A Feature Logic with Subsorts*

Gert Smolka

German Research Center for Artificial Intelligence and
Universitat des Saarlandes

Stuhlsatzenhausweg 3, 6600 Saarbriicken 11, Germany
smolka@dftki.uni-sb.de

Abstract

This paper presents a set description logic with subsorts, feature selec-
tion (the inverse of unary function application), agreement, intersec-
tion, union and complement. We define a model theoretic open world
semantics and show that sorted feature structures constitute a canon-
ical model, that is, without loss of generality subsumption and con-
sistency of set descriptions can be considered with respect to feature
structures only. We show that deciding consistency of set descriptions
is an NP-complete problem.

To appear in:
J. Wedekind and C. Rohrer (eds.), Unification in Grammar.
The MIT Press, 1992

*This text is a minor revision of LILOG Report 33, May 1988, IBM Deutschland,
IWBS, Postfach 800880, 7000 Stuttgart 80, Germany. The research reported here has
been done while the author was with IBM Deutschland. The author’s article [23] is a
more recent work on feature logics.

1 Introduction

This paper presents a set description logic that generalizes and integrates
formalisms that have been developed for knowledge representation [1, 2] and
computational linguistics [13, 21, 11, 9]. The logic comes with an open world
model theoretic semantics, where admissible worlds can be required to sat-
isfy a classification scheme postulated by means of a sort lattice. The logic
supports the typically partial description of objects using sorts and features
as primitives. It is not intended as a stand-alone formalism but as descrip-
tive component of more expressive formalisms like unification grammars [22],
knowledge representation systems or logic programming languages.

The logic is based on the notion of a signature, which specifies which inter-
pretations are admissible. A signature postulates a set of feature symbols
and a lattice of sort symbols, where L is the least and T is the greatest sort
symbol. Figure 1 shows an example of a sort lattice taken form [2].

An interpretation of a signature assigns to every sort symbol a set, where
the denotation of T is called the universe of the interpretation, and to every
feature symbol a partial unary function from the universe to the universe.
The denotations of the sort symbols must satisty the following conditions:

e | denotes the empty set

o if (' is the greatest common subsort of two sorts A and B, then C
denotes the intersection of the denotations of A and B.

This definition implies that the denotation of A is a subset of the denotation
of B if A is a subsort of B. Furthermore, if the greatest common subsort of
A and Bis L1, then A and B must denote disjoint sets.

Given a signature specifying a set S of sort symbols and a set F of feature
symbols, one possible interpretation can be obtained by taking the least
solution of the domain equation

U=(SL{L})x(F—T)

as the universe, where F — U stands for the set of all finite partial functions
from F to U. The elements of this universe are finite records labeled with a
sort symbol different from L whose fields are designated with feature symbols.
Figure 2 shows an example of such a record. An interpretation with this
universe interprets a sort symbol A as the set of all records labeled with a

T

N

person Wii{ /monarch
adult child queen
teenager wickedqueen

\L/

Figure 1: An example of a sort lattice.

[clause
group
agent: | primaryclass: nominal
animacy: animate

group
process: | primaryclass: verbal

L agency: effective |

Figure 2: A record written in matrix notation. Sort symbols are printed bold
and feature symbols are printed slanted.

subsort of A, and a feature symbol f as the partial function yielding the
value of the field f if it is present.

Given a signature, the logic offers several languages for describing subsets
of the universe of an interpretation. The most intuitive of these languages
is applicative and consists of expressions called feature terms, which can be
viewed as a more general form of sorts. The sort symbols of the signature
are taken as primitive feature terms and operators providing for set intersec-
tion, union and complement with respect to the universe are available. For
instance, the feature term

(AN -B)U (BN -A)

denotes the set of all elements that are in the union of the sorts A and B but
not in the intersection of A and B.

There are two further, more specific term forming operators that rely on the
presence of features.

The selection operator takes a feature symbol f and a feature term s and
yields a feature term f:s denoting the set of all elements of the universe for
which the feature f is defined and yields an element of the set denoted by s.
Feature selection is the inverse of unary function application. For instance,
the term —(f: T) denotes the set of all elements of the universe for which the
feature f is not defined. If we interpret this term over the universe of finite
records defined above, it denotes all records that don’t have a field f at the
top level. The feature term

car N fuel: gasoline

denotes the set of all elements of the sort car, for which the feature fuel is
defined and yields an element of the sort gasoline. In the domain of finite
records, this term denotes the set of all records labeled with a subsort of car
that possess a field fuel having as its value a record labeled with a subsort
of gasoline. One such record is

car
fuel: gasoline
speed: 120

The last term forming operator is the agreement operator p | ¢ taking two
paths as arguments. A path is a finite, possible empty sequence f;--- f, of
feature symbols denoting the composition of the partial functions denoted
by fi,..., fa, where f; is applied first. A feature term p | ¢ denotes the set

4

of all elements of the universe for which the denotations of p and ¢ are both
defined and yield the same element as result. For instance, the term

car ' speed | age

denotes the set of all elements of the sort car for which the features speed
and age are both defined and agree. (Cars in this set are the slower the newer
they are.) Linguists will prefer the term

sentence N (subj agree) | (pred agree)

which may be thought of as denoting all sentences possessing a subject and
a predicate with agreeing agree features.

A feature term is called consistent if there exists a least one admissible in-
terpretation in which it denotes a nonempty term. For instance, the feature
term

AN f:B

is inconsistent if the greatest common subsort of A and B is L. However, if
the greatest common subsort of A and B is a sort symbol €' different from
1, then the term is consistent since, for instance, it contains [T f:C] in the
record interpretation.

We say that a feature term s is subsumed by a feature term ¢ if s denotes
a subset of ¢ in every admissible interpretation. Furthermore, we say that
two terms are equivalent if they denote the same set in every admissible
interpretation. Since the logic has negation, consistency and subsumption
are closely related properties: s is inconsistent if and only if s is subsumed
by L, and s is subsumed by ¢ if and only if s = is inconsistent.

We will show that deciding the consistency of feature termsis an NP-complete
problem. The NP-hardness is shown using Kasper’s [11] reduction of the
satisfiability problem of propositional formulas in conjunctive normal form to
the consistency problem of feature terms. This reduction shows in particular
that the consistency problem remains NP-hard even if only feature terms
without complements and agreements are considered.

Several variants of feature descriptions are being used in computational lin-
guistics (see [22, 19, 20] for introductory expositions). In unification gram-
mars [10, 14], unification of feature descriptions is the basic operational mech-
anism for parsing and generating natural language. A unification method for
feature descriptions consists of a normal form that exhibits inconsistency and
an algorithm that, given two normal feature descriptions s and ¢, computes
a normal feature description equivalent to s1+.

Rounds and Kasper [21] were the first to come up with a logical formalization
of feature descriptions (without complements and with constants rather than
sorts). Their logic has a fixed interpretation, where feature descriptions
denote sets of feature structures. Feature structures are consistent, union-
free feature descriptions that can be viewed as finite deterministic automata.
This paper generalizes Rounds and Kasper’s logic in two respects: first,
we add complements and nonsingleton sorts; and second, and maybe more
important, we show that our open world semantics yields the same notion
of subsumption and consistency as a closed world semantics using feature
structures as fixed interpretation.

Moshier and Rounds [16] generalize the formalism of Rounds and Kasper [21]
by adding nonclassical negation. They show that the consistency problem
of the extended logic is PSPACE-complete. In contrast, classical negation,
which underlies our logic, does not render the consistency problem any harder
(it is already NP-complete if just singletons, selection and union are avail-

able).

