LILOG Report 53, October 1988, IBM Deutschland, Stuttgart, Germany

Definite Relations over Constraint Languages

Markus Héhfeld]L and Gert Smo]kaJ1€

1 FB Informatik, Universitat Kaiserslautern, West Germany

I WT LILOG, IBM Deutschland, West Germany

Abstract. This paper shows that the nice properties of logic programs ex-
tend to definite clause specifications over arbitrary constraint languages. The
notion of a constraint language sees a constraint as a piece of syntax with
unknown internal structure that constrains the values variables can take in
interpretations. Examples of constraint languages are Predicate Logic and its
sublanguages as well as attributive concept description languages developed

for knowledge representation.

Our framework generalizes the constraint logic programming scheme of
Jaffar and Lassez to make it applicable to knowledge representation: the
constraint language is not required to be a sublanguage of predicate logic and
may come with more than one interpretation, and the interpretations of the

constraint language are not required to be solution compact.

We present a semantic type discipline for our generalized definite clause
specifications and establish a notion of well-typedness that is decidable pro-
vided the underlying constraint language is decidable. Finally, we give a type
inference rule for computing most general well-typed weakenings of specifica-

tions.

The research reported here has been funded by the EUREKA Project Protos
(EU 56).

Address for correspondence: Gert Smolka, WT LILOG, IBM Deutsch-
land, Postfach 800880, 7000 Stuttgart 80, West Germany, smolka@dsOlilog.bitnet.

To appear in Journal of Logic Programming

1 Introduction

In the last few years a new model of logic programming has emerged that
views a logic programming language as consisting of a constraint language on
top of which relations can be defined by means of definite clauses. Different
logic programming languages can be obtained by employing different con-
straint languages. Conventional logic programming is obtained by employing
equations that are interpreted in the algebra of first-order terms. Prolog II
[Colmerauer et al. 83, Colmerauer 84] employs as constraint language equa-
tions and disequations that are interpreted in the algebra of rational trees.
The constraint language of Prolog IIT [Colmerauer 88] is interpreted in an
algebra providing rational trees and rational numbers and allows for linear
equations and inequations for numbers, boolean expressions for truth values,
and equations and disequations for general terms. Other recent examples of
constraint logic programming languages are CLP(R) [Jaffar/Michaylov 87],
CIL [Mukai 87] and CHIP [Dincbas et al. 88].

Jaffar and Lassez [86, 87] were the first to identify the new model, coined
the name Constraint Logic Programming, and developed a general framework
that is parameterized with respect to the constraint language being employed
and yields soundness and completeness results for a generic operational se-
mantics relying on a constraint solver for the employed constraint language.
A constraint solver i1s an algorithm deciding the satisfiability of constraint
systems. In conventional logic programming, the constraint solver solves e-

quations in the Herbrand universe, which is accomplished by term unification.

The original motivation for the research reported in this paper was the
development of a semantic foundation for the knowledge representation lan-
guage LOGIN [ATt-Kaci/Nasr 86], where relations are defined with definite
clauses over a constraint language consisting of so-called ¢-terms [ATt-Kaci

86].

The first step of this enterprise was to come up with a logical reformu-
lation of Ait-Kaci’s ¢-term calculus and led to the development of Feature
Logic [Smolka 88], a decidable logic that generalizes Ait-Kaci’s formalism by

adding negation and quantification. Feature Logic makes explicit that Ait-

Kaci’s 9-terms, the feature descriptions developed by computational linguists
[Kaplan/Bresnan 82, Rounds/Kasper 86, Johnson 87], and the knowledge rep-
resentation language KL-ONE [Brachman/Schmolze 85, Levesque/Brachman
87] are all closely related members of the same family of logics. These logics
offer attributive concept descriptions that are interpreted as sets and are built
from sorts and binary relations (called attributes, roles or features). Given
an attributive concept description C', a constraint z: C' constrains the values

of the variable z to elements of C'.

Ideally, the second step of giving a semantic foundation to LOGIN should
have consisted in simply applying Jaffar and Lassez’s [86, 87] constraint logic
programming scheme (CLP, for short) to Feature Logic. However, this failed

for three reasons:

1. CLP requires that the constraint language is interpreted in a single fixed
domain. This is in accordance with the data structure paradigm underly-
ing current programming languages, which views programs as computing
with data structures that are, in most applications, merely representa-
tions of the objects one is actually interested in. For knowledge represen-
tation, however, data structures as representations of real objects are not
adequate. Instead, one talks directly about the objects of interest, as this
1s accomplished, for instance, by the Tarski semantics of Predicate Logic.
Since, in general, we have only partial information about the world we
want to reason about, we need to take into account all worlds that are
consistent with our partial knowledge. Thus we have to generalize CLP
such that the constraint language can come with more than one inter-
pretation and a constraint i1s considered satisfiable if there is at least one

interpretation in which it has a solution.

2. CLP requires that the interpretations of constraint languages be “so-
lution compact”, which implies that every element of an interpretation
must be obtainable as the unique solution of a possibly infinite set of
constraints. While solution compactness is sensible for “data structure”
interpretations, it is not acceptable for “real world” interpretations. CLP
needs solution compactness since it provides soundness and completeness

results for negation as failure. However, since the constraint language

can provide for logical negation (for instance, disequations in Prolog 1T
or set complements in Feature Logic) we feel that there is no further need

for the problematic negation as failure.

