (𝜑⋄) [F 𝒕] [¤⊥]p.5 Thus, we
once again use (AllE) and (AllEp) on the IH.

Existential quantifiers are handled similarly and the remain-

ing cases are trivial. □

We remove the error symbols from Γ⋄ ⊢2 𝜑⋄ by replacing

them with ¤⊥ using comprehension:

5 [¤⊥]p refers to substituting the falsity symbol ¤⊥𝑛 from Definition 7.21 for

every arity. If we had set (App𝑛 (F 𝒗 :: 𝑡))⋄ := ¤⊥ like Nour and Raffalli,

we would need to use (Compr) to obtain predicates 𝑃0

⊥, ..., 𝑃
𝑛−1
⊥ that are

extensionally equivalent to ¤⊥ and verify that Γ⋄ ⊢2 (𝜑 [F 𝒕])⋄ is equivalent
to Γ⋄ ⊢2 (𝜑⋄) [F 𝒕] [𝑃0

⊥]0p ... [𝑃𝑛−1
⊥]𝑛−1p . Instead, we use the custom symbols

¤⊥𝑛 here and remove them later in an extra step, easing the mechanisation.

https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Henkin2FOL.html#first_order_prv_if_prv_C
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.SOL.html#arity_bounded_p
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.SOL.html#find_arity_bound_p
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Henkin2FOL.html#close_p
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Henkin2FOL.html#ExtendedPreds
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Henkin2FOL.html#toSOLForm
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Henkin2FOL.html#prv1_to_prv2

CPP ’22, January 17–18, 2022, Philadelphia, PA, USA Mark Koch and Dominik Kirst

Definition 7.24 (Falsity Symbol Removal). We recursively

define the function _
⊥
: 𝔉2 (Σ⊥) → 𝔉2 (Σ) by

¤⊥⊥ := ¤⊥
(¤⊥𝑛 𝒕)⊥ := ¤⊥
(P 𝒕)⊥ := P 𝒕

(𝜑 ¤□𝜓)⊥ := 𝜑⊥ ¤□𝜓⊥

(¤∇𝜑)⊥ := ¤∇𝜑⊥

(¤∇𝑛p 𝜑)⊥ := ¤∇𝑛p 𝜑⊥

Lemma7.25 (Falsity Symbol Derivations). For all𝜑 : 𝔉2 (Σ⊥)
and contexts Γ it holds that Γ ⊢2 𝜑 implies Γ⊥ ⊢2 𝜑⊥ .

Proof. By induction on the derivation Γ ⊢⊥
2
𝜑 . We only dis-

cuss the case of eliminating a predicate quantifier with ¤⊥𝑛 ,
where we have to show Γ⊥ ⊢2 (𝜑 [¤⊥𝑛]𝑛p)⊥ using the IH

Γ⊥ ⊢2 ¤∀𝑛p 𝜑⊥. We obtain a variable p𝑛
𝑓
with

Γ⊥ ⊢2 ¤∀𝑥1, ..., 𝑥𝑛 . p𝑛𝑓 (𝑥1, ..., 𝑥𝑛) ¤↔ ¤⊥

using (Compr) and (ExE′p). We can show ⊢2 (𝜑 [¤⊥𝑛]𝑛p)⊥ ¤↔
(𝜑⊥) [p𝑛

𝑓
]𝑛p such that it suffices to prove Γ⊥ ⊢2 (𝜑⊥) [p𝑛𝑓]

𝑛
p

which follows from the IH using (AllEp). □

Next, we show that 𝜑★⋄⊥
is equivalent to 𝜑 (property (2)).

Again, we begin with an example:

𝜑 = ¤∀𝑥 .𝑄 (𝑥, 𝑥) ¤→ ¤∃𝑃 . 𝑃 (𝑥)
𝜑★ = ¤∀𝑥 .App

2
(𝑞, 𝑥, 𝑥) ¤→ ¤∃𝑝.App

1
(𝑝, 𝑥)

𝜑★⋄ = ¤∀𝑥 . ¤∀𝑋2𝑋1𝑋0. 𝑄 (𝑥, 𝑥) ¤→ ¤∃𝑝. ¤∃𝑃1𝑃0 . 𝑃1 (𝑥)

Notice that the backwards translation did not trigger the

error case since _
★
does not introduce subformulas of form

App𝑛 (F 𝒕 :: _). Hence, 𝜑★⋄⊥
is identical to 𝜑★⋄

in general.

Also notice that the variable 𝑥 got split up into multiple

second-order variables but only the original variable 𝑥 is

bound in 𝜑★⋄
. Similarly, 𝑃 got split up, but only the unary

predicate variable 𝑃1 is bound, corresponding to the original

variable 𝑃 in 𝜑 . Thus, translating to FOL and back only adds

some unused quantifiers and should therefore be equivalent

to the initial formula.
6

However, the translation of 𝜑 with named binders above

is not entirely accurate, as we translated the unbound vari-

able 𝑄 into the first-order variable 𝑞 and then conveniently

back into 𝑄 . In the de Bruijn encoding, 𝑄 is represented by

some de Bruijn index 𝑖 . The first-order translation uses its

𝜋0
functions to replace 𝑖 with 𝜋0

p 𝑖 2. Since the backwards

translation preserves the indices, what we end up with no

longer represents the same variable. To resolve this issue,

we need to modify the backwards translation such that it

turns 𝜋0

p 𝑖 2 back into 𝑖 . The key is that the choice of 𝜋 can

be simulated via a substitution:

6
One might hope to show 𝜑★⋄⊥ = 𝜑 by more carefully defining _

⋄
such

that the number of quantifiers is not over-approximated. However, this

would at least require a pre-processing step that removes unused formulas:

Consider𝜓 := ¤∀𝑅. ¤⊥ with𝜓★
:= ¤∀𝑟 . ¤⊥. It is not possible to deduce from𝜓★

whether 𝑟 was an individual or a predicate in𝜓 , nor can we deduce its arity

in the latter case. Thus, without additional pre-processing, the backwards

translation is not able to restore the initial formula in general.

