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Abstract. We formally verify an abstract machine for a call-by-value
λ-calculus with de Bruijn terms, simple substitution, and small-step se-
mantics. We follow a stepwise refinement approach starting with a naive
stack machine with substitution. We then refine to a machine with clo-
sures, and finally to a machine with a heap providing structure sharing
for closures. We prove the correctness of the three refinement steps with
compositional small-step bottom-up simulations. There is an accompa-
nying Coq development verifying all results.

1 Introduction

The call-by-value λ-calculus is a minimal functional programming language that
can express recursive functions and inductive data types. Forster and Smolka [12]
employ the call-by-value λ-calculus as the basis for a constructive theory of
computation and formally verify elaborate programs such as step-indexed self-
interpreters. Dal Lago and Martini [8] show that Turing machines and the call-
by-value λ-calculus can simulate each other within a polynomial time overhead
(under a certain cost model). Landin’s SECD machine implements the call-by-
value λ-calculus with closures eliminating the need for substitution [14,18].

In this paper we consider the call-by-value λ-calculus L from [12]. L comes
with de Bruijn terms and simple substitution, and restricts β-reduction to terms
of the form (λs)(λt) that do not appear within abstractions. This is in contrast
to Plotkin’s call-by-value λ-calculus [18], which employs terms with named ar-
gument variables and substitution with renaming, and β-reduces terms of the
forms (λx.s)(λy.t) and (λx.s)y. L and Plotkin’s calculus agree for closed terms,
which suffice for functional computation.

The subject of this paper is the formal verification of an abstract machine
for L with closures and structure sharing. Our machine differs from the SECD
machine in that it operates on programs rather than terms, has two flat stacks
rather than one stack of frames, and provides structure sharing through a heap.
Our goal was to come up with a transparent machine design providing for an
elegant formal verification. We reach this goal with a stepwise refinement ap-
proach starting with a naive stack machine with programs and substitution. We
then refine to a machine with closures, and finally to a machine with a heap. As
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it comes to difficulty of verification, the refinement to the naive stack machine
is by far the most substantial.

We prove the correctness of the three refinement steps with compositional
small-step bottom-up simulations (i.e., L is above the machines and simulates
machine transitions). While L has only β-steps, our machines have β- and
τ -steps. L simulates a machine by following β-steps and ignoring τ -steps, and a
machine simulates a lower-level machine by following β-steps with β-steps and
τ -steps with τ -steps. To obtain bisimulations, we require progress conditions:
Reducibility must propagate downwards and machines must stop after finitely
many τ -steps.

The first verification step establishes the naive stack machine as a correct im-
plementation of L, the second verification step establishes the closure machine as
a correct implementation of the naive stack machine, and the third verification
step establishes the heap machine as a correct implementation of the closure ma-
chine. The second and third verification step are relatively straightforward since
they establish strict simulations (no silent steps). Strict simulations suffice since
the programs of the naive stack machine already provide the right granularity
for the structure sharing heap machine.

The entire development is formalised with the Coq proof assistant [22]. Coq’s
type theory provides an ideal foundation for the various inductive constructions
needed for the specification and verification of the machines. All reasoning is
naturally constructive. In the paper we don’t show Coq code but use math-
ematical notation and language throughout. While familiarity with construc-
tive type theory is helpful for reading the paper, technical knowledge of Coq is
not required. For the expert and the curious reader, the definitions and theo-
rems in the paper are hyperlinked with their formalisations in an HTML ren-
dering of the Coq development. The Coq formalisation is available at https:

//www.ps.uni-saarland.de/extras/cbvlcm2/.

Related Work

We review work concerning the verification of abstract machines for call-by-value
λ-calculus.

Plotkin [18] presents the first formalisation and verification of Landin’s SECD
machine [14]. He considers terms and closures with named variables and proves
that his machine computes normal forms of closed terms using a step-indexed
evaluation semantics for terms and top-down arguments (from λ-calculus to ma-
chine). He shows that failure of term evaluation for a given bound entails failure
of machine execution for this bound. Plotkin does not prove his substitution
lemmas. Ramsdell [19] reports on a formalisation of a Plotkin-style verification
of an SECD machine optimising tail calls using the Boyer-Moore theorem prover.
Ramsdell employs de Bruijn terms and de Bruijn substitution.

Felleisen and Friedman [10] study Plotkin’s call-by-value λ-calculus extended
with control operators like J and call/cc. They prove correctness properties re-
lating abstract machines, small-step reduction systems, and algebraic theories.
Like Plotkin, they use terms and closures with named variables.

https://www.ps.uni-saarland.de/extras/cbvlcm2/
https://www.ps.uni-saarland.de/extras/cbvlcm2/
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Rittri [20] seems to be the first who verifies an abstract machine for a call-
by-value λ-calculus using a small-step bottom up simulation. Rittri’s work is
also similar to ours in that he starts from a λ-calculus with simple substitution
reducing closed terms, and in that his machine uses a control and an argument
stack. Rittri gives detailed informal proofs using terms with named variables.
He does not consider a naive intermediate machine nor a heap realisation.

Hardin et al. [13] verify several abstract machines with respect to a fine-
grained λ-calculus with de Bruijn terms and explicit substitution primitives. Like
us, they simulate machine steps with reduction steps of the calculus and disallow
infinitely many consecutive silent steps. They consider the Krivine machine [7]
(call-by-name), the SECD machine [14,18] (call-by-value), Cardelli’s FAM [5]
(call-by-value), and the categorical abstract machine [6] (call-by-value) .