Johnson’s [9] attribute value logic is close to the unification grammar for-
malism LFG [10]. It employs relational feature descriptions with classical
negation, where agreement is expressed with variables. Like Rounds and
Kasper’s logic, Johnson’s logic is interpreted over feature structures only. In
contrast to Rounds and Kasper, Johnson admits cyclic feature structures
(as do we). Johnson shows that the consistency problem of his logic is NP-
complete. In this paper, we will generalize feature terms to accommodate
variables and thus obtain feature descriptions that are almost equivalent
to Johnson’s (Johnson’s descriptions are more general in that they allow
for variables at the left-hand side of selections). We will show that feature
terms with variables describe exactly the same sets as variable-free feature
terms, thus bridging the gap between Johnson’s and Rounds and Kasper’s
formalisms. However, feature terms with variables allow for exponentially
more succinct descriptions, a fact that is important for efficient unification
algorithms [12, 6]. We will also introduce quantification for feature terms
with variables and present a quantifier elimination algorithm that computes
for every feature term an equivalent quantifier-free feature term, thus showing
that even with quantification no more sets can be described and consistency
and subsumption remain decidable.

Our feature logic generalizes Ait-Kaci’s formalism [1, 2], from which it inher-
its the use of subsorts. Ait-Kaci’s formalism was developed independently
of the linguistically motivated approaches with knowledge representation as
application in mind. From today’s perspective, Ait-Kaci’s formalism suffers

from the fact that it is nonlogical, that is, that it makes no clear distinction
between descriptions and what they denote. There are only feature descrip-
tions in normal form (called ¥-terms) and subsumption is defined purely
syntactical. Nevertheless, Ait-Kaci was the first to give a mathematically
rigorous formalization of what feature unification is supposed to do. Ait-
Kaci [1, 2] also outlines a model theoretic semantics for his formalism that
is equivalent to the semantics presented in this paper, but he doesn’t exploit
this idea any further (for instance, for the definition of subsumption).

In [24] we give an initial algebra semantics (closed world) for feature de-
scriptions drawn over inheritance hierarchies using order-sorted equational
logic [25]. This approach accommodates data types whose elements are de-
scribed by features as well as data types whose elements are described by
constructors and shows the duality of the two approaches under the given
initial algebra semantics. Furthermore, we present a unification algorithm
that combines order-sorted unification [27, 28] with -term unification [1, 3].

The paper is organized as follows. Section 2 formalizes signatures, interpre-
tations and feature terms and shows that every feature term can be rewritten
as a union of simple feature terms. Section 3 presents a relational language
of set descriptions and shows that every simple feature term can be rep-
resented as a normal set description. The translation is accomplished by
a system of simplification rules, which provides a consistency checking and
unification algorithm. Section 4 shows that feature structures constitute a
canonical interpretation and that deciding consistency of feature terms is an
NP-complete problem. Section 5 generalizes feature terms to include vari-
ables and quantification, which provide for an exponentially more succinct
syntax. Finally, Section 6 discusses the results, possible applications and
related work. It might be a good idea to skim this discussion before getting
lost in the technical sections of the paper.

Acknowledgement. Gunther Gorz and Hans Uszkoreit were patient enough
to give me some idea of what is going on in computational linguistics. Hans
Uszkoreit’s STUF [26], which is used as the central representation formalism
in the LILOG project at IBM, provided me with the challenge to capture
some of it in logic. From Mark Johnson’s thesis I learned that comple-
ments and negations are easy. Finally, Christoph Beierle and Markus Hohfeld
helped me with frequent discussions to get things right.

2 Feature Terms

In this section we define the basic notions of feature logic: signatures, inter-
pretations and feature terms. Feature terms are a functional language for
feature logic. In later sections we will introduce a relational language and
extend the functional language to include variables and quantification.

Signatures serve as the interface between syntax (formal languages) and se-
mantics (interpretations). In our logic, a signature fixes the available symbols
(sorts, singletons and features) together with a subsort ordering.

Formally, a signature is a tuple ¥ = (S, C, <, F) specifying

o a set S of sort symbols containing | and T
e a subset C of S whose elements are called singleton symbols
e a decidable partial order < on S such that

— L is the least and T is the greatest element

— every two sort symbols A and B of S have a greatest common
lower bound, which is called their greatest common subsort and is

denoted by ges(A, B)

— every singleton symbol A is minimal, that is, if B < A, then B is
either 1 or A

o a set F of feature symbols such that S and F are disjoint.

An interpretation A of a signature ¥ (also called a Y-algebra) consists of
denotations A* and f* for the sort and feature symbols of ¥ such that:

o T is a set called the universe of A
o 14 is the empty set
o if Ais a sort symbol of ¥, then A% is a subset of T4

o if Ais a singleton symbol of X, then A# is a set consisting of exactly
one element

o if A and B are sort symbols of ¥ having ' as their greatest common
subsort, then C4 = A4 N BA

o if f is a feature symbol of ¥, then f# is a function DJ“?‘ — T4, where
DJ“?‘ (called the domain of f in A) is a subset of T4

o if fis a feature symbol of ¥ and A is a singleton symbol of X, then DJ“?‘
and A4 are disjoint.

This definition ensures that different singleton symbols denote disjoint sin-
gletons and that no feature is defined on a singleton. Thus our singleton
symbols can take exactly the role of the constant symbols employed in the
feature logics of Rounds and Kasper [21] and Johnson [9].

Note that the subsort ordering of a signature must be realized by an inter-
pretation in a strong sense: if (' is the greatest common subsort of A and B,
then the denotation of C' must be the intersection (and not merely a subset)
of the denotations of A and B. With that we are able to postulate that two
sorts are disjoint by making | their only common subsort.

In the following it won’t be necessary to refer to more than one signature
at once. Thus we will ease our notation by always referring to some fixed
signature ¥ = (S,C, <, F). Furthermore, the letters A and B will always
denote sort symbols of S and the letters f, g and h will always denote feature
symbols of F.

A path is a finite sequence of feature symbols. The empty path is denoted
by e¢. In an interpretation A, a path fi--- f, denotes the partial function
obtained as the composition of f*,..., fA, where f{ is applied first:

o ¢* is the identity function on T4
o D{ :={aeD}| fAa) e DM}

o (fq)*(a):=q*(fA(a)).

The letters p and ¢ will always denote paths.

Feature terms are defined by the following context-free production rule:

s,tyu,v 1— A sort

f:s selection

p | gagreement

p T gdisagreement
s Mtintersection
s U tunion

—s complement.

The denotation of a feature term in an interpretation A is a subset of T4
defined inductively by the following equations:

o [A]# = AA

[f:s]* = {a € DF | fA(a) € [s]} = (S ([s14)
[p | a]* = {a € DS N DS | pH(a) = ¢*(a)}
[p1a]* = {a € D D | pH(a) # ¢*(a)}

[s el = [s]4 N [

[s w4 = [s]4 U [

[-s]* = TA L [s]4

To ease our notation, we will omit parentheses whenever the following rules
allow for disambiguation:

e 1 and Ul are right-associative

o the term forming operators bind according to the order f:s, —s, st,
s U t, where selection binds strongest and union binds weakest.

For instance,
-fiplgUsn—tNulov

disambiguates to

(=(f:(p L @) U (s T (=) M) Uw).