Lemma 7.26 (𝜋-Substitutions). For all 𝜑 and 𝜋 it holds that

(𝜑★
𝜋)⋄ = (𝜑★

id)
⋄[𝜆𝑖. x𝜋i 𝑖] [𝜆𝑖𝑛. p𝑛𝜋p 𝑖 𝑛

]p, with id = (𝜆𝑥.𝑥, 𝜆𝑥𝑛.𝑥).

Thus, one can “undo” the effect of 𝜋0
by substituting the

inverse functions:

Definition 7.27 (Inverse 𝜋0
Functions). We define (𝜋i)−1 by

(𝜋0

i)
−1 ⟨_, 𝑥⟩ := 𝑥 and (𝜋0

p)−1 ⟨_, ⟨𝑥, _⟩⟩ := 𝑥

Definition 7.28 (Fixed Backwards Translation). We define

𝜑 ■
:= (𝜑⋄) [𝜆𝑥𝑛. p𝑛(𝜋0

p)−1 𝑥
]p [𝜆𝑥 . x(𝜋0

i)−1 𝑥
].

With the fixed translation, we can derive equivalence:

Lemma 7.29. ⊢2 𝜑★ ■⊥ ¤↔ 𝜑 for all 𝜑 .

Proof. By Lemma 7.26 it suffices to prove ⊢2 (𝜑★
id)
⋄⊥ ¤↔ 𝜑 by

induction on 𝜑 . We only give a brief intuition for the case of

universal first-order quantification since the proof is fairly

technical. We get the IH ⊢2 (𝜑★
id)
⋄⊥ ¤↔ 𝜑 and have to show

⊢2
(
¤∀
< | (𝜑★

↑i id
)⋄ |

p
¤∀ (𝜑★

↑iid)
⋄
)⊥
¤↔ ¤∀𝜑.

Recall from the motivating example that the added predicate

quantifiers are all unused. This is the case because the op-

eration ↑i id shifts all predicate variables and hence makes

the index 0 unbound, whereas first-order variables remain

unchanged (follows from Lemma 7.26).

→ It suffices to instantiate the unused predicate quanti-

fiers with arbitrary values, which reverts the shifts and

leaves us with
¤∀ (𝜑★

id)
⋄⊥ ⊢2 ¤∀𝜑 , resolved by the IH.

← Introducing the unused predicate quantifiers through

(AllI′p) again reverts the shifts.

The cases for existential and second-order quantifiers are

similar and the remaining ones are straightforward. □

The first property also still holds for the fixed backwards

translation:

Corollary 7.30. Γ ⊢1 𝜑 implies Γ ■⊥ ⊢2 𝜑 ■⊥
for all 𝜑 and Γ.

Proof. Follows from Lemma 7.25, (Subst) and Theorem 7.23.

□

With this final component established, the following dia-

gram summarises the main steps of the deductive reduction:

(T , C)★ ⊢1 𝜑★

(T , C)★ ■ ⊢1 𝜑★ ■ (T , C)★ ■⊥ ⊢2 𝜑★ ■⊥

T , C ⊢2 𝜑

Corollary 7.30

Lemma 7.25

Lemma 7.29

Finally, by composition of these intermediate steps, we

obtain the desired main result:

Theorem 7.31 (Deductive Reduction). (T , C)★ ⊢1 𝜑★
im-

plies T ⊢2 𝜑 for all T and 𝜑 .

https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Henkin2FOL.html#removeFalsePred
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Henkin2FOL.html#prv_removeFalsePred
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Henkin2FOL.html#replace_FalsePred_subst
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Henkin2FOL.html#replace_FalsePred_subst
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Henkin2FOL.html#toSOLFOLForm_pos_i_to_subst
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Henkin2FOL.html#initial_pos_i_inv
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Henkin2FOL.html#toSOLForm'
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Henkin2FOL.html#toSOLFOLForm_equiv'
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Henkin2FOL.html#toSOLFOLForm_equiv
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Henkin2FOL.html#prv1_to_prv2'
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Henkin2FOL.html#prv_if_firstorder_prv

Undecidability, Incompleteness, and Completeness of SOL in Coq CPP ’22, January 17–18, 2022, Philadelphia, PA, USA

Proof. By Corollary 7.30 we get (T , C)★ ■⊥ ⊢1 𝜑★ ■⊥
and ob-

tain (T , C) ⊢2 𝜑 by Lemma 7.29. Since ⊢2 C using (Compr),
we get T ⊢2 𝜑 . □

8 Consequences of the Reduction to FOL
We now employ the verified translation from FOL to SOL

to show how characteristic properties transport from the

former to the latter. Since the considered properties require

classical assumptions in their general forms [19, 24], we give

relative statements simply assuming the properties for FOL.

8.1 Completeness
We use the reduction to obtain second-order Henkin com-

pleteness from the first-order completeness theorem:

Theorem 8.1 (Completeness). Assuming that FOL is com-

plete, then so is SOL with Henkin semantics.

