
Put my galakmid coin into the dispenser and kick it:

Computational Linguistics and Theorem Proving

in a Computer Game

Alexander Koller (koller@coli.uni-sb.de)
Dept. of Computational Linguistics, Saarland University, Saarbrücken, Germany

Ralph Debusmann (rade@ps.uni-sb.de)
Programming Systems Lab, Saarland University, Saarbrücken, Germany

Malte Gabsdil (gabsdil@coli.uni-sb.de)
Dept. of Computational Linguistics, Saarland University, Saarbrücken, Germany

Kristina Striegnitz (kris@coli.uni-sb.de)
Dept. of Computational Linguistics, Saarland University, Saarbrücken, Germany

Abstract. We combine state-of-the-art techniques from computational linguistics
and theorem proving to build an engine for playing text adventures, computer
games with which the player interacts purely through natural language. The system
employs a parser for dependency grammar and a generation system based on TAG,
and has components for resolving and generating referring expressions. Most of
these modules make heavy use of inferences offered by a modern theorem prover
for description logic. Our game engine solves some problems inherent in classical
text adventures, and is an interesting test case for the interaction between natural
language processing and inference.

Keywords: text adventures, description logic, theorem provers, parsing, generation,
reference resolution, dependency grammar

1. Introduction

Text adventures are a form of computer games that was very popular in
the eighties. The player interacts with the game world (e.g. the rooms
and objects in a space station) by typing natural-language commands,
and the computer provides feedback in the form of natural-language
descriptions of the world and of the results of the player’s actions.
Typically, the user has to solve puzzles to win the game; an example
interaction is shown in Fig. 1.

In this paper, we combine state-of-the-art techniques from computa-
tional linguistics and theorem proving to implement a text-adventure
engine. We use Description Logic (DL) to represent the state of the
game world and what the player knows about it. A DL reasoning system
is used to update, maintain, and query these knowledge bases. This
reasoning system is used heavily throughout the game. In particular,

c© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

kluwer_koller_allinone.tex; 30/07/2003; 14:50; p.1



2 Koller, Debusmann, Gabsdil, Striegnitz

Observation Lounge

This is where the station staff and visitors come to relax.

There are a lot of tables and chairs here, a large

observation window, and a plush carpet. In the corner you

can see an AstroCola dispenser. A tube leads up to the

station’s main corridor.

> put my galakmid coin into the dispenser

Click.

The dispenser display now reads "Credit = 1.00".

> push diet astrocola button

You hear a rumbling noise in the dispenser, but nothing

appears in the tray.

> kick dispenser

A can drops into the tray. Amazing! The oldest trick in

the book, and it actually worked.

Figure 1. An example interaction with a text adventure.

the modules for the resolution of referring expressions, for executing ac-
tions, and for generation access the inference engine; only the modules
for parsing and surface realization don’t.

Our system is interesting from the perspective of the game player,
from the perspective of computational linguistics, and from the per-
spective of DL theorem proving. The first motivation may be the most
obvious. Classical text adventures typically produced very high quality
texts (which were hard-coded into the games), but the parsers they
employed, while usable, were still very simple. This led to some irritat-
ing limitations, for example the identification problem: Sometimes the
games would not allow the user to refer to an object with the exact
same words that the game itself used for it (Fig. 1, taken from (Dyte,
1997)). By closing the gap between the quality of the parser and the
generator, our system in principle allows this sort of problem to be
avoided.

From the perspective of computational linguistics, the computer
game setting is interesting because it naturally restricts what utter-
ances the user will produce. For example, players will typically only
refer to objects they can “see” in the simulated world. This simplifies
the language processing tasks, constrains the way in which ambiguous
inputs are to be interpreted, and allows the inference problems to scale
rather well to larger game worlds. There is a natural notion of a context

kluwer_koller_allinone.tex; 30/07/2003; 14:50; p.2



Computational Linguistics and Theorem Proving in a Computer Game 3

Cupboard

When you aren’t lying on the bed, you usually stay in here,

snug and safe with your friends atop the warm pile of

clothes. Your warm winter jacket is here, which may be just

as well, it’s a little chilly.

>take the warm winter jacket

You can’t see any such thing.

>take the winter jacket

You can’t see any such thing.

>look at the jacket

A smart green jacket with big pockets, teddy bear sized.

>take the smart green jacket

You can’t see any such thing.

>take the jacket with big pockets

I only understood you as far as wanting to take the green

jacket.

>take the green jacket

Taken.

Figure 2. The identification problem. The user plays a teddybear in this game.

(both with respect to what has been said before and in the sense of
being situated in the game world), and the world can be freely specified
and tailored to different levels of complexity. The system can serve
as a testbed for more advanced NLP modules, which have automatic
access to the inference infrastructure. It is also attractive as a teaching
environment. In fact, our current implementation was created in an
advanced programming project for students. This is why the individual
NLP modules described in this paper are necessarily all quite simplistic.

Finally, our system is interesting from the theorem proving per-
spective because it is an application that makes heavy use of A-Box
reasoning. Traditionally, applications of description logic have focused
on T-Box inferences such as concept subsumption. Our system, in con-
trast, needs to enumerate instances of concepts, concepts to which an
instance belongs, etc. What’s more, our system needs to deal with A-
Boxes that have to be changed in every turn of the game. Modern DL
systems support this sort of inference, which allows us to store the

kluwer_koller_allinone.tex; 30/07/2003; 14:50; p.3



4 Koller, Debusmann, Gabsdil, Striegnitz

Content
Determination

Model
Discourse

Reference
Resolution

Reference
Generation

RealizationParsing

Actions

A-Box: User Knowledge

T-Box

A-Box: World Model

Figure 3. The Architecture.

world model entirely in the DL knowledge base and retrieve relevant
information by querying the inference system. The demands of our sys-
tem towards the theorem prover have already motivated optimizations
of the prover we use.

