
p ()
URL: http://www.elsevier.nl/locate/entcs/volume59.html 16 pages

Alice in the Land of Oz

An Interoperability-based Implementation of a
Functional Language on Top of a Relational Language

Leif Kornstaedt

kornstae@ps.uni-sb.de
Programming Systems Lab
Universität des Saarlandes
Saarbrücken, Germany

Abstract

This paper reports practical experience in implementing Alice, an extension of Stan-
dard ML, on top of an existing implementation of Oz. This approach yields a
high-quality implementation with little effort. The combination is an advanced
programming system for both Oz and Alice, which offers more than either language
on its own.

1 Introduction

The language Oz and its implementation Mozart [19] constitute an advanced
programming system, targeted at concurrent constraint programming and
open distributed computing. It is used in areas as diverse as combinato-
rial problem solving and scheduling, natural language processing (parsing, se-
mantics representation, and inference), multi-agent systems, and collaborative
tools.

However, Oz has the reputation of being an exotic language, preventing it
from being more widely used. In part, it owes this reputation to its syntax.
To make the achievements of Oz available to a larger community, we are
integrating its key features into a wide-spread functional language: In a first
step, we have extended Standard ML by data-flow-driven concurrency and
components with lazy dynamic linking. We call this language Alice.

This paper describes an implementation of Alice on top of Oz. This ap-
proach maximizes reuse of the existing implementation technology developed
for Oz. By making Alice-Oz-interoperability a major goal, we immediately
obtain the following benefits:

• It becomes straightforward to implement Alice’s primitives in Oz.

c©2001 Published by Elsevier Science B. V.

• Since Alice can import components implemented in Oz, all features of Oz’
runtime system are immediately available to Alice, such as constraints [15],
computation spaces for speculative computation [18], persistence, and dis-
tribution [7].

• Since Oz can import components implemented in Alice, users can evaluate
Alice while keeping their existing Oz codebase, implementing some compo-
nent or other in Alice, before maybe migrating entire projects.

• Since Alice is backward-compatible with SML, existing SML libraries can
be made directly accessible to Oz programmers, by compiling them with
the Alice compiler.

In short, the resulting system offers benefits to both the existing Oz community
and to existing SML programmers.

This paper is structured as follows: Section 2 presents the languages Oz
and Alice. Section 3 introduces some terminology and motivates our approach
to interoperability, before Section 4 gives a detailed account of how we put
this into practice. The implementation is described in Section 5. We dis-
cuss the pros and cons of our approach in Section 6 and conclude the paper
with an outlook on future work in Section 7. Appendix A provides example
applications of the interoperability interface.

2 The Cast: Oz and Alice

This section introduces the protagonists of our interoperability story: the
language Oz, the programming system Mozart which implements Oz, and the
language Alice.

2.1 The Language Oz

The language Oz is defined in terms of a small sub-language, Core Oz, and
a number of syntactic extensions which are defined by translation to Core
Oz [9]. Like Oz, Core Oz is a dynamically typed, concurrent, non-backtracking
relational language. Its syntax is summarized in Fig. 1, using the symbol i for
integers, a for atoms, and x, y, and z for variables. 1

Core Oz supports the following data types:

Transients are placeholders for unknown values. Transients provide for data-
flow synchronization: Threads block when they need the values of transients
for computations. Binding a transient replaces the transient by its value,
resuming all threads suspending on it.

One kind of transient is the logic variable, similar to Prolog’s. A read-
only view of a logic variable is a future. A by-need future carries a nullary
procedure which is applied when the future’s value is required, with the

1 We omit the constraint extensions for the purpose of this paper.

2

Fig. 1. Syntax of Core Oz.
Statements
s ::= s1 s2 sequential composition

| local x in s end local declaration
| x = !!y future extraction
| x = y unification
| x = t tell value
| x = y.z record selection
| {NewName x} name creation
| case x of t then s1 else s2 end conditional
| proc {x y1 . . . yn} s end abstraction (n ≥ 0)
| {x y1 . . . yn} application (n ≥ 0)
| thread s end thread creation
| {NewCell x y} cell creation
| {Exchange x y z} cell exchange
| {Raise x} exception raising
| try s1 catch x then s2 end exception handling

Terms
t ::= i integers

| l(f1 : x1 . . . fn : xn) records
l ::= x | a | true | false | unit literals
f ::= l | i features

effect of replacing the future by a new value computed by the procedure.
By-need futures are used to model lazy computations. 2

Atoms are internalized strings, like Lisp symbols.