3. CLP assumes that the constraint language is expressed in Predicate Log-
ic: constraints must be formulas of Predicate Logic and interpretations
must be interpretations of Predicate Logic. However, neither Feature
Logic, KL-ONE, nor the order-sorted predicate logic underlying Eqlog
[Goguen/Meseguer 86] satisfy these assumptions. Although these for-
malisms can be reduced to Predicate Logic in principle, providing cus-
tomized model theories and notations for them is crucial in keeping them
technically simple and in supporting the adequate intuitions. So what
CLP is lacking is a sufficiently abstract formalization of the notion of a

constraint language.

In this paper we present a framework that generalizes CLP so that the

shortcomings discussed above are completely avoided.

We start with a definition of constraint languages that is general enough
to cover all mentioned formalisms. In our analysis, a constraint is a piece of
syntax constraining the values the variables occurring in it can take. There is
no need to know anything about the internal structure of a constraint. Since
we are not concerned with negation as failure, we don’t need to impose any
requirements on the interpretations of constraint languages. A prominent
example of a constraint language is Predicate Logic, where the formulas serve

as constraints.

Next we show that every constraint language can be extended conserva-
tively to a constraint language providing for relational atoms, the proposi-
tional connectives, and quantification. By taking equations with their Tarski
interpretations as constraint language, this construction yields Predicate Log-
ic. We show that, for every set & of definite clauses in the extension of an
arbitrary constraint language £, every interpretation of £ can extended to
a minimal model of §. This generalizes the key result of conventional logic

programming to our framework, which is not restricted to Horn theories.

We then present an operational semantics for our general definite clause
specifications that generalizes the SLD-resolution method [Lloyd 84] employed

in conventional logic programming and prove its soundness and completeness.

In the second part of the paper, we present a semantic type discipline for
our generalized definite clause specifications. The discipline exploits the idea
that declarations of relation symbols in a sorted language can be expressed
as implications; for instance, to declare that the relation plus takes integers

as arguments, we can write the implication
plus(z,y,z) — wx:int & y:int & z:int.

If Feature Logic is used as underlying constraint language, we can constrain
the arguments of a relation with complex feature terms employing intersec-
tions, complements and feature constraints. The idea even applies to conven-

tional logic programming, where we can write declarations like

ple,y) — Jz.y= f(z,2).

We establish a weak notion of well-typedness by saying that a definite
clause specification § is implicitly well-typed with respect to a set D of dec-
larations if every minimal model of § is a model of D. Next we establish a
strong notion of well-typedness by defining explicitly well-typed clauses and
show that explicitly well-typed specifications are implicitly well-typed. Ex-
plicit well-typedness i1s decidable provided the underlying constraint language
is decidable. Furthermore, we show that our operational semantics is type
safe, that is, the reduction of an explicitly well-typed goal with an explicitly
well-typed clause yields again an explicitly well-typed goal. Finally, we give
a type inference rule that can be used to compute a most general explicitly
well-typed weakening of a specification. We show that, if the explicitly well-
typed specification &’ is obtained from & by type inference, &’ and § have

the same minimal models provided § is implicitly well-typed.

Acknowledgement. Our definition of constraint languages was influ-
enced by a draft of Manfred Schmidt-Schauf outlining an axiomatic founda-

tion of unification theory.

2 Constraint Languages

We start with a very general definition of constraint languages. The basic
idea is that a constraint is some piece of syntax constraining the values of
the variables occurring in it. Our definition does not make any assumptions

about the syntax of constraints.
A constraint language is a tuple (VAR, CON, V,INT) such that
1. VAR is a decidable, infinite set whose elements are called variables
2. CON is a decidable set whose elements are called constraints

3. V is a computable function that assigns to every constraint ¢ a finite set

V¢ of variables, called the variables constrained by ¢

4. INT is a nonempty set of interpretations, where every interpretation
7 € INT consists of a nonempty set D?, called the domain of 7, and a
solution mapping [-]% such that:

4.1 an Z-assignment is a mapping VAR — D? and ASS? is the set of

all Z-assignments

4.2 []* is a function mapping every constraint ¢ to a set [¢] of Z-
assignments, where the Z-assignments in [¢]? are called the solu-

tions of ¢ in 7

4.3 a constraint ¢ constrains only the variables in V¢, that is, if o € [¢]*
and (3 is an Z-assignment that agrees with o on V¢, then 3 € [¢]%.

Predicate logic a prominent example of a constraint language: the well-
formed formulas are the constraints, V¢ are the free variables of a formula ¢,
and for every Tarski interpretation Z the solutions [¢]? are the Z-assignments
satisfying ¢. Viewing predicate logic as a constraint language abstracts away

from the syntactic details of formulas.

The following definitions are all made with respect to some given con-
straint language. Most of the definitions generalize terminology that i1s well-

known for predicate logic.

A constraint ¢ is satisfiable if there exists at least one interpretation
in which ¢ has a solution. A constraint ¢ is valid in an interpretation 7 if
[4]F = ASSI, that is, every Z-assignment is a solution of ¢ in Z. Conversely,
we say that an interpretation 7 satisfies a constraint ¢ if ¢ is valid in 7.
An interpretation is a model of a set ® of constraints if it satisfies every

constraint in P.

A renaming is a bijection VAR — VAR that is the identity except
for finitely many exceptions. If p is a renaming, we call a constraint ¢’ a

p-variant of a constraint ¢ if

Vo' =p(Vé) and [¢]F = [¢']7p = {ap|a € [¢T"}

for every interpretation Z. A constraint ¢’ is called a variant of a constraint

¢ if there exists a renaming p such that ¢’ is a p-variant of ¢.

