
A Feature Logic with Subsorts�Gert SmolkaGerman Research Center for Arti�cial Intelligence andUniversit�at des SaarlandesStuhlsatzenhausweg 3, 6600 Saarbr�ucken 11, Germanysmolka@dfki.uni-sb.deAbstractThis paper presents a set description logic with subsorts, feature selec-tion (the inverse of unary function application), agreement, intersec-tion, union and complement. We de�ne a model theoretic open worldsemantics and show that sorted feature structures constitute a canon-ical model, that is, without loss of generality subsumption and con-sistency of set descriptions can be considered with respect to featurestructures only. We show that deciding consistency of set descriptionsis an NP-complete problem.To appear in:J. Wedekind and C. Rohrer (eds.), Unification in Grammar.The MIT Press, 1992�This text is a minor revision of LILOG Report 33, May 1988, IBM Deutschland,IWBS, Postfach 800880, 7000 Stuttgart 80, Germany. The research reported here hasbeen done while the author was with IBM Deutschland. The author's article [23] is amore recent work on feature logics. 1



1 IntroductionThis paper presents a set description logic that generalizes and integratesformalisms that have been developed for knowledge representation [1, 2] andcomputational linguistics [13, 21, 11, 9]. The logic comes with an open worldmodel theoretic semantics, where admissible worlds can be required to sat-isfy a classi�cation scheme postulated by means of a sort lattice. The logicsupports the typically partial description of objects using sorts and featuresas primitives. It is not intended as a stand-alone formalism but as descrip-tive component of more expressive formalisms like uni�cation grammars [22],knowledge representation systems or logic programming languages.The logic is based on the notion of a signature, which speci�es which inter-pretations are admissible. A signature postulates a set of feature symbolsand a lattice of sort symbols, where ? is the least and > is the greatest sortsymbol. Figure 1 shows an example of a sort lattice taken form [2].An interpretation of a signature assigns to every sort symbol a set, wherethe denotation of > is called the universe of the interpretation, and to everyfeature symbol a partial unary function from the universe to the universe.The denotations of the sort symbols must satisfy the following conditions:� ? denotes the empty set� if C is the greatest common subsort of two sorts A and B, then Cdenotes the intersection of the denotations of A and B.This de�nition implies that the denotation of A is a subset of the denotationof B if A is a subsort of B. Furthermore, if the greatest common subsort ofA and B is ?, then A and B must denote disjoint sets.Given a signature specifying a set S of sort symbols and a set F of featuresymbols, one possible interpretation can be obtained by taking the leastsolution of the domain equationU = (S� f?g)� (F! U)as the universe, where F! U stands for the set of all �nite partial functionsfrom F to U. The elements of this universe are �nite records labeled with asort symbol di�erent from? whose �elds are designated with feature symbols.Figure 2 shows an example of such a record. An interpretation with thisuniverse interprets a sort symbol A as the set of all records labeled with a2



A A A A A A ����H H H HP P P P P P P P P P P P@ @ @ @�������� ��������H H H H H H H H���Z Z Z ��� H H Hperson
?
> monarchwitch queenwickedqueenadultteenagerchildFigure 1: An example of a sort lattice.

2666666666664 clauseagent:264groupprimaryclass:nominalanimacy:animate 375process:264groupprimaryclass:verbalagency: e�ective 375 3777777777775Figure 2: A record written in matrix notation. Sort symbols are printed boldand feature symbols are printed slanted.3



subsort of A, and a feature symbol f as the partial function yielding thevalue of the �eld f if it is present.Given a signature, the logic o�ers several languages for describing subsetsof the universe of an interpretation. The most intuitive of these languagesis applicative and consists of expressions called feature terms, which can beviewed as a more general form of sorts. The sort symbols of the signatureare taken as primitive feature terms and operators providing for set intersec-tion, union and complement with respect to the universe are available. Forinstance, the feature term (A u :B) t (B u :A)denotes the set of all elements that are in the union of the sorts A and B butnot in the intersection of A and B.There are two further, more speci�c term forming operators that rely on thepresence of features.The selection operator takes a feature symbol f and a feature term s andyields a feature term f : s denoting the set of all elements of the universe forwhich the feature f is de�ned and yields an element of the set denoted by s.Feature selection is the inverse of unary function application. For instance,the term :(f :>) denotes the set of all elements of the universe for which thefeature f is not de�ned. If we interpret this term over the universe of �niterecords de�ned above, it denotes all records that don't have a �eld f at thetop level. The feature term car u fuel:gasolinedenotes the set of all elements of the sort car, for which the feature fuel isde�ned and yields an element of the sort gasoline. In the domain of �niterecords, this term denotes the set of all records labeled with a subsort of carthat possess a �eld fuel having as its value a record labeled with a subsortof gasoline. One such record is264 carfuel:gasolinespeed:120 375:The last term forming operator is the agreement operator p # q taking twopaths as arguments. A path is a �nite, possible empty sequence f1 � � � fn offeature symbols denoting the composition of the partial functions denotedby f1; . . . ; fn, where f1 is applied �rst. A feature term p # q denotes the set4



of all elements of the universe for which the denotations of p and q are bothde�ned and yield the same element as result. For instance, the termcar u speed # agedenotes the set of all elements of the sort car for which the features speedand age are both de�ned and agree. (Cars in this set are the slower the newerthey are.) Linguists will prefer the termsentence u (subj agree) # (pred agree)which may be thought of as denoting all sentences possessing a subject anda predicate with agreeing agree features.A feature term is called consistent if there exists a least one admissible in-terpretation in which it denotes a nonempty term. For instance, the featureterm f :A u f :Bis inconsistent if the greatest common subsort of A and B is ?. However, ifthe greatest common subsort of A and B is a sort symbol C di�erent from?, then the term is consistent since, for instance, it contains [> f :C] in therecord interpretation.We say that a feature term s is subsumed by a feature term t if s denotesa subset of t in every admissible interpretation. Furthermore, we say thattwo terms are equivalent if they denote the same set in every admissibleinterpretation. Since the logic has negation, consistency and subsumptionare closely related properties: s is inconsistent if and only if s is subsumedby ?, and s is subsumed by t if and only if s u :t is inconsistent.We will show that deciding the consistency of feature terms is an NP-completeproblem. The NP-hardness is shown using Kasper's [11] reduction of thesatis�ability problem of propositional formulas in conjunctive normal form tothe consistency problem of feature terms. This reduction shows in particularthat the consistency problem remains NP-hard even if only feature termswithout complements and agreements are considered.Several variants of feature descriptions are being used in computational lin-guistics (see [22, 19, 20] for introductory expositions). In uni�cation gram-mars [10, 14], uni�cation of feature descriptions is the basic operational mech-anism for parsing and generating natural language. A uni�cation method forfeature descriptions consists of a normal form that exhibits inconsistency andan algorithm that, given two normal feature descriptions s and t, computesa normal feature description equivalent to s u t.5