Furthermore, we will use the following abbreviations:

o s L1:=sM—t (set difference)

. ‘S‘:{S ifp=c¢
P27 U igs) ifp=fq

Disagreements and unions are actually redundant forms since

[p1ql* = [pT 0T 0 =plq?
[sU* = [~(=s1- O

10

in every interpretation A. They have been introduced as separate syntac-
tic forms since they ease the definition of transformations to be introduced
below.

Given an interpretation A, the system of all subsets of the universe of A that
can be obtained as the denotation of a feature term

FTS(A) := {[s]*| s is a feature term}

is a boolean set lattice since it is closed under intersection, union and com-
plement and contains 14 =) and the universe T4.

We are now ready to define the major properties of feature terms. We say

that

e a feature term s is consistent if there exists an interpretation A such

that [s]4 # 0

o a feature term s is subsumed by a feature term ¢ if [s]* C [¢]# for every
interpretation A

o a feature term s is equivalent to a feature term ¢ if [s]* = [¢]# for every

interpretation A.

Proposition 2.1 (Tautologies) Let s and t be feature terms and u = v be
an instance of one of the tautologies in Figure 3. Ift is obtainable from s by
replacing a subterm u with v, then s and t are equivalent.

Proposition 2.2 (Reductions) Let s and t be feature terms. Then:

o s is subsumed by t s L1 is inconsistent

s and sTt are equivalent

o s is equivalent tot s L tUt L s s inconsistent

=
=
=
< s is subsumed byt and t s subsumed by s

® s isinconsistent <= s is subsumed by L
< s is equivalent to L.

11

Commutativity, Associativity and Distributivity

sMt=1MNs
sO(ENu)=(sMt)Mu
sO(tUw)=(sMt)U (sMu)

Idempotence and Absorption
slls =3

(sMt)Us=s

Complements
s—s=_1
S(sMt) =-sU—t

——18 = §

Bottom and Top
sMlL=1

sMT =s

-1 =T

fil=1

Selections and Agreements
s N = (fr) 0 (f21)

~fis = (< T)U(fims)
“plg=(p:T)U(=¢T)Up Ty
“pTg=(p:T)U(~¢T)Up lg

Sorts
AN B =ges(A,B)

sUt=1tUs
sU(fUu)=(sUt)Uu
sU@Mu)=(sUt)MN(sUu)

sls=s

(sUt)Ms=s

sU—-s=T
S(sUt)=-sM—t

sUT =T
sUl=s
T =1

Ji(sUt) = (frs)U(f:0)

AuB=B itA<B

Figure 3: Some Feature Term Tautologies.

12

The Reduction Proposition says that a decision algorithm for one of the
three properties subsumption, equivalence and consistency can be used for
deciding any of these properties. Since the reductions are linear time, all
three decision problems have the same computational complexity.

In the following sections we will concentrate on the consistency problem,
which we will show to be NP-complete. The first step shows that every
feature term can be rewritten in polynomial time to an equivalent feature
term containing only simple complements.

A complement is called simple if it has either the form —f: T or the form
= A, where A is a sort symbol different from 1 and T.

Proposition 2.3 (Simple complements) For every feature term one can
compute in polynomial time an equivalent feature term containing only simple
complements by rewriting with the following tautologies in top-down order:

-1 =T

T =1
—fis==f:TU/f:—s
plg=—pTU-¢TUpTq
plqg=-pTU-q¢TUplgqg
S(sMt) =-sU—t

S(sUt) =-sM—t

s = s.

0N D TrEs Lo o~

A feature term is called simple if it contains no union and every contained
complement is simple.

Proposition 2.4 (Disjunctive Normal Form) For every feature term s
one can compute in exponential time finitely many simple feature terms
81y..., 8y such that s and sy U --- U s, are equivalent by first rewriting all
complements to simple complements and then propagating up all unions by
rewriting with the following tautologies:

1. fi(sUt)=(frs)U(f:1)
2. sT(tUuw)=(sNt)U(sMu)
3. (sUt)Mu=(sMu)U (tMu).

The terms $s1,...,8, are called the disjuncts of s. The disjuncts of a term

can also be obtained by first rewriting all complements to simple complements
and then replacing every union nondeterministically by one of its arquments.

13

In the following sections we will prove that the consistency of simple feature
terms is decidable in polynomial time. By the Reduction and the Disjunctive
Normal Form Proposition of this section we already know that this result
implies that deciding consistency of general feature terms is in NP, and that
deciding subsumption of general feature terms is in co-NP.

3 Feature Clauses and Simplification Rules

We won’t provide a deduction calculus for proving feature term equivalences
since this turns out to be a very tedious enterprise. The difficulties are caused
by the presence of agreements. The interested reader may consult [21], where
a complete deduction calculus for feature terms without complements and
sorts is given.

The difficulties with the deduction calculus disappear if we use a relational
rather than a functional language. A relational language has variables that
range over the universe of the interpretation, primitive constraints, and con-
junction, disjunction and negation to form complex constraints. As primitive
constraints one can employ, for instance, the forms

o v: A “xisin sort A7
o f(z)=y “feature f of x isy”

e v =y “xequalsy”.

A similar language, without sorts, is used in Johnson’s [9] attribute value
logic, which comes with a complete and sound deduction calculus.

Here we will be content to devise a simple relational language that is just
powerful enough to describe sets that can be obtained as the denotation of
simple feature terms. Using this relational language, we can conveniently
specify a polynomial-time algorithm for deciding the consistency of simple
feature terms.

From now on we assume that an infinite alphabet of variables is given. Of
course, variables are assumed to be distinct from sort and feature symbols.
The letters z, y and z will always denote variables.

Constraints are defined by the following context-free production rule:

c 1— s, where s is simplecontainment

14

xp =y path equation

|

| 2=y variable equation
| flz) =y feature equation
| ay disequation.

To ease our notation, we will write = f(x) (read “f is not defined on x”) for
a containment x: (= f: T).

Let A be an interpretation. An A-assignment « is a function that maps every
variable to an element of TA. The validity of a constraint in an interpretation
A under an A-assignment « is defined as follows:

e AlafEuwxs <= afr)c[s]*

AaEap=y <= afz)€ D;:‘ and pA(a(x)) = a(y)

AaErs=y <= oalz)=a(y)

Aol flz) =y = a(z) € Df and fA(a(2)) = a(y)

Ao Fafty == alz) # aly).

A feature clause is a finite, possibly empty set of constraints. A feature clause
C is valid in an interpretation A under an A-assignment « if A, « | ¢ for
every constraint ¢ € C'.

A set description is a pair x|C consisting of a variable @ and a feature clause
C. The denotation of a set description z|C' in an interpretation A is defined
as

[2]C]* := {a(2) | «is an A-assignment such that A, a = C'}.

A set description is called consistent if there exists at least one interpretation
in which it denotes a nonempty set. Two set descriptions are called equivalent
if if they denote the same set in every interpretation; furthermore, a feature
term and a set descriptions are called equivalent if if they denote the same
set in every interpretation.

Proposition 3.1 Let s be a simple feature term and let x be a variable.
Then z|{x:s} is a set description such that [s]* = [z|{z:s}]* for every
interpretation A.

15

(1) a:(frs)&C —,, fle)=y &y:s&C if yisnew
(2) x:(plq)&C —,, ap=y &aqg=y &C if yisnew

3) w(p1q) &C —,, ap=y &arqg=2z&y#2 &C

if y and z are new and distinct
(4) 2z:(sNt) &C —,, x:s&a:t &C
(B5) afp=y&C —,, fla)=z&zp=y &C if zis new
(6) we=y&C —,, 1=y &C

Figure 4: The simplification rules for decomposing containments.