Accattoli et al. [1] verify several abstract machines for the linear substitution
calculus with explicit substitution primitives. They simulate machine steps with
reduction steps of the calculus and model internal steps of the calculus with a
structural congruence. They employ a global environment acting as heap. Among
other machines, they verify a simplified variant of the ZINC machine [15].

Leroy [17,16] verifies the Modern SECD machine for call-by-value λ-calculus
specified with de Bruijn terms and an environment-based evaluation semantics
in Coq. The modern SECD machine has programs and a single stack. Leroy’s
semantic setup is such that neither substitution nor small-step reduction of terms
have to be considered. He uses top-down arguments and compiles terms into
machine states. Using coinductive divergence predicates, Leroy shows that the
machine diverges on states obtained from diverging terms. Leroy’s proofs are
pleasantly straightforward.

Danvy and Nielsen [9] introduce the refocusing technique, a general proce-
dure transforming small-step reduction systems defined with evaluation contexts
into abstract machines operating on the same syntax. Biernacka and Danvy [4]
extend refocusing and obtain environment-based abstract machines. This yields
a framework where the derived machines are provably correct with respect to
small-step bisimulation. Biernacka et al. [3] formalise a generalisation of the
framework in Coq.

Swierstra [21] formally verifies the correctness of a Krivine machine for simply
typed λ-calculus in the dependently typed programming language Agda. Also
following Biernacka and Danvy [4], Swierstra does this by showing the correct-
ness of a Krivine-style evaluator for an iterative and environment-based head
reduction evaluator. This way substitution does not appear. Swierstra’s depen-
dently typed constructions also provide normalisation proofs for simply typed
λ-calculus. Swierstra’s approach will not work for untyped λ-calculus.

Contribution of the Paper

We see the main contribution of the paper in the principled formal verification
of a heap machine for a call-by-value λ-calculus using a small-step bottom-up
simulation. A small-step bottom-up verification is semantically more informative
than the usual evaluation-based top-down verification in that it maps every
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reachable machine state to a term of L. The entire Coq development consists
of 500 lines of proof plus 750 lines of specification. The decomposition of the
verification in three refinement steps provides for transparency and reusability.
The use of the naive stack machine as an intermediate machine appears to be
new. We also think that our simple formalisation of structure sharing with code
and heap is of interest.

We envision a formal proof showing that Turing machines can simulate L with
polynomial overhead in time and constant overhead in space (under a suitable
cost model) [11]. The verifications in this paper are one step into this direction.

Plan of the Paper

After some preliminaries fixing basic notions in Coq’s type theory, we specify the
call-by-value λ-calculus L and present our abstract framework for machines and
refinements. We then introduce programs and program substitution and prove
a substitution lemma. Next we specify and verify the naive stack machine for L.
This is the most complex refinement step as it comes to proofs. Next we specify
the closure machine and verify that it is an implementation of the naive stack
machine and hence of L (by compositionality). Finally, we define abstractions
for codes and heaps and verify that the heap machine is an implementation of
the closure machine and hence of L.

2 Preliminaries

Everything in this paper is carried out in Coq’s type theory and all reasoning
is constructive. We use the following inductive types: N providing the numbers
n ::= 0 | Sn, and O(X) providing the options ∅ and ◦x, and L(X) providing the
lists A ::= [] | x :: A.

For lists A,B : L(X) we use the functions length |A| : N, concatenation
A++B : L(X), map f@A : L(Y ) where f : X → Y , and lookup A[n] : O(X)
where (x :: A)[0] = ◦x, and (x :: A)[Sn] = A[n], and [][n] = ∅. When we define
functions that yield an option, we will omit equations that yield ∅ (e.g., the third
equation [][n] = ∅ defining lookup A[n] : O(X) will be omitted).

We write P for the universe of propositions and ⊥ for the proposition falsity.
A relation on X and Y is a predicate X → Y → P, and a relation on X is a
predicate X → X → P. A relation R is functional if y = y′ whenever Rxy and
Rxy′. A relation R on X and Y is computable if there is a function f : X → O(Y )
such that ∀x. (∃y. fx = ◦y ∧Rxy) ∨ (fx = ∅ ∧ ¬∃y. Rxy).

We use a recursive membership predicate x ∈ A such that (x ∈ []) = ⊥ and
(x ∈ y :: A) = (x=y ∨ x ∈ A).

We define an inductive predicate terR x identifying the terminating points of
a relation R on X:

∀x′. Rxx′ → terR x′

terR x

https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Prelims.html#functional
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Prelims.html#computable
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Prelims.html#terminatesOn
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If x is a terminating point of R, we say that R terminates on x or that x
terminates for R. We call a relation terminating if it terminates on every point.

Let R be a relation on X. The span of R is the inductive relation BR on X
defined as follows:

¬∃y. Rxy
xBR x

Rxx′ x′ BR y

xBR y

If xBR y, we say that y is a normal form of x for R.

Fact 1. 1. If R is functional, then BR is functional.

2. If R is functional and x has a normal form for R, then R terminates on x.

3. If R is computable, then every terminating point of R has a normal form
for R.

A reduction system is a structure consisting of a type X and a relation R
on X. Given a reduction system A = (X,R), we shall write A for the type X
and �A for the relation of A. We say that a reduces to b in A if a �A b.

3 Call-by-value Lambda Calculus L

The call-by-value λ-calculus we consider in this paper employs de Bruijn terms
with simple substitution and admits only abstractions as values.