Names represent structureless identities. An infinite number of new names
can be generated. The boolean values true and false are predefined names,
as is the value unit used for synchronization. Atoms and names are collec-
tively referred to as literals.

Records are structured values consisting of a label l and any number of
subtrees xi, accessible through the unique features fi of the record. The
label l serves to model algebraic data types. If y is a record of the form
l(f1 : x1 . . . fn : xn) and z = fi, then the record selection statement x = y.z
unifies x with xi. Records with integer features starting from 1 are called
tuples. Lists are defined as either the atom ‘nil’ or a binary tuple with
label ‘|’, whose second element is a list.

Procedures take any number of arguments. All arguments are input argu-
ments; output arguments are modelled by supplying a logic variable as input
argument and binding it in the procedure’s body. Procedures are first-class
data structures.

2 By-need futures are created by a primitive operation not depicted in the syntax.

3

Fig. 2. (a) A sample Oz component ‘Test’. (b) A sample Oz application using
‘Test’.

(a) (b)
functor
export fak: Fak
define

fun {Fak N}
if N == 0 then 1
else N * {Fak N - 1}
end

end
end

functor
import

Test at ’Test’
System at ’x-oz://system/System’
Application at ’x-oz://system/Application’

define
{System.show {Test.fak 7}}
{Application.exit 0}

end

Cells are the only stateful entities in Core Oz. A cell holds a reference to an
Oz value and supports an atomic exchange operation.

While Core Oz is a relational language, meaning that ‘=’ is unification, not
assignment, full Oz supports the functional and object-oriented programming
paradigms with dedicated syntax. This syntax is translated to Core Oz: Func-
tions, for instance, are procedures with an additional argument for output
(unification allows for bidirectional data flow). Due to the translation, func-
tions can be called as procedures and vice-versa.

Oz uses records as modules, without any dedicated syntax: Modules are
just a convention for structuring applications. Oz applications are deployed
as a number of components. A component is defined using the functor 3

construct (see Fig. 2(a) for an example). A component consists of an import
declaration, specifying the components to link to as well as their locations,
in the form of URLs; an export declaration, naming the values to export (as
a record); and a sequence of declarations and statements to execute in order
to build the export module. Components are translated to Core Oz data
structures; the exact translation is beyond the scope of this paper.

2.2 The Programming System Mozart

The Mozart System is an implementation of the language Oz. It is based on
a virtual machine, which in its original conception owes much to the War-
ren Abstract Machine [1] designed for Prolog. The Mozart Virtual Machine
has specifically been designed for Oz [11,10], and as such provides most of
the features required by Oz directly: The garbage-collected memory store is
able to represent all Oz data types directly, in particular including logic vari-
ables, futures, and constraints. Data-flow synchronization is implicitly taken
care of by the instructions. The runtime knows how to make data structures
and code persistent, and how to marshal them to other sites in a distributed

3 Oz calls components functors ; to avoid confusion with SML functors, we will only be
using the term component in this paper.

4

environment.

The runtime is started up with the URL of the application component
to execute on the command line. The machine first loads an initialization
component, which may only import built-in components. The initialization
component instantiates a component manager, which is responsible for lazy
loading and linking of components. When a component from a specific URL
is first imported, a by-need future is created that will eventually cause the
loading and execution of the corresponding component. Executing a compo-
nent causes it to compute and return a module. The mapping from URLs to
by-need futures resp. modules is maintained in a table internal to the compo-
nent manager. Next, the initialization component dynamically imports and
requests the application component. The actual application consists of the
side-effects caused by executing the application component (see Fig. 2(b) for
an example).