Next we will define a normal form for set descriptions that exhibits incon-
sistency. Then we will present simplification rules with which every set de-
scription can be transformed to normal form in polynomial time.

A constraint is called normal if it has one of the following forms:

o v: A or x:—A, where A is a sort symbol different from 1 and T

- f(x) (abbreviation for z:(—f: T))
flz) =y

xr#y, where @ and y are distinct variables.

A feature clause is called normalif either it has the form

{a: L}

or it is a set of normal constraints satisfying the following conditions:

1. if z: A and x: B are in C, then A =B

2. it x: A and z: =B are in C, then A and B are distinct and A is not a
subsort of B

3. it 2:-A and x: =B are in (', then A = B or A is not a subsort of B
4. 1f x: A and y: A are in C' and A is a singleton, then z =y

5. if f(x) =y and f(x) = z are in C, then y = =z

16

(1) @ A&x:B&C —,, v:ges(A,B) &C

8) =T&C =, C

(9) a:L &C —,, xp: L if C is nonempty

(10) 2:-A&a:-B&C —,, :-B&C il A<B

(11) A& -B&C —,, 2L ifA<B

(12) @ A& f(x) =y &C —,, 2,0 L if Ais a singleton

(13) A&y A&C —,, y: A&lz/y]C if Ais a singl. and z # x,
Features

(14) fla) =y &f(a)=2&C =g, [2/y](f(z) =y &C) ifz £,
(15) flz) =y &=f(2) &C —p, 2y L

Equations

(16) 222 &C —,, C

(17) e =y &C —,, [2/y]C ifx#a,

(18) =y &C —,, [y/z]C ify#a,

(19) e & C —y, zo: L

Figure 5: The simplification rules for sorts, features and equations.

17

6. if f(x) =y isin C, then = f(x) is not in C.

The dependency relation —¢ of a feature clause C' is a binary relation on the
set of all variables defined as follows:

r—cy <= d(ep=y)eC or I(r=y)eC or
I (f(x)=y) el

A variable z is called a root of a feature clause C' if + —7 y for every variable
y occurring in C'. A set description z|C is called connected if x is a root of

C.

A set description x|C' is called normal if it is connected and C' is a normal
feature clause. In the next section we will show that a normal set description
is consistent if and only if it has not the form z|{z: L}.

Figures 4 and 5 show the simplification rules for set descriptions. Don’t be
shocked that there are so many—each rule is actually very simple. First note
that we use ¢ & C' to denote the union {¢} U C, where C is supposed to be
a feature clause not containing the constraint ¢. The variable x, decorating
the simplification arrow —,_ is supposed to be the root variable of the
set description that is being simplified. With [z/y]C we denote the feature
clause obtained from the feature clause ' by replacing every occurrence of
the variable x with the variable y. The rules for unfolding containments
and eliminating path equations in Figure 4 introduce new variables, that is,
variables that don’t occur in the clause left of the simplification arrow —
and that are different from the root variable x,. The following theorem states
the major properties of the simplification rules.

Theorem 3.2 [Simplification]

1. (Invariance) If «,|C is a set description and C' —, D, then x,|D is
an equivalent set description; furthermore, if x,|C is connected, then
z,o| D is connected.

2. (Completeness) To every set description whose feature clause is not
normal one of the simplification rules in Figure / or 5 applies.

3. (Termination) There are no infinite chains Cy —,, Cy —,,

18

Proof. To show the invariance claim, we have to show that, for every rule,
(1) x, is maintained as a root variable and (2) the denotation stays invariant
in every interpretation. This verification is tedious (since there are so many
rules) but rather straightforward.

The verification of the completeness claim is straightforward.

To prove the termination claim, we define the complexity of a clause C' as
the triple (|C11,|Cls, |C|3), where the component complexities are natural
numbers defined as follows:

o [Cly:= > |s|, where the size |s| of a feature term s is defined as
(z:s)eC

sE—
one would expect

e [Cla:= > (lp|+ 1), where |p| is the length of the path p
(wp=y)eC

o |C|3 is the number of constraints in C.

The lexical order induced by the canonical order on the natural numbers is a
well-founder order on these complexity triples. Since every simplification rule
reduces the complexity with respect to this order, we know that the length
of a —, -derivation issuing from z,|C is polynomially bounded in the size

of C. O

Corollary 3.3 (Simplification of Set Descriptions) For every connected
set description one can compute in polynomial time an equivalent normal set
description.

Corollary 3.4 For every simple feature term one can compute in polynomial
time an equivalent normal set description.

The relational language suggests that feature logic can be expressed in stan-
dard predicate logic by modeling sorts as unary and features as binary pred-
icates. (Features cannot be modeled as functions since in predicate logic
functions are interpreted as total functions.) Several axioms are necessary
to restrict the possible interpretations to the interpretations admissible for
feature logic. The functionality of a feature f can be expressed by the axiom

flz,y) A flz,2) =y = 2.

19

The emptyness of the denotation of L can be expressed by
-1 (x).

For every triple A, B, (' such that (' is the greatest common subsort of A
and B we need the axiom

A(z) AN B(z) « C(x)

to express that C' denotes the intersection of A and B. For every singleton
symbol A we need the axioms

Jdx. A(z), A() N Aly) — = = .

Finally, for every singleton symbol A and every feature symbol f we need
the axiom

—(A(x) A flz,y))
to express that f is not defined on A.

4 Canonical Interpretations

An interpretation A is called canonical if for every two feature terms s and
t the following conditions are satisfied:

1. s is consistent if and only if [s]* #

2. s and t are equivalent if and only if [s]4 = [t]#

3. s is subsumed by ¢ if and only if [s]* C [¢]*.

Theorem 4.1 An interpretation A is canonical if [x|C]* is nonempty for
every normal set description x|C such that C' is not {x: L}.

Proof. From the Reduction Proposition in Section 2 we know that an
interpretation is canonical if it is canonical for the consistency of feature
terms. Since every feature term is equivalent to a finite union of simple
feature terms (Disjunctive Normal Form Proposition), we even know that
an interpretation is canonical if it is canonical for the consistency of simple
feature terms.

20

In Section 3 we proved that for every simple feature term s one can compute
a normal set description x|C such that s and «|C denote the same set in
every interpretation. Hence an interpretation is canonical if it is canonical
for the consistency of normal set descriptions.

Since a set description z|{z: L} denotes the empty set in every interpretation,
the requirement that [|C]* is nonempty if C' is not {x: L} implies that the
interpretation A is canonical. O

In this section, we will construct a family of canonical interpretations (one
for every signature) for feature logic. The elements of these canonical in-
terpretations are called “feature structures” and can be depicted as finite,
directed graphs with labeled nodes and edges (see Figure 6 for an example).
Our feature structures generalize the feature structures used by Rounds and
Kasper [21] by providing for cycles and nonsingleton sorts.

There are many possibilities for the formal definition of feature structures.
For instance, Aft-Kaci [2] uses rational tree domains and Rounds and Kasper
[21] use finite automata. Here, yet another formalization is technically most
convenient: we will define feature structures as equivalence classes of normal
set descriptions containing only “positive” constraints.