Proof. Follows by Theorem 7.17 and Theorem 7.31. □

8.2 Compactness
Compactness (i.e. the property that finitely satisfiable theo-

ries have a model) follows classically from completeness:

Theorem 8.2 (Compactness by Completeness). Assuming

that FOL is complete, then SOL with Henkin semantics is com-

pact under LEM.

Proof. Let T be a second-order theory. Assume that all finite

contexts Γ ⊆ T have a model. Since we assume LEM we can

argue classically. Suppose there were no model of T . Then
T ⊨2 ¤⊥ and by completeness (Theorem 8.1) T ⊢2 ¤⊥. Hence,
there is also a finite context Γ ⊆ T with Γ ⊨2 ¤⊥ and by

soundness Γ ⊢2 ¤⊥. This is not possible, since by assumption

Γ ⊆ T has a model. □

This is essentially the same proof that allowed us to refute

strong completeness in Theorem 4.9. However, we can also

directly derive Henkin compactness from first-order com-

pactness, only requiring the semantic part of the reduction:

Theorem 8.3 (Compactness by Reduction). Assuming that

FOL is compact, then so is SOL with Henkin semantics.

Proof. Let T be a second-order theory. Assume that all finite

contexts Γ ⊆ T have a Henkin model. To show that T
also has a Henkin model it suffices to show that there is a

first-order modelM withM ⊨1 (T , C)★, since thenM⋄ ⊨2
T by Lemma 7.10. By first-order compactness it is enough

to verify that every finite Γ★ ⊆ (T , C)★ has a first-order

model. We split this context into Γ★ = (ΓT)★ ++ (ΓC)★ with

ΓT ⊆ T and ΓC ⊆ C. By assumption, we know that ΓT
has a Henkin modelH which gives us a first-order model

H★ ⊨1 ΓT by Lemma 7.14. SinceH★
satisfies comprehension

by construction, it is also a model of (ΓT)★ ++ (ΓC)★ = Γ★. □

8.3 Löwenheim-Skolem
Instead of separating the Löwenheim-Skolem theorems into

an upward and downward direction, we use a version that

combines both of them into one statement. That is, we say

a logic has the Löwenheim-Skolem property if every the-

ory with some infinite model has models of every infinite

cardinality.
7

Theorem 8.4 (Löwenheim-Skolem). Assuming that FOL has

the Löwenheim-Skolem property, then so does SOL with Henkin

semantics.

Proof. LetT be a second-order theorywith an infinite Henkin

model H . We have to show that for every infinite type 𝑋 ,

there is also a model of T in bijection to 𝑋 . It suffices to

find a first-order modelM of (T , C)★ in bijection to 𝑋 since

the Henkin modelM★
preserves the domain. Thus, by the

first-order Löwenheim-Skolem property it suffices to show

that (T , C)★ has some infinite first-order model. SinceH★

is infinite and also satisfies (T , C)★, we are finished. □

We used this combined statement since it allows for an

easier proof. Showing the upwards direction on its own using

the reduction would be more complicated. Turning a Henkin

modelH into a first-order modelH★
can increase the car-

dinality, since the translated domain 𝐷★
also contains the

predicate universe U (see Definition 7.5). Thus, one might

need to “go down” first in order to end up with the desired

cardinality. Our approach sidesteps this issue and produces

an equivalent result.

9 Discussion
9.1 Coq Mechanisation
Our Coq mechanisation does not rely on any axioms and

consists of 7900 lines of code, on top 1600 lines reused from

the Coq Library of Undecidability Proofs [10]. Among the

new code, 3600 lines are dedicated to the general setup of

the second-order syntax, standard semantics, and natural

deduction system. The development concerning PA2 and its

categoricity span 1600 lines with undecidability and incom-

pleteness taking another 600 lines. The verification of Nour

and Raffalli’s reduction to FOL was the technically most chal-

lenging part, consisting of 2100 lines. The main difficulty lied

in the deductive part of the reduction described in Section 7.3,

in particular Theorem 7.23 and especially Lemma 7.29. Com-

ing up with the right proof strategy to show Lemma 7.29

required us to capture the intuition that 𝜑★⋄
only adds un-

used quantifiers to 𝜑 . In the end, the main ingredient was

Lemma 7.26 which allowed us to characterise the interaction

between ↑i 𝜋 , ↑𝑛p 𝜋 and substitutions. Moreover, working

inside the deduction system with the de Bruijn encoding

combined with the relatively complicated definition of 𝜑⋄

relying on arity bounds etc. made the proofs quite tedious.

7
We interpret this as beeing in bijection with every infinite type.

https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Henkin2FOL.html#Completeness
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Henkin2FOL.html#Compactness_by_Completeness
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Henkin2FOL.html#Compactness
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Henkin2FOL.html#3d3e9c32200cf714f3fac5f882992838

CPP ’22, January 17–18, 2022, Philadelphia, PA, USA Mark Koch and Dominik Kirst

Our mechanisation of SOL is based on the existing FOL

developments in [9, 20, 21]. In particular, we define signa-

tures Σ as type classes allowing for the appropriate signature

to be inferred based on context. The formalisation of predi-

cate substitutions slightly differs from the presentation on

paper in Definition 3.4. Instead of using substitutions 𝜑 [𝜎]𝑛𝑝
for a specific arity 𝑛, we employ substitutions 𝜑 [𝜎]𝑝 with

𝜎 : N→ ∀𝑛.𝔓𝑛 that effect predicates of all arities and define

the special case

𝜑 [𝜎]𝑛𝑝 := 𝜑 [𝜆𝑖𝑚. if𝑚 = 𝑛 then 𝜎 𝑖 else p𝑚𝑖] .
This simplifies the development in Section 7.3 since the sub-

stitutions dealing with different arities can be represented

within a single operation.