Mozart components are platform-independent: Currently, Mozart is avail-
able for a wide range of platforms, including Windows, Linux, and MacOS X.

Oz’ component system and component managers are described in [6].

2.3 The Languages Standard ML and Alice

Standard ML (SML) is a strict functional programming language. As such it is
based on the notion of evaluating expressions instead of executing sequences of
statements, uses call-by-value for function applications, and supports functions
as first-class values. SML is specifically designed for safety: Data structures
are classified into immutable and stateful data structures. Error handling is
facilitated by an exception handling mechanism. Run-time type errors are
prevented by its static polymorphic type system.

SML is factored into the core language and the module language. The
core language supports type inference, allowing concise programs with mini-
mal notational overhead for type annotations. SML has an advanced module
system with type abstraction and parameterized modules. Both the static and
dynamic semantics of SML are formally defined [14].

One peculiarity of SML is that all constructors and functions are unary, as
opposed to taking an arbitrary number of arguments. The common idiom is to
model multiple arguments by tupling, although a concise syntax for defining
curried functions is available.

Alice [2] is an extension of Standard ML targeted specifically at open
programming. We chose SML as the base language for Alice for the following
reasons:

• Due to its clean design, it is relatively easy to devise extensions that do not
break the soundness of the language. Its formal definition will eventually
allow us to model the extensions formally and prove their soundness.

• Standard ML is well-known and has a large user community. Programmers
fluent in SML will be able to learn Alice quickly.

5

Fig. 3. (a) A sample Alice component ‘Test’. (b) A sample Alice application using
‘Test’.

(a) (b)

structure Test = struct
fun fak 0 = 1

| fak n = n * fak (n - 1)
end

import structure Test from ”Test”
import structure TextIO

from ”x-alice:/lib/system/TextIO”
import structure OS

from ”x-alice:/lib/system/OS”
val _ = TextIO.print (Test.fak 7)
val _ = OS.Process.exit 0

• A lot of teaching material is available for SML. This material can serve as
a starting point to teach resp. learn Alice.

To compensate for the areas in which we find SML lacking, we integrated
extensions inspired by Oz:

• Concurrency comes naturally to Open Programming (modelling servers; re-
sponding to input in graphical user interfaces). Alice extends SML by data-
flow driven concurrency. Logic variables (which are better termed holes
in the context of functional languages) are powerful but error-prone: For
increased safety, Alice only provides futures and promises, which are non-
transparent logic variables.

• Dynamically linked components are mandatory for a truly open program-
ming system. SML’s language definition completely omits even the prac-
tical issues of how programs are to be organized into source files and how
to support separate compilation. The existing SML implementations ad-
dress these issues each in their own way, for instance Standard ML of New
Jersey [3] has its Compilation Manager [5]. None of these approaches pro-
vide dynamic linking in a satisfactory way. Alice extends Standard ML by
platform-independent components à la Oz. Fig. 3 shows Alice versions of
the Oz components depicted in Fig. 2. When the compiler encounters an
import announcement, it loads the referenced component to obtain its ex-
port signature. At run-time, the expected signature is checked against the
actual export signature upon dynamic linking, raising an exception upon
mismatch.

3 Interoperability: Terminology and Approach

The design of an interoperability interface has to take two levels into account:
the language level and the implementation level. At the language level, we
can distinguish between transparent interoperability (programmers do not see
whether the procedures or data they use are foreign) and non-transparent in-
teroperability (programmers will need to use different operations when dealing
with native vs. foreign procedures and data). At the implementation level, we

6

find direct interoperability (both languages operate on the same represen-
tations of procedures and data) and marshaling-based interoperability (each
language uses its own representations for procedures and data, which have to
be converted at the interoperation boundaries).

In practice we find all possible combinations:

Transparent/direct is how C# [12] and Visual Basic 7 interoperate in Mi-
crosoft’s .NET Common Language Runtime [13].

Transparent/marshaling-based is used by the .NET Common Language
Runtime to access platform-specific dynamically linked libraries (P/Invoke).

Non-transparent/direct interoperation takes place when using Java ob-
jects from MLj [4].