Rounds and Kasper [21] were the �rst to come up with a logical formalizationof feature descriptions (without complements and with constants rather thansorts). Their logic has a �xed interpretation, where feature descriptionsdenote sets of feature structures. Feature structures are consistent, union-free feature descriptions that can be viewed as �nite deterministic automata.This paper generalizes Rounds and Kasper's logic in two respects: �rst,we add complements and nonsingleton sorts; and second, and maybe moreimportant, we show that our open world semantics yields the same notionof subsumption and consistency as a closed world semantics using featurestructures as �xed interpretation.Moshier and Rounds [16] generalize the formalism of Rounds and Kasper [21]by adding nonclassical negation. They show that the consistency problemof the extended logic is PSPACE-complete. In contrast, classical negation,which underlies our logic, does not render the consistency problem any harder(it is already NP-complete if just singletons, selection and union are avail-able).Johnson's [9] attribute value logic is close to the uni�cation grammar for-malism LFG [10]. It employs relational feature descriptions with classicalnegation, where agreement is expressed with variables. Like Rounds andKasper's logic, Johnson's logic is interpreted over feature structures only. Incontrast to Rounds and Kasper, Johnson admits cyclic feature structures(as do we). Johnson shows that the consistency problem of his logic is NP-complete. In this paper, we will generalize feature terms to accommodatevariables and thus obtain feature descriptions that are almost equivalentto Johnson's (Johnson's descriptions are more general in that they allowfor variables at the left-hand side of selections). We will show that featureterms with variables describe exactly the same sets as variable-free featureterms, thus bridging the gap between Johnson's and Rounds and Kasper'sformalisms. However, feature terms with variables allow for exponentiallymore succinct descriptions, a fact that is important for e�cient uni�cationalgorithms [12, 6]. We will also introduce quanti�cation for feature termswith variables and present a quanti�er elimination algorithm that computesfor every feature term an equivalent quanti�er-free feature term, thus showingthat even with quanti�cation no more sets can be described and consistencyand subsumption remain decidable.Our feature logic generalizes A��t-Kaci's formalism [1, 2], from which it inher-its the use of subsorts. A��t-Kaci's formalism was developed independentlyof the linguistically motivated approaches with knowledge representation asapplication in mind. From today's perspective, A��t-Kaci's formalism su�ers6



from the fact that it is nonlogical, that is, that it makes no clear distinctionbetween descriptions and what they denote. There are only feature descrip-tions in normal form (called  -terms) and subsumption is de�ned purelysyntactical. Nevertheless, A��t-Kaci was the �rst to give a mathematicallyrigorous formalization of what feature uni�cation is supposed to do. A��t-Kaci [1, 2] also outlines a model theoretic semantics for his formalism thatis equivalent to the semantics presented in this paper, but he doesn't exploitthis idea any further (for instance, for the de�nition of subsumption).In [24] we give an initial algebra semantics (closed world) for feature de-scriptions drawn over inheritance hierarchies using order-sorted equationallogic [25]. This approach accommodates data types whose elements are de-scribed by features as well as data types whose elements are described byconstructors and shows the duality of the two approaches under the giveninitial algebra semantics. Furthermore, we present a uni�cation algorithmthat combines order-sorted uni�cation [27, 28] with  -term uni�cation [1, 3].The paper is organized as follows. Section 2 formalizes signatures, interpre-tations and feature terms and shows that every feature term can be rewrittenas a union of simple feature terms. Section 3 presents a relational languageof set descriptions and shows that every simple feature term can be rep-resented as a normal set description. The translation is accomplished bya system of simpli�cation rules, which provides a consistency checking anduni�cation algorithm. Section 4 shows that feature structures constitute acanonical interpretation and that deciding consistency of feature terms is anNP-complete problem. Section 5 generalizes feature terms to include vari-ables and quanti�cation, which provide for an exponentially more succinctsyntax. Finally, Section 6 discusses the results, possible applications andrelated work. It might be a good idea to skim this discussion before gettinglost in the technical sections of the paper.Acknowledgement. G�unther G�orz and Hans Uszkoreit were patient enoughto give me some idea of what is going on in computational linguistics. HansUszkoreit's STUF [26], which is used as the central representation formalismin the LILOG project at IBM, provided me with the challenge to capturesome of it in logic. From Mark Johnson's thesis I learned that comple-ments and negations are easy. Finally, Christoph Beierle and Markus H�ohfeldhelped me with frequent discussions to get things right.7



2 Feature TermsIn this section we de�ne the basic notions of feature logic: signatures, inter-pretations and feature terms. Feature terms are a functional language forfeature logic. In later sections we will introduce a relational language andextend the functional language to include variables and quanti�cation.Signatures serve as the interface between syntax (formal languages) and se-mantics (interpretations). In our logic, a signature �xes the available symbols(sorts, singletons and features) together with a subsort ordering.Formally, a signature is a tuple � = (S;C;�;F) specifying� a set S of sort symbols containing ? and >� a subset C of S whose elements are called singleton symbols� a decidable partial order � on S such that{ ? is the least and > is the greatest element{ every two sort symbols A and B of S have a greatest commonlower bound, which is called their greatest common subsort and isdenoted by gcs(A;B){ every singleton symbol A is minimal, that is, if B � A, then B iseither ? or A� a set F of feature symbols such that S and F are disjoint.An interpretation A of a signature � (also called a �-algebra) consists ofdenotations AA and fA for the sort and feature symbols of � such that:� >A is a set called the universe of A� ?A is the empty set� if A is a sort symbol of �, then AA is a subset of >A� if A is a singleton symbol of �, then AA is a set consisting of exactlyone element� if A and B are sort symbols of � having C as their greatest commonsubsort, then CA = AA \BA 8



� if f is a feature symbol of �, then fA is a function DAf ! >A, whereDAf (called the domain of f in A) is a subset of >A� if f is a feature symbol of � and A is a singleton symbol of �, then DAfand AA are disjoint.This de�nition ensures that di�erent singleton symbols denote disjoint sin-gletons and that no feature is de�ned on a singleton. Thus our singletonsymbols can take exactly the rôle of the constant symbols employed in thefeature logics of Rounds and Kasper [21] and Johnson [9].Note that the subsort ordering of a signature must be realized by an inter-pretation in a strong sense: if C is the greatest common subsort of A and B,then the denotation of C must be the intersection (and not merely a subset)of the denotations of A and B. With that we are able to postulate that twosorts are disjoint by making ? their only common subsort.In the following it won't be necessary to refer to more than one signatureat once. Thus we will ease our notation by always referring to some �xedsignature � = (S;C;�;F). Furthermore, the letters A and B will alwaysdenote sort symbols of S and the letters f , g and h will always denote featuresymbols of F.A path is a �nite sequence of feature symbols. The empty path is denotedby �. In an interpretation A, a path f1 � � � fn denotes the partial functionobtained as the composition of fA1 ; . . . ; fAn , where fA1 is applied �rst:� �A is the identity function on >A� DAfq := fa 2 DAf j fA(a) 2 DAq g� (fq)A(a) := qA(fA(a)).The letters p and q will always denote paths.Feature terms are de�ned by the following context-free production rule:s; t; u; v �! A sortj f : s selectionj p # qagreementj p " qdisagreementj s u tintersectionj s t tunionj :s complement. 9