A positive constraint is a constraint having either the form f(xz) =y or the
form xz: A, where A is a sort symbol distinct from | and T. A quasi-feature
structure is a normal set description containing only positive constraints.

Quasi-feature structures do not yet model singletons as singletons since they
contain too much syntactic structure. For instance, if A is a singleton symbol
and x and y are distinct variables, then x|{x: A} and y|{y: A} are distinct
quasi-feature structures. This technical complication can be resolved by in-
troducing an equivalence relation that identifies quasi-feature structures that
should be equal.

A variable x occurring in a quasi-feature structure y|C is called a singleton
variable of y|C if C' contains a constraint z: A such that A is a singleton sym-
bol. We say that two quasi-feature structures are equivalent if they are equal
up to renaming of singleton variables. If 2|C is a quasi-feature structure, we
denote the equivalence class containing x|C' by z|C.

Now we define a feature structure to be an equivalence class of quasi-feature
structures. Figure 6 shows a quasi-feature structure together with a matrix
and graph representation of the corresponding feature structure.

Let C' be a normal feature clause. Then we use C'/x to denote the greatest
subset of C' such that x is a root of C'/x. If 2|C is a feature structure such

21

X |{ X:sentence,
subj(X) =5,
argree(X) = A, A:agreement,
pred(X) =V, agree(V) = A, syncat(V) = C,
first(C) = S, rest(C) = L, L:lambda }

X
sentence
subj: S

agree: [A agreement]

v
pred: | agree: A
syncat: [C first: S rest:lambda] | |

X: sentence

agree

subj pred

IS | ~agree A: agreement

syncat

C w‘
lambda

first

Figure 6: A quasi-feature structure together with a matrix and graph rep-
resentation of the corresponding feature structure. Variables are written as
capital letters. The symbol lambda is a singleton sort and sentence and

agreement are nonsingleton sorts.

22

that C' contains the constraint f(z) = y, then (y|C/y) is the sub-feature
structure reachable through the edge f.

Construction 4.2 (Feature Structure Interpretation F) The set of all
feature structures constitutes an interpretation F defined as follows:

e T7 is the set of all feature structures

o AT ={(z|C)eT7 |3 (:B)eC. B< A}

o [F(2|C):=ylCly if (f(z)=y) e C.

We will now show that F is a canonical interpretation.

Theorem 4.3 Let x|C be a normal set description such that C is not the
inconsistent clause {x: L}. Then (z|C*) € [z|C]”, where C* is the set of
all positive constraints in C'.

Proof. Let z,|C be anormal set description such that C' is not the inconsis-
tent clause {x,: L}. Then a(x) := x|C*/x defines an F-assignment « such
that a(x,) = z,|C*. We have to show that F,a = C.

Suppose z: A is in C. Then z: A is also in Ct/z. Hence a(z) = z|Ct/x €
AT

Suppose z:—A is in C'. We have to show that a(z) ¢ A*. Suppose a(z) =
z|C+/z € AZ. Then € must contain a containment z: B such that B < A,
which is a contradiction since C' is normal and contains x: = A.

Suppose —f(x) is in C. We have to show that f* is not defined on a(z).
Suppose f7 is defined on a(z) = z|C*/z. Then C' must contain a feature
equation f(x) =y, which is a contradiction since C' is normal and contains

—f(x).

Suppose f(z) = y is in C. Then f(z) = y is in C*/z. Hence f7(a(z)) =
P CF) = y[(CF) [y = y[CF/y = aly).

Suppose x#y is in ', where x and y are distinct variables. We have to show

that a(z) = 2|Ct/x # y|C*/y = a(y). If 2 and y are not both singleton
variables, this disequation obviously holds. If x and y are both singleton

variables, the disequation also holds since x and y must be qualified with
different singletons because €' is normal. a

23

Corollary 4.4 The feature structure interpretation F is canonical.
Theorem 4.5 Deciding the consistency of feature terms is a problem in NP.

Proof. We have shown in Section 2 that every feature term can be rewrit-
ten in polynomial time to an equivalent feature term containing only simple
complements. Next we can eliminate all unions by replacing them nondeter-
ministically by one of their arguments. The original feature term is consistent
if and only if we can obtain in this way a consistent simple feature term. In
Section 3 we have shown that for simple feature terms we can compute in
polynomial time an equivalent normal set description. This completes the
argument since we know by the preceding theorem that the consistency of
normal set descriptions can be decided in constant time. a

Theorem 4.6 Deciding the consistency of feature terms without comple-
ments, agreements and disagreements is an NP-hard problem.

Proof. The proof uses a reduction given by Kasper [11], which reduces
the satisfiability problem for propositional formulas in conjunctive normal
form, which is known to be NP-complete, to the consistency problem for
feature terms. We assume a signature that has two singleton symbols yes
and no and two feature symbols f and f for every propositional variable
f. Now let ¢ be a propositional formula in conjunctive normal form. Then
¢ can be translated into a feature term s, by replacing the conjunctions
with intersections, the disjunctions with unions, every negated propositional
variable = f with f:yes, and every unnegated propositional variable f with
f:yes. Furthermore, for every propositional variable f occurring in ¢ let s
be the feature term

sp:= (fryesM fino) U (f:no M f:yes).
Now it is easy to verify that ¢ is satisfiable if and only if the feature term
S¢|_|Sf1 |_|"'|_|an

is consistent, where fi,..., f, are the propositional variables occurring in ¢.
O

Corollary 4.7 Deciding the consistency of feature terms is an NP-complete
problem.

24

As mentioned before, our feature structures extend the feature structures of
Rounds and Kasper [21] by accommodating nonsingleton sorts and cycles.
Since the agreement e | f denotes a nonempty set in F, cycles are in fact
necessary to obtain a canonical interpretation. However, if we only admit
interpretations satisfying the “finiteness” condition

Vae T {p|aeD}}is finite,
then feature structures without cycles constitute a canonical interpretation.

Let us call a feature structure complete if each of its terminal nodes is a sin-
gleton. The feature structure in Figure 6 is not complete since the terminal
nodes A and S are variables. One can show that complete feature struc-
tures constitute a canonical interpretation, if the signature has at least one
singleton and one feature symbol.

Even complete feature structures are not a natural data structure since they
still contain redundant syntactic structure. For instance, the feature struc-
tures

e{f(x) =z, = A} and y[{f(y) =z, A}

are distinct if the root variables x and y are distinct. The records outlined
in Section 1 do not have this redundancy. Incidentally, Pereira and Shieber
[18] formalize feature structures as possibly infinite records.

In general, record structures don’t constitute a canonical interpretation. To
see this, consider a signature that has one singleton A, two features f and
g, and no other symbols. Then there is no record structure that satisfies the
consistent feature term

FTgn fi(ftATNg:A) 1 ¢g:(f: ATg: A).

5 Feature Terms with Variables

In this section we will generalize feature terms by accommodating variables
and quantification. Using variables agreements can be expressed exponen-
tially more succinct. In particular, with variables one can express nonlocal
paths [12], which are used, for instance, in Functional Unification Gram-
mar [14]. In Aft-Kaci’s [1, 2] formalism agreements are also expressed with
variables.

We will show that every feature term with variables and quantification can be
translated into an equivalent feature term without variables. Thus variables

25

and quantification do not enable us to describe more sets, but just provide
for more succinct descriptions, which is of crucial importance for efficient
unification algorithms [12, 6]. We will show that the consistency problem for
feature terms with variables but without quantifications is still in NP. How-
ever, if quantifications are present, we do not know whether the consistency
problem remains in NP.