The paper is organized as follows: Section 2 sketches the general
architecture of our systems and its components. In the following sec-
tions (Sections 3 – 7), we describe each of the system’s components in
more detail. In Section 8, we take a look at the performance of the DL
theorem prover in the game setting, and Section 9 concludes the paper.

2. Architecture

The general architecture of the game engine is shown in Fig. 3. Under-
lying the system are two description logic knowledge bases, which share
a set of common definitions: One represents the true state of the world
and the other keeps track of what the player knows about the world.
These knowledge bases are accessed by all language processing modules
(drawn as ellipses) except for parsing and realization, as is indicated
by the dashed arrows. The solid arrows show the flow of information
when processing a player input and generating a response.

The user’s input is first parsed. This yields a semantic representation
specifying the action that the user wants to execute and describing the
objects that this action involves. Next, these object descriptions are
resolved to individuals of the game world, based on the knowledge
that the player has about the world and on the discourse model, which
keeps track of when and how individuals were mentioned in the previous

kluwer_koller_allinone.tex; 30/07/2003; 14:50; p.4



Computational Linguistics and Theorem Proving in a Computer Game 5

dialog. The result is a ground term or a sequence of ground terms that
indicates the action(s) the user wants to take. The Actions module looks
up these actions in a database (where they are specified in a STRIPS-
like format), checks whether the action’s preconditions are met in the
world, and, if so, updates the world state with the effects of the action.

The action can also specify effects on the user’s knowledge, i.e.
information that should be conveyed to the hearer through a natural
language text. The generation component, which produces this text,
consists of three modules: The Content Determination module further
enriches the information that is specified as effects on the user knowl-
edge in the action description; for example, this module chooses which
information to include in detailed descriptions of objects the player
wants to look at. The Reference Generation module translates the
internal names of individuals into descriptions that can be verbalized.
In the last step, this assembled information is realized as a natural
language text. The player knowledge is updated after Reference Gen-
eration because some information which is new to the user may be
added by this module, as e.g. in the case of indefinite NPs. The same
generation modules are also used to generate error messages.

The system is implemented in the programming language Mozart
(Mozart Consortium, 1999) and communicates with the DL reasoning
system RACER (Haarslev and Möller, 2001) to access the knowledge
bases.

In the following sections, we will describe each of the game’s com-
ponents in more detail. In Section 3, we give a brief introduction to
Description Logic and describe the different knowledge bases we need
to model the game world. We then discuss how the player input is
analyzed, describing the modules for parsing (Section 4) and resolution
of referring expressions (Section 5). Next, we show how actions are
performed in the game world (Section 6) and finally, we describe how
the output texts informing the player about the changing state of the
game world are generated (Section 7).

3. The World Model

Before we go into the details of the language-processing modules, we
will first explain how we model the world and the user knowledge. We
start with an introduction to description logic (DL), and then show a
fragment of an actual knowledge base used in a game.

kluwer_koller_allinone.tex; 30/07/2003; 14:50; p.5



6 Koller, Debusmann, Gabsdil, Striegnitz

concept terms:

C an atomic concept, denotes a set of individuals

C t C ′ a disjunction denotes the set union of C and C ′

C u C ′ a conjunction denotes the intersection of C and C ′

¬C all individuals that are not in C

∃R.C the concept containing all individuals that are connected via
R to an individual in C

∀R.C the concept containing all individuals such that every indi-
vidual to which they are related through R is in C

⊥ the empty concept, containing no individuals

role terms:

R an atomic role, denotes a binary relation

R−1 the inverse role, denotes the inverse relation of R

Figure 4. DL concept and role terms.

3.1. Description Logic

Description logic (DL) is a family of logics in the tradition of knowl-
edge representation formalisms such as KL-ONE (Woods and Schmolze,
1992). DL is a fragment of first-order logic which only allows unary and
binary predicates (called concepts and roles in this context), Boolean
connectives, and very restricted quantification. Correspondingly, the
syntactic objects it is concerned with are concept terms, role terms, and
constants. Concept terms denote sets of individuals, role terms denote
binary relations, and constants denote individuals; they are defined as
in Figure 4.

A knowledge base consists of a T-Box, which contains axioms re-
lating the concepts and roles, and an A-Boxes, which states that indi-
viduals belong to certain concepts, or are related by certain roles. The
axioms in a T-Box typically have either the form C v C ′, stating that
C denotes a subset of C ′, or C

.
= C ′, expressing that the denotations

of C and C ′ are equal. A-Box axioms are of the form C(a) and R(a, b).
Theorem provers for description logics support a range of different

reasoning tasks. Among the most common are consistency checking,
subsumption checking, and instance and relation checking. Consistency
checks decide whether a combination of T-Box and A-Box can be
satisfied by some model, subsumption is to decide of two concepts
whether all individuals that belong to one concept must necessarily
belong to another, and instance and relation checking test whether an
individual belongs to a certain concept and whether a certain relation

kluwer_koller_allinone.tex; 30/07/2003; 14:50; p.6



Computational Linguistics and Theorem Proving in a Computer Game 7

holds between a pair of individuals, respectively. In addition to these
basic reasoning tasks, description logic systems usually also provide
some retrieval functionality which e.g. allows to compute all concepts
that a given individual belongs to, or all individuals that belong to a
given concept.