The denotation of a feature term in an interpretation A is a subset of >Ade�ned inductively by the following equations:� [[A]]A = AA� [[f : s]]A = fa 2 DAf j fA(a) 2 [[s]]Ag = (fA)�1([[s]]A)� [[p # q]]A = fa 2 DAp \ DAq j pA(a) = qA(a)g� [[p " q]]A = fa 2 DAp \ DAq j pA(a) 6= qA(a)g� [[s u t]]A = [[s]]A \ [[t]]A� [[s t t]]A = [[s]]A [ [[t]]A� [[:s]]A = >A � [[s]]A.To ease our notation, we will omit parentheses whenever the following rulesallow for disambiguation:� u and t are right-associative� the term forming operators bind according to the order f : s, :s, s u t,s t t, where selection binds strongest and union binds weakest.For instance, :f : p # q t s u :t u u t vdisambiguates to (:(f : (p # q))) t ((s u ((:t) u u)) t v):Furthermore, we will use the following abbreviations:� s� t := s u :t (set di�erence)� p: s := � s if p = �f : (q: s) if p = fq.Disagreements and unions are actually redundant forms since[[p " q]]A = [[p:> u q:> u : p # q]]A[[s t t]]A = [[:(:s u : t)]]A10



in every interpretation A. They have been introduced as separate syntac-tic forms since they ease the de�nition of transformations to be introducedbelow.Given an interpretation A, the system of all subsets of the universe of A thatcan be obtained as the denotation of a feature termFTS(A) := f[[s]]A j s is a feature termgis a boolean set lattice since it is closed under intersection, union and com-plement and contains ?A = ; and the universe >A.We are now ready to de�ne the major properties of feature terms. We saythat� a feature term s is consistent if there exists an interpretation A suchthat [[s]]A 6= ;� a feature term s is subsumed by a feature term t if [[s]]A � [[t]]A for everyinterpretation A� a feature term s is equivalent to a feature term t if [[s]]A = [[t]]A for everyinterpretation A.Proposition 2.1 (Tautologies) Let s and t be feature terms and u := v bean instance of one of the tautologies in Figure 3. If t is obtainable from s byreplacing a subterm u with v, then s and t are equivalent.Proposition 2.2 (Reductions) Let s and t be feature terms. Then:� s is subsumed by t () s� t is inconsistent() s and s u t are equivalent� s is equivalent to t () s� t t t� s is inconsistent() s is subsumed by t and t is subsumed by s� s is inconsistent () s is subsumed by ?() s is equivalent to ?.11



Commutativity, Associativity and Distributivitys u t := t u s s t t := t t ss u (t u u) := (s u t) u u s t (t t u) := (s t t) t us u (t t u) := (s u t) t (s u u) s t (t u u) := (s t t) u (s t u)Idempotence and Absorptions u s := s s t s := s(s u t) t s := s (s t t) u s := sComplementss u :s := ? s t :s := >:(s u t) := :s t :t :(s t t) := :s u :t::s := sBottom and Tops u ? := ? s t > := >s u > := s s t ? := s:? := > :> := ?f :? := ?Selections and Agreementsf : (s u t) := (f : s) u (f : t) f : (s t t) := (f : s) t (f : t):f : s := (:f :>) t (f ::s):p # q := (:p:>) t (:q:>) t p " q:p " q := (:p:>) t (:q:>) t p # qSortsA uB := gcs(A;B) A tB := B if A � BFigure 3: Some Feature Term Tautologies.12



The Reduction Proposition says that a decision algorithm for one of thethree properties subsumption, equivalence and consistency can be used fordeciding any of these properties. Since the reductions are linear time, allthree decision problems have the same computational complexity.In the following sections we will concentrate on the consistency problem,which we will show to be NP-complete. The �rst step shows that everyfeature term can be rewritten in polynomial time to an equivalent featureterm containing only simple complements.A complement is called simple if it has either the form :f :> or the form:A, where A is a sort symbol di�erent from ? and >.Proposition 2.3 (Simple complements) For every feature term one cancompute in polynomial time an equivalent feature term containing only simplecomplements by rewriting with the following tautologies in top-down order:1. :? := >2. :> := ?3. :f : s := :f :> t f ::s4. :p # q := :p:> t :q:>t p " q5. :p " q := :p:> t :q:>t p # q6. :(s u t) := :s t :t7. :(s t t) := :s u :t8. ::s := s:A feature term is called simple if it contains no union and every containedcomplement is simple.Proposition 2.4 (Disjunctive Normal Form) For every feature term sone can compute in exponential time �nitely many simple feature termss1; . . . ; sn such that s and s1 t � � � t sn are equivalent by �rst rewriting allcomplements to simple complements and then propagating up all unions byrewriting with the following tautologies:1. f : (s t t) := (f : s) t (f : t)2. s u (t t u) := (s u t) t (s u u)3. (s t t) u u := (s u u) t (t u u):The terms s1; . . . ; sn are called the disjuncts of s. The disjuncts of a termcan also be obtained by �rst rewriting all complements to simple complementsand then replacing every union nondeterministically by one of its arguments.13



In the following sections we will prove that the consistency of simple featureterms is decidable in polynomial time. By the Reduction and the DisjunctiveNormal Form Proposition of this section we already know that this resultimplies that deciding consistency of general feature terms is in NP, and thatdeciding subsumption of general feature terms is in co-NP.3 Feature Clauses and Simpli�cation RulesWe won't provide a deduction calculus for proving feature term equivalencessince this turns out to be a very tedious enterprise. The di�culties are causedby the presence of agreements. The interested reader may consult [21], wherea complete deduction calculus for feature terms without complements andsorts is given.The di�culties with the deduction calculus disappear if we use a relationalrather than a functional language. A relational language has variables thatrange over the universe of the interpretation, primitive constraints, and con-junction, disjunction and negation to form complex constraints. As primitiveconstraints one can employ, for instance, the forms� x:A \x is in sort A"� f(x) := y \feature f of x is y"� x := y \x equals y".A similar language, without sorts, is used in Johnson's [9] attribute valuelogic, which comes with a complete and sound deduction calculus.Here we will be content to devise a simple relational language that is justpowerful enough to describe sets that can be obtained as the denotation ofsimple feature terms. Using this relational language, we can convenientlyspecify a polynomial-time algorithm for deciding the consistency of simplefeature terms.From now on we assume that an in�nite alphabet of variables is given. Ofcourse, variables are assumed to be distinct from sort and feature symbols.The letters x, y and z will always denote variables.Constraints are de�ned by the following context-free production rule:c �! x: s, where s is simplecontainment14



j xp := y path equationj x := y variable equationj f(x) := y feature equationj x6 :=y disequation.To ease our notation, we will write :f(x) (read \f is not de�ned on x") fora containment x: (:f :>).LetA be an interpretation. AnA-assignment � is a function that maps everyvariable to an element of >A. The validity of a constraint in an interpretationA under an A-assignment � is de�ned as follows:� A; � j= x: s :() �(x) 2 [[s]]A� A; � j= xp := y :() �(x) 2 DAp and pA(�(x)) = �(y)� A; � j= x := y :() �(x) = �(y)� A; � j= f(x) := y :() �(x) 2 DAf and fA(�(x)) = �(y)� A; � j= x6 :=y :() �(x) 6= �(y).A feature clause is a �nite, possibly empty set of constraints. A feature clauseC is valid in an interpretation A under an A-assignment � if A; � j= c forevery constraint c 2 C.A set description is a pair xjC consisting of a variable x and a feature clauseC. The denotation of a set description xjC in an interpretation A is de�nedas [[xjC]]A := f�(x) j � is an A-assignment such that A; � j= Cg:A set description is called consistent if there exists at least one interpretationin which it denotes a nonempty set. Two set descriptions are called equivalentif if they denote the same set in every interpretation; furthermore, a featureterm and a set descriptions are called equivalent if if they denote the sameset in every interpretation.Proposition 3.1 Let s be a simple feature term and let x be a variable.Then xjfx: sg is a set description such that [[s]]A = [[xjfx: sg]]A for everyinterpretation A. 15