We provide terms with an inductive type

s, t, u, v : Ter ::= n | st | λs (n : N)

and define a recursive function sku providing simple substitution:

kku := u (st)ku := (sku)(tku)

nku := n if n 6= k (λs)ku := λ(sSku )

We define an inductive reduction relation s � t on terms:

(λs)(λt) � s0λt

s � s′

st � s′t
t � t′

(λs)t � (λs)t′

Fact 2. s � t is functional and computable.

We define an inductive bound predicate s < k for terms:

n < k

n < k

s < k t < k

st < k

s < Sk

λs < k

Informally, s < k holds if every free variable of s is smaller than k. A term is
closed if s < 0. A term is open if it is not closed.

https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Prelims.html#terminatesOn
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Prelims.html#terminatesOn
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Prelims.html#terminatesOn
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Prelims.html#evaluates
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Prelims.html#evaluates
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Prelims.html#evaluates
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Prelims.html#evaluates_fun
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Prelims.html#evaluates_fun
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Prelims.html#normalizes_terminates
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Prelims.html#terminates_normalizes
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Prelims.html#ARS
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.L.html#term
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.L.html#subst
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.L.html#stepL
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.L.html#stepL_funct
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.L.html#boundL
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.L.html#closedL
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For closed terms, reduction in L agrees with reduction in the λ-calculus.
For open terms, reduction in L is ill-behaved since L is defined with simple
substitution. For instance, we have (λλ1)(λ1)(λ0) � (λλ1)(λ0) � λλ0. Note
that the second 1 in the initial term is not bound and refers to the De Bruijn
index 0. Thus the first reduction step is capturing.

We define stuck terms inductively:

stuck n

stuck s

stuck (st)

stuck t

stuck ((λs)t)

Fact 3. (Trichotomy) For every term s, exactly one of the following holds:
(1) s is reducible. (2) s is an abstraction. (3) s is stuck.

4 Machines and Refinements

We model machines as reduction systems. Recall that L is also a reduction
system. We relate a machine M with L with a relation a� s we call refinement.
If a� s holds, we say that a (a state of M) refines s (a term of L). Correctness
means that L can simulate steps of M such that refinement between states and
terms is preserved. Concretely, if a refines s and a reduces to a′ in M, then either
a′ still refines s or s reduces to some s′ in L such that a′ refines s′. Steps where
the refined term stays unchanged are called silent.

The general idea is now as follows. Given a term s, we compile s into a
refining state a. We then run the machine on a. If the machine terminates with
a normal form b of a, we decompile b into a term t such that b refines t and
conclude that t is a normal form of s. We require that the machine terminates
for every state refining a term that has a normal form.

Definition 4. A machine is a structure consisting of a type A of states and two
relations �τ and �β on A. When convenient, we consider a machine A as a
reduction system with the relation �A := �τ ∪ �β.

The letterX ranges over reduction systems and A andB range over machines.

Definition 5. A refinement A to X is a relation � on A and X such that:

1. If a� x and x is reducible with �X , then a is reducible with �A.

2. If a� x and a �τ a′, then a′ � x.

3. If a� x and a �β a′, then there exists x′ such that a′ � x′ and x � x′.
4. If a� x, then a terminates for �τ .

We say that a refines x if a� x.

Figure 1 illustrates refinements with a diagram. Transitions in X appear in
the upper line and transitions in A appear in the lower line. The dotted lines rep-
resent the refinement relation. Note that conditions (2) and (3) of Definition 5
ensure that refinements are bottom up simulations (i.e., X can simulate A).
Conditions (1) and (4) are progress conditions. They suffice to ensure that re-
finements also act as top-down simulations (i.e. A can simulate X), given mild
assumptions that are fulfilled by L and all our machines.

https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.L.html#stuck
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.L.html#L_trichotomy
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Refinements.html#Machine
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Refinements.html#Machine
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Refinements.html#M_A
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Refinements.html#M_rel
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Refinements.html#M_rel
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Refinements.html#M_rel
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Refinements.html#refinement_ARS
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Refinements.html#refinement_ARS
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x � x′

a �τ · · · �τ a′′ �β a′

Fig. 1. Refinement diagram

Fact 6. (Correctness) Let � be a refinement A to X and a� x. Then:

1. If aBA a′, there exists x′ such that a′ � x′ and xBX x′.

2. If aBA a′, a′ � x′, and � is functional, then xBX x′.

3. If x terminates for �X , then a terminates for �A.

4. If x terminates for �X and �A is computable, then there exists a′ such that
aBA a′.

Proof. (1) follows by induction on a BA x. (2) follows with (1) and Fact 1. (3)
follows by induction on the termination of x for �X and the termination of a
for �τ . (4) follows by induction on the termination of x. ut

We remark that the concrete reduction systems we will consider in this paper
are all functional and computable. Moreover, all concrete refinements will be
functional and, except for the heap machine, also be computable.

A refinement may be seen as the combination of an invariant and a de-
compilation function. We speak of an invariant since the fact that a state is a
refinement of a term is preserved by the reduction steps of the machine.

Under mild assumptions fulfilled in our setting, the inverse of a refinement is
a stuttering bisimulation [2]. The following fact asserts the necessary top-down
simulation.

Fact 7. Let � be a refinement A to X where �X is functional and �τ is com-
putable.