Non-transparent/marshaling-based is found in Mozart’s C/C++ foreign
function interface.

In the following, we will consider the case where one programming language
(termed the guest language) is to be implemented on top of an existing imple-
mentation of another language (the host language), sharing the host’s runtime
system, with bidirectional interoperability. Let’s consider the advantages and
drawbacks of the approaches outlined above.

Transparent vs. non-transparent. When interoperating non-transparent-
ly, special language extensions or libraries are required for dealing with
foreign procedures and data. Transparent interoperability makes the strong
presupposition of a mapping (ideally bijective, if bidirectional interoperation
is intended) which maps the natural way to express something in the guest
language to the natural way to express that something in the host language.

Marshaling vs. direct. Marshaling-based interoperability allows each lan-
guage to use the most efficient representation for its data and procedures,
but causes performance loss at the interoperation boundaries due to con-
version and copying of data and adaption of calling conventions. Direct
interoperability does not impose this overhead, but again is much harder
to design: When there is no equivalent for some data structure, then it
has to be modelled using the data structures of the host language, that is,
expressed indirectly.

3.1 Our Approach

In our case, the host language is Oz with its implementation Mozart, and the
guest language is Alice. The following considerations determined the design
of the interoperation interface:

• Since both Oz and Alice support higher-order data structures, it is most
natural to aim for bidirectional interoperability.

7

• Futures must be anticipated virtually anywhere in Alice data structures. 4

Thus, representation analysis techniques for SML are not applicable. This
excludes elaborate mappings, only leaving us with a very direct approach—
with the advantage of becoming compositional: This means that the direct
mapping from Alice to Oz will immediately imply how to call from Oz to
Alice.

Note that if Alice was the host programming system and Oz the guest lan-
guage, the situation would be different: Directly mapping a dynamically typed
language to a statically typed language is impossible in general—a modelling
approach would be mandatory.

4 Mapping Alice to Oz

We will now present the translation of the Alice core, module, and component
languages to Oz.

4.1 Core Language

Primitive data types. For many Alice core data types, there are Oz equiv-
alents: Alice integers and characters are mapped onto Oz (infinite-precision)
integers. Alice reals become Oz floats. Alice strings are represented as Oz
byte strings. Oz has been extended by a basic data type ‘word’ (with bitwise
operations), provided in C++ using Mozart’s foreign function interface.

Records. Tuples and records in Alice are very similar to one another:
Tuples are just syntactic convenience for records whose labels only consist of
digits, which when interpreted as integers are consecutive and start at one.
This maps nicely to Oz: Oz record features can be either integers or literals
(atoms or names). Similar to Alice, when a record’s features are consecutive
integers starting from one, the record is a tuple. Our mapping preserves
this similarity by mapping labels consisting only of digits to integers and all
other labels to the corresponding atoms. In contrast to Alice, Oz records are
equipped with an additional tag, called the label : We chose the label ‘#’,
which is used by the syntactic sugar for mixfix tuples in Oz. Thus, the Alice
tuple ‘(1, 4, 7)’ has the same representation as the corresponding Oz tuple
‘1#4#7’. The single exception to this is for the record that has no fields (that
is, the Alice tuple ‘()’ resp. record ‘{}’): The common idiom in Alice is to use
this value as argument of nullary functions, or as result of functions that only
perform a side-effect and do not return any interesting value. It is the only
value of the so-called unit type. Since we want to map idioms, it seems most
natural to represent this as the Oz name unit (which incidentally also is an
Oz record without fields).

4 Note that we cannot do whole-program analysis due to component-based programming.

8

Constructors. Alice constructors are in general mapped to Oz atoms
corresponding to the constructor’s identifier, except for exception constructors,
which have to be mapped to Oz names because they are generative. Some
constructors have a special translation: For instance, the Alice constructors
true and false are mapped to the Oz names true and false, to make boolean
expressions interoperate.