(1) x: (f : s) &C !xo f(x) := y & y: s &C if y is new(2) x: (p # q) &C !xo xp := y &xq := y &C if y is new(3) x: (p " q) &C !xo xp := y &xq := z & y 6 :=z &Cif y and z are new and distinct(4) x: (s u t) &C !xo x: s &x: t &C(5) xfp := y &C !xo f(x) := z & zp := y &C if z is new(6) x� := y &C !xo x := y &CFigure 4: The simpli�cation rules for decomposing containments.Next we will de�ne a normal form for set descriptions that exhibits incon-sistency. Then we will present simpli�cation rules with which every set de-scription can be transformed to normal form in polynomial time.A constraint is called normal if it has one of the following forms:� x:A or x::A, where A is a sort symbol di�erent from ? and >� :f(x) (abbreviation for x: (:f :>))� f(x) := y� x6 :=y, where x and y are distinct variables.A feature clause is called normal if either it has the formfx:?gor it is a set of normal constraints satisfying the following conditions:1. if x:A and x:B are in C, then A = B2. if x:A and x::B are in C, then A and B are distinct and A is not asubsort of B3. if x::A and x::B are in C, then A = B or A is not a subsort of B4. if x:A and y:A are in C and A is a singleton, then x = y5. if f(x) := y and f(x) := z are in C, then y = z16



Sorts(7) x:A &x:B &C !xo x:gcs(A;B) &C(8) x:> &C !xo C(9) x:? &C !xo xo:? if C is nonempty(10) x::A & x::B &C !xo x::B &C if A � B(11) x:A &x::B &C !xo xo:? if A � B(12) x:A & f(x) := y &C !xo xo:? if A is a singleton(13) x:A & y:A &C !xo y:A & [x=y]C if A is a singl. and x 6= xoFeatures(14) f(x) := y & f(x) := z &C !xo [z=y](f(x) := y &C) if z 6= xo(15) f(x) := y &:f(x) &C !xo xo:?Equations(16) x := x &C !xo C(17) x := y &C !xo [x=y]C if x 6= xo(18) x := y &C !xo [y=x]C if y 6= xo(19) x6 :=x &C !xo xo:?Figure 5: The simpli�cation rules for sorts, features and equations.17



6. if f(x) := y is in C, then :f(x) is not in C.The dependency relation !C of a feature clause C is a binary relation on theset of all variables de�ned as follows:x!C y :() 9 (xp := y) 2 C or 9 (x := y) 2 C or9 (f(x) := y) 2 C:A variable x is called a root of a feature clause C if x!�C y for every variabley occurring in C. A set description xjC is called connected if x is a root ofC.A set description xjC is called normal if it is connected and C is a normalfeature clause. In the next section we will show that a normal set descriptionis consistent if and only if it has not the form xjfx:?g.Figures 4 and 5 show the simpli�cation rules for set descriptions. Don't beshocked that there are so many|each rule is actually very simple. First notethat we use c &C to denote the union fcg [ C, where C is supposed to bea feature clause not containing the constraint c. The variable xo decoratingthe simpli�cation arrow !xo is supposed to be the root variable of theset description that is being simpli�ed. With [x=y]C we denote the featureclause obtained from the feature clause C by replacing every occurrence ofthe variable x with the variable y. The rules for unfolding containmentsand eliminating path equations in Figure 4 introduce new variables, that is,variables that don't occur in the clause left of the simpli�cation arrow !xoand that are di�erent from the root variable xo. The following theorem statesthe major properties of the simpli�cation rules.Theorem 3.2 [Simpli�cation]1. (Invariance) If xojC is a set description and C!xo D, then xojD isan equivalent set description; furthermore, if xojC is connected, thenxojD is connected.2. (Completeness) To every set description whose feature clause is notnormal one of the simpli�cation rules in Figure 4 or 5 applies.3. (Termination) There are no in�nite chains C1!xo C2!xo � � � .18



Proof. To show the invariance claim, we have to show that, for every rule,(1) xo is maintained as a root variable and (2) the denotation stays invariantin every interpretation. This veri�cation is tedious (since there are so manyrules) but rather straightforward.The veri�cation of the completeness claim is straightforward.To prove the termination claim, we de�ne the complexity of a clause C asthe triple (jCj1; jCj2; jCj3), where the component complexities are naturalnumbers de�ned as follows:� jCj1 := X(x:s)2Cs6=? jsj, where the size jsj of a feature term s is de�ned asone would expect� jCj2 := X(xp :=y)2C(jpj+ 1), where jpj is the length of the path p� jCj3 is the number of constraints in C.The lexical order induced by the canonical order on the natural numbers is awell-founder order on these complexity triples. Since every simpli�cation rulereduces the complexity with respect to this order, we know that the lengthof a !xo -derivation issuing from xojC is polynomially bounded in the sizeof C.Corollary 3.3 (Simpli�cation of Set Descriptions) For every connectedset description one can compute in polynomial time an equivalent normal setdescription.Corollary 3.4 For every simple feature term one can compute in polynomialtime an equivalent normal set description.The relational language suggests that feature logic can be expressed in stan-dard predicate logic by modeling sorts as unary and features as binary pred-icates. (Features cannot be modeled as functions since in predicate logicfunctions are interpreted as total functions.) Several axioms are necessaryto restrict the possible interpretations to the interpretations admissible forfeature logic. The functionality of a feature f can be expressed by the axiomf(x; y) ^ f(x; z)! y := z:19



The emptyness of the denotation of ? can be expressed by:?(x):For every triple A, B, C such that C is the greatest common subsort of Aand B we need the axiom A(x) ^B(x)$ C(x)to express that C denotes the intersection of A and B. For every singletonsymbol A we need the axioms9x:A(x); A(x) ^A(y)! x := y:Finally, for every singleton symbol A and every feature symbol f we needthe axiom :(A(x) ^ f(x; y))to express that f is not de�ned on A.4 Canonical InterpretationsAn interpretation A is called canonical if for every two feature terms s andt the following conditions are satis�ed:1. s is consistent if and only if [[s]]A 6= ;2. s and t are equivalent if and only if [[s]]A = [[t]]A3. s is subsumed by t if and only if [[s]]A � [[t]]A.Theorem 4.1 An interpretation A is canonical if [[xjC]]A is nonempty forevery normal set description xjC such that C is not fx:?g.Proof. From the Reduction Proposition in Section 2 we know that aninterpretation is canonical if it is canonical for the consistency of featureterms. Since every feature term is equivalent to a �nite union of simplefeature terms (Disjunctive Normal Form Proposition), we even know thatan interpretation is canonical if it is canonical for the consistency of simplefeature terms. 20



In Section 3 we proved that for every simple feature term s one can computea normal set description xjC such that s and xjC denote the same set inevery interpretation. Hence an interpretation is canonical if it is canonicalfor the consistency of normal set descriptions.Since a set description xjfx:?g denotes the empty set in every interpretation,the requirement that [[xjC]]A is nonempty if C is not fx:?g implies that theinterpretation A is canonical.In this section, we will construct a family of canonical interpretations (onefor every signature) for feature logic. The elements of these canonical in-terpretations are called \feature structures" and can be depicted as �nite,directed graphs with labeled nodes and edges (see Figure 6 for an example).Our feature structures generalize the feature structures used by Rounds andKasper [21] by providing for cycles and nonsingleton sorts.There are many possibilities for the formal de�nition of feature structures.For instance, A��t-Kaci [2] uses rational tree domains and Rounds and Kasper[21] use �nite automata. Here, yet another formalization is technically mostconvenient: we will de�ne feature structures as equivalence classes of normalset descriptions containing only \positive" constraints.A positive constraint is a constraint having either the form f(x) := y or theform x:A, where A is a sort symbol distinct from ? and >. A quasi-featurestructure is a normal set description containing only positive constraints.Quasi-feature structures do not yet model singletons as singletons since theycontain too much syntactic structure. For instance, if A is a singleton symboland x and y are distinct variables, then xjfx:Ag and yjfy:Ag are distinctquasi-feature structures. This technical complication can be resolved by in-troducing an equivalence relation that identi�es quasi-feature structures thatshould be equal.A variable x occurring in a quasi-feature structure yjC is called a singletonvariable of yjC if C contains a constraint x:A such that A is a singleton sym-bol. We say that two quasi-feature structures are equivalent if they are equalup to renaming of singleton variables. If xjC is a quasi-feature structure, wedenote the equivalence class containing xjC by xjC.Now we de�ne a feature structure to be an equivalence class of quasi-featurestructures. Figure 6 shows a quasi-feature structure together with a matrixand graph representation of the corresponding feature structure.Let C be a normal feature clause. Then we use C=x to denote the greatestsubset of C such that x is a root of C=x. If xjC is a feature structure such21