1. If a� x �X x′, then there exist a′ and a′′ such that aBτ a′′ �β a′ � x′.

2. If a� xBX x′, then there exists a′ such that aBA a′ � x′.

Proof. (1) follows with Fact 1. (2) follows by induction on xBX x′ using (1). ut

We will also refine machines with machines and rely on a composition theorem
that combines two refinements A to B and B to X to a refinement A to X. We
define refinement of machines with strict simulation.

Definition 8. A refinement A to B is a relation � on A and B such that:

1. If a� b and b is reducible with �B, then a is reducible with �A.

2. If a� b and a �τ a′, then there exists b′ such that a′ � b′ and b �τ b′.
3. If a� b and a �β a′, then there exists b′ such that a′ � b′ and b �β b′.

Fact 9.(Composition) Let�1 be a refinement A to B and�2 be a refinement
B to X. Then the composition λac. ∃b. a�1 b∧ b�2 c is a refinement A to X.

https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Refinements.html#upSim
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Refinements.html#upSim
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Refinements.html#rightValue
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Refinements.html#termination_propagates
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Refinements.html#evaluation_propagates
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Refinements.html#one_downSim
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Refinements.html#one_downSim
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Refinements.html#downSim
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Refinements.html#refinement_M
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Refinements.html#refinement_M
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Refinements.html#composition


8 Fabian Kunze, Gert Smolka, Yannick Forster

5 Programs

The machines we will consider execute programs. Programs may be seen as lists
of commands to be executed one after the other. Every term can be compiled into
a program, and programs that are images of terms can be decompiled. There are
commands for variables, abstractions, and applications. We represent programs
with a tree-recursive inductive type so that the command for abstractions can
nest programs:

P,Q,R : Pro ::= ret | var n;P | lamQ;P | app;P (n : N)

We define a tail recursive compilation function γ : Ter → Pro → Pro trans-
lating terms into programs:

γnP := var n;P γ(λs)P := lam(γsret);P

γ(st)P := γs(γt(app;P ))

The second argument of γ may be understood as a continuation.
We also define a decompilation function δPA of type Pro → L(Ter) →

O(L(Ter)) translating programs into terms. The function executes the program
over a stack of terms. The optional result acknowledges the fact that not every
program represents a term. We write A and B for lists of terms. Here are the
equations defining the decompilation function:

δ retA := ◦A

δ(var n;P )A := δP (n :: A)

δ(lamQ;P )A := δP (λs :: A) if δ Q [] = ◦[s]

δ(app;P )A := δP (st :: A′) if A = t :: s :: A′

Decompilation inverts compilation:

Fact 10. δ(γsP )A = δP (s :: A).

Fact 11. Let δPA = ◦A′. Then δP (A++A′′) = ◦(A′++A′′).

We define a predicate P � s := δP [] = ◦[s] read as P represents s.
The naive stack machine will use a substitution operation P kR for programs:

ret kR := ret (lamQ;P )kR := lam(QSk
R );P kR

(var k;P )kR := lamR;P kR (app;P )kR := app;P kR

(var n;P )kR := var n;P kR if n 6= k

Note the second equation for the variable command that replaces a variable
command with a lambda command. The important thing to remember here is
the fact that the program R is inserted as the body of a lambda command.

For the verification of the naive stack machine we need a substitution lemma
relating term substitution with program substitution. The lemma we need ap-
pears as Corollary 13 below. We prove the fact with a generalised version that
can be shown by induction on programs. We use the notation Aku := (λs.sku)@A.

https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Programs.html#Pro
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Programs.html#Pro
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Programs.html#gamma
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Programs.html#delta
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Programs.html#delta
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Programs.html#decompile_correct'
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Programs.html#decompile_append
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Programs.html#substP
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ret :: T, V �τ T, V

(lamQ;P ) :: T, V �τ P :: T, Q :: V

(app;P ) :: T, R :: Q :: V �β Q0
R :: P :: T, V

Fig. 2. Reduction rules of the naive stack machine

Lemma 12.(Substitution) Let R� t and δQA = ◦B. Then δ QkRA
k
λt = ◦Bkλt.

Corollary 13. (Substitution) If P � s and Q� t, then P kQ � skλt.

We define a bound predicate P < k for programs that is analogous to the
bound predicate for terms and say that a program P is closed if P < 0:

ret < k

n < k P < k

var n;P < k

Q < Sk P < k

lamQ;P < k

P < k

app;P < k

Fact 14. If s < k and P < k, then γsP < k.

It follows that γsP is closed whenever s and P are closed.

6 Naive Stack Machine

The naive stack machine executes programs using two stacks of programs called
control stack and argument stack. The control stack holds the programs to be
executed, and the argument stack holds the programs computed so far. The
machine executes the first command of the first program on the control stack
until the control stack is empty or execution of a command fails.

The states of the naive stack machine are pairs

(T, V ) : L(Pro)× L(Pro)

consisting of two lists T and V representing the control stack and the argument
stack. We use the letters T and V since we think of the items on T as tasks
and the items on V as values. The reduction rules of the naive stack machine
appear in Figure 2. The parentheses for states are omitted for readability. We
will refer to the rules as return rule, lambda rule, and application rule. The
return rule removes the trivial program from the control stack. The lambda rule
pushes a program representing an abstraction on the argument stack. Note that
the programs on the control stack are executed as they are. This is contrast
to the programs on the argument stack that represent bodies of abstractions.
The application rule takes two programs from the argument stack and pushes
an instantiated program obtained by β-reduction on the control stack. This way
control is passed from the calling program to the called program. There is no
reduction rule for the variable command since we will only consider states that
represent closed terms.

https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Programs.html#substP_rep_subst'
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Programs.html#boundP
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Programs.html#closedP
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Programs.html#bound_compile
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.M_stack.html#stateS
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.M_stack.html#stepS
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Fact 15. The relations �τ , �β, and �τ ∪ �β are functional and computable.
Moreover, the relations �τ and �β are terminating.