There is a wide range of different description logics today which add
different extensions to a common core. Of course, the more expressive
these extensions become, the more complex the reasoning problems
are. “Traditional” DL systems have concentrated on very weak logics
with simple reasoning tasks. In the last few years, however, new sys-
tems such as FaCT (Horrocks et al., 1999) and RACER (Haarslev and
Möller, 2001) have shown that it is possible to achieve surprisingly good
average-case performance for very expressive (but still decidable) logics.
In this paper, we employ the RACER system, mainly because it allows
for A-Box inferences. We will state the DL queries in quite general
terms throughout this paper; more technical details can be found in
(Gabsdil et al., 2001).

3.2. The World Model

The T-Boxes we use specify the concepts and roles in the world and
define some useful complex concepts, e.g. the concept of all objects
the player can see. Such a T-Box is shared by two different A-Boxes
representing the state of the world and what the player knows about it
respectively.

The player A-Box will typically be a sub-part of the game A-Box
because the player will not have explored the world completely and will
therefore not have seen all the individuals or know about all of their
properties. Sometimes, however, it may also be useful to deliberately
hide effects of an action from the user, e.g. if pushing a button has an
effect in a room that the player cannot see. In this case, the player A-
Box can contain information that is inconsistent with the world A-Box.

A fragment of an example A-Box describing a state of the world is
shown in Fig. 3.2; Fig. 6 gives a graphical representation.

The T-Box specifies that the world is partitioned into three parts:
rooms, objects, and players. The individual ‘myself’ is the only instance
that we ever define of the concept ‘player’. Individuals are connected
to their locations (i.e. rooms, container objects, or players) via the
‘has-location’ role; the A-Box also specifies what kind of object an
individual is (e.g. ‘apple’) and what properties it has (‘red’). The T-
Box then contains axioms such as ‘apple v object’, ‘red v colour’, etc.,
which establish a taxonomy among concepts.

kluwer_koller_allinone.tex; 30/07/2003; 14:50; p.7



8 Koller, Debusmann, Gabsdil, Striegnitz

room(kitchen) player(myself)

table(t1) apple(a1)

apple(a2) worm(w1)

red(a1) green(a2)

bowl(b1) bowl(b2)

has-location(t1, kitchen) has-location(b1, t1)

has-location(b2, kitchen) has-location(a1, b2)

has-location(a2, kitchen) has-detail(a2,w1)

has-location(myself, kitchen) . . .

Figure 5. A fragment of a world A-Box.

Figure 6. Graphical representation of the A-Box fragment.

These definitions allow us to add axioms to the T-Box which define
more complex concepts. One is the concept ‘here’, which contains the
room in which the player currently is – that is, every individual which
can be reached over a has-location role from a player object.

here
.
= ∃has-location−1.player

In the example in Fig. 3.2, ‘here’ denotes the singleton set {kitchen}:
It is the only individual to which an instance of ‘player’ is related via
the role ‘has-location’.

Another useful concept is ‘accessible’, which contains all individuals
which the player can manipulate.

accessible
.
= ∀has-location.here t
∀has-location.(accessible u open)

All objects in the same room as the player are accessible; if such an
object is an open container, its contents are also accessible. The T-Box
contains axioms that express that all instances of certain concepts (e.g.
‘table’, ‘bowl’, and ‘player’) are always ‘open’. This permits access to
the player’s inventory. In the simple scenario above, ‘accessible’ denotes
the set {myself, t1, a1, a2, b1, b2}. Finally, we can define the concept

kluwer_koller_allinone.tex; 30/07/2003; 14:50; p.8



Computational Linguistics and Theorem Proving in a Computer Game 9

‘visible’ in a similar way as ‘accessible’. The definition is a bit more
complex, including more individuals, and is intended to denote all
individuals that the player can “see” from his position in the game
world.

4. Parsing

In this and the next sections, we will now go through the modules that
were shown in Fig. 3 in more detail. First of all, we discuss the parsing
module.

The parsing module uses a parser for Topological Dependency Gram-
mar (TDG) to perform the syntactic analysis. TDG is a rather new
formalism based on dependency grammar. The formalism and some
underlying linguistic theory are described in (Duchier and Debusmann,
2001; Duchier, 2001); an implementation of the parser as a constraint
program is available freely on the web, and is described in (Duchier,
2002).

The output of the TDG parser is a syntactic dependency tree and a
topological dependency tree. The interesting structure for us is the syn-
tactic dependency tree, which represents the syntactic analysis of the
sentence. We do not talk about the topological tree here, which is used
to constrain word order. From the syntactic dependency tree, we com-
pute the desired semantic representation of the input sentence. This
semantic representation is passed on to the later stages of processing;
the dependency tree is discarded.

We begin by explaining the notion of a syntactic dependency tree,
and then how to transform it into a semantic representation. For this
transformation of the syntactic dependency tree to the semantic rep-
resentation, we have developed a syntax-semantics interface for TDG.
This is in fact the first syntax-semantics interface for the TDG grammar
formalism and has been developed specifically for the game engine.