X j f X: sentence;subj(X) := S;argree(X) := A; A:agreement;pred(X) := V; agree(V ) := A; syncat(V ) := C;�rst(C) := S; rest(C) := L; L: lambda g26666666666664Xsentencesubj:Sagree: [A agreement]pred:264Vagree:Asyncat: [C �rst:S rest: lambda]37537777777777775
HHHHHHHHHHY P P P P P P Pq-?

Z Z Z Z Z Z Z Z Z Z~?����������= subj VCS rest�rst syncatagree agreepred
lambdaA: agreementX: sentence

Figure 6: A quasi-feature structure together with a matrix and graph rep-resentation of the corresponding feature structure. Variables are written ascapital letters. The symbol lambda is a singleton sort and sentence andagreement are nonsingleton sorts. 22



that C contains the constraint f(x) := y, then (yjC=y) is the sub-featurestructure reachable through the edge f .Construction 4.2 (Feature Structure Interpretation F) The set of allfeature structures constitutes an interpretation F de�ned as follows:� >F is the set of all feature structures� AF := f(xjC) 2 >F j 9 (x:B) 2 C: B � Ag� fF (xjC) := yjC=y if (f(x) := y) 2 C.We will now show that F is a canonical interpretation.Theorem 4.3 Let xjC be a normal set description such that C is not theinconsistent clause fx:?g. Then (xjC+) 2 [[xjC]]F, where C+ is the set ofall positive constraints in C.Proof. Let xojC be a normal set description such that C is not the inconsis-tent clause fxo:?g. Then �(x) := xjC+=x de�nes an F -assignment � suchthat �(xo) = xojC+. We have to show that F ; � j= C.Suppose x:A is in C. Then x:A is also in C+=x. Hence �(x) = xjC+=x 2AF .Suppose x::A is in C. We have to show that �(x) =2 AF . Suppose �(x) =xjC+=x 2 AF . Then C must contain a containment x:B such that B � A,which is a contradiction since C is normal and contains x::A.Suppose :f(x) is in C. We have to show that fF is not de�ned on �(x).Suppose fF is de�ned on �(x) = xjC+=x. Then C must contain a featureequation f(x) := y, which is a contradiction since C is normal and contains:f(x).Suppose f(x) := y is in C. Then f(x) := y is in C+=x. Hence fF (�(x)) =fF (xjC+=x) = yj(C+=x)=y = yjC+=y = �(y).Suppose x6 :=y is in C, where x and y are distinct variables. We have to showthat �(x) = xjC+=x 6= yjC+=y = �(y). If x and y are not both singletonvariables, this disequation obviously holds. If x and y are both singletonvariables, the disequation also holds since x and y must be quali�ed withdi�erent singletons because C is normal.23



Corollary 4.4 The feature structure interpretation F is canonical.Theorem 4.5 Deciding the consistency of feature terms is a problem in NP.Proof. We have shown in Section 2 that every feature term can be rewrit-ten in polynomial time to an equivalent feature term containing only simplecomplements. Next we can eliminate all unions by replacing them nondeter-ministically by one of their arguments. The original feature term is consistentif and only if we can obtain in this way a consistent simple feature term. InSection 3 we have shown that for simple feature terms we can compute inpolynomial time an equivalent normal set description. This completes theargument since we know by the preceding theorem that the consistency ofnormal set descriptions can be decided in constant time.Theorem 4.6 Deciding the consistency of feature terms without comple-ments, agreements and disagreements is an NP-hard problem.Proof. The proof uses a reduction given by Kasper [11], which reducesthe satis�ability problem for propositional formulas in conjunctive normalform, which is known to be NP-complete, to the consistency problem forfeature terms. We assume a signature that has two singleton symbols yesand no and two feature symbols f and �f for every propositional variablef . Now let � be a propositional formula in conjunctive normal form. Then� can be translated into a feature term s� by replacing the conjunctionswith intersections, the disjunctions with unions, every negated propositionalvariable :f with �f : yes, and every unnegated propositional variable f withf : yes. Furthermore, for every propositional variable f occurring in � let sfbe the feature termsf := (f : yes u �f : no) t (f : no u �f : yes):Now it is easy to verify that � is satis�able if and only if the feature terms� u sf1 u � � � u sfnis consistent, where f1; . . . ; fn are the propositional variables occurring in �.Corollary 4.7 Deciding the consistency of feature terms is an NP-completeproblem. 24



As mentioned before, our feature structures extend the feature structures ofRounds and Kasper [21] by accommodating nonsingleton sorts and cycles.Since the agreement � # f denotes a nonempty set in F , cycles are in factnecessary to obtain a canonical interpretation. However, if we only admitinterpretations satisfying the \�niteness" condition8 a 2 >A: fp j a 2 DAp g is �nite;then feature structures without cycles constitute a canonical interpretation.Let us call a feature structure complete if each of its terminal nodes is a sin-gleton. The feature structure in Figure 6 is not complete since the terminalnodes A and S are variables. One can show that complete feature struc-tures constitute a canonical interpretation, if the signature has at least onesingleton and one feature symbol.Even complete feature structures are not a natural data structure since theystill contain redundant syntactic structure. For instance, the feature struc-tures xjff(x) := z; z:Ag and yjff(y) := z; z:Agare distinct if the root variables x and y are distinct. The records outlinedin Section 1 do not have this redundancy. Incidentally, Pereira and Shieber[18] formalize feature structures as possibly in�nite records.In general, record structures don't constitute a canonical interpretation. Tosee this, consider a signature that has one singleton A, two features f andg, and no other symbols. Then there is no record structure that satis�es theconsistent feature termf " g u f : (f :A u g:A) u g: (f :A u g:A):5 Feature Terms with VariablesIn this section we will generalize feature terms by accommodating variablesand quanti�cation. Using variables agreements can be expressed exponen-tially more succinct. In particular, with variables one can express nonlocalpaths [12], which are used, for instance, in Functional Uni�cation Gram-mar [14]. In A��t-Kaci's [1, 2] formalism agreements are also expressed withvariables.We will show that every feature term with variables and quanti�cation can betranslated into an equivalent feature term without variables. Thus variables25



and quanti�cation do not enable us to describe more sets, but just providefor more succinct descriptions, which is of crucial importance for e�cientuni�cation algorithms [12, 6]. We will show that the consistency problem forfeature terms with variables but without quanti�cations is still in NP. How-ever, if quanti�cations are present, we do not know whether the consistencyproblem remains in NP.To accommodate variables and quanti�cations, we extend the abstract syntaxof feature terms as follows:s; t; u; v �! A sortj f : s selectionj p # qagreementj p " qdisagreementj s u tintersectionj s t tunionj :s complementj x variablej tx:squanti�cationFree variables of a feature term are de�ned as in predicate logic or the lambdacalculus. A feature term is closed if it has no free variables.In the following we will refer to the feature terms of Section 2 as feature termswithout variables and mean by a feature term a feature term possibly con-taining variables and quanti�cations. Thus, although some of the followingpropositions and theorems read the same as their counterparts in previoussections, they are actually more general.The denotation of a feature term in an interpretationA under anA-assignment� is a subset of >A de�ned inductively by the following equations:� [[A]]A� = AA� [[f : s]]A� = fa 2 >A j fA(a) 2 [[s]]A�g� [[p # q]]A� = fa 2 DAp \ DAq j pA(a) = qA(a)g� [[p " q]]A� = fa 2 DAp \ DAq j pA(a) 6= qA(a)g� [[s u t]]A� = [[s]]A� \ [[t]]A�� [[s t t]]A� = [[s]]A� [ [[t]]A�� [[:s]]A� = >A � [[s]]A� 26