To accommodate variables and quantifications, we extend the abstract syntax
of feature terms as follows:

s,tyu,v 1— A sort

f:s selection

p | gagreement

p T gdisagreement
s Mtintersection
s U tunion

—s complement
x variable

Ux.squantification

Free variables of a feature term are defined as in predicate logic or the lambda
calculus. A feature term is closed if it has no free variables.

In the following we will refer to the feature terms of Section 2 as feature terms
without variables and mean by a feature term a feature term possibly con-
taining variables and quantifications. Thus, although some of the following
propositions and theorems read the same as their counterparts in previous
sections, they are actually more general.

The denotation of a feature term in an interpretation A under an A-assignment
o is a subset of T# defined inductively by the following equations:

o [A]f = A4

[f:s]d = {ae T4 fA(a) € [s]2}

[p | qld = {a € D} 0D} | pH(a) = ¢*(a)}
[p1 4] = {a e D} N Dy | ph(a) # ¢*(a)}
[s]2 = [sI2 0 [1]2

[s wt]d = [sI2 U [t

[~s]a = T4 L[s]2

26

[sentence
subj: [S case: nominative]
actor: A
mood: { declarative interrogative }

voice: active
actor: S
[voice: passive

goal: S
preposition
adjunct: | prep: by

L obj: [A case: objective]

Figure 7: A feature term in matrix notation showing how nonlocal paths
can be expressed with variables (here A and S). A conjunctive matrix
[$1...8,] stands for s; M-+ Us, and a disjunctive matrix {s;...s,} stands
for s; U ---Us,.

o []7 = {a(x)}

o [[LLTS]];?: U [[S]]f[xha]'
a€TA

The updated assignment alz + a] is obtained from « by mapping z to a
rather than to a(z).

The denotation [s]* of a feature term s in an interpretation A is defined as

[sI" = U [s17 -

o 1s an

follows:

A-assignment

Note that a quantification Uz.s corresponds to an existential quantification
in a relational language.

Figures 7 and 8 show two examples for feature terms with variables, the
Example in Figure 7 is taken from [12].

Explicit quantification is a concept not present in other feature formalisms.
As long as the formalism doesn’t offer complements or negations, explicit
quantification is superfluous since then all quantifiers can be lifted to the
top by renaming variables as necessary. However, if we want to obtain the
complement of the denotation of a feature term with variables, we first have to

27

[/T g f:T]
[fr{frx g:T}] L fflag
g{f:T g} (frg:T g: f:T]

[fr9:T g:9:T]

Figure 8: A feature term with a coreference that cannot be expressed with
local paths. The variable-free feature term to the right is equivalent.

close it by quantifying over its free variables before applying the complement
operator.

Example 5.1 Let A be an interpretation whose domain has at least two
elements. Then one verifies easily that [-f: 2]4 = T4. Hence

[~(f: 21 g)[4 = [+f: 2 Umg: 2] = [~f: 2]A U [g: 2] = T4,

This shows that without quantification set complements cannot be expressed
in the obvious way. However, using quantification, we have

[Fua(freng)]t = [-f 14"
= [f:Tu-g:TU [T gl
= [[ﬁf:TI_I—'g:TI_I(f::I;I_Ig:—':I;)]]A.

Proposition 5.2 (Tautologies) Let s and t be feature terms and u = v be
an instance of one of the tautologies in Figure 3. If t is obtainable from s
by replacing a subterm u with v, then [s]2 = [t]7 for every interpretation A
and every A-assignment «.

Proposition 5.3 (Distributivity of Quantification) Letsy,...,s, be fea-
ture terms and x be a variable. Then

[Uz.(sqU--- U Sn)]];4 = [(Uz.sy)U--- U (I_I:Jc.sn)]]zy4

for every interpretation A and every A-assignment o.

A feature term is called simple if it contains no union, no quantification, and
every contained complement has one of the following forms: =(f: T), —a, or
= A, where A is neither L nor T.

28

Proposition 5.4 (Disjunctive Normal Form) For every feature term s
containing no quantifications one can compute finitely many simple feature
terms sy, ..., 8, such that [s]4 = [s;U---Us,]2 for every interpretation A
and every A-assignment «.

Proof. This can be done in the same way it is done in Section 2 for feature
terms not containing variables. a

An interpretation is infinite if its domain is infinite. Note that the feature
structure interpretation F is infinite since there are infinitely many variables
and z|() and y|() are distinct feature structures if z and y are distinct variables.

Consistency, subsumption and equivalence of general feature terms are de-
fined as in Section 2, except that we admit from now on only infinite inter-
pretations. This doesn’t change anything for feature terms without variables,
since the canonical interpretation F is infinite. The reason for insisting on
infinite interpretations is given by the next lemma.

We use V(s) to denote the set of all variables contained in a feature term s.

Lemma 5.5 Let s be a simple feature term and x be a variable. Then one
can compute in polynomial time a simple feature term t such that V(1) =
V(s) L {z} and [Uz.s]2A = [t]2 for every infinite interpretation A and every
A-assignment «.

Proof. We start by defining the sets IIF(s) and II7(s) of positive and
negative paths to a variable x in a simple feature term s:

If(s):=0if x ¢ V(s) I, (s):=0if x ¢ V(s)

WE(f:s) :={fp [p e ()T (f5) := {fp | p e T (s)}
f(sMt) =T (s) UTTE(E) T (sMt) =1, (s) UL, (1)
IIf (x) := {c} I (z):=10

I () := [(m2) := {¢}

Now let s be a simple feature term, x be a variable, A be an infinite interpre-
tation, and « be an A-assignment. Obtain v from s by first replacing every
subterm —z with T and then replacing every remaining x with T. Now we
distinguish two cases:

1. I} (s) = 0. Then [Uz.s]% = [u]4 since A is infinite. To see this note that

U (M L{a})" = M"

a€eM

29

for every set M having at least n + 1 elements.

2. IH(s) = {p;}7,, where m > 1. Let II; (s) = {¢;}7_, and define

te=(u M pr Lp-MNpilpn O pr T M- Mp1 T gn)

Then [Uz.s]A = [t]A. O

Theorem 5.6 For every simple feature term one can compute in polynomial
time an equivalent simple feature term not containing variables.

Proof. Follows immediately from the preceding lemma. a

Theorem 5.7 (NP-Completeness) Deciding the consistency of feature terms
without quantifications is an NP-complete problem.

Proof. Follows by the Disjunctive Normal Form Proposition, the preced-
ing theorem, and the NP-Completeness Theorem for feature terms without
variables. a

Theorem 5.8 (Translation) For every feature term (possibly containing
variables and quantifications) one can compute an equivalent feature term
not containing variables.

Proof. Let s be a feature term. Without loss of generality, we can assume
that s contains no free variables. If s contains no quantification, then the
claim is trivial. Otherwise it suffices to show that we can eliminate one quan-
tification. Let Ux.t be a subterm of s such that ¢ contains no quantification.
Then, by rewriting ¢ to disjunctive normal form, we can compute finitely
many simple terms tq,...,%, such that

[[I_I:Jc.t]];4 = [Uz.(tyu---u tn)]]f
= [(Uaty) U--- U (Uat,)]2A

for every interpretation A and every A-assignment . Now the claim follows
by the preceding lemma. a

30

Corollary 5.9 (Canonicity) The feature structure algebra F is canonical
for feature terms (possibly containing variables and quantifications).