While the presentation on paper focuses on SOL with

predicate quantifiers, the mechanisation also incorporates

function quantifiers (explicitly used in Lemma 5.13) and only

restricts to the function-free fragment when necessary. See

Appendix A for further details on function quantifiers.

9.2 Related Work
Mechanised first- and higher-order logic. While we are

not aware of any previous mechanisations of SOL, there have

been many formalisations concerned with first- or higher-

order logics in various theorem provers like Isabelle/HOL [13,

14, 25], Mizar [3], Lean [40], and Coq [2, 9, 17, 21]. Our work

on SOL is inspired by the Coq formalisation of FOL developed

in [9] and [21]. We adopted their major design decisions of

using a syntax with de Bruijn binders parametrised over

an arbitrary signature. The second-order natural deduction

introduced in Section 3 is also an extension of the first-order

system presented in [9]. We also want to point to the work by

Kirst and Smolka [22, 23] in which they investigate second-

order ZF set theory in Coq, verifying that the axiomatisation

is categorical for equipotent models.

Synthetic computability theory. The synthetic approach
to computability theory was developed by Richman [32] and

Bauer [1] and adapted to the type theory of Coq by Forster,

Kirst, and Smolka [8]. Their work lays the foundation for

the synthetic analysis of incompleteness and undecidability

carried out in Section 5. Crucially, the synthetic undecid-

ability of H10 has been verified by Larchey-Wendling and

Forster [26] as part of the Coq Library of Undecidability

Proofs [10], which serves as the starting point for our own

reductions. The undecidability results mechanised in this

paper are also intended as a contribution to this library.

Synthetic incompleteness. The computational account

of incompleteness used in Section 5 circumventing the more

involvedmechanisation of explicit independent Gödel/Rosser

sentences was employed by Kirst and Hermes [20], further

benefitting from the synthetic approach. The initial reduc-

tion from H10 we use to establish undecidability of SOL is

also drawn from their work.

Sources. Finally, we largely followed Shapiro’s [33] ac-

count of SOL, and the method used in Section 7 to reduce

SOL to FOL is due to Nour and Raffalli [29].

9.3 Future Work
While we have already contributed our undecidability results

for SOL to the Coq Library of Undecidability Proofs [10], we

still plan on merging the first-order completeness formali-

sation by Forster, Kirst, and Wehr [9] into our development.

This would allow us to strengthen the relative statement “if

FOL is complete then so is SOL” (Theorem 8.1) to a fully

mechanised completeness result of SOL. Similarly, a future

mechanisation of the first-order Löwenheim-Skolem theo-

rem is needed to fully obtain Löwenheim-Skolem for SOL.

In particular, a constructive analysis of Löwenheim-Skolem

for FOL would be interesting in this context [19].

Forster, Kirst, and Wehr also analysed the constructive-

ness of FOL completeness in their work, focusing on the

¤∀, ¤→, ¤⊥-fragment. While the extension to full FOL requires

LEM, completeness for the restricted fragment is equivalent

to Markov’s principle [16, 24]. It might be worthwhile to

investigate whether our treatment of SOL and the reduction

to FOL can be altered to work in this fragment, in partic-

ular regarding the dependency of comprehension on the

existential quantifier. Furthermore, one can extend the FOL

reduction to second-order Kripke models as demonstrated by

Nour and Raffalli [29], which would allow us to also derive

intuitionistic completeness from FOL.

Regarding PA2, it would be interesting to investigate con-

servativity results concerning PA1: Restricting Ind2 to first-

order definable properties and comprehension to first-order

properties with second-order parameters results in the sys-

tem called arithmetical comprehension (ACA0) from reverse

mathematics, which is a conservative extension of PA1 [34].

Furthermore, it would also beworthwhile to explore second-

order axiom systems apart from Peano arithmetic. For ex-

ample, Shapiro shows that the categoricity proof of PA2

can be extended to yield categoricity of second-order real

analysis [33]. It would be interesting to investigate whether

Shapiro’s construction also works in our setting where the

isomorphisms are not necessarily computable. Moreover,

Kirst and Smolka provide a mechanisation of the categoric-

ity of second-order ZF (for equipotent models) in Coq [22]

that could be transported to our SOL backbone.

Finally, it would be interesting to mechanise results re-

garding the notion of internal categoricity popularised by

Vänäänen [41, 43], which draws from the fact that categoric-

ity can be expressed in SOL and oftentimes proven internally

via the deduction system ⊢ without relying on the external

meta-theory. Verifying this would be a major challenge as

it requires very complex derivations in ⊢. However, existing
tooling for FOL like the proof mode developed in [18] could

be extended to SOL and facilitate this task.

Undecidability, Incompleteness, and Completeness of SOL in Coq CPP ’22, January 17–18, 2022, Philadelphia, PA, USA

A Function Quantifiers
Besides predicate quantifiers, some authors also consider

function quantifiers as part of SOL (for example [33, 42]). In

the textbook setting they simply allow for more convenient

notation and do not bring any additional expressive power

with them, since they can be reduced back to predicates.