Constructed Values. Because conceptually all Alice constructors are
unary, we have introduced the notion of syntactic arity. When a constructor
is syntactically declared to take a record (or a tuple) as argument, we con-
sider this constructor to be n-ary, n being the number of fields in the record.
We map constructed values of n-ary constructors to Oz records, using the
mapped constructor as label instead of ‘#’. It follows that algebraic data
types are mapped to exactly their usual representation in Oz. Because we
specially translate the constructor ‘::’ to the atom ‘|’, for instance, the Alice
list ‘1::2::nil’ is mapped to the Oz list ‘1|2|nil’. For syntactic arity to work, we
needed to introduce a similar ML restriction as OCaml [16] does: Signature
matching is not allowed to change the syntactic arity of constructors.

State. One kind of constructor has a different translation, namely the
‘ref’ constructor which introduces state. This is translated to Oz cells, which
support equivalent operations. In Alice, it can be statically decided whether
a constructor is ‘ref’.

Functions. Like constructors, Alice functions are unary. We also intro-
duce the concept of a syntactic arity for functions: Function definitions use
pattern matching on their arguments. If any pattern explicitly deconstructs
the argument as a tuple, and no pattern binds the whole tuple to an iden-
tifier, then the function has the tuple’s arity. 5 It is not possible to preserve
syntactic arity as for constructors: This is why the conversion of calling con-
vention (unary vs. n-ary) has to be performed dynamically. n-ary functions
are mapped to n + 1-ary Oz procedures: The additional argument is used for
returning the result.

Note that due to the special handling of the empty tuple (unit), we have
a certain irregularity here: A nullary Alice function is translated to a binary
Oz procedure expecting the unit value as first argument, instead of a unary
Oz procedure taking only one output argument for the function’s result.

Futures. Promises, futures and by-needs are implemented as builtins on
top of the functionality of Oz and require no special care.

In terms of representation analysis, arity raising of n-ary constructors and
functions are the only optimizations performed. Note that in the present case,
our primary motivation for this is interoperability, not efficiency.

The type language part of the core language is subject to type erasure,

5 Note that we cannot use the function’s type to determine the arity, because this could
change the semantics when the argument is a by-need future: It would be requested sooner
than necessary.

9

meaning that its operational semantics are defined for programs stripped of
all type annotations [14, Section 6.1].

4.2 Module Language

Oz modules are represented as records. To interoperate smoothly, Alice struc-
tures are thus translated to records with atom features. Values are stored
under their identifier. Constructors that take arguments are represented as
two fields: The constructor’s identifier designates the constructor function,
expecting the constructor’s argument and returning the constructed value.
This reflects the fact that a constructor used as expression is the constructor
function. Its identifier prefixed with a quote (which is not a valid value identi-
fier in Alice) designates the constructor itself and is used to translate pattern
matching.

Structures reside in their own namespace, which is distinct from the names-
pace for values and constructors. To avoid capturing, their identifier is prefixed
with a dollar sign, again yielding an invalid Alice identifier.

Functors (functions computing modules from modules) are unary; multi-
ple arguments are passed as a structure containing structures. Functors are
translated into binary procedures taking a translated structure as input and
returning a new structure.

Like types, signatures are subject to type erasure.

4.3 Components

An Alice component can be considered as a functor, with the extension that its
argument and result may contain nested signatures and functors. 6 The com-
ponent functor explicitly identifies its argument modules by URLs to instruct
the component manager on how it is to be applied.

Because components are inspired by Oz, Alice components and Oz com-
ponents are so similar to one another that translation becomes trivial, with
some additional considerations about component signatures. Alice compo-
nents extend Oz components by signatures for imports and export. To import
an Alice component into Oz, no mechanism besides ignoring these signatures
is necessary.

Alice, being statically typed, can import a dynamically-typed Oz compo-
nent only if its export signature is known. When the Alice compiler encounters
an import directive, it loads the export signature from the referenced compiled
component. In the case of an Oz component, such an export signature will
be absent. Instead, the programmer can provide a signature in a file with the
same base name as the referenced component and the special extension ‘.asig’.
At run-time, this file is not needed.