Proof. We already know that F is canonical for feature terms not containing
variables. Thus we know by the preceding translation theorem that it is
canonical for general feature terms. a

Corollary 5.10 (Decidability) Consistency and subsumption of feature terms
(possibly containing variables and quantifications) is decidable.

Since our quantifier elimination procedure performs a stepwise transforma-
tion to disjunctive normal form, it can’t be used for a nondeterministic poly-
nomial consistency test. We do not know whether deciding the consistency
of general feature terms is still in NP.

We can extend our relational language by allowing for containment con-
straints x:s, where s is a simple feature term possibly containing variables.
The semantics of these generalized containments is defined by

AjaEais 1= a(r) € [s].

Proposition 5.11 Let s be a simple feature term and x be a variable not oc-
curring in 5. Then x|{x:s} is a set description such that [s]* = [x|{x:s}]4
for every interpretation A.

Next we add two further simplification rules to deal with variables occurring
in simple feature terms:

e 1y &C —, =y &C
o v:y & —, a#y &C.
With these rules Theorem 3.2 generalizes to set descriptions containing sim-

ple feature terms with variables.

This gives us a second polynomial time translation of simple feature terms
to equivalent normal set descriptions. We will now close the loop and show
that every normal set description can be translated into an equivalent simple
feature term using the following rules:

31

1. z#y &CJ_T—>%:1;:—|y &C
2. f(:z;)iy&CJ_Tﬁwox:(f:y)&C
3. x:s &l’:t&CJ_T—@OJKSHt&C

4oags &yt &C 1oy vpislr —yNit) &C ifs/x =y.

Rule (4) replaces an occurrence of y in s with the term y I1¢.

Proposition 5.12 [f z,|C is a connected set description and CJ_T—>% D,
then x,| D is an equivalent connected set description.

Proposition 5.13 Let x,|C be a normal set description. Then, using the
translation rules, one can compute a simple feature term s such that C J_T—>xo Tyt S
and x,|C and z, M s are equivalent.

With this proposition we can strengthen Theorem 4.1 to:

Theorem 5.14 An interpretation A is canonical if and only if [x|C]* is
nonempty for every normal set description x|C such that C is not the incon-
sistent clause {x: L}.

6 Discussion

We have presented a logic for describing objects in domains accessible through
a sort lattice and a collection of features. The fact that in knowledge repre-
sentation the domain of discourse cannot be specified completely (how would
you specify humans?) is accounted for by an open world semantics. No single
world is fixed but an entire class of admissible worlds is considered. Moreover,
the descriptions of the logic do not attempt to specify objects completely.
Instead, they consist of constraints that can be satisfied by more than one
object. These two sources of indetermination, which are both present in
predicate logic, account for the fact that we have only partial information
about the world and its objects.

Which worlds are admissible is specified by a signature postulating a classifi-
cation scheme (the sort lattice) by means of which the following assumptions
can be made:

32

e sort A is a singleton on which no feature is defined
e sort A is a subset of sort B

e sorts A and B are disjoint (make L the greatest common subsort of A

and B)

e sort (' is the intersection of sorts A and B (make C' the greatest common

subsort of A and B).

Clearly, our signatures are a rather weak mechanism for constraining the
admissible worlds. For instance, we cannot make assumptions like

e feature f is not defined on sort A ((f: TMA) < 1)
e feature f is defined on every element of sort A (A < f:T)

o for every element of sort A, on which feature f is defined, f yields an

element of sort B (A < (f: BU~—f:T)).

However, these assumptions about admissible worlds can be expressed if we
allow for inclusional axioms of the form s < ¢. Admitting inclusional axioms
in general results in an undecidable logic, but the special forms needed to

formulate the above assumptions about features are weak enough to preserve
decidability.

Feature logic is closely related to the knowledge representation language KI.-
ONE [4, 15]. Both formalisms enjoy an open worlds semantics, are based
on a classification scheme (the primitive concepts of KL-ONE are sorts) and
have set denoting terms (called concept terms in KL-ONE). KL-ONE is more
general in that it generalizes features, which are partial functions, to roles,
which are relations; on the other hand, feature logic has complements, which
aren’t available in KL-ONE. Furthermore, KL-ONE has a much stronger
apparatus for making assumptions about the admissible worlds (the so-called
T-Box). This all suggests that merging feature logic and KL-ONE into a
more general knowledge representation formalism is an interesting direction
for future research.

We have shown that feature structures constitute a canonical interpretation
for feature logic. Thus we can view feature logic without loss of generality as
a formalism for reasoning about feature structures. If only feature structures
are admitted as interpretation, feature logic has a single domain or closed

33

world semantics. In fact, this approach is taken in the linguistically moti-
vated formalisms of Rounds and Kasper [21] and Johnson [9]. Although the
closed world approach is technically okay, it is unsatisfying philosophically
since feature structures are again just partial descriptions of the “real” lin-
guistic objects. The open world semantics presented in this paper renders the
detour over feature structures superfluous: one can now view feature terms
as directly denoting sets of linguistic objects and there is still no need for
making precise what linguistic objects are. Incidentally, this view reconciles
the positions of Kaplan and Bresnan [10] and Kay [14]: while Kaplan and
Bresnan argue for a strict distinction between feature descriptions and fea-
ture structures, Kay insists that there are only feature descriptions (which
he calls feature structures).

What is a unification method for feature terms? First, a unification method
specifies a normal form for feature terms that exhibits inconsistency, that is,

e cvery feature term is equivalent to a normal feature term

e a normal feature term is consistent if and only if it is not L.

Second, a unification method provides an algorithm that, given two normal
feature terms s and ¢, computes a normal feature term equivalent to s 1+¢.
Of course, the normal form employed by a unification method can rely on a
suitable representation of feature terms, which may be quite different from
our syntax.

We have presented a unification method for feature terms in this paper: a
normal feature term is represented as a finite set of consistent normal set
descriptions, where the union of the denotations of the set descriptions is the
denotation of the feature term. All inconsistent feature terms are represented
as the empty set (of set descriptions). To unify two normal forms {x;|C;};
and {y;| D;};, we have to simplify the set description «;|(z; = y; & C; & D;)
for every ¢ and every j. The set of the thus obtained consistent normal set
descriptions is the result of the unification.

Our unification method requires the representation of feature terms in dis-
junctive normal form, which, in general, causes an exponential blow up in
size. For better efficiency it is crucial to avoid expansion to disjunctive nor-
mal form as far as possible. Such unification methods have been devised by
Kasper [12] and Eisele and Doérre [6] for feature terms without complements
and nonsingleton sorts.

What is the relationship between feature terms and ordinary terms? While
the terms of predicate logic denote elements of the universe (more precisely,

34

functions from assignments to elements), feature terms denote subsets of the
universe (more precisely, functions from assignments to sets). While ordi-
nary terms are built up by function application, feature terms are built up
by selection (the inverse of unary function application), intersection, union
and complement. Thus ordinary terms and feature terms are orthogonal
concepts that can coexist profitably in a knowledge representation or logic
programming language. For instance, Smolka and Aft-Kaci [24] investigate
inheritance hierarchies accommodating both kinds of terms and present a
unification algorithm combining order-sorted unification with feature unifi-
cation.