However, the treatment of function quantifiers is more in-

volved in our setting of constructive type theory. We define

the syntactic fragment 𝔉𝐹
2
that extends 𝔉2 with function

quantifiers and variables:

Definition A.1 (SOL with Function Quantifiers). The types
𝔗𝐹

2
and𝔉𝐹

2
of second-order terms and formulas with function

quantifiers is defined by extending Definition 3.3 with

𝑡 : 𝔗𝐹
2
::= ... | f𝑛𝑖 𝒕 (𝑖, 𝑛 : N, 𝒕 : (𝔗𝐹

2
)𝑛)

𝜑,𝜓 : 𝔉𝐹
2
::= ... | ¤∀𝑛f 𝜑 | ¤∃

𝑛
f 𝜑 (𝑛 : N)

The de Bruijn scoping works analogously to𝔉2. The most

natural way to extend the standard semantics to𝔉𝐹
2
is to in-

terpret function quantifiers ranging over type theoretic func-

tions𝐷𝑛 → 𝐷 . This is also the semantics used in Lemma 5.13:

Definition A.2 (Extended Standard Semantics). Given a

modelM with domain 𝐷 , environments 𝜌 are extended with

an additional component 𝜌f : N → ∀𝑛. 𝐷𝑛 → 𝐷 assigning

values to function variables. Term evaluation and formula

satisfiability from Definition 3.6 is extended to 𝔗𝐹
2
and𝔉𝐹

2
by

adding the following cases:

⟦f𝑛𝑖 ⟧𝜌 := 𝜌f 𝑖 𝑛 𝜌 ⊨ ¤∇𝑛f 𝜑 := ∇𝑓 : 𝐷𝑛 → 𝐷. 𝑓 · 𝜌 ⊨ 𝜑
Usually, second-order logic is defined in terms of classical

set theory as meta-logic. There, 𝑛-ary functions are consid-

ered as the (𝑛 + 1)-ary relation exhibiting the graph of the

function. Hence, extending SOL with function quantifiers

does not add any expressive power.
8
The same also holds for

function symbols; they just serve as a notational convenience

in the set-theoretic setting.

However, the concept of functions in type theory does not

directly match up with functions in set theory. The function

space 𝐷𝑛 → 𝐷 is underspecified and therefore this corre-

spondence to relations is not available without axioms. As

a result, the semantics given above behaves slightly differ-

ently than one would normally expect. For example, we can

no longer show that validity in all models of PA2 agrees (cf.

Lemma 4.5). That is because totality and surjectivity of �
does not transport to functions. We cannot show that for all

𝑓1 : (𝐷1)𝑛 → 𝐷1 there is a 𝑓2 : (𝐷2)𝑛 → 𝐷2 with 𝑓1 � 𝑓2 as

� is not necessarily computable.
9

One approach to remedy this issue and to get the same

properties as the set-theoretic semantics in the literature is

to interpret functions in a different way:

8
One could also get rid of predicates and in turn express them using their

characteristic function (provided there are two distinct individuals). Thus,

functions and relations can be used interchangeably.

9
This problem does not arise in Section 5.3 since the embedding is first-order.

Definition A.3. Let 𝑋 ⇝ 𝑌 be the type of total and func-

tional relations from 𝑋 to 𝑌 :

𝑋 ⇝ 𝑌 := Σ𝐹 : 𝑋 → 𝑌 → P. total 𝐹 ∧ functional 𝐹
where

• total 𝐹 := ∀𝑥 . ∃𝑦. 𝐹 𝑥 𝑦,
• functional 𝐹 := ∀𝑥𝑦𝑦 ′. 𝐹 𝑥 𝑦 → 𝐹 𝑥 𝑦 ′→ 𝑦 = 𝑦 ′.

Interpreting functions as 𝐷𝑛 ⇝ 𝐷 is more faithful to the

traditional set-theoretic approach and leads to the following

relational semantics:

Definition A.4 (Relational Standard Semantics). The func-
tion interpretation and variable assignment in a relational

Model M𝑅 have types F I : 𝐷 |F | ⇝ 𝐷 and 𝜌f : N →
∀𝑛. 𝐷𝑛 ⇝ 𝐷 . Term evaluation turns into a relation ⟦·⟧𝑅𝜌 :

𝔗𝐹
2
→ 𝐷 → P and we get formula satisfaction 𝜌 ⊨𝑅 𝜑 with

⟦x𝑖⟧𝑅𝜌 𝑑 := 𝜌𝑖 𝑖 = 𝑑

⟦F 𝒕⟧𝑅𝜌 𝑑 := ∃𝒗 : 𝐷 |F | . ⟦𝒕⟧𝑅𝜌 𝒗 ∧ F I 𝒗 𝑑
𝜌 ⊨𝑅 P 𝒕 := ∃𝒗 : 𝐷 |P | . ⟦𝒕⟧𝑅𝜌 𝒗 ∧ PI 𝒗
𝜌 ⊨𝑅 ¤∀𝑛f 𝜑 := ∀𝑓 : 𝐷𝑛 ⇝ 𝐷. 𝑓 · 𝜌 ⊨𝑅 𝜑

The remaining cases are defined in a similar way.

Fact A.5. The evaluation relation ⟦·⟧𝜌 is total and functional.