Proposition 2.1. A constraint is satisfiable if and only if each of its variants
is satisfiable. Furthermore, a constraint is valid in an interpretation T if and

only if each of its variants is valid in T.

A constraint language is closed under renaming if every constraint ¢
has a p-variant for every renaming p. A constraint language is closed under
intersection if for every two constraints ¢ and ¢’ there exists a constraint
¥ such that [¢]% N [¢']F = [¢]* for every interpretation Z. A constraint
language is decidable if the satisfiability of its constraints is decidable.

Let @ be a set of constraints and Z be an interpretation. The solutions
of ® in 7 are defined as

[®)* := | [s1%,

PP

where [®]7 := 0 if ® is empty. Note that this definition interprets a set of
constraints disjunctively, while the above definition of a model interprets a

set of constraints conjunctively. To ease our notation, we often abbreviate a

singleton {¢} to ¢.

Given a set V of variables, the V-solutions of a set ® of constraints in

an interpretation Z are defined as

[2]7 = {alv | a € [#]"} = [{alv |« € [¢]"}

PP

where ay is the restriction of @ to V. We say that a set of constraints ® is
V-subsumed by a set of constraints ® and write ® <y @' if [®]% C [¢']F
for every interpretation Z. Obviously, V-subsumption defines a preorder on

sets of constraints. The corresponding equivalence relation
@qu)/ L= q)jvq)//\q)/jv@
is called V-equivalence.

Proposition 2.2. Renaming is homomorphic with respect to to V-
subsumption, that Is, if p and p' are renamings that agree on V, ¢’ is a

p-variant of a constraint ¢, ¢’ is a p'-variant of a constraint ¥, and ¢ <y v,

then ¢’ =p(V) P

A constraint language is called compact if for every set V of variables,
every constraint ¢, and every set of constraints @, ¢ is V-subsumed by & if

and only if ¢ 1s V-subsumed by some finite subset of ®.

Predicate Logic is a compact and undecidable constraint language that

is closed under renaming and intersection.

3 Relational Extensions

We now present a construction that, given a constraint language £ and a
set R of relation symbols, extends £ conservatively to a constraint language
R(L) providing for relational atoms, the propositional connectives, and quan-
tification. If the constraints of £ are the equations between first-order terms
and the interpretations of £ are the usual Tarski interpretations, then the

extension R(L) is Predicate Logic.

From now on we assume that a set of relation symbols is given, where
every relation symbol comes with a natural number specifying the number of

arguments it takes.

A constraint language £ and a decidable set R of relation symbols define

a constraint language R(L) extending £ as follows:
1. the variables of R(L) are the variables of £
2. the constraints of R(L) are defined inductively as follows:
2.1 every constraint of £ is a constraint of R(L)

2.2 if r is a relation symbol of R and & is a tuple of pairwise distinct
variables, then the atom r(#) is a constraint of R(L), provided the

tuple ¥ has as many elements as r has arguments

2.3 the empty conjunction §) is a constraint of R(L); furthermore, if
F and @ are constraints of R(L), then the conjunction F' & G and
the implication F' — G are constraints of R(L)

2.4 if z is a variable and F is a constraint of R(L), then the existential

quantification 3z.F is a constraint of R(L)

3. the variables constrained by a constraint of R(L) are defined induc-
tively as follows: if ¢ 1s an L-constraint, then V¢ is defined as in C;
V(r(zy, ... 20)) = {1, z0); VO = 0; V(F &G) := VF U VG;
V(F = G):=VFUVG V32 F):=VF — {z}

4. an interpretation A of R(L) is obtained from an L-interpretation Z by
choosing for every relation symbol r € R a relation 7 on D7 taking the

right number of arguments, and by defining:
4.1 DA = D

4.2 [¢]* := [4]* if ¢ is an L-constraint

4.3 [r(@)]A = {a € ASS* | a(Z) € 4}

4.4 [0]4 = ASS?, [F & G]* = [F]A N [G]A

4.5 [F — G]* == (ASS* — [F]*) U [G]A

4.6 [Fe.F]* = {a € ASS* |I P [FIAV Yy EVF. y=2z V alz) =
a(y)}-

Since R(L) is a constraint language, all definitions we have made for con-
straint languages apply to R(L). This shows in particular that the notion of

a constraint language can be applied iteratively.

As mentioned before, this construction yields Predicate Logic if the con-
straints of £ are the equations between first-order terms and the interpreta-
tions of £ are the usual Tarski interpretations. In R(L) an atom r(s1, ..., sp)

takes the form
Foy.. T, (plaer, . mn) &1 =s1 & .. &a, = sp),

where z1, ..., z, are pairwise distinct variables not occurring in the argument

terms 81,...,8y.

In the rest of the paper R will always be a decidable set of relation
symbols and £ will always be a constraint language. Furthermore, ¢ and
¢ will always denote L-constraints and F and G will always denote R(L)-

constraints.

Proposition 3.1. Let m be a renaming and F' be an R(L)-constraint. Then
F' is a m-variant of F' if F' can be obtained from F' by replacing every variable
x with w(x) and every L-constraint ¢ with a w-variant of ¢. Thus R(L) is

closed under renaming if L is closed under renaming.

4 Definite Clauses
A definite clause is an R(L)-constraint of the form
A & ... & A, &é— B,

where n > 0, A1,..., A, and B are atoms, and ¢ is an L-constraint. We may
write a clause as B «— ¢ & G or B «— (. A definite clause specification

1s a set of definite clauses.