6 In contrast to SML, Alice supports higher-order functors.

10

We extended the Oz component manager to be aware of component signa-
tures: When an Alice component imports another Alice component, it will at
link-time verify that their signatures match, as required by the Alice language
definition. In all other cases, signatures are ignored.

Under this translation, the example components in Fig. 2 and 3 become
interchangeable. Appendix A gives more involved examples of interoperation.

4.4 Libraries

Alice supports the Standard ML Basis Library [17] for compatibility with
SML. 7 Extensions adhere to the style of the Standard Basis. This makes
them feel more natural to SML programmers.

The extensions include in particular libraries for constraint programming,
providing finite domain constraints, finite set constraints, and encapsulated
search. Since these were already available in Oz through libraries (Oz’ con-
straint syntax is only syntactic sugar [9]), it was only a matter of recasting
these in a statically typed formulation [2].

5 Implementation

Both the implementation of the Alice compiler and the Alice runtime make
reuse of existing Mozart technology. This is detailed below.

5.1 Mozart Extensions for Alice

The Alice runtime is the Mozart System, with minimal extensions. These are
now part of the standard Mozart distribution.

Tupling and Detupling. For efficiency, two instructions have been added
to the Mozart Virtual Machine for run-time calling convention conversions.
The first applies a procedure with n > 1 arguments. A run-time check tests
whether the arity of the procedure and the call match, in which case the
call proceeds normally. Else, the procedure must be binary (that is, a unary
function): A tuple is constructed from the first n − 1 arguments and passed
as a single argument. The nth argument becomes the second argument and
is used to return the function’s result.

The second instruction works the other way round: If a procedure expect-
ing more than two arguments is called with only two arguments, the first must
be a tuple which is deconstructed to obtain the actual n− 1 input arguments.
The second argument becomes the nth argument and is used for output.

In principle, calling convention conversions could have been emulated in
Oz, which supports inspection of a procedure’s arity as well as an ‘apply’

7 Only parts of the library have been implemented yet, due to a lack of development
resources.

11

procedure taking a procedure and a list of arguments. However, this would
have been significantly more expensive.

Typed Components. Oz components already carry type fields for the
export signature of components and the expected import signatures of refer-
enced components. This type representation has been extended to represent
Alice signatures, which are much more expressive than the simple Oz types
intended for type falsification. 8

Link-time Type-checking. The Mozart component manager and static
linker are now parameterized over a type-checking procedure, to accomodate
for Alice link-time type checking.

5.2 The Alice Compiler

The Alice compiler generates Mozart components from Alice sources. To reuse
the bytecode generator from Mozart’s Oz compiler, we used an intermediate
representation of the latter as target for the Alice compiler. This intermediate
representation basically corresponds to alpha-renamed Core Oz programs in
which optimizations have been made explicit. This allowed us to directly plug
in the existing backend, which performs liveness analysis, instruction selection,
and register allocation.

Thus, the Alice compiler’s frontend is implemented in Alice, while its back-
end is implemented in Oz. The bootstrapped compiler integrates these two
using the Oz-Alice-interoperability described above. However, for bootstrap-
ping the compiler, this option is not available. We use Standard ML of New
Jersey [3] to compile the frontend, which is implemented using only the SML
subset of Alice. A dummy backend writes the abstract syntax tree to an
Oz pickle (a persistent representation of a data structure). An independent
Mozart process, in turn, reads this pickle and executes the real backend. The
bootstrapped version of Alice does not require Standard ML of New Jersey to
run: it is a pure Mozart application.

6 Discussion

The motivation behind our work was to provide an implementation of the
programming language Alice, but it can also be argued that with only minimal
extensions to Standard ML’s language definition and the Mozart runtime, we
made SML interoperate smoothly with Oz.

Our approach has some limitations however regarding the use of the guest
language Alice from the host language Oz:

• Alice uses the type-based mechanism of signature abstraction to implement
abstract data types. Whether some data is an instance of a concrete or an

8 Oz being a dynamically typed language, type verification is impossible. Type falsification
allows for early error diagnosis.

12

abstract type does not influence its representation. As a consequence, Oz
programs, being dynamically typed, will be able to break these abstraction
barriers: Alice abstract types are concrete as seen from Oz.