4.1. Syntactic Dependency Trees

Fig. 7 shows an example of a syntactic dependency tree. As is character-
istic for dependency trees, the nodes of the tree (boxes) are associated
with words of the input sentence (dotted lines) and the edges are labeled
with syntactic relations. Essentially, an edge from node w to node
w′ labeled ρ expresses that w′ is a ρ-dependent of w. In Fig. 7, for
example, apple is the object-dependent of eat, and big and red are
adjective-dependents of apple.

The lexicon assigns to each word a set of lexical entries. In a depen-
dency tree, one such entry must be picked for each node. The lexical

kluwer_koller_allinone.tex; 30/07/2003; 14:50; p.9



10 Koller, Debusmann, Gabsdil, Striegnitz

����� ����� ��	�
 ���� ���������

����� ����� �����

 �!#"%$�&�'

Figure 7. A syntactic dependency tree.

eat =

[

in : {}
out : {(subj, ?), (obj, !)}

]

the =

[

in : {det}
out : {}

]

big, red =

[

in : {adj}
out : {}

]

apple =

[

in : {subj, obj}
out : {(det, ?), (adj, ∗)}

]

Figure 8. An Example Lexicon.

entry specifies constraints on the incoming and outgoing edges of the
node. Fig. 8 shows some examples of lexical entries for a grammar that
accepts imperative sentences.1 The lexical entry for eat specifies that
this node must not have any incoming edges (i.e. it must be the root of
the tree), that it must have exactly one (indicated by !) object, and may
have at most one (indicated by ?) subject. (This is for sentences like
“John, eat the apple!”.) The entry for apple says that it can have either
a subj or an obj role coming in; it does not require any outgoing edges,
but allows one determiner and arbitrarily many adjectives (marked with
∗). The, big, and red can fill these roles, and do not allow any outgoing
edges.

A syntactic dependency tree is well-formed if it is a tree and satisfies
all the constraints on incoming and outgoing edges specified by the
lexical entries. Given the lexicon in Fig. 8, the tree in Fig. 7 is a well-
formed syntactic dependency tree for the imperative sentence Eat the
big red apple.

1 Notice that these lexical entries only specify syntactic information. Information
concerning word order (topological dependency tree) and the syntax-semantics-
interface is left out for clarity.

kluwer_koller_allinone.tex; 30/07/2003; 14:50; p.10



Computational Linguistics and Theorem Proving in a Computer Game 11

�

����� ��� 	�
��� ����� ����� ������� �

� ���
�

�������

 �!#"%$ &(' "

Figure 9. A semantic dependency tree.

4.2. Semantic Dependency Trees

Given a lexicon like the one in Fig. 8, the TDG parser computes a
syntactic dependency tree for the input sentence. To obtain a semantic
representation for the sentence, we transform this syntactic tree into a
semantic dependency tree. Semantic dependency trees have edge labels
corresponding to thematic roles (e.g. agent and patient) and a subset
of the nodes of the syntactic tree. As an example, Fig. 9 shows the
semantic dependency tree corresponding to the syntactic dependency
tree of Fig. 7. The nodes are associated with semantic predicates.

The relation between the syntactic and semantic tree is specified
through special features in the lexical entries. For instance, in addition
to the features specified in Fig. 8, the entry for apple contains the
following features:

apple =

[

sem : ‘apple’
nmod : {adj}

]

This means that nodes corresponding to the word apple in the
syntactic tree will be associated with the semantic predicate apple in
the semantic tree. Furthermore, whenever the node corresponding to
the word apple in the syntactic tree has an outgoing adj edge, the
corresponding node in the semantic tree has an equivalent outgoing
nmod edge (for “noun modification”).

We compute the semantic dependency tree by going top-down through
the syntactic tree and mapping syntactic to semantic roles. Starting at
the root, we map the object role going out of the eat node to a patient

role, make a new node for apple in the semantic tree, and proceed there.
Now apple in the syntactic tree has three outgoing edges, two of

which are adj edges and are thus mapped to nmod edges in the seman-
tic tree according to the above lexical entry. However, the edge with
label det isn’t mapped to anything. This means the node for the in the
syntactic tree gets lost in the transformation.

kluwer_koller_allinone.tex; 30/07/2003; 14:50; p.11



12 Koller, Debusmann, Gabsdil, Striegnitz

For the purposes of reference resolution, we record some further
information whenever we hit a noun node, namely agreement, linear
position within the sentence, and (in)definiteness. The agreement in-
formation annotated on each noun is the unification of the agreement
features of the determiner, the adjectives and the noun; and we take a
noun to be (in)definite if it has a child over a det edge in the syntactic
tree that leads to an (in)definite determiner.

The end product of semantic construction is then the following en-
riched semantic tree corresponding to the syntactic tree in Fig. 7 (given
in record notation):

eat(patient:[apple(agr:[unit(gender:[neut]

number:[sing]

spec:[def])]

nmod:[’big-sized’ red]

pos:[5])])

5. Resolution of Referring Expressions

Records like this are valid semantic representations of the player’s in-
put, but still use descriptions (i.e., semantic representations of the NPs
in the input sentence) to refer to individuals in the world. The next
step is now to map these representations to constants in the knowledge
base, which can be used internally.

The resolution module is responsible for relating the user input
to the game world by mapping definite and indefinite noun phrases
and pronouns to individuals in the description logic knowledge bases.
We make use of RACER’s inference system to retrieve individuals
that match the player’s descriptions and employ a simple discourse
model which keeps track of available referents to resolve pronouns and
ambiguous definite NPs.