26666666666666666666664
sentencesubj: [S case: nominative ]actor:Amood: fdeclarative interrogativeg8>>>>>>>>>><>>>>>>>>>>:" voice: activeactor:S #2666664 voice: passivegoal:Sadjunct:264prepositionprep: byobj: [A case: objective]37537777759>>>>>>>>>>=>>>>>>>>>>;

37777777777777777777775Figure 7: A feature term in matrix notation showing how nonlocal pathscan be expressed with variables (here A and S). A conjunctive matrix[s1 . . . sn] stands for s1 u � � � t sn and a disjunctive matrix fs1 . . . sng standsfor s1 t � � � t sn.� [[x]]A� = f�(x)g� [[tx:s]]A� = [a2>A[[s]]A�[x a].The updated assignment �[x  a] is obtained from � by mapping x to arather than to �(x).The denotation [[s]]A of a feature term s in an interpretation A is de�ned asfollows: [[s]]A = [� is anA-assignment [[s]]A� :Note that a quanti�cation tx:s corresponds to an existential quanti�cationin a relational language.Figures 7 and 8 show two examples for feature terms with variables, theExample in Figure 7 is taken from [12].Explicit quanti�cation is a concept not present in other feature formalisms.As long as the formalism doesn't o�er complements or negations, explicitquanti�cation is super
uous since then all quanti�ers can be lifted to thetop by renaming variables as necessary. However, if we want to obtain thecomplement of the denotation of a feature term with variables, we �rst have to27



" f : ff :x g:>gg: ff :> g:xg # := 8>>><>>>: [f : f :> g: f :>]ff # gg[f : g:> g: f :>][f : g:> g: g:>] 9>>>=>>>;Figure 8: A feature term with a coreference that cannot be expressed withlocal paths. The variable-free feature term to the right is equivalent.close it by quantifying over its free variables before applying the complementoperator.Example 5.1 Let A be an interpretation whose domain has at least twoelements. Then one veri�es easily that [[:f :x]]A = >A. Hence[[:(f :xu g:x)]]A = [[:f :x t :g:x]]A = [[:f :x]]A t [[:g:x]]A = >A:This shows that without quanti�cation set complements cannot be expressedin the obvious way. However, using quanti�cation, we have[[: t x:(f :x u g:x)]]A = [[:f # g]]A= [[:f :>t :g:> t f " g]]A= [[:f :>t :g:> t (f :x u g::x)]]A:Proposition 5.2 (Tautologies) Let s and t be feature terms and u := v bean instance of one of the tautologies in Figure 3. If t is obtainable from sby replacing a subterm u with v, then [[s]]A� = [[t]]A� for every interpretation Aand every A-assignment �.Proposition 5.3 (Distributivity of Quanti�cation) Let s1; . . . ; sn be fea-ture terms and x be a variable. Then[[tx:(s1 t � � � t sn)]]A� = [[(tx:s1) t � � � t (tx:sn)]]A�for every interpretation A and every A-assignment �.A feature term is called simple if it contains no union, no quanti�cation, andevery contained complement has one of the following forms: :(f :>), :x, or:A, where A is neither ? nor >. 28



Proposition 5.4 (Disjunctive Normal Form) For every feature term scontaining no quanti�cations one can compute �nitely many simple featureterms s1; . . . ; sn such that [[s]]A� = [[s1 t � � � t sn]]A� for every interpretation Aand every A-assignment �.Proof. This can be done in the same way it is done in Section 2 for featureterms not containing variables.An interpretation is in�nite if its domain is in�nite. Note that the featurestructure interpretation F is in�nite since there are in�nitely many variablesand xj; and yj; are distinct feature structures if x and y are distinct variables.Consistency, subsumption and equivalence of general feature terms are de-�ned as in Section 2, except that we admit from now on only in�nite inter-pretations. This doesn't change anything for feature terms without variables,since the canonical interpretation F is in�nite. The reason for insisting onin�nite interpretations is given by the next lemma.We use V(s) to denote the set of all variables contained in a feature term s.Lemma 5.5 Let s be a simple feature term and x be a variable. Then onecan compute in polynomial time a simple feature term t such that V(t) =V(s)� fxg and [[tx:s]]A� = [[t]]A� for every in�nite interpretation A and everyA-assignment �.Proof. We start by de�ning the sets �+x (s) and ��x (s) of positive andnegative paths to a variable x in a simple feature term s:�+x (s) := ; if x =2 V(s) ��x (s) := ; if x =2 V(s)�+x (f : s) := ffp j p 2 �+x (s)g��x (f : s) := ffp j p 2 ��x (s)g�+x (s u t) := �+x (s) [�+x (t) ��x (s u t) := ��x (s) [��x (t)�+x (x) := f�g ��x (x) := ;�+x (:x) := ; ��x (:x) := f�gNow let s be a simple feature term, x be a variable, A be an in�nite interpre-tation, and � be an A-assignment. Obtain u from s by �rst replacing everysubterm :x with > and then replacing every remaining x with >. Now wedistinguish two cases:1. �+x (s) = ;. Then [[tx:s]]A� = [[u]]A� since A is in�nite. To see this note that[a2M(M � fag)n =Mn29



for every set M having at least n+ 1 elements.2. �+x (s) = fpigmi=1, where m � 1. Let ��x (s) = fqigni=1 and de�net := (u u p1 # p2 u � � � u p1 # pm u p1 " q1 u � � � u p1 " qn):Then [[tx:s]]A� = [[t]]A� .Theorem 5.6 For every simple feature term one can compute in polynomialtime an equivalent simple feature term not containing variables.Proof. Follows immediately from the preceding lemma.Theorem 5.7 (NP-Completeness) Deciding the consistency of feature termswithout quanti�cations is an NP-complete problem.Proof. Follows by the Disjunctive Normal Form Proposition, the preced-ing theorem, and the NP-Completeness Theorem for feature terms withoutvariables.Theorem 5.8 (Translation) For every feature term (possibly containingvariables and quanti�cations) one can compute an equivalent feature termnot containing variables.Proof. Let s be a feature term. Without loss of generality, we can assumethat s contains no free variables. If s contains no quanti�cation, then theclaim is trivial. Otherwise it su�ces to show that we can eliminate one quan-ti�cation. Let tx:t be a subterm of s such that t contains no quanti�cation.Then, by rewriting t to disjunctive normal form, we can compute �nitelymany simple terms t1; . . . ; tn such that[[tx:t]]A� = [[tx:(t1 t � � � t tn)]]A�= [[(tx:t1) t � � � t (tx:tn)]]A�for every interpretation A and every A-assignment �. Now the claim followsby the preceding lemma. 30