The main downside of the relational semantics is that it

is quite tedious to work with and mechanise because of the

overhead introduced by always needing to invoke totality

and functionality. Thus, we have not restated the complete

categoricity development of Section 4.1 in terms of the re-

lational semantics. Instead, we verified that validity agrees

if we interpret the conventional models in the relational

semantics, reusing the isomorphism �:

Lemma A.6 (Agreement for Relational Semantics). We can

turn modelsM1 andM2 of PA2 into relational modelsM𝑅
1

andM𝑅
2
. Let 𝜌𝑅

1
and 𝜌𝑅

2
be relational environments with 𝜌𝑅

1
�

𝜌𝑅
2
. ThenM𝑅

1
, 𝜌𝑅

1
⊨ 𝜑 iff M𝑅

2
, 𝜌𝑅

2
⊨ 𝜑 for all 𝜑 : 𝔉𝐹

2
.

Proof. Similar to the proof of Lemma 4.5, using the fact that

� is surjective and total for (𝐷𝑖)𝑛 ⇝ 𝐷𝑖 . □

One way to bridge the gap between the two semantics is

to alter our meta-theory by assuming unique choice:

Definition A.7. UC := ∀𝑋𝑌 : T.∀𝑅 : 𝑋 ⇝ 𝑌 .∀𝑥 . Σ𝑦. 𝑅 𝑥 𝑦

Note that this is not a propositional axiom, but instead a

stronger T-level operator for the totality of the relations.

Fact A.8. Assuming UC, one can turn 𝐹 : 𝑋 ⇝ 𝑌 into 𝐹 :

𝑋 → 𝑌 . Similarly, one can turn 𝑓 : 𝑋 → 𝑌 into
˜𝑓 : 𝑋 ⇝ 𝑌

with
˜𝑓 := 𝜆𝑥𝑦. 𝑓 𝑥 = 𝑦. Lifting those translations to models

and environments yields the following results:

1. M, 𝜌 ⊨ 𝜑 iff
˜M, 𝜌 ⊨ 𝜑 for all modelsM and environ-

ments 𝜌 .

https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.SOL.html#form
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Tarski.html#sat
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.PA.html#func_p
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Tarski.html#sat_p
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Tarski.html#eval_p_functional
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.PA.html#sat_p_iff
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Tarski.html#UC
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Tarski.html#sat_iff_sat_p

CPP ’22, January 17–18, 2022, Philadelphia, PA, USA Mark Koch and Dominik Kirst

2. M𝑅, 𝜌 ⊨ 𝜑 iff
ˆM𝑅, 𝜌 ⊨ 𝜑 for all relational modelsM𝑅

and environments 𝜌 .

Proof. We show (1) by induction on 𝜑 . (2) follows from (1)

and the fact that
˜
ˆM𝑅 and

˜𝜌 behave the same asM𝑅 and 𝜌 . □

Henkin semantics can be extend to function quantifiers in

a similar way, requiring a notion of function comprehension.

However, we have not explored this in the paper as Nour

and Raffalli’s reduction only considers predicate quantifiers

and would be very difficult to adapt to𝔉𝐹
2
.

B Natural Deduction
Below is the full definition of the second-order ND system:

Definition B.1 (Natural Deduction). We represent the deduc-

tion system as an inductive predicate ⊢ : L(𝔉2) → 𝔉2 → P.
Its rules are given by

𝜑 ∈ Γ
Ctx

Γ ⊢ 𝜑
Γ ⊢ ¤⊥

Exp
Γ ⊢ 𝜑

Γ, 𝜑 ⊢ 𝜓
II

Γ ⊢ 𝜑 ¤→𝜓

Γ ⊢ 𝜑 ¤→𝜓 Γ ⊢ 𝜑
IE

Γ ⊢ 𝜓
Γ ⊢ 𝜑 Γ ⊢ 𝜓

CI

Γ ⊢ 𝜑 ¤∧𝜓

Γ ⊢ 𝜑 ¤∧𝜓
CE1 Γ ⊢ 𝜑

Γ ⊢ 𝜑 ¤∧𝜓
CE2

Γ ⊢ 𝜓

Γ ⊢ 𝜑
DI1

Γ ⊢ 𝜑 ¤∨𝜓
Γ ⊢ 𝜓

DI2
Γ ⊢ 𝜑 ¤∨𝜓

Γ ⊢ 𝜑 ¤∨𝜓 Γ, 𝜑 ⊢ 𝜃 Γ,𝜓 ⊢ 𝜃
DE

Γ ⊢ 𝜃

Γ [↑] ⊢ 𝜑
AllI

Γ ⊢ ¤∀𝜑
Γ ⊢ ¤∀𝜑

AllE

Γ ⊢ 𝜑 [𝑡]

Γ ⊢ 𝜑 [𝑡]
ExI

Γ ⊢ ¤∃𝜑
Γ ⊢ ¤∃𝜓 Γ [↑],𝜓 ⊢ 𝜑

ExE
Γ ⊢ 𝜑

Γ [↑]𝑛𝑝 ⊢ 𝜑
AllI𝑝

Γ ⊢ ¤∀𝑛𝑝 𝜑
Γ ⊢ ¤∀𝑛𝑝 𝜑

AllE𝑝
Γ ⊢ 𝜑 [𝑃]𝑛𝑝

Γ ⊢ 𝜑 [𝑃]𝑛𝑝
ExI𝑝

Γ ⊢ ¤∃𝑛𝑝 𝜑
Γ ⊢ ¤∃𝑛𝑝 𝜓 Γ [↑]𝑛𝑝 ,𝜓 ⊢2 𝜑

ExE𝑝
Γ ⊢ 𝜑

Peirce

Γ ⊢𝑐 ((𝜑 ¤→𝜓) ¤→ 𝜑) ¤→ 𝜑

𝑃 not free in 𝜑
Compr

Γ ⊢ ¤∃𝑃 . ¤∀𝑥1 ...𝑥𝑛 . 𝑃 (𝑥1, ..., 𝑥𝑛) ¤↔ 𝜑

We use two versions of the deduction system denoted by ⊢𝑐 and
⊢𝑖 distinguishing between classical and intuitionistic logic. The
(Peirce) rule is only available in the classical system ⊢𝑐 and
may not be used in ⊢𝑖 . We write ⊢ if the choice between ⊢𝑐 and
⊢𝑖 does not matter.