10

Conventional logic programs are definite clause specifications over &,
where the constraints of £ are conjunctions of equations between first-order
terms and the corresponding ground term algebra is the only interpretation

of £. To meet our definition of definite clauses, the clause
app(H.R, L, H.RL) «— app(R, L, RL),
for instance, i1s rewritten to the equivalent clause
app(X, L, Y) — (X=H.R & Y=H.RL) & app(R, L, RL)
having X=H.R & Y=H.RL as &-constraint.

We will show that the nice properties of conventional logic programs

extend to definite clause specifications over arbitrary constraint languages.

The base of an R(L)-interpretation A is the L-interpretation that A is
extending. Two R(L)-interpretations are called base equivalent if they have

the same base.

We define a partial ordering on the set of all R(L)-interpretations by:

ACB :<= Aand B are base equivalent and VreR. r* CrP.

Proposition 4.1. Let A and B be two R(L)-interpretations and A be an
R(L)-atom. Then [A]* C [A]® if AC B.

The intersection (), A; of a family (A;)ier of base equivalent R(L)-
interpretations is obtained by intersecting the denotations of the relation sym-
bols and is again an R(L)-interpretation. Analogously, the union (J;.; A; of
a family (A;);er of base equivalent R(L)-interpretations is obtained by joining

the denotations of the relation symbols and is again an R(L)-interpretation.

Proposition 4.2. Let T be an L-interpretation. Then the set of all R(L)-

interpretations extending T is a complete lattice.

Proposition 4.3. The intersection of a family of base equivalent models of

a definite clause specification § is a model of §.

The following theorem generalizes the key result for conventional logic

programs to general definite clause specifications.

11

Theorem 4.4. [Definiteness] Let S be a definite clause specification in

R(L) and T be an L-interpretation. Then the equations
rto =0, rA = {a(@) | (r(F) = G) €S A a€[G]*)}

define a chain Ay C Ay C - -- of R(L)-interpretations whose base is T. More-
over, the union |, A; is the least model of S extending T.

Proof. By induction on ¢ one easily verifies that A; C A;41. Since
every A; is an R(L)-interpretation extending Z, the union A := | J;5qA; is
an R(L)-interpretation extending 7.

To show that A is a model of S, let A — G be a clause of S and « € [G]*.
We have to show that o € [A]*. By the iterative definition of A we know
that there is some i such that o € [G]4i. Hence o € [A]#i+ C [A]A.

To show that A is a minimal model of S, let B be a base equivalent model

of §. By induction on 7 one verifies easily that A; C B for every i. Hence

A set M of R(L)-constraints is called a definite specification if every
L-interpretation can be extended to a minimal model of M. The Definiteness
Theorem says that every definite clause specification is a definite specification.
Many of the interesting properties of definite clause specifications depend
solely on their definiteness. If M is a definite specification in R(L), then
M uniquely defines the relations of R, that is, for every L-interpretation M

defines unique minimal denotations for the relation symbols of R.

A goal is a possibly empty conjunction of £-constraints and R(L)-atoms.
To ease our notation, we identify a goal with the multiset consisting of its

constraints.

An observation is an implication ¢ — G consisting of an L-constraint

¢ and a goal G.

Proposition 4.5. Let M be a definite specification. Then an observation is
valid in every model of M if and only if it is valid in every minimal model of

M.

12

Let M be a definite specification. An M-answer of a goal G is a satis-
fiable L£-constraint ¢ such that the observation ¢ — G is valid in every model
of M. The preceding proposition says that the M-answers of a goal are com-
pletely characterized by the minimal models of M. Thus we say that a set ®
of M-answers of a goal G is complete if [®]{; = [G]{s for every minimal
model A of M.

Proposition 4.6. Let M be a definite specification, G be a goal, ¢ be an
M-answer of G, and ® be a complete set of M-answers of G. Then:

1. [¢]%: C [®]%; for every L-interpretation T

2. if £ is compact, then there exists a finite subset ® C ® such that
[8]3 C [®']3 for every L-interpretation T.

Proof. The second claim follows immediately from the first claim. To
show the first claim, suppose that 7 is an L-interpretation. Since M is definite,

there exists a minimal model A of M whose base is Z. Hence

[4156 = [¢]56 C [Gle = [215e = [2]56

since ¢ is an M-answer of (G and @ is a complete set of M-answers of G.

5 Operational Semantics

In this section we show that one can obtain a complete interpreter for gen-
eral definite clause specifications by generalizing the SLD-resolution method
[Lloyd 84] employed in conventional logic programming. Although our proofs
are much more general than the proofs for conventional logic programming
given in [Lloyd 84], they are clearer and simpler. In particular, we give a new
complexity measure based on a multiset ordering that provides for a strong
completeness result making a careful distinction between don’t care and don’t

know choices.

In the following we assume that £ and R are given, § is a definite clause

specification in R(L), and V is a finite set of variables.

13

We define (S, V)-goal reduction as the binary relation ——gs v on the

set of goals given by the rule:

A&G ——sy F &G
if A« F 1is a variant of a clause of &

such that (VUVG)NVF C VA.

Proposition 5.1. [Soundness of Goal Reduction] If ¢ =g v F', then
[F]* C [G]* for every model A of S.