Corollary 5.9 (Canonicity) The feature structure algebra F is canonicalfor feature terms (possibly containing variables and quanti�cations).Proof. We already know that F is canonical for feature terms not containingvariables. Thus we know by the preceding translation theorem that it iscanonical for general feature terms.Corollary 5.10 (Decidability) Consistency and subsumption of feature terms(possibly containing variables and quanti�cations) is decidable.Since our quanti�er elimination procedure performs a stepwise transforma-tion to disjunctive normal form, it can't be used for a nondeterministic poly-nomial consistency test. We do not know whether deciding the consistencyof general feature terms is still in NP.We can extend our relational language by allowing for containment con-straints x: s, where s is a simple feature term possibly containing variables.The semantics of these generalized containments is de�ned byA; � j= x: s :() �(x) 2 [[s]]A� :Proposition 5.11 Let s be a simple feature term and x be a variable not oc-curring in s. Then xjfx: sg is a set description such that [[s]]A = [[xjfx: sg]]Afor every interpretation A.Next we add two further simpli�cation rules to deal with variables occurringin simple feature terms:� x: y &C !xo x := y &C� x::y &C !xo x6 :=y &C.With these rules Theorem 3.2 generalizes to set descriptions containing sim-ple feature terms with variables.This gives us a second polynomial time translation of simple feature termsto equivalent normal set descriptions. We will now close the loop and showthat every normal set description can be translated into an equivalent simplefeature term using the following rules:31



1. x6 :=y &C T�!xo x::y &C2. f(x) := y &C T�!xo x: (f : y) &C3. x: s &x: t &C T�!xo x: s u t &C4. xo: s & y: t &C T�!xo xo: s[� y u t] &C if s=� = y.Rule (4) replaces an occurrence of y in s with the term y u t.Proposition 5.12 If xojC is a connected set description and C T�!xo D,then xojD is an equivalent connected set description.Proposition 5.13 Let xojC be a normal set description. Then, using thetranslation rules, one can compute a simple feature term s such that C T�!xo xo: sand xojC and xo u s are equivalent.With this proposition we can strengthen Theorem 4.1 to:Theorem 5.14 An interpretation A is canonical if and only if [[xjC]]A isnonempty for every normal set description xjC such that C is not the incon-sistent clause fx:?g.6 DiscussionWe have presented a logic for describing objects in domains accessible througha sort lattice and a collection of features. The fact that in knowledge repre-sentation the domain of discourse cannot be speci�ed completely (how wouldyou specify humans?) is accounted for by an open world semantics. No singleworld is �xed but an entire class of admissible worlds is considered. Moreover,the descriptions of the logic do not attempt to specify objects completely.Instead, they consist of constraints that can be satis�ed by more than oneobject. These two sources of indetermination, which are both present inpredicate logic, account for the fact that we have only partial informationabout the world and its objects.Which worlds are admissible is speci�ed by a signature postulating a classi�-cation scheme (the sort lattice) by means of which the following assumptionscan be made: 32



� sort A is a singleton on which no feature is de�ned� sort A is a subset of sort B� sorts A and B are disjoint (make ? the greatest common subsort of Aand B)� sort C is the intersection of sortsA andB (makeC the greatest commonsubsort of A and B).Clearly, our signatures are a rather weak mechanism for constraining theadmissible worlds. For instance, we cannot make assumptions like� feature f is not de�ned on sort A ((f :> uA) � ?)� feature f is de�ned on every element of sort A (A � f :>)� for every element of sort A, on which feature f is de�ned, f yields anelement of sort B (A � (f :B t :f :>)).However, these assumptions about admissible worlds can be expressed if weallow for inclusional axioms of the form s � t. Admitting inclusional axiomsin general results in an undecidable logic, but the special forms needed toformulate the above assumptions about features are weak enough to preservedecidability.Feature logic is closely related to the knowledge representation language KL-ONE [4, 15]. Both formalisms enjoy an open worlds semantics, are basedon a classi�cation scheme (the primitive concepts of KL-ONE are sorts) andhave set denoting terms (called concept terms in KL-ONE). KL-ONE is moregeneral in that it generalizes features, which are partial functions, to roles,which are relations; on the other hand, feature logic has complements, whicharen't available in KL-ONE. Furthermore, KL-ONE has a much strongerapparatus for making assumptions about the admissible worlds (the so-calledT-Box). This all suggests that merging feature logic and KL-ONE into amore general knowledge representation formalism is an interesting directionfor future research.We have shown that feature structures constitute a canonical interpretationfor feature logic. Thus we can view feature logic without loss of generality asa formalism for reasoning about feature structures. If only feature structuresare admitted as interpretation, feature logic has a single domain or closed33



world semantics. In fact, this approach is taken in the linguistically moti-vated formalisms of Rounds and Kasper [21] and Johnson [9]. Although theclosed world approach is technically okay, it is unsatisfying philosophicallysince feature structures are again just partial descriptions of the \real" lin-guistic objects. The open world semantics presented in this paper renders thedetour over feature structures super
uous: one can now view feature termsas directly denoting sets of linguistic objects and there is still no need formaking precise what linguistic objects are. Incidentally, this view reconcilesthe positions of Kaplan and Bresnan [10] and Kay [14]: while Kaplan andBresnan argue for a strict distinction between feature descriptions and fea-ture structures, Kay insists that there are only feature descriptions (whichhe calls feature structures).What is a uni�cation method for feature terms? First, a uni�cation methodspeci�es a normal form for feature terms that exhibits inconsistency, that is,� every feature term is equivalent to a normal feature term� a normal feature term is consistent if and only if it is not ?.Second, a uni�cation method provides an algorithm that, given two normalfeature terms s and t, computes a normal feature term equivalent to s u t.Of course, the normal form employed by a uni�cation method can rely on asuitable representation of feature terms, which may be quite di�erent fromour syntax.We have presented a uni�cation method for feature terms in this paper: anormal feature term is represented as a �nite set of consistent normal setdescriptions, where the union of the denotations of the set descriptions is thedenotation of the feature term. All inconsistent feature terms are representedas the empty set (of set descriptions). To unify two normal forms fxijCigiand fyjjDjgj, we have to simplify the set description xij(xi := yj &Ci &Dj)for every i and every j. The set of the thus obtained consistent normal setdescriptions is the result of the uni�cation.Our uni�cation method requires the representation of feature terms in dis-junctive normal form, which, in general, causes an exponential blow up insize. For better e�ciency it is crucial to avoid expansion to disjunctive nor-mal form as far as possible. Such uni�cation methods have been devised byKasper [12] and Eisele and D�orre [6] for feature terms without complementsand nonsingleton sorts.What is the relationship between feature terms and ordinary terms? Whilethe terms of predicate logic denote elements of the universe (more precisely,34