In Section 3 we have sketched how feature logic can be reduced to predicate
logic. Technically, this means that feature logic is just a decidable subset
of predicate logic. Incidentally, the same holds for KL-ONE. However, to
make predicate logic into a better knowledge representation language, it is
crucial to furnish it with more application oriented structure. Additional
structure, though technically redundant, eases the formalization of knowledge
and serves as the basis for specialized inference methods that can be much
more efficient than general purpose mechanisms. (Overstating it a little bit,
we could say that predicate logic is to knowledge representation what Turing
machines are to programming languages.) For instance, if subsorts are added
as a distinguished structure to predicate logic, order-sorted unification [27,
28] replaces ordinary unification and leads to smaller search spaces. Feature
terms obviously generalize sorts (which are in fact primitive feature terms)
and can be integrated by allowing for containments z: s, where s is a feature
term possibly containing variables. For inference, feature term unification
can then take the place of order-sorted unification (this needs to be worked
out, of course).

The integration of Prolog-like logic programming with feature logic seems
to be a very promising line of research. In LOGIN [3], which pioneered
this approach, feature terms (without singletons, unions and complements)
take the place of ordinary terms and feature unification replaces ordinary
term unification. Mukai’s [17] language CIL is similar but uses constants
instead of sorts. While LOGIN is presented without a declarative semantics,
Mukai defines a declarative semantics for CIL using a fixed domain of ratio-
nal records. Mukai also realizes that CIL is an instance of constraint logic
programming, an approach that originated with Colmerauer’s [5] Prolog-11
and was generalized by Jaffar and Lassez [8]. Recent research [7] investi-
gates logic programming based on feature logic and open world semantics.
The presence of feature term unions (disjunctions) can diminish the need for
backtracking and feature term complements generalize the disequations of

35

Prolog-11 (x#£y is equivalent to x: —y).

References

1]

2]

3]

[10]

H. Ait-Kaci. A Lattice-Theoretic Approach to Computation Based on a
Calculus of Partially Ordered Type Structures. PhD thesis, University
of Pennsylvenia, Philadelphia, PA, 1984.

H. Ait-Kaci. An algebraic semantics approach to the effective resolution
of type equations. Theoretical Computer Science, 45:293-351, 1986.

H. Ait-Kaci and R. Nasr. LOGIN: A logic programming language with
built-in inheritance. The Journal of Logic Programming, 3:185-215,
1986.

R. J. Brachman and J. G. Schmolze. An overview of the KL-ONE
knowledge representation system. Cognitive Science, 9(2):171-216, Apr.
1985.

A. Colmerauer. Equations and inequations on finite and infinite trees.
In Proceedings of the 2nd International Conference on Fifth Generation
Computer Systems, pages 8599, 1984.

A. Eisele and J. Dorre. Unification of disjunctive feature descriptions.
In Proceedings of the 26th Annual Meeting of the ACL, State University
of New York at Buffalo, pages 286-294, Buffalo, New York, 1988.

M. Hohfeld and G. Smolka. Definite relations over constraint languages.
LILOG Report 53, IWBS, IBM Deutschland, Postfach 80 08 80, 7000
Stuttgart 80, Germany, Oct. 1988. To appear in the Journal of Logic
Programming.

J. Jaffar and J.-L. Lassez. Constraint logic programming. In Proceedings
of the 14jth ACM Symposium on Principles of Programming Languages,
pages 111-119, Munich, West Germany, Jan. 1987. ACM.

M. Johnson. Attribute-Value Logic and the Theory of Grammar. CSLI
Lecture Notes 16. Center for the Study of Language and Information,
Stanford University, CA, 1988.

R. M. Kaplan and J. Bresnan. Lexical-Functional Grammar: A for-
mal system for grammatical representation. In J. Bresnan, editor, The

36

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Mental Representation of Grammatical Relations, pages 173-381. MIT
Press, Cambridge, MA, 1982.

R. T. Kasper. Feature Structures: A Logical Theory with Applications
to Language Analysis. PhD thesis, University of Michigan, Ann Arbor,
Mich., 1987.

R. T. Kasper. A unification method for disjunctive feature descriptions.
In Proceedings of the 25th Annual Meeting of the ACL, Stanford Uni-
versity, pages 235-242, Stanford, CA, 1987.

R. T. Kasper and W. C. Rounds. A logical semantics for feature struc-
tures. In Proceedings of the 24th Annual Meeting of the ACL, Columbia
University, pages 257-265, New York, N.Y., 1986.

M. Kay. Parsing in functional unification grammars. In D. Dowty,
L. Karttunen, and A. Zwicky, editors, Natural Language Parsing. Cam-
bridge University Press, Cambridge, England, 1985.

H. J. Levesque and R. J. Brachman. Expressiveness and tractability
in knowledge representation and reasoning. Computational Intelligence,

3:78-93, 1987.

M. D. Moshier and W. C. Rounds. A logic for partially specified data
structures. In Proceedings of the 1/th ACM Symposium on Principles of
Programming Languages, pages 156-167, Miinchen, W. Germany, 1987.

K. Mukai. Anadic tuples in Prolog. Technical Report TR-239, ICOT,
Tokyo, Japan, 1987.

F. Pereira and S. M. Shieber. The Semantics of Grammar Formalisms
seen as Computer Languages. In Proceedings of 10th International Con-
ference on Computational Linguistics, pages 123-129, Stanford, 1984.

F. C. Pereira. Grammars and logics of partial information. In Proceed-
ings of the Jth International Conference on Logic Programming, pages

989-1013, Cambridge, MA, 1987. MIT Press.

C. Pollard and 1. Sag. Information-Based Syntax and Semantics, vol-
ume 13 of CSLI Lecture Notes. Center for the Study of Language and
Information, Stanford University, CA, 1987.

W. C. Rounds and R. T. Kasper. A complete logical calculus for record
structures representing linguistic information. In Proceedings of the 1st

37

[22]

23]

[24]

[25]

[26]

[27]

28]

IEEE Symposium on Logic in Computer Science, pages 38-43, Boston,
MA, 1986.

S. M. Shieber. An Introduction to Unification-Based Approaches to
Grammar, volume 4 of CSLI Lecture Notes. Center for the Study of
Language and Information, Stanford University, CA, 1986.

G. Smolka. Feature constraint logics for unification grammars. TWBS
Report 93, IWBS, IBM Deutschland, Postfach 80 08 80, 7000 Stuttgart
80, Germany, November 1989. To appear in the Journal of Logic Pro-
gramming.

(. Smolka and H. Ait-Kaci. Inheritance hierarchies: Semantics and
unification. Journal of Symbolic Computation, 7:343-370, 1989.

G. Smolka, W. Nutt, J. A. Goguen, and J. Meseguer. Order-Sorted
Equational Computation. In H. Ait-Kaci and M. Nivat, editors, Reso-
lution of Fquations in Algebraic Structures, Volume 2, Rewriting Tech-
niques, chapter 10, pages 297-367. Academic Press, New York, N.Y.,
1989.

H. Uszkoreit. From Feature Bundles to Abstract Data Types: New Di-
rections in the Representation and Processing of Linguistic Information.
In A. Blaser, editor, Natural Language at the Computer—Contributions
to Syntax and Semantics for Text Processing and Man-Maschine Trans-
lation, pages 31-64. Lecture Notes in Computer Science 320, Springer-
Verlag, Berlin, Germany, 1988.

C. Walther. A mechanical solution of Schubert’s steamroller by many-
sorted resolution. Artificial Intelligence, 26:217-224, 1985.

C. Walther. Many-sorted unification. Journal of the ACM, 35(1):1-17,
January 1988.

38