We decompile machine states by executing the task stack on the stack of
terms obtained by decompiling the programs on the value stack. To this pur-
pose we define two decompilation functions. The decompilation function δV for
argument stacks has type L(Pro)→ O(L(Ter)) and satisfies the equations

δ[] := ◦[]

δ(P :: V ) := ◦(λs :: A) if P � s and δV = ◦A

Note that the second equation turns the term s obtained from a program on the
argument stack into the abstraction λs. This accounts for the fact that programs
on the argument stack represent bodies of abstractions. The decompilation func-
tion δTA for control stacks has type L(Pro)→ L(Ter)→ O(L(Ter)) and satisfies
the equations

δ[]A := ◦A

δ(P :: T )A := δTA′ if δPA = ◦A′

We now define the refinement relation between states of the naive stack
machine and terms as follows:

(T, V )� s := ∃A. δV = ◦A ∧ δTA = ◦[s]

We will show that (T, V )� s is in fact a refinement.

Fact 16. (T, V )� s is functional and computable.

Fact 17. (τ-Simulation) If (T, V )� s and T, V �τ T ′, V ′, then (T ′, V ′)� s.

Proof. We prove the claim for the second τ -rule, the proof for the first τ -rule is
similar. Let lamQ;P :: T, V �τ P :: T, Q :: V . We have

δ(lamQ;P :: T )(δV ) = δT (δ(lamQ;P )(δV ))

= δT (δP (λs :: δV )) Q� s

= δ(P :: T )(δ(Q :: V )) ut

Note that the equational part of the proof nests optional results to avoid
cluttering with side conditions and auxiliary names.

Proving that L can simulate β-steps of the naive stack machine takes effort.

Fact 18. If δV = ◦A, then every term in A is an abstraction.

Fact 19. δ(app;P :: T )(t :: s :: A) = δ(P :: T )(st :: A).

Fact 20. δ(P :: T )A = δT (s :: A) if P � s.

Proof. Follows with Fact 11. ut

https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.M_stack.html#tau_functional
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.M_stack.html#deltaV
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.M_stack.html#deltaV
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.M_stack.html#deltaT
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.M_stack.html#deltaT
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.M_stack.html#repsSL
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.M_stack.html#repsSL_functional
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.M_stack.html#tau_simulation
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.M_stack.html#decompileArg_abstractions
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Lemma 21. (Substitution) δ(Q0
R :: T )A = δT (s0λt :: A) if Q� s and R� t.

Proof. By Corollary 13 we have Q0
R � s0λt. The claim follows with Fact 20. ut

We also need a special reduction relation A � A′ for term lists:

s � s′ ∀t ∈ A. t is an abstraction

s :: A � s′ :: A

A � A′

s :: A � s :: A′

Informally, A � A′ holds if A′ can be obtained from A by reducing the term in
A that is only followed by abstractions.

Lemma 22. Let A � A′ and δPA = ◦B. Then ∃B′. B � B′ ∧ δPA′ = ◦B′.

Proof. By induction on P . We consider the case P = app;P .
Let δ(app;P )(t :: s :: A) = ◦B and t :: s :: A � t′ :: s′ :: A′. Then

δP (st :: A) = ◦B and st :: A � s′t′ :: A′ (there are three cases: (1) t = t′,
s = s′, and A � A′; (2) t = t′, s > s′, A = A′, and A contains only abstrac-
tions; (3) t � t′, s :: A = s′ :: A′, and s :: A contains only abstractions). By the
inductive hypothesis we have B � B′ and δP (s′t′ :: A′) = ◦B′ for some B′. Thus
δ(app;P )(t′ :: s′ :: A′) = ◦B′. ut

Fact 23. (β-Simulation)
If (T, V )� s and T, V �β T ′, V ′, then ∃s′. (T ′, V ′)� s′ ∧ s � s′.

Proof. Let app;P :: T, R :: Q :: V �β Q0
R :: P :: T, V . Moreover, let R � t,

Q� u, and δV = ◦A. We have:

◦[s] = δ(app;P :: T )(δ(R :: Q :: V ))

= δ(app;P :: T )(λt :: λu :: A)

= δ(P :: T )((λu)(λt) :: A) Fact 19

� δ(P :: T )(u0λt :: A) Lemma 22 and Fact 18

= δ(Q0
R :: P :: T )A Lemma 21

= ◦[s′] for some s′

Note that s′ exists since � preserves the length of a list. We now have s � s′ by
the definition of � and (Q0

R :: P :: T, V )� s′, which concludes the proof. ut

It remains to show that states are reducible if they refine reducible terms.
For this purpose, we define stuck term lists:

stuck s ∀t ∈ A. t is an abstraction

stuck (s :: A)

stuck A

stuck (s :: A)

Note that s is stuck iff [s] is stuck.

Lemma 24. Let A be stuck and δPA = ◦B. Then B is stuck.

https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.M_stack.html#substP_rep_subst
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.M_stack.html#stepLs
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.M_stack.html#stepLs_decomp
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.M_stack.html#beta_simulation
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.M_stack.html#stuckLs
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.M_stack.html#stuck_decompile
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Lemma 25. Let A be stuck and δTA = ◦B. Then B is stuck.