We will now show that goal reduction is a complete rule for inferring
S-answers, provided all necessary variants of the clauses of & exist, which is
certainly the case if £ and hence R(L) are closed under renaming. The most
important ingredient of the completeness proof is a well-founded complexity
measure on goals that can be decreased by goal reduction. From the Definite-
ness Theorem we know that every minimal model A of & can be obtained as
the union A = ;5 Ai of a chain Ay C A; C --- being uniquely defined for
A. This provides for the following definitions:

1. if A is a minimal model of S, A is an atom and o € [A]#, then the

complexity of o for A in A is

comp(a, A, A) := min{i | o € [A]*}

2. if A is a minimal model of §, G is a goal, and a € [G]*#, then the
complexity comp(a, GG, A) of o for GG in A is the multiset consisting of
the complexities comp(a, A, A) of the atoms A in G.

On the multiset complexities we define a well-founded total ordering by

M < M’ : < 3 multisets X C M and X’ C M’ such that
M=(M -X")YUX and
VeeXdzeX' z<2,

where C, —, U, and € stand for the appropriate multiset operations (see

[Dershowitz/Manna 79] for details on multiset orderings).

14

Now we are ready for the definition of the complexity measure we are
actually going to use. Let A be a minimal model of &, G be a goal and
a € [G]#. Then the V-complexity of o for G in A is

compy (o, G, A) := min{comp(5, G, A) | € [[G]]A A a=plv}

where the minimum is taken with respect to the multiset ordering.

Theorem 5.2. [Completeness of Goal Reduction] Let £ be closed under
renaming, A be a minimal model of S, G be a goal, A be an atom in GG, and
o € [G]{. Then there exists a clause C' in S such that

1. (8,V)-goal reduction of G on A using a variant of C' is possible

2. if Gy is obtained from G by (S, V)-goal reduction on A using a variant
of C, then « € [G1]{t and compy (o, Gy, A) < compy (o, G, A).

Proof. Let G = A &G and 3 € [A & G']* such that a = By
and compy (o, G, A) = comp(8, G, A). Furthermore, let A = r(Z) and
i := comp(B, A, A). Then 3% € r*i. Hence there exists a clause r(i) — F in
S and an assignment v € [F]#-* such that v§ = 8.

Now let m be a renaming and r(#) — H be a w-variant of r(§) — F such
that ¥ = m(¢) and (VUVG)NVH C Vr(#). Such a variant always exists
since £ and hence R(L) are closed under renaming, V is finite, and there
are infinitely many variables. Since H & G’ can be obtained from G by an

(S, V)-goal reduction on A, we have the first claim.

To show the second claim, we have to show that o € [H & G']{* and that
compy (e, H & G', A) < compy- (o, G, A).

We know that y7=' € [H]#-* and that y7~! and & agree on &. Hence
there exists an assignment § € ASS™ that agrees with 3 on V' UVG" and with
y7~1 on VH. One verifies easily that 6 agrees with « on V, that § € [G']*,

15

and that 6 € [H]4-* C [H]*. Hence a € [H & G']{* and

compy (o, H & G, A) < comp(é, H & G, A)
= {comp(é, H, A)} U comp(8, G’, A)
< {i} Ucomp(B, G, A)
= comp(f, G, A) = compy («, G, A).

O

Corollary 5.3. [Weak Completeness of Goal Reduction] Let £ be
closed under renaming, A be a minimal model of S, G be a goal and o € [G]5.
Then there exists an S-answer ¢ of G such that G =5y ¢ and o € [o]¢.

Proof. By induction on compy, (o, G, .A), using the Completeness and

Soundness Theorems. O

The Completeness Theorem is stronger than the corollary since it makes
a careful distinction between don’t care and don’t know choices: a complete
interpreter can choose any atom in the goal to be reduced, has to try all
clauses defining the relation symbol of the atom, and can reduce the goal

with any suitable variant of the clause being tried.

In conventional logic programming the search space is significantly re-
duced by exploiting the fact that only clauses whose head unifies with the
atom to be reduced need to be tried. This crucial optimization generalizes
nicely to our framework. To show this, we define an additional inference rule,

called V-constraint solving:

b&d &G vy ¢ &G
it ¢ &¢' ~vuya ¢ and

¢, ¢, and ¢” are L-constraints.

Proposition 5.4. [Constraint Solving] Let G be a goal and G ——v G'.
Then:

16

1. [G]# = [G']§* for every interpretation A of R(L)

2. compy (o, G, A) = compy (e, G', A) for every minimal model A of § and
every a € [G]{.

Next we require that the underlying constraint language £ comes with
a set of normal L-constraints such that every normal £-constraint is sat-
isfiable; and that for every satisfiable conjunction of £-constraints and every
finite set V' of variables there exists a V-equivalent normal £-constraint. For
conventional logic programming, the normal constraints are the equational

representations of idempotent substitutions.

Finally, we require that the goal to be reduced contains only one [-
constraint that has to be normal and that the constraints in the clauses of §
be normal. Obviously, a definite clause specification can be transformed to

this format without changing its models.

The optimized interpreter works as follows: immediately after a goal re-
duction step, the constraint solving rule is applied to the conjunction ¢ &
¢' consisting of the normal constraint from the reduced goal and the normal
constraint from the applied clause, where a so-called constraint solver at-
tempts to compute a normal constraint that is equivalent to ¢ & ¢’. If the
constraint solver detects that ¢ & ¢’ is unsatisfiable, then the interpreter tries
immediately another clause since this part of the search space cannot contain
any answers. In conventional logic programming, the constraint solver is giv-
en by a term unification procedure, where unification succeeds if and only if

the corresponding equations are satisfiable in the ground term algebra.