References
[1] Andrej Bauer. 2006. First Steps in Synthetic Computability Theory.

Electronic Notes in Theoretical Computer Science 155 (2006), 5–31. Pro-

ceedings of the 21st Annual Conference on Mathematical Foundations

of Programming Semantics (MFPS XXI).

[2] Chad E. Brown. 2014. A semantics for intuitionistic higher-order logic

supporting higher-order abstract syntax. (2014).

[3] Marco Caminati. 2010. Basic first-order model theory in Mizar. Journal

of Formalized Reasoning 3 (01 2010).

[4] Thierry Coquand and Gérard Huet. 1986. The calculus of constructions.

Ph.D. Dissertation. INRIA.

[5] Thierry Coquand and Bassel Mannaa. 2016. The Independence of

Markov’s Principle in Type Theory. (02 2016).

[6] Nicolaas G. de Bruijn. 1972. Lambda calculus notation with nameless

dummies, a tool for automatic formula manipulation, with application

to the Church-Rosser theorem. Indagationes Mathematicae (Proceed-

ings) 75, 5 (1972), 381–392.

[7] Richard Dedekind. 1888. Was sind und was sollen die Zahlen? Vieweg,

Braunschweig. https://doi.org/10.24355/dbbs.084-200902200100-1
[8] Yannick Forster, Dominik Kirst, and Gert Smolka. 2019. On Synthetic

Undecidability in Coq, with an Application to the Entscheidungsprob-

lem. In Proceedings of the 8th ACM SIGPLAN International Conference

on Certified Programs and Proofs (Cascais, Portugal) (CPP 2019). Asso-

ciation for Computing Machinery, New York, NY, USA, 38–51.

[9] Yannick Forster, Dominik Kirst, and Dominik Wehr. 2021. Complete-

ness theorems for first-order logic analysed in constructive type theory:

Extended version. Journal of Logic and Computation 31, 1 (01 2021),

112–151.

[10] Yannick Forster, Dominique Larchey-Wendling, Andrej Dudenhefner,

Edith Heiter, Dominik Kirst, Fabian Kunze, Gert Smolka, Simon Spies,

Dominik Wehr, and Maximilian Wuttke. 2020. A Coq library of unde-

cidable problems. In CoqPL 2020 The Sixth International Workshop on

Coq for Programming Languages.

[11] Kurt Gödel. 1929. Über die Vollständigkeit des Logikkalküls.

[12] Kurt Gödel. 1931. Über Formal unentscheidbare Sätze der Principia

Mathematica und verwandter Systeme I. Monatshefte für Mathematik

und Physik 38, 1 (1931), 173–198.

[13] John Harrison. 1998. Formalizing basic first order model theory. In

Theorem Proving in Higher Order Logics, Jim Grundy and Malcolm

Newey (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 153–

170.

[14] John Harrison. 2006. Towards self-verification of HOL Light. In Pro-

ceedings of the third International Joint Conference, IJCAR 2006 (Lecture

Notes in Computer Science, Vol. 4130), Ulrich Furbach and Natarajan

Shankar (Eds.). Springer-Verlag, Seattle, WA, 177–191.

[15] Leon Henkin. 1950. Completeness in the theory of types. Journal of

Symbolic Logic 15, 2 (1950), 81–91.

[16] Hugo Herbelin and Danko Ilik. 2016. An analysis of the constructive

content of Henkin’s proof of Gödel’s completeness theorem. Draft.

(2016).

[17] Hugo Herberlin, Sunyoung Kim, and Gyesik Lee. 2017. Formalizing

the meta-theory of first-order predicate logic. Journal of the Korean

Mathematical Society 54 (01 2017), 1521–1536.

[18] Johannes Hostert, Mark Koch, and Dominik Kirst. 2021. A Toolbox

for Mechanised First-Order Logic. The Coq Workshop (2021).

[19] Asaf Karagila. 2014. Downward Löwenheim-Skolem theorems and choice

principles. Technical Report. http://karagila.org/wp-content/uploads/
2012/10/Lowenheim-Skolem-and-Choice.pdf

[20] Dominik Kirst and Marc Hermes. 2021. Synthetic Undecidability and

Incompleteness of First-Order Axiom Systems in Coq. In ITP.

[21] Dominik Kirst and Dominique Larchey-Wendling. 2020. Trakhten-

brot’s Theorem in Coq: A Constructive Approach to Finite Model

Theory. International Joint Conference on Automated Reasoning (2020).

https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Tarski.html#sat_iff_sat_p2
https://www.ps.uni-saarland.de/extras/cpp22-sol/website/SOL.Deduction.html#prv
https://doi.org/10.24355/dbbs.084-200902200100-1
http://karagila.org/wp-content/uploads/2012/10/Lowenheim-Skolem-and-Choice.pdf
http://karagila.org/wp-content/uploads/2012/10/Lowenheim-Skolem-and-Choice.pdf

Undecidability, Incompleteness, and Completeness of SOL in Coq CPP ’22, January 17–18, 2022, Philadelphia, PA, USA

[22] Dominik Kirst and Gert Smolka. 2017. Categoricity Results for Second-

Order ZF in Dependent Type Theory. In ITP.