Curing this problem is not trivial due to the fundamentally different ap-
proach to data abstraction in both languages. Oz provides a special data
type called a chunk: A chunk is like a record which does not permit first-
class inspection of its features. Thus, data can be made inaccessible by
storing it in a chunk under a name hidden by lexical scoping. 9

• The Oz compiler does not implement dynamic calling convention conversion,
which would actually alter the defined semantics of Oz. The consequence is
that Oz programs have to use the exact arity chosen by the Alice compiler
when calling Alice functions. The arity can change as the implementation
of an Alice function changes, without even changing its signature. Oz pro-
grammers can account for this situation by performing calling convention
conversion at the language level, by explicitly testing the procedure’s arity.

A solution to this problem would consist of extending signature coercion
by the operational effect of always arity raising the functions contained in
the argument structure. Then, representations would always be predictable
at module interfaces.

• Alice and Oz currently use different exceptions for signaling similar error
conditions. In particular, it is impossible to catch the exceptions raised by
Oz primitives in Alice. We are thinking about adding an Alice exception
constructor for representing reflected Oz exceptions.

None of these limitations has ever been a serious problem in practice, although
the interoperation interface has already been used extensively.

In terms of sheer performance, the present implementation of Alice nearly
attains that of Oz, but of course cannot compete with high-performance ML
implementations. Nevertheless, we believe that in the application domains in
which Oz is used heavily, Alice has a definite advantage over SML.

7 Outlook

We intend to formalize the Alice extensions in the style of the Definition of
Standard ML. Work has started on the formalization of futures and laziness.

Already we have several projects running that build on the work in this
paper to exploit the potential of the combination of Oz and Alice. Oz li-
braries are being reshaped as Alice libraries, to give Alice programmers access
to Oz’ constraint systems and constraint solving facilities. Alice already ben-
efits from the development tools developed for Oz: A customized version of
the Oz Inspector, intended for interactive value inspection, uses Alice syn-
tax. The Oz Explorer, used for visualizing search trees, is available for Alice

9 Typically, Oz programs use classes instead, which build on this same mechanism [8].

13

constraint problems. The Oz Profiler collects statistics about Alice functions.
The usefulness of the Oz debugger for Alice programs is being investigated.
In the case of a new GTk-based graphical user interface library, development
for Alice has even overtaken that for Oz.

The ongoing work of extending Alice by run-time type representations
has enabled us to enrich the language with dynamically typed packages and
type-safe pickling. Also, the first type-safe distributed applications are now
running.

Acknowledgement

Many thanks go to Ulrike Becker-Kornstaedt, Thorsten Brunklaus, Tobias
Müller, and Christian Schulte for their comments on a previous version of this
paper. For the numerous discussions regarding the details of the translation
scheme, thanks go to Andreas Rossberg, implementor of the Alice compiler
frontend. Finally, I’d like to thank the anonymous referees for their comm-
ments.

References

[1] Aı̈t-Kaci, H., “Warren’s Abstract Machine, A Tutorial Reconstruction,” The
MIT Press, 1991.

[2] The Alice Project, Web Site at the Programming Systems Lab, Universität des
Saarlandes (2001).
URL http://www.ps.uni-sb.de/alice/

[3] Appel, A. and D. MacQueen, Standard ML of New Jersey, 3rd
International Symposium on Programming Language Implementation and Logic
Programming (1991), pp. 1–13.

[4] Benton, N. and A. Kennedy, Interlanguage working without tears: Blending
SML with Java, in: Proceedings of the fourth ACM SIGPLAN International
Conference on Functional Programming (ICFP’99), Paris, France, 1999, pp.
126–137.

[5] Blume, M. and A. Appel, Hierarchical modularity, ACM Transactions on
Programming Languages and Systems 21 (1999), pp. 813–847.