5.1. Definite and Indefinite Descriptions

The resolution of definite and indefinite descriptions is simplified in
the adventure setting by the fact that the communication is situated
in a sense: Players will typically only refer to objects which they can
“see” in the virtual environment, as modeled by the concept ‘visible’
mentioned above. Furthermore, they won’t try to refer to objects they
haven’t seen yet. We can therefore perform all RACER queries needed
for resolution on the player knowledge A-Box, avoiding unintended
ambiguities when the player’s expression would for example not refer
uniquely with respect to the true state of the world.

kluwer_koller_allinone.tex; 30/07/2003; 14:50; p.12



Computational Linguistics and Theorem Proving in a Computer Game 13

The resolution of a definite description means to find a unique entity
which, according to the player’s knowledge, is visible and matches the
description. To compute such an entity, we construct a DL concept
expression corresponding to the description and then send a query to
RACER asking for all instances of this concept. In the case of the apple,
for instance, we would retrieve all instances of the concept

apple u visible

from the player A-Box. More complicated definites are simply trans-
lated into more complex concepts. Our general strategy here is to push
as much of the work as possible into the DL inference problems and let
RACER work for us. For example, the apple with the worm translates
to the query

apple u (∃has-detail.worm) u visible

If such a query yields only one entity ({a2} for the apple with the worm
for the A-Box in Fig. 3.2), the reference has been unambiguous and
succeeds. It may, however, also be the case that more than one entity
is returned. For instance, the query for the apple would return the set
{a1,a2}. In such a situation, we try to filter out all potential referents
which are completely unsalient according to our discourse model (see
below). If this narrows down the candidate set to one we are done.
Otherwise we assume that the definite description wasn’t unique, and
return an error message to the user, indicating the ambiguity.

We resolve indefinite NPs, such as an apple, by querying the player
knowledge in the same way as described above for definites. Unlike in
the definite case, however, we do not require unique reference. Instead
we assume that the player did not have a particular object in mind and
arbitrarily choose one of the possible referents. The reply of the game
will automatically inform the player which one was chosen, as a unique
definite reference will be generated (see Section 7).

5.2. Pronouns and the Discourse Model

To resolve pronouns we make use of a discourse model (DM) inspired by
Strube’s (Strube, 1998) salience list approach, due to its simplicity. The
DM is a data structure that stores an ordered list of the most salient dis-
course entities according to their “information status” and text position
and provides methods for retrieving and inserting elements. Following
Strube, hearer-old discourse entities (introduced, e.g., by definites) are
ranked higher in the DM (i.e. are more available for reference) than
hearer-new discourse entities (such as referents of indefinites). Within
these categories, elements are sorted according to their position in the

kluwer_koller_allinone.tex; 30/07/2003; 14:50; p.13



14 Koller, Debusmann, Gabsdil, Striegnitz

currently processed sentence. For example, the ranking of discourse
entities for the sentence take a banana, the red apple, and the green

apple would look as follows:

[red apple ≺ green apple]old ≺ [banana]new

The DM is built incrementally and updated after each input sen-
tence. Updating removes all discourse entities from the DM which are
not realized in the current utterance. That is, there is an assumption
that referents mentioned in the previous utterance are much more
salient than older ones.

Given the current DM, pronouns are simply resolved to the most
salient entity that matches their agreement constraints. The restrictions
our grammar imposes on the player input (no embeddings, no reflexive
pronouns) allow us to analyze sentences with intra-sentential anaphora
like take the apple and eat it. The incremental construction of the DM
ensures that by the time we encounter the pronoun it, the apple has
already been processed and can serve as a possible antecedent.

6. Performing Actions

The output of the resolution module is a list of lists of instantiated
action descriptions – in the example above, [[take(patient:a2)]].
The outer list contains one entry for each reading of a (syntactically or
referentially) ambiguous input sentence. These entries are themselves
lists, which represent sequencing of actions which are to be performed
one after another (“take the apple and eat it”).

We will now explain how these actions are performed. We shall first
look at how a single action is executed, and then we shall explain how
an ambiguous list of action sequences is interpreted.

6.1. Performing a single action

An instantiated description of a single action, such as take(patient:a2),
is first of all matched against a list of action representations in a
database. Such action representations are STRIPS-like operators (Fikes
et al., 1972) that specify an action’s preconditions and effects, as in the
following example:

kluwer_koller_allinone.tex; 30/07/2003; 14:50; p.14



Computational Linguistics and Theorem Proving in a Computer Game 15

take(patient:X)

preconditions accessible(X), takeable(X),

not(inventory-object(X))

effects add: related(X myself has-location)

delete: related(X indiv-filler(X has-location)

has-location)

user add: related(X myself has-location)

knowledge delete: related(X indiv-filler(X has-location)

has-location)

The term X in the action representation is a variable that gets
bound to the actual argument that the resolution module computed.
In the example, X would be bound to the constant a2, and thus the
preconditions and effects of the operator will become ground terms as
well.

An instantiated action representation is applicable if all precondi-
tions are satisfied by the current world A-Box. These preconditions
assert that individuals belong to certain concepts, or that they are
linked by certain roles. In the example, we require that we can actually
touch the object, that it is small enough to be picked up, and that we
are not carrying it already. These questions can be answered by queries
to RACER.