[23] Dominik Kirst and Gert Smolka. 2018. Categoricity Results and Large

Model Constructions for Second-Order ZF in Dependent Type Theory.

Journal of Automated Reasoning 63 (2018), 415–438.

[24] Georg Kreisel. 1962. On weak completeness of intuitionistic predicate

logic. The Journal of Symbolic Logic 27, 2 (1962), 139–158.

[25] Ramana Kumar, Rob Arthan, Magnus O. Myreen, and Scott Owens.

2016. Self-formalisation of higher-order logic. Journal of Automated

Reasoning 56, 3 (2016), 221–259.

[26] Dominique Larchey-Wendling and Yannick Forster. 2019. Hilbert’s

Tenth Problem in Coq. In 4th International Conference on Formal Struc-

tures for Computation and Deduction (FSCD 2019) (Leibniz International

Proceedings in Informatics (LIPIcs), Vol. 131), Herman Geuvers (Ed.).

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Ger-

many, 27:1–27:20. https://doi.org/10.4230/LIPIcs.FSCD.2019.27
[27] Maria Manzano. 1996. Extensions of first-order logic. Cambridge Tracts

in Theoretical Computer Science, Vol. 19. Cambridge University Press.

[28] Yuri Matiyasevich. 2016. Martin Davis and Hilbert’s Tenth Problem.

Springer International Publishing, Cham, 35–54.

[29] Karim Nour and Christophe Raffalli. 2003. Simple proof of the com-

pleteness theorem for second-order classical and intuitionistic logic

by reduction to first-order mono-sorted logic. Theoretical computer

science 308, 1-3 (2003), 227–237.

[30] Christine Paulin-Mohring. 1993. Inductive definitions in the system

Coq rules and properties. In Typed Lambda Calculi and Applications,

Marc Bezem and Jan Friso Groote (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 328–345.

[31] Stephen Read. 1997. Completeness and categoricity: Frege, Gödel and

model theory. History and Philosophy of Logic 18, 2 (1997), 79–93.

[32] Fred Richman. 1983. Church’s Thesis Without Tears. The Journal of

Symbolic Logic 48, 3 (1983), 797–803.

[33] Stewart Shapiro. 1991. Foundations without foundationalism: A case

for second-order logic. Vol. 17. Clarendon Press.

[34] Stephen G. Simpson. 2009. Subsystems of Second Order Arithmetic (2

ed.). Cambridge University Press.

[35] Kathrin Stark, Steven Schäfer, and Jonas Kaiser. 2019. Autosubst 2:

Reasoning with Multi-Sorted de Bruijn Terms and Vector Substitutions

(CPP 2019). Association for Computing Machinery, New York, NY, USA,

166–180.

[36] Neil Tennant. 1990. Natural logic. Edinburgh University Press.

[37] The Coq Development Team. 2021. The Coq Proof Assistant. https:
//doi.org/10.5281/zenodo.4501022

[38] Jouko Väänänen. 2001. Second-order logic and foundations of mathe-

matics. Bulletin of Symbolic Logic 7, 4 (2001), 504–520.

[39] Dirk Van Dalen. 1994. Logic and structure. Vol. 3. Springer.

[40] Luiz Viana. 2020. Proving the consistency of Logic in Lean. 1–8.

[41] Jouko Väänänen. 2015. Second-Order Logic and Set Theory. Philosophy

Compass 10, 7 (2015), 463–478.

[42] Jouko Väänänen. 2021. Second-order and Higher-order Logic. In The

Stanford Encyclopedia of Philosophy (Fall 2021 ed.), Edward N. Zalta

(Ed.). Metaphysics Research Lab, Stanford University.

[43] Jouko Väänänen and Tong Wang. 2012. Internal Categoricity in Arith-

metic and Set Theory. Notre Dame Journal of Formal Logic 56 (01

2012).

[44] Ernest Zermelo. 1930. Über Grenzzahlen und Mengenbereiche. Funda-

menta Mathematicae 16, 1 (1930), 29–47. http://eudml.org/doc/212506

https://doi.org/10.4230/LIPIcs.FSCD.2019.27
https://doi.org/10.5281/zenodo.4501022
https://doi.org/10.5281/zenodo.4501022
http://eudml.org/doc/212506

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Constructive Type Theory
	2.2 Synthetic Computability Theory

	3 Second-Order Syntax, Standard Semantics, and Natural Deduction
	3.1 Syntax
	3.2 Standard Semantics
	3.3 Natural Deduction

	4 Second-Order Peano Arithmetic
	4.1 Categoricity
	4.2 Consequences of Categoricity

	5 Undecidability and Incompleteness
	5.1 Reduction from Diophantine Equations
	5.2 Incompleteness
	5.3 Extension to Arbitrary Signatures

	6 Henkin Semantics
	7 Translation to First-Order Logic
	7.1 Translation Function
	7.2 Semantic Reduction
	7.3 Deductive Reduction

	8 Consequences of the Reduction to FOL
	8.1 Completeness
	8.2 Compactness
	8.3 Löwenheim-Skolem

	9 Discussion
	9.1 Coq Mechanisation
	9.2 Related Work
	9.3 Future Work

	A Function Quantifiers
	B Natural Deduction
	References