[6] Duchier, D., L. Kornstaedt, C. Schulte and G. Smolka, A higher-order module
discipline with separate compilation, dynamic linking, and pickling, Technical
report, Programming Systems Lab, DFKI and Universität des Saarlandes
(1998), draft.
URL http://www.ps.uni-sb.de/Papers/abstracts/modules-98.html

[7] Haridi, S., Efficient logic variables for distribution, ACM Transactions on
Programming Languages and Systems 21 (1999), pp. 569–626.

14

[8] Henz, M., “Objects in Oz,” Ph.D. thesis, Universität des Saarlandes,
Fachbereich Informatik, Saarbrücken, Germany (1997).

[9] Henz, M. and L. Kornstaedt, “The Oz Notation,” The Mozart Consortium
(2000).
URL http://www.mozart-oz.org/documentation/notation/

[10] Mehl, M., “The Oz Virtual Machine—Records, Transients, and Deep Guards,”
Ph.D. thesis, Technische Fakultät der Universität des Saarlandes (1999).

[11] Mehl, M., R. Scheidhauer and C. Schulte, An Abstract Machine for Oz, in:
Proceedings of PLILP’95, LNCS, Springer-Verlag, Utrecht, The Netherlands,
1995.

[12] Microsoft, Hewlett-Packard and Intel Corporation, C# language specification
(ECMA TC39/TG2), Proposed draft standard (2000).
URL http://msdn.microsoft.com/net/ecma/

[13] Microsoft, Hewlett-Packard and Intel Corporation, Common Language
Infrastructure (ECMA TC39/TG3), Proposed draft standard (2000).
URL http://msdn.microsoft.com/net/ecma/

[14] Milner, R., M. Tofte, R. Harper and D. MacQueen, “The Definition of Standard
ML (Revised),” The MIT Press, 1997.

[15] Müller, T., “Constraint Propagation in Mozart,” Doctoral dissertation,
Universität des Saarlandes, Saarbrücken, Germany (2001), in preparation.

[16] Projet Cristal, The Caml language, Web Site at INRIA, Paris, France.
URL http://caml.inria.fr/

[17] Reppy, J., “The Standard ML Basis Library,” Bell Labs, Lucent Technologies
(1997).
URL http://cm.bell-labs.com/cm/cs/what/smlnj/doc/basis/

[18] Schulte, C., “Programming Constraint Services,” Doctoral dissertation,
Universität des Saarlandes, Saarbrücken, Germany (2000).

[19] The Mozart Consortium, Mozart Oz 1.2.0, Web Site (2001).
URL http://www.mozart-oz.org/

A Examples

This section gives example uses of the interoperability interfaces. These are
taken from the implementation of parts of the Standard ML Basis Library in
Oz.

Figure A.1 shows an implementation ‘Vector.tabulate’. Alice vectors are
represented as Oz tuples with the label ’#[]’ (just to make them distinguishable
from Alice tuples). It implements the Alice function by means of an Oz
procedure and illustrates that the argument function can be called from Oz,

15

Fig. A.1. An implementation of ‘Vector.tabulate’ in Oz.
val tabulate: int × (int → ’a) → ’a vector
proc {VectorTabulate N F V}

try
V = {Tuple.make ’#[]’ N}

catch _ then
{Exception.raiseError alice(GeneralSize)}

end
{Record.forAllInd V fun {$ I} {F (I − 1)} end}

end

Fig. A.2. An Oz Implementation of the CommandLine module from the Standard
Basis Library.

structure CommandLine:
sig

val name: unit → string
val arguments: unit → string list

end
functor
import

Property(get)
Application(getArgs)

export
’CommandLine$’: CommandLine

define
CommandLine =
’#(

’name’:
fun {$ unit}
{ByteString.make {Property.get ’root.url’}}

end
’arguments’:

fun {$ unit}
{Map {Application.getArgs plain} ByteString.make}

end
)

end

and how to raise Alice exceptions. (The variable ‘GeneralSize’ is assumed to
be bound to the exception constructor available as ‘General.Size’.)

Figure A.2 implements the ‘CommandLine’ structure. The shown compo-
nent exports a structure, makes use of the fact that Oz lists are Alice lists,
and ensures that all strings (which can have various representations in Oz)
are represented uniformly as byte strings before passing them to Alice.

16