If the preconditions are satisfied, the world A-Box is updated. First
the atoms in the “delete” branch of the “effects” slot are removed from
the A-Box, and then the atoms in the “add” branch are added to it.
In the example, we first delete the information that X is in its original
location, and then we add that it’s in our inventory.

Most interesting actions cannot be specified completely in advance
as they depend on the current state of the game. In these cases, we em-
bed special terms of the forms individual-filler(X R) and concept-
instance(C) in the action specification. These terms trigger further
RACER queries which provide the information for fully specifying the
effects of the action. The first term evaluates to the unique individual
to which X is connected via the role R; the second term evaluates to
the unique individual denoted by the concept C. The uniqueness as-
sumptions require careful synchronization of the world model and the
actions; if they are violated, the action fails.

Finally, the “user-knowledge” slot represents the information that
should be communicated to the user to indicate the action has been

kluwer_koller_allinone.tex; 30/07/2003; 14:50; p.15



16 Koller, Debusmann, Gabsdil, Striegnitz

performed successfully, and what has changed in the world as a result.
It is passed on to the generation module, where it serves as the input
for the content determination component.

6.2. Ambiguity and Sequences

If the input sentence was ambiguous (either syntactically or referen-
tially), the actions module tries to decide which of the readings the
user had in mind by trying each action sequence in parallel. If only
one sequence succeeds, it assumes that this is the command the player
had in mind, and commits to the end result of this sequence. If more
than one sequence is possible, it reports a true ambiguity; if none is, it
outputs an error message.

The first step towards the parallel tests is to instruct the theorem
prover to create an identical copy of the current world A-Box for each
reading. Then the actions in each reading are performed in sequence
on its own copy. As long as the single actions in each sequence succeed,
the effects of an action are first incorporated into the A-Box, and then
the preconditions of the next action in the sequence are evaluated with
respect to the updated A-Box. When an action fails, the entire reading
it belongs to is discarded.

7. Generation

The task of the generation component is to produce texts in reaction
to the user input to let the user know what the game world currently
looks like and how it was affected by the actions that were executed.
The input for this component is the instantiated user knowledge slot of
the action we just performed, and it computes textual output in three
steps, which we will discuss now.

7.1. Content Determination

In general, Content Determination is the task to decide what to say. In
our setting, this is very easy in some cases, as we can simply extract
the information from the user knowledge slot of the instantiated ac-
tion descriptions. More precisely, we verbalize just the “add” branch,
assuming that the player can infer the “delete” information from the
positive branch.

In the above case of the take the apple action, this branch contains
the following list, which can simply be passed on to the next module
without change:

kluwer_koller_allinone.tex; 30/07/2003; 14:50; p.16



Computational Linguistics and Theorem Proving in a Computer Game 17

[has-location(a2 myself)]

However, there are actions for which we do have to do some work
here. In particular, the user knowledge slots of some actions contain
literals of the form describe(X). Such literals are interpreted as an
instruction to Content Determination to generate a detailed description
of the individual X. They are useful for actions like look, which have no
effects on the world at all and only update the player’s knowledge, as
well as for actions like move, which moves the player into a new room
and should be followed by a description of the the new location. The
user knowledge slot of an instantiated look action might thus look as
follows:

add: [describe(a2)]

delete: nil

The Content Determination module now replaces the describe lit-
eral by a list of properties that a2 has. It queries RACER to return
all most specific concepts that a2 belongs to in the world A-Box, as
well as all role assertions in which a2 participates. It will then group
this information into different sentences, one for each concept and role;
if a2 is connected to more than one individual through the same role,
these target individuals are aggregated into a plural list. The result for
the running example would be as follows:

[content(goal:l1

sem: [l1#apple(a2) green(a2)])

content(goal:l2

sem: [l2#has-location(a2 kitchen)])

content(goal:l3

sem: [l3#has-detail(a2 w1)])]

The goal labels indicate the main message of each sentence and is
needed by the realization module.

7.2. Reference Generation

The output of Content Determination specifies what information we
want to communicate to the player. Unfortunately, it refers to in-
dividuals with names like a2 and w1, which are meaningful to the
theorem prover, but not to the player. The task of the Reference Gen-
eration module is to generate natural-language NPs that refer to these

kluwer_koller_allinone.tex; 30/07/2003; 14:50; p.17



18 Koller, Debusmann, Gabsdil, Striegnitz

individuals. It enriches the semantic lists that come from Content De-
termination with some further literals, which then form the input for
the Realization component below.

The reference generation task is quite simple for objects which are
new to the player. (Newness can be determined by querying whether the
individual is mentioned in the player A-Box.) In this case, we generate
an indefinite NP containing the type and (if it has one) colour of the
object, as in the bowl contains a red apple. We use RACER’s retrieval
functionality to extract this information from the world A-Box.

To refer to an object that the player already has encountered, we
construct a definite description that, given the player knowledge, uniquely
identifies this object. For this purpose we use a variant of Dale and
Reiter’s (Dale and Reiter, 1995) incremental algorithm, extended to
deal with relations between objects (Dale and Haddock, 1991). The
properties of the target referent are looked at in some predefined order
(e.g. first its type, then its colour, its location, parts it may have . . .).
A property is added to the description if at least one other object (a
distractor) is excluded from it because it doesn’t share this property.
This is done until the description uniquely identifies the target referent.