6 A Type Discipline
A declaration is an R(£)-implication of the form
A — Fyi....y,. &,

where A 1s an atom, ¢ is a satisfiable L-constraint, and y1,...,y, are the

variables in V¢ — VA. For convenience we use the abbreviation A —3 ¢.

17

—

Proposition 6.1. A declaration r(

Z) —3 ¢ is valid in an R(L)-
interpretation A if and only if r* C {a(Z) | o« € [¢]*}.

Declarations prescribe upper bounds for relations. If £ is a constraint

language with sorts, typical declarations might be:

plus(X,Y,Z) —3 X:int & Y:int & Z:int
likes(X,Y) —3 X:person & Y:person.

If Feature Logic [Smolka 88] is employed as the underlying constraint lan-
guage, the arguments of a relation can be constrained with feature terms
employing intersections, unions, complements and feature constraints. Sim-
ilar declarations are possible using the concept and role descriptions of KL-
ONE [Levesque/Brachman 87]. The idea even applies to conventional logic

programming, where we can write declarations like

ple,y) — Jz.y= f(z,2).

Giving declarations for the relation symbols of a definite clause speci-
fication makes it easier to understand the specification since looking at the
declarations alone already gives one a rough understanding of the specified
relations. Declarations are much easier to understand than clauses since a
declaration specifies an upper bound for a relation without recourse to other

relations.

We establish an undecidable notion of well-typedness by saying that a
definite specification M satisfies a set D of declarations if every minimal

model of M 1s a model of D.

Proposition 6.2. Let M be a definite specification and D he a set of decla-

rations. Then the following conditions are equivalent:
1. M satisfies D
2. M UTD is a definite specification

3. M and M UD have the same minimal models.

18

Furthermore, if the above conditions are satisfied, then an observation is valid

in every model of M if and only if it is valid in every model of M UD.

Proof. “(1) = (2)”. Let Z be an L-interpretation. We have to show
that 7 can be extended to a minimal model of M UD. Since M is a definite
specification, Z can be extended to a minimal model A of M. Hence we know
by our assumption that A is a model of M UD. To show that A is a minimal
model of M UD, let B C A be a model of M UD. Then B is in particular a
model of M and hence B = A since A is a minimal model of M.

“(2) = (3)”. Let A be a minimal model of M. Since M UD is a definite
specification by assumption, we know that M U D has a minimal model B
such that A and B have the same base. In particular, we know that B is a
model of M. Since A is a minimal model of M, we know that A C B. Since
B is a model of D, we hence know that A is a model of M UD. Since B is a
minimal model of M U D, we thus know that 4 = B. Hence A is a minimal

model of M UD.

Let A be a minimal model of MUD. Then A is a model of M and, since
M is definite, M has a minimal model B C A. Since A is a model of D, we
know that B is a model of D. Hence B is a model of M UD and, since A is a

minimal model of M UD, we know that A = B. Hence A is a minimal model

of M.
“(3) = (1)”. Trivial.

The observational equivalence of M and M U D follows from (3) and
Proposition 4.5. o

In practice, a major advantage of type disciplines is that one can detect
specification errors automatically by checking whether a specification is well-
typed. This, of course, requires that the well-typedness of a specification
is decidable. Our current notion of well-typedness, however, is undecidable
even if the underlying constraint language is decidable. We will now devise a
stronger more syntactically oriented notion of well-typedness that is decidable

if the underlying constraint language 1s decidable.

19

An atom A is well-typed under an L-constraint ¢ with respect to a
declaration D if ¢ <y 4 1 for every variant A —3 ¢ of D. Note that, if
A and D have different relation symbols, then A is well-typed under every

L-constraint with respect to D.

Proposition 6.3. Let ¢ be an L-constraint and A —3 1 be a variant of a

declaration D. Then A is well-typed under ¢ with respect to D if and only if
¢ 2va ¥

Proof. Follows from Proposition 2.2. O

Let D be a set of declarations. A definite clause C' is well-typed with
respect to D if every atom of C is well-typed under the L-constraint of ('
with respect to every declaration of D. (For technical convenience, we don’t
require that the L-constraint of a well-typed clause be satisfiable.) A definite
clause specification § is well-typed with respect to D if every clause of § is

well-typed with respect to D.

Proposition 6.4. Let £ he a constraint language such that, for every re-
naming p and every finite set V of variables, p-variants are computable and
V-subsumption is decidable. Then the well-typedness of finite definite clause

specifications with respect to finite sets of declarations is decidable.

Theorem 6.5. Let L be closed under renaming, § be a definite clause spec-
tfication and D be a set of declarations. Then § satisfies D if § is well-typed
with respect to D.

Proof. Let A be a minimal model of S, r(Z) —3 ¢ be a declaration of D,
and a be an A-assignment such that aZ € . We have to show that there

exists an assignment v € [¢]# that agrees with a on V.

Since L is closed under renaming, we can assume without loss of gener-

ality that ¥ = ¢ for every clause »(§) — G in S.

Using the construction of the Definiteness Theorem, we know that a# €

rAi+1 for some i. Hence there exists a clause r(7) < v & F and an assignment

20

B € [¢]* such that 3% = a&. Since S is well-typed, we know ¢ <yz ¢. Hence
there exists an assignment y € [¢] such that y agrees with 8 and hence with

o on VE. O

A goal (G is well-typed with respect to D if every atom in G is well-typed

under some L-constraint in G with respect to D.

Proposition 6.6. [Well-Typed Programs Don’t Go Wrong] Let S be
a definite clause specification that is well-typed with respect to a set D of
declarations, and let G be a goal that is well-typed with respect to D. Then
' is well-typed with respect to D if G is obtained from G by (S, V)-goal

reduction or V-constraint solving.