Fact 26.(Trichotomy) Let T, V � s. Then exactly one of the following holds:

1. (T, V ) is reducible.

2. (T, V ) = ([], [P ]) and P � s′ with s = λs′ for some P, s′.

3. T = var x;P :: T ′ for some x, P, T ′ and s is stuck.

Proof. Let δV = ◦A and δTA = ◦[s], and s be reducible. By Fact 18 we know
that A contains only abstractions. Case analysis on T .

T = []. Then A = [s] and the second case holds by definition of δ.

T = ret :: T ′. Then (T, V ) is reducible.

T = var n;P :: T ′. We have

◦[s] = δ(var n;P :: T ′)A = δT ′(δ(var n;P )A) = δT ′(δP (n :: A))

Since n :: A is stuck, we know by Lemmas 24 and 25 that [s] is stuck. Thus the
third case holds.

T = lamQ;P :: T ′. Then (T, V ) is reducible.

T = app;P :: T ′. Then ◦[s] = δ(app;P :: T ′)A = δT ′(δ(app;P )A) and hence
A = t :: s :: A′. Thus V = R :: Q :: V ′. Thus (T, V ) is reducible. ut

Corollary 27. (Progress) If T, V � s and s is reducible, then (T, V ) is re-
ducible.

Proof. Follows from Fact 26 using Fact 3. ut

Theorem 28. (Naive Stack Machine to L) The relation

(T, V )� s := ∃A. δV = ◦A ∧ δTA = ◦[s]

is a functional and computable refinement. Moreover, ([γ s ret], [])� s holds for
every term s.

Proof. The first claim follows with Facts 16, 27, 17, 23, and 15. The second claim
follows with Fact 10. ut

7 Closures

A closure is a pair consisting of a program and an environment. An environment
is a list of closures representing a delayed substitution. With closures we can
refine the naive stack machine so that no substitution operation is needed.

e : Clo ::= P/E closure

E,F, T, V : L(Clo) environment

https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.M_stack.html#stuck_decompileTask
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.M_stack.html#stateS_trichotomy
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.M_stack.html#reducible_red
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.M_stack.html#stack_L_refinement
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.M_stack.html#compile_stack_L
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Closures.html#Clo
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Closures.html#Clo
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(ret/E) :: T, V �τ T, V

(varn;P/E) :: T, V �τ (P/E) :: T, e :: V if E[n] = ◦e

(lamQ;P/E) :: T, V �τ (P/E) :: T, (Q/E) :: V

(app;P/E) :: T, e :: (Q/F ) :: V �β (Q/e :: F ) :: (P/E) :: T, V

Fig. 3. Reduction rules of the closure machine

For the decompilation of closures into plain programs we define a parallel
substitution operation P kW for programs (W ranges over lists of programs):

ret kW := ret

(app;P )kW := app;P kW

(lamQ;P )kW := lam(QSk
W );P kW

(var n;P )kW := if n ≥ k ∧W [n− k] = ◦Q then lamQ;P kW else var n;P kW

We will use the notation W< 1 := ∀P ∈W. P < 1.

Fact 29. (Parallel Substitution)

1. P k[] = P .

2. If P < k and k ≤ k′, then P < k′.

3. If P < k, then P kQ = P .

4. If W< 1, then P kQ::W = (P Sk
W )kQ.

5. If W< 1 and P < |W |+ k, then P kW < k.

Note that Fact 29 (4) relates parallel substitution to single substitution .
We define a function δ1e of type Clo→ Pro translating closures into programs:

δ1(P/E) := P 1
δ1@E

We also define an inductive bound predicate e < 1 for closures:

P < S|E| E < 1

P/E < 1
E < 1 := ∀e ∈ E. e < 1

Note the recursion through environments via the map function and via the mem-
bership predicate in the last two definitions.

Fact 30. If e < 1, then δ1e < 1.

8 Closure Machine

We now refine the naive stack machine by replacing all programs on the control
stack and the argument stack with closures, eliminating program substitution.

https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Closures.html#substPl
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Closures.html#substPl
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Closures.html#substPl_nil
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Closures.html#substPl_nil
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Closures.html#boundP_mono
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Closures.html#boundP_substP
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Closures.html#substPl_cons
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Closures.html#substP_boundP
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Closures.html#deltaC
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Closures.html#deltaC
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Closures.html#boundC
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Closures.html#translateC_boundP
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States of the closure machine are pairs

(T, V ) : L(Clo)× L(Clo)

consisting of a control stack T and an argument stack V .
The reduction rules of the closure machine appear in Figure 3. The variable

rule (second τ -rule) is new. It applies if the environment provides a closure for
the variable. In this case the closure is pushed on the argument stack. We see
this as delayed substitution of the variable. The variable rule will be simulated
with the lambda rule of the naive stack machine.

The application rule (β-rule) takes two closures e andQ/F from the argument
stack and pushes the closure Q/e :: F on the control stack, which represents the
result of β-reducing the abstraction represented by Q/F with the argument e.

We will show that the closure machine implements the naive stack machine
correctly provided there are no free variables.

There is the complication that the closures on the control stack must be
closed while the closures on the argument stack are allowed to have the free
variable 0 representing the argument to be supplied by the application rule.