Once more, we use RACER queries to the player A-Box to compute
the properties of the target referent and the distracting instances, and
to check whether a given property is of a certain kind, e.g. colour. The
third message of the running example would e.g. be enriched as follows,
if the player knows about both apples, but not about the worm:

[content(goal:l3

sem:[l3#has-detail(a2,w1), indef(w1), worm(w1),

def(a2), apple(a2), green(a2)])]

The message now contains the information that an indefinite reference
to w1 should be built, referring to it as a worm. a2 should be referred
to by the definite description the green apple. The colour was added to
distinguish it from the other apple, a1, which is red.

7.3. Realization

Now all the information that has to be expressed is assembled and has
to be cast into a text. This is done sentence by sentence, using a tree-
adjoining grammar. Each elementary tree in the grammar is associated
with a non-empty list of semantic atoms, which can be matched to a
part of the semantics we want to verbalize. The goal is to select trees
that completely cover the input semantics and can be composed into a
valid TAG derivation of a sentence.

To solve this problem, we use the surface realization system de-
scribed in (Koller and Striegnitz, 2002). This system transforms the

kluwer_koller_allinone.tex; 30/07/2003; 14:50; p.18



Computational Linguistics and Theorem Proving in a Computer Game 19

problem of verbalizing a semantics according to a TAG grammar into
the problem of parsing a sentence according to an (abstract) depen-
dency grammar. It then uses the same parser that we use for parsing
the user input (see Section 4) for realization. Although realization is still
an NP-complete problem (Koller and Striegnitz, 2002), the realization
component performs rather well in the game engine.

8. Performance

All the mechanisms we have laid out so far would be not very useful for
the task of actually playing a game if they were so inefficient that the
system’s response time was more than a second or two. Fortunately, it
turns out that it works quite efficiently.

The first surprise in this respect is in the parsing and realization
components. Both solve NP-complete problems. But the constraint
programming techniques in the dependency parser seem to be very
good at keeping the average complexity down, and indeed both com-
ponents perform in polynomial time with the grammars and inputs we
use (Koller and Striegnitz, 2002).

Even more interesting, however, is the performance of the inference
system. The inefficiency of theorem proving systems is one of the main
bottlenecks in using inference in computational linguistics: RACER
solves EXPTIME-complete problems.

In our application, this is not really a problem. We have mostly
worked with a rather small knowledge base, which consists of 29 in-
stances. The T-Box defines 89 atomic concepts and 18 roles. On this
knowledge base, the vast majority of queries returns an answer after less
than 5 milliseconds, and only a handful of queries take more than 100
ms. In earlier versions of RACER, there were some queries that took
several seconds to compute. Since then, RACER has been optimized for
faster A-Box reasoning – in part specifically to improve the performance
of our game engine (Haarslev and Möller, 2002). For example, a new
mechanism for cloning A-Boxes has been added to the prover. The
slowest queries now return after about 500 milliseconds, and the average
total time spent on queries in each turn is 380ms with 40 queries per
turn on average.

On the modeling side, description logic of course affords us much
less expressive power than e.g. first-order logic, and it seems rather
improbable that one could use it to capture the meanings of natural
language in all its complexity. One obvious simplification we make is
that currently the world model only talks about the state of the world.
More complex events are not represented, and consequently, the player

kluwer_koller_allinone.tex; 30/07/2003; 14:50; p.19



20 Koller, Debusmann, Gabsdil, Striegnitz

cannot talk about previous actions, such as in the referring expression
the apple that I just picked up.

Furthermore, we can work around some of the limitations in expres-
sivity by splitting a reasoning task that cannot be formulated directly
as a RACER query into a sequence of queries, with later queries using
results from earlier ones. An example is the precondition of the rule for
“sit down” that says that the player must not already be on the object
X on which she wants to sit. We express this precondition as follows:

not(equal(individual-filler(myself has-location) X))

That is, we first retrieve the player’s location; then we stipulate it is not
identical to X in a second query. We could also write this precondition
as one single A-Box query, as follows:

myself ∈ ¬∃has-location−1.{X},

but this requires a more expressive logic that allows us to use nom-

inals such as {X} – concepts that denote precisely one individual.
Nominals aren’t supported by RACER because they would increase
the complexity of the logic to at least NEXPTIME-complete (Tobies,
2000).

Finally, some simplifications come directly from the text adventure
setting and don’t affect the user at all. One such simplification is
that the user’s input can only refer to individuals that are currently
“present” at the player’s location. This means that we generally have a
natural restriction on which instances RACER has to consider, which
helps the system scale to larger knowledge bases. Using a knowledge
base of 407 individuals, for example, the average total time spent on
queries in each turn is 1450ms with 58 queries per turn on average. This
is good enough for smooth gameplay. The biggest scalability problem
is the performance of the generation module in rooms that contain
many individuals: Our content determination is not (yet) able to deal
properly with such situations. Because it doesn’t have strategies for
grouping objects, it will generate “a tiger, an elephant, a zebra, a
giraffe, a donkey, ... , and a mouse” instead of e.g. the more economical
description “animals”.

9. Conclusions and Future Work

We have described an engine for text adventures which is based on
techniques from computational linguistics and theorem proving. The
input is analyzed using a dependency parser and a simple reference

kluwer_koller_allinone.tex; 30/07/2003; 14:50; p.20



Computational Linguistics and Theorem Proving in a Computer Game 21

resolution module, and the output is produced by a small generation
system. Information about the world and about the player’s knowledge
is represented in Description Logic knowledge bases, which are accessed
through the RACER inference system.