functions from assignments to elements), feature terms denote subsets of theuniverse (more precisely, functions from assignments to sets). While ordi-nary terms are built up by function application, feature terms are built upby selection (the inverse of unary function application), intersection, unionand complement. Thus ordinary terms and feature terms are orthogonalconcepts that can coexist pro�tably in a knowledge representation or logicprogramming language. For instance, Smolka and A��t-Kaci [24] investigateinheritance hierarchies accommodating both kinds of terms and present auni�cation algorithm combining order-sorted uni�cation with feature uni�-cation.In Section 3 we have sketched how feature logic can be reduced to predicatelogic. Technically, this means that feature logic is just a decidable subsetof predicate logic. Incidentally, the same holds for KL-ONE. However, tomake predicate logic into a better knowledge representation language, it iscrucial to furnish it with more application oriented structure. Additionalstructure, though technically redundant, eases the formalization of knowledgeand serves as the basis for specialized inference methods that can be muchmore e�cient than general purpose mechanisms. (Overstating it a little bit,we could say that predicate logic is to knowledge representation what Turingmachines are to programming languages.) For instance, if subsorts are addedas a distinguished structure to predicate logic, order-sorted uni�cation [27,28] replaces ordinary uni�cation and leads to smaller search spaces. Featureterms obviously generalize sorts (which are in fact primitive feature terms)and can be integrated by allowing for containments x: s, where s is a featureterm possibly containing variables. For inference, feature term uni�cationcan then take the place of order-sorted uni�cation (this needs to be workedout, of course).The integration of Prolog-like logic programming with feature logic seemsto be a very promising line of research. In LOGIN [3], which pioneeredthis approach, feature terms (without singletons, unions and complements)take the place of ordinary terms and feature uni�cation replaces ordinaryterm uni�cation. Mukai's [17] language CIL is similar but uses constantsinstead of sorts. While LOGIN is presented without a declarative semantics,Mukai de�nes a declarative semantics for CIL using a �xed domain of ratio-nal records. Mukai also realizes that CIL is an instance of constraint logicprogramming, an approach that originated with Colmerauer's [5] Prolog-IIand was generalized by Ja�ar and Lassez [8]. Recent research [7] investi-gates logic programming based on feature logic and open world semantics.The presence of feature term unions (disjunctions) can diminish the need forbacktracking and feature term complements generalize the disequations of35



Prolog-II (x6 :=y is equivalent to x::y).References[1] H. A��t-Kaci. A Lattice-Theoretic Approach to Computation Based on aCalculus of Partially Ordered Type Structures. PhD thesis, Universityof Pennsylvenia, Philadelphia, PA, 1984.[2] H. A��t-Kaci. An algebraic semantics approach to the e�ective resolutionof type equations. Theoretical Computer Science, 45:293{351, 1986.[3] H. A��t-Kaci and R. Nasr. LOGIN: A logic programming language withbuilt-in inheritance. The Journal of Logic Programming, 3:185{215,1986.[4] R. J. Brachman and J. G. Schmolze. An overview of the KL-ONEknowledge representation system. Cognitive Science, 9(2):171{216, Apr.1985.[5] A. Colmerauer. Equations and inequations on �nite and in�nite trees.In Proceedings of the 2nd International Conference on Fifth GenerationComputer Systems, pages 85{99, 1984.[6] A. Eisele and J. D�orre. Uni�cation of disjunctive feature descriptions.In Proceedings of the 26th Annual Meeting of the ACL, State Universityof New York at Bu�alo, pages 286{294, Bu�alo, New York, 1988.[7] M. H�ohfeld and G. Smolka. De�nite relations over constraint languages.LILOG Report 53, IWBS, IBM Deutschland, Postfach 80 08 80, 7000Stuttgart 80, Germany, Oct. 1988. To appear in the Journal of LogicProgramming.[8] J. Ja�ar and J.-L. Lassez. Constraint logic programming. In Proceedingsof the 14th ACM Symposium on Principles of Programming Languages,pages 111{119, Munich, West Germany, Jan. 1987. ACM.[9] M. Johnson. Attribute-Value Logic and the Theory of Grammar. CSLILecture Notes 16. Center for the Study of Language and Information,Stanford University, CA, 1988.[10] R. M. Kaplan and J. Bresnan. Lexical-Functional Grammar: A for-mal system for grammatical representation. In J. Bresnan, editor, The36



Mental Representation of Grammatical Relations, pages 173{381. MITPress, Cambridge, MA, 1982.[11] R. T. Kasper. Feature Structures: A Logical Theory with Applicationsto Language Analysis. PhD thesis, University of Michigan, Ann Arbor,Mich., 1987.[12] R. T. Kasper. A uni�cation method for disjunctive feature descriptions.In Proceedings of the 25th Annual Meeting of the ACL, Stanford Uni-versity, pages 235{242, Stanford, CA, 1987.[13] R. T. Kasper and W. C. Rounds. A logical semantics for feature struc-tures. In Proceedings of the 24th Annual Meeting of the ACL, ColumbiaUniversity, pages 257{265, New York, N.Y., 1986.[14] M. Kay. Parsing in functional uni�cation grammars. In D. Dowty,L. Karttunen, and A. Zwicky, editors, Natural Language Parsing. Cam-bridge University Press, Cambridge, England, 1985.[15] H. J. Levesque and R. J. Brachman. Expressiveness and tractabilityin knowledge representation and reasoning. Computational Intelligence,3:78{93, 1987.[16] M. D. Moshier and W. C. Rounds. A logic for partially speci�ed datastructures. In Proceedings of the 14th ACM Symposium on Principles ofProgramming Languages, pages 156{167, M�unchen, W. Germany, 1987.[17] K. Mukai. Anadic tuples in Prolog. Technical Report TR-239, ICOT,Tokyo, Japan, 1987.[18] F. Pereira and S. M. Shieber. The Semantics of Grammar Formalismsseen as Computer Languages. In Proceedings of 10th International Con-ference on Computational Linguistics, pages 123{129, Stanford, 1984.[19] F. C. Pereira. Grammars and logics of partial information. In Proceed-ings of the 4th International Conference on Logic Programming, pages989{1013, Cambridge, MA, 1987. MIT Press.[20] C. Pollard and I. Sag. Information-Based Syntax and Semantics, vol-ume 13 of CSLI Lecture Notes. Center for the Study of Language andInformation, Stanford University, CA, 1987.[21] W. C. Rounds and R. T. Kasper. A complete logical calculus for recordstructures representing linguistic information. In Proceedings of the 1st37



IEEE Symposium on Logic in Computer Science, pages 38{43, Boston,MA, 1986.[22] S. M. Shieber. An Introduction to Uni�cation-Based Approaches toGrammar, volume 4 of CSLI Lecture Notes. Center for the Study ofLanguage and Information, Stanford University, CA, 1986.[23] G. Smolka. Feature constraint logics for uni�cation grammars. IWBSReport 93, IWBS, IBM Deutschland, Postfach 80 08 80, 7000 Stuttgart80, Germany, November 1989. To appear in the Journal of Logic Pro-gramming.[24] G. Smolka and H. A��t-Kaci. Inheritance hierarchies: Semantics anduni�cation. Journal of Symbolic Computation, 7:343{370, 1989.[25] G. Smolka, W. Nutt, J. A. Goguen, and J. Meseguer. Order-SortedEquational Computation. In H. A��t-Kaci and M. Nivat, editors, Reso-lution of Equations in Algebraic Structures, Volume 2, Rewriting Tech-niques, chapter 10, pages 297{367. Academic Press, New York, N.Y.,1989.[26] H. Uszkoreit. From Feature Bundles to Abstract Data Types: New Di-rections in the Representation and Processing of Linguistic Information.In A. Blaser, editor, Natural Language at the Computer|Contributionsto Syntax and Semantics for Text Processing and Man-Maschine Trans-lation, pages 31{64. Lecture Notes in Computer Science 320, Springer-Verlag, Berlin, Germany, 1988.[27] C. Walther. A mechanical solution of Schubert's steamroller by many-sorted resolution. Arti�cial Intelligence, 26:217{224, 1985.[28] C. Walther. Many-sorted uni�cation. Journal of the ACM, 35(1):1{17,January 1988.
38