We define closed states of the closure machine as follows:

P/E < 0 := P < |E| ∧ E < 1

T < 0 := ∀e ∈ T. e < 0

closed (T, V ) := T < 0 ∧ V < 1

We define a function δ0e of type Clo→ Pro for decompiling closures on the task
stack:

δ0(P/E) := P 0
δ1@E

We can now define the refinement relation between states of the closure
machine and states of the naive stack machine:

(T, V )� σ := closed (T, V ) ∧ (δ0@T, δ1@V ) = σ

We show that (T, V )� σ is a refinement.

Fact 31. (T, V )� σ is functional and computable.

Fact 32. (Progress) Let (δ0@T, δ1@V ) be reducible. Then (T, V ) is reducible.

Fact 33. Let (T, V ) be closed and (T, V ) � (T ′, V ′). Then (T ′, V ′) is closed.

Fact 34. (τ-Simulation) Let (T, V ) �τ (T ′, V ′).
Then (δ0@T, δ1@V ) �τ (δ0@T ′, δ1@V ′).

Fact 35. (β-Simulation) Let (T, V ) be closed and (T, V ) �β (T ′, V ′).
Then (δ0@T, δ1@V ) �β (δ0@T ′, δ1@V ′).

Proof. Follows with Facts 29 (4) and 30. ut

https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.M_clos.html#stateC
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.M_clos.html#stepC
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.M_clos.html#closedSC
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.M_clos.html#closedSC
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Closures.html#deltaC
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.M_clos.html#repsCS
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.M_clos.html#repsCS_functional
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.M_clos.html#reducibility
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.M_clos.html#closedSC_preserved
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.M_clos.html#tau_simulation
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.M_clos.html#beta_simulation
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Theorem 36. (Closure Machine to Naive Stack Machine) The relation

(T, V )� σ := closed (T, V ) ∧ (δ0@T, δ1@V ) = σ

is a functional and computable refinement. Moreover, ([P/[]], [])� ([P ], []) holds
for every closed program P .

Proof. The first claim follows with Facts 31 32, 33, 34, and 35. The second claim
follows with Fact 29 (1). ut

Note that Theorems 28 and 36 Facts 9 and 14 yield a refinement to L.

9 Codes

If a state is reachable from an initial state in the closure machine, all its programs
are subprograms of programs in the initial state. We can thus represent programs
as addresses of a fixed code, providing structure sharing for programs.

A code represents a program such that the commands and subprograms of
the program can be accessed through addresses. We represent codes abstractly
with a type Code, a type PA of program addresses, and two functions # and ϕ
as follows:

C : Code code

p, q, r : PA program address

# : PA→ PA

Com := ret | var n | lam p | app command

ϕ : Code→ PA→ O(Com)

Note that commands are obtained with a nonrecursive inductive type Com. The
function # increments a program address, and the ϕ yields the command for
a valid program address. We will use the notation C[p] := ϕCp. We fix the
semantics of codes with a relation p �C P relating program addresses with
programs:

C[p] = ◦ret

p�C ret

C[p] = ◦var n #p�C P

p�C var n;P

C[p] = ◦lam q q �C Q #p�C P

p�C lamQ;P

C[p] = ◦app #p�C P

p�C app;P

Fact 37. The relation p�C P is functional.

We obtain one possible implementation of codes as follows:

PA := N ϕCn := lam (n+ k) if C[n] = lam k

Code := L(Com) ϕCn := C[n] otherwise

#n := Sn

https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.M_clos.html#clos_stack_refinement
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.M_clos.html#clos_L_refinement
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Codes.html#Code
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Codes.html#PA
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Codes.html#Com
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Codes.html#Com
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Codes.html#representsPro
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Codes.html#representsPro_functional
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For this realisation of codes we define a function ψ : Pro → L(Com) compiling
programs into codes as follows:

ψ ret := [ret] ψ(lamQ;P ) := lam (S|ψP |) :: ψP ++ψQ

ψ(var n;P ) := var n :: ψP ψ(app;P ) := app :: ψP

The linear representation of a program lamQ;P provided by ψ is as follows: First
comes a command lam k, then the commands for P , and finally the commands
for Q (i.e., the commands for the body Q come after the commands for the
continuation P ). The number k of the command lam k is chosen such that n+Sk
is the address of the first command for Q if n is the address of the command
lam k.

Fact 38. |C1| �C1 ++ψP ++C2 P . In particular, 0�ψP P .

10 Heaps

A heap contains environments accessible through addresses. This opens the pos-
sibility to share the representation of environments.

We model heaps abstractly based on an assumed code structure. We start
with types for heaps and heap addresses and a function get accessing heap ad-
dresses:

H : Heap heap

a, b, c : HA heap address

g : HC := PA× HA heap closure

HE := O(HC× HA) heap environment

get : Heap→ HA→ O(HE)

We will use the notation H[a] := getH a. We fix the semantics of heaps with an
inductive relation a�H E relating heap addresses with environments:

H[a] = ◦∅
a�H []

H[a] = ◦◦((p, b), c) p�C P b�H F c�H E

a�H (P/F ) :: E

Fact 39. The relation a�H E is functional.

We also need an operation put : Heap→ HC→ HA→ Heap×HA extending
a heap with an environment. Note that put yields the extended heap and the
address of the extending environment. We use the notation

H ⊆ H ′ := ∀a. H[a] 6= ∅ → H[a] = H ′[a]

to say that H ′ is an extension of H. We fix the semantics of put with the following
requirement:

HR If putH g a = (H ′, b), then H ′[b] = (g, a) and H ⊆ H ′.

https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Codes.html#psi
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Codes.html#fetch_correct
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Heaps.html#Heap
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Heaps.html#HA
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Heaps.html#HC
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Heaps.html#HE
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Heaps.html#representsEnv
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Heaps.html#representsEnv_functional
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Heaps.html#HR1
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Fact 40. If H ⊆ H ′ and a�H E, then a�H′ E.