All language-processing components (except for the parser and the
surface realization module) use the inference infrastructure. The ma-
jority of queries to the inference system are A-Box queries that are
concerned with the extensions of concepts. This is a challenge for the
theorem prover because efficient A-Box reasoning is a comparatively
new development, and some optimizations are not available because our
A-Boxes change after each turn. However, our experience so far is that
the performance offered by RACER is good enough for fluent gameplay
on knowledge bases containing several hundred individuals. The lesson
we take from this is that the recent (and ongoing) progress in optimizing
inference engines for expressive description logics is beginning to make
them useful for applications in natural-language processing.

The language-processing modules that we have implemented so far
are all rather simplistic. We can get away with this, again because the
situatedness of the player in a virtual location naturally restricts the
player’s utterances. (The precise extent of this, of course, remains to
be evaluated.) With respect to the processing of the player’s input,
our system exceeds traditional text adventures by far. In particular,
the focus on the player’s location and surroundings can be exploited
to resolve ambiguities, which we have shown in more detail elsewhere
(Gabsdil et al., 2002).

Unlike the input, the output that our game generates is far away
from the quality of the commercial text adventures of the eighties,
which produced canned texts. A possible solution could be to combine
the full generation with a template based approach, to which the TAG-
based generation approach we take lends itself well. The identification
problem, which we have quoted as one of the main annoyances in clas-
sical games, is easy to resolve in practice so far. An interesting question
for the future is whether the grammars for parsing and generation can
be synchronized in order to guarantee that it does not occur.

More generally, we believe that the prototype we have described can
serve as a starting point for an almost unlimited range of interesting
extensions, ranging from adding a speech recognition and synthesis
system to the integration of a planner to perform trivial tasks for the
player. At the same time, it should be possible to replace the modules
one by one by more sophisticated ones doing the same tasks. We plan to
make our system available over the web shortly, and invite everybody
to contribute.

kluwer_koller_allinone.tex; 30/07/2003; 14:50; p.21



22 Koller, Debusmann, Gabsdil, Striegnitz

Acknowledgments. We are grateful first of all to our students, without
whose enthusiasm in implementing the system the game would have
remained an idea. Carlos Areces introduced us to the new world of
efficient DL provers, and Volker Haarslev and Ralf Möller were won-
derfully responsive in providing technical support for RACER. Special
thanks go to Gerd Fliedner, in a discussion with whom the idea for
employing techniques of computational linguistics in a text adventure
engine came up first.

References

Dale, R. and N. Haddock: 1991, ‘Generating Referring Expressions Involving
Relations’. In: Proceedings of the 5th EACL.

Dale, R. and E. Reiter: 1995, ‘Computational Interpretations of the Gricean Maxims
in the Generation of Referring Expressions’. Cognitive Science 18.

Duchier, D.: 2001, ‘Lexicalized Syntax and Topology for Non-projective Dependency
Grammar’. In: Eighth Meeting on Mathematics of Language. Helsinki/FIN.

Duchier, D.: 2002, ‘Configuration Of Labeled Trees Under Lexicalized Constraints
And Principles’. To appear in the Journal of Language and Computation.

Duchier, D. and R. Debusmann: 2001, ‘Topological Dependency Trees: A Constraint-
based Account of Linear Precedence’. In: Proceedings of the 39th ACL.

Dyte, D.: 1997, ‘A Bear’s Night Out’. Text adventure. Available at http://www.

covehurst.net/ddyte/abno/.
Fikes, R. E., P. E. Hart, and N. J. Nilsson: 1972, ‘Learning and Executing

Generalized Robot Plans’. Artificial Intelligence 3, 251–288.
Gabsdil, M., A. Koller, and K. Striegnitz: 2001, ‘Playing With Description Logic’.

In: Proceedings of the Second Workshop on Methods for Modalities (Application
Description). Amsterdam.

Gabsdil, M., A. Koller, and K. Striegnitz: 2002, ‘Natural Language and Inference in
a Computer Game’. In: Proceedings of COLING. Taipei.

Haarslev, V. and R. Möller: 2001, ‘RACER System Description’. In: Proceedings of
IJCAR-01.

Haarslev, V. and R. Möller: 2002, ‘Optimization Strategies for Instance Retrieval’.
In: Proc. of the International Workshop on Description Logics. Toulouse, France.

Horrocks, I., U. Sattler, and S. Tobies: 1999, ‘Practical Reasoning for Expressive
Description Logics’. In: H. Ganzinger, D. McAllester, and A. Voronkov (eds.):
Proceedings of LPAR’99. Springer-Verlag.

Koller, A. and K. Striegnitz: 2002, ‘Generation as Dependency Parsing’. In:
Proceedings of ACL-02. Philadelphia.

Mozart Consortium: 1999, ‘The Mozart Programming System web pages. http:
//www.mozart-oz.org/’.

Strube, M.: 1998, ‘Never Look Back: An Alternative to Centering’. In: COLING-
ACL.

Tobies, S.: 2000, ‘The Complexity of Reasoning with Cardinality Restrictions and
Nominals in Expressive Description Logics’. Journal of Artificial Intelligence
Research 12, 199–217.

Woods, W. and J. Schmolze: 1992, ‘The KL-ONE Family’. Computer and
Mathematics with Applications 23(2–5).

kluwer_koller_allinone.tex; 30/07/2003; 14:50; p.22