7 Type Inference

In the following we assume that & is a definite clause specification and D is a

set of declarations.

We will show that, if § satisfies D, one can compute, by superposing the
declarations of D with the clauses of S, a definite clause specification S’ that
is well-typed with respect to D such that § and &’ have the same minimal
models. Thus & and its well-typed version &’ are observationally equivalent.
We will also show that, in general, 8’ UD is semantically weaker than SUD,

that is, has more nonminimal models than S UD.

This result together with the results of the preceding section clarifies the
relationship between our two notions of well-typedness. Type inference is also
useful for practical applications since one can write an abbreviated definite
clause specification § together with a set D of declarations and automatically
infer the “intended” well-typed specification 8§’ satisfying D. If type inference
is used for this purpose, 1t isn’t necessary that the abbreviated specification
S satisfies D.

We start by defining a quasi-ordering on definite clauses:

(A=9¢ &G) X (A—=¢ &G) <= ¢ <yauve ¢

21

If C < ", we say that C” is a weakening of C'. Note that, if ¢’ is a weakening

of C, the clauses C' and C’ are equal up to their £-constraints.

To render a clause well-typed with respect to D, we will replace 1t with
a minimal weakening that is well-typed with respect to D. The next propo-
sitions says that it doesn’t matter which minimal well-typed weakening we

choose.

Proposition 7.1. IfC' is a weakening of C, then every model of C' is a model
of (",

To compute minimal well-typed weakenings, we define the following type

inference rule for definite clauses:
(A—¢ &G) ‘p (A—¢ &G)

if B isan atomin A & G and
B —3 1 1s a variant of a declaration of D such that
VN (VAUVe UVGE) C VB,
¢ <vp 1 does not hold, and
9" ~vauve ¢ &

Theorem 7.2. [Type Inference] Let £ be closed under renaming and in-

tersection and let C' be a definite clause. Then:
1. there are no infinite chains C' ——p C} ——p Cy ——p -+

2. if the type inference rule ——p cannot be applied to C, then C' is well-
typed with respect to D

3. if C —p ', then C' is a weakening of C' such that

3.1 if C"" is a weakening of C' that is well-typed with respect to D, then

C" is a weakening of C'

3.2 if § satisfies D and 8’ is obtained from 8 by replacing C' with C’,

then 8 and 8’ have the same minimal models.

22

Proof. 1. C has finitely many pairs (B, D) such that B is an atom
of C' that i1s not well-typed under the L-constraint of C' with respect to the
declaration D € D. An application of the type inference rule reduces the

number of these pairs.

2. The claim is easily verified using that £ is closed under renaming and

intersection.

3. Let C = (A — ¢ &G), C" = (A — ¢ &G), B be an atom in C,
B —3 ¢ be a variant of a declaration of D such that VY N (VAUV¢UVGE) C
VB, and ¢’ ~ysuve ¢ & . Then C' is obviously a weakening of C'.

3.1. Let ¢" = (A — ¢” &) be well-typed with respect to P and
let ¢ <yauve ¢. We have to show that ¢/ <yauve @’ Since we know
that ¢’ ~yauyvag ¢ & ¥, it suffices to show that ¢” <y suve ¢ & 1. Let 7 be
an L-interpretation and o € [¢”]f. We have to show that there exists an
assignment 3 € [¢ & ¥]? that agrees with o on VA U VG.

Since ¢" <yauya ¢, we know that there exists an assignment 3 € [¢]*
that agrees with & on VAUV, Since B is well-typed under ¢” with respect to
B —3 v, we know that ¢” <yp . Thus there exists an assignment v € [¢/]%
that agrees with & and hence with 8 on VB. Since V¢N(VAUVUVG) C VB,
we can assume without loss of generality that v agrees with 5 on VAUV¢UVG.
Thus v € [¢ & ¥]* and 7 agrees with o on VA UVG.

3.2. Let 8 satisfy D and let 8’ be obtained from 8 by replacing C' with
C’. Furthermore, let 7 be an L-interpretation and let Ag C A; C -+ and
Ay € A C - be the chains defining the extensions of 7 to minimal models
of § and &’ as in the proof of the Definiteness Theorem. We show by induction
on i that A; = A} for every ¢ > 0. For ¢ = 0 the claim is trivial. To show
Aip1 = A}, it suffices to show that [¢ & Gloy =6 &Gl

3.2.1. Let o € [¢ & G]*. We show that there exists an assignment
B € [¢ & G]A that agrees with a on VA. Since ¢’ ~ypaupe ¢ & ¥, we know
that there exists an assignment 3 € [¢]*¢ that agrees with o on VA U VG.
Hence 3 € [¢ & G]*.

3.2.2. Let o € [¢ &G]* and B be an atom in G. We show that

23

there exists an assignment v € [¢' & G]*¢ that agrees with o on VA. Since
S satisfies D, we know that A; satisfies B —3 1. Hence there exists an
assignment 3 € [¢]4¢ that agrees with o on VB. Since V¢ N (VA U V¢ U
VG) C VB, we can assume without loss of generality that § agrees with «
on VAU V¢ UVG. Hence g € [¢ & & G]Ai. Since ¢' ~ypavve ¢ &,
there exists an assignment v € [¢']*¢ that agrees with 8 on VA UVG. Hence
v € [¢" & G]*¢ and 7 agrees with o on VA.