We define a relation g �H e relating heap closures with proper closures:

(p, a)�H (P,E) := p�C P ∧ a�H E

Fact 41. If H ⊆ H ′ and g �H e, then g �H′ e.

We define a lookup function H[a, n] : O(HC) yielding the heap closure ap-
pearing at position n of the heap environment designated by a in H:

H[a, 0] := ◦(p, b) if H[a] := ◦((p, b), c)

H[a,Sn] := H[c, n] if H[a] := ◦((p, b), c)

Fact 42. Let a�H E. Then:

1. If E[n] = ◦e, then H[a, n] = ◦g and g �H e for some g.

2. If H[a, n] = ◦g, then E[n] = ◦e and g �H e for some e.

Here is one possible implementation of heaps:

HA := N

Heap := L(HC× HA)

get H 0 := ◦∅
get H (Sn) := ◦◦(g, a) if H[n] = ◦(g, a)

put H g a := (H ++[(g, a)], S |H|)

Note that with this implementation the address 0 represents the empty environ-
ment in every heap.

Given that Coq admits only structurally recursive functions, writing a func-
tion computing a �H E is not straightforward. The problem goes away if we
switch to a step-indexed function computing a�H E.

11 Heap Machine

The heap machine refines the closure machine by representing programs as ad-
dresses into a fixed code and environments as addresses into heaps that reside
as additional component in the states of the heap machine.

We assume a code structure providing types Code and PA, a code C : Code,
and a heap structure providing types Heap and HA. States of the heap machine
are triples

(T, V,H) : L(HC)× L(HC)× Heap

consisting of a control stack, an argument stack, and a heap. The reduction rules
of the heap machine appear in Figure 4. They refine the reduction rules of the
closure machine as one would expect.

https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Heaps.html#representsEnv_extend
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Heaps.html#representsClos
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Heaps.html#representsClos
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Heaps.html#representsClos_extend
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Heaps.html#lookup
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Heaps.html#lookup_unlinedEnv
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Heaps.html#nth_error_unlinedEnv
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Heaps.html#lookup_unlinedEnv
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.M_heap.html#state
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.M_heap.html#stepH
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.M_heap.html#stepH
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(p, a) :: T, V, H �τ T, V, H if C[p] = ◦ret

(p, a) :: T, V, H �τ (#p, a) :: T, g :: V, H if C[p] = ◦var n

and H[a, n] = ◦g

(p, a) :: T, V, H �τ (#p, a) :: T, (q, a) :: V, H if C[p] = ◦lam q

(p, a) :: T, g :: (q, b) :: V, H �β (q, c) :: (#p, a) :: T, V, H ′ if C[p] = ◦app

and putH g b = ◦(H ′, c)

Fig. 4. Reduction rules of the heap machine

Note that the application rule is the only rule that allocates new environments
on the heap. This is at first surprising since with practical machines (e.g., FAM
and ZINC) heap allocation takes place when lambda commands are executed.
The naive allocation policy of our heap machine is a consequence of the naive
realisation of the lambda command in the closure machine, which is common
in formalisations of the SECD machine. Given our refinement approach, smart
closure allocation would be prepared at the level of the naive stack machine with
programs that have explicit commands for accessing and constructing closure
environments.

Proving correctness of the heap machine is straightforward:

Theorem 43. (Heap Machine to Closure Machine) Let a code structure,
a code C, and a heap structure be fixed. Let T �H Ṫ and V �H V̇ denote the
pointwise extension of g �H E to lists. Then the relation

(T, V,H)� (Ṫ , V̇ ) := T �H Ṫ ∧ V �H V̇

is a functional refinement. Moreover, ([(p, a)], [], H)� ([P/[]], []) for all p, a, H,
and P such that p�C P and a�H [].

Proof. Follows with Facts 37, 39, 40, 41, and 42. Straightforward. ut

Using the refinement from the closure machine to L, Theorem 43 and Fact 9
we obtain a refinement from the Heap Machine to L. If we instantiate the heap
machine with the realisation of codes from Section 9 and the realisation of heaps
from Section 10 we obtain a function compiling closed terms into initial states.
Moreover, given a function computing a�H E, we can obtain a decompiler for
the states of the heap machine.

12 Final Remarks

The tail call optimisation can be realised in our machines and accommodated in
our verifications. For this subprograms app; ret are executed such that no trivial
continuation (i.e., program ret) is pushed on the control stack.

The control stack may be merged with the argument stack. If this is done
with explicit frames as in the SECD machine, adapting our verification should
be straightforward. There is also the possibility to leave frames implicit as in the

https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.M_heap.html#heap_clos_refinement
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modern SECD machine. This will require different decompilation functions and
concomitant changes in the verification.

We could also switch to a λ-calculus with full substitution. This complicates
the definition of substitution and the basic substitution lemmas but has the
pleasant consequence that we can drop the closedness constraints coming with
the correctness theorems for the closure and heap machines. The insight here is
that a closure machine implements full substitution. With full substitution we
may reduce β-redexes where the argument is a variable and show a substitutivity
property for small-step reduction.
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