3.2.3. Let a € [¢ & G]* and B = A. We show that there exists an
assignment v € [¢' & G]4¢ that agrees with o on VA. Since S satisfies D,
we know that A;; satisfies A —3 1. Since a € [A]4+, there exists an
assignment 3 € [¥]4 = [¢]*4+ that agrees with a on VA. Since Vi N (Vo U
VG) C VA, we can assume without loss of generality that § agrees with «
on VAU V¢ UVG. Hence g € [¢ & & G]Ai. Since ¢' ~ypavve ¢ &,
there exists an assignment v € [¢']*¢ that agrees with 8 on VA UVG. Hence
v € [¢" & G]*¢ and 7 agrees with o on VA. O

Corollary 7.3. Let 8§’ be obtained from 8 by replacing every clause of S
by a minimal weakening that is well-typed with respect to D. Then &' is
well-typed with respect to D and, if S satisfies D, then & and 8’ have the

same minimal models.

One could expect that § and 8’ not only have the same minimal models
but have the same models in general. By Proposition 7.1 we know that every
model of § is a model of §’. However, the following example shows that the
other direction doesn’t hold. This means that &’ is semantically weaker than

S 1n that 1t allows for more nonminimal models than S.

Example 7.4. Let £ be the constraint language whose constraints are con-
junctions of equations between first-order terms and let the ground term al-
gebra be the only interpretation of £. Furthermore, let a declaration D and
definite clauses C' and C’ be given as follows:

D: ple)y—3x=0a

C:ople) —qlx)

C": p(r) —z=a &q(x).

24

The minimal model of C' has empty denotations for p and ¢ and thus trivially
satisfies 1. Note that C” can be obtained from C with type inference modulo
D. Now let B be an interpretation such that p® = {a} and ¢® is the set of all
ground terms (assume that there is more than one). Obviously, B is a model
of C" and D but is not a model of C.

References

H. Ait-Kaci, An Algebraic Semantics Approach to the Effective Resolution of
Type Equations. Theoretical Computer Science 45, 1986, 293-351.

H. Ait-Kaci and R. Nasr, LOGIN: A Logic Programming Language with Built-
In Inheritance. The Journal of Logic Programming, 1986, 3, 185-215.

R.J. Brachman and J.G. Schmolze, An Overview of the KL-ONE Knowledge
Representation System. Cognitive Science 9(2), 1985, 171-216.

A. Colmerauer, H. Kanoui, and M. Van Caneghem, Prolog, Theoretical Prin-
ciples and Current Trends. Technology and Science of Informatics 2,4, 1983,
255-292.

A. Colmerauer, Equations and Inequations on Finite and Infinite Trees. Proc.
of the 2nd International Conference on Fifth Generation Computer Systems,

1984, 85-99.

A. Colmerauer, Final Specifications for Prolog-ITI. Manuscript, Esprit Refer-
ence Number P1210(1106), February 1988. (See also: Opening the Prolog-I11
Universe, Byte Magazine, August 1987.)

N. Dershowitz and Z. Manna, Proving Termination with Multiset Orderings.

Communications of the ACM, 22, 1979, 465-476.

M. Dincbas, P. Van Hentenryck, H. Simonis, A Aggoun and T. Graf, Appli-
cations of CHIP to Industrial and Engineering Problems. Proceedings of the
First International Conference on Industrial and Engineering Applications of

Artificial Intelligence and Expert Systems, Tullahoma, Tennessee, June 1988.

J.A. Goguen and J. Meseguer, Eqlog: Equality, Types, and Generic Modules

25

for Logic Programming. In D. DeGroot and G. Lindstrom (eds.), Logic Pro-

gramming, Functions, Relations, and Equations; Prentice Hall 1986.

J. Jaffar and J.-L. Lassez, Constraint Logic Programming. Technical Report,

Department of Computer Science, Monash University, June 1986.

J. Jaffar and J.-L. Lassez, Constraint Logic Programming. Proc. of the 14th
ACM Symposium on Principles of Programming Languages, Munich, 1987,
111-119.

J. Jaffar and S. Michaylov, Methodology and Implementation of a CLP Sys-
tem. Proceedings of the 4th International Conference on Logic Programming,

J.-L. Lassez (Ed.), MIT Press, 1987.

M.E. Johnson, Attribute-Value Logic and the Theory of Grammar. PhD Dis-
sertation, Stanford University, 1987. To appear as CSLI Lecture Notes.

R. Kaplan and J. Bresnan, Lexical-Functional Grammar, a Formal System for
Grammatical Representation. In J. Bresnan (Ed.), The Mental Representation
of Grammatical Relations, The MIT Press, 1982, 173-381.

H.J. Levesque and R.J. Brachman, Expressiveness and Tractability in Knowl-
edge Representation and Reasoning. Computational Intelligence 3, 1987, 78—
93.

J.W. Lloyd, Foundations of Logic Programming. Springer Verlag, 1984.

K. Mukai, Anadic Tuples in Prolog. Technical Report TR-239, ICOT, Tokyo,
1987.

W.C. Rounds and R.T. Kasper, A Complete Logical Calculus for Record
Structures Representing Linguistic Information. Proc. of the First IEEE Sym-

posium on Logic in Computer Science, Boston, 1986, 38-43.

G. Smolka, A Feature Logic with Subsorts. LILOG Report 33, IBM Deutsch-
land, West Germany, May 1988. To appear in the proceedings of the Workshop

on Unification Formalisms—Syntax, Semantics and Implementation, Titisee,
The MIT Press.

26

