
LILOG Report 53, October 1988, IBM Deutschland, Stuttgart, GermanyDe�nite Relations over Constraint LanguagesMarkus H�ohfeldy and Gert Smolkazy FB Informatik, Universit�at Kaiserslautern, West Germanyz WT LILOG, IBM Deutschland, West GermanyAbstract. This paper shows that the nice properties of logic programs ex-tend to de�nite clause speci�cations over arbitrary constraint languages. Thenotion of a constraint language sees a constraint as a piece of syntax withunknown internal structure that constrains the values variables can take ininterpretations. Examples of constraint languages are Predicate Logic and itssublanguages as well as attributive concept description languages developedfor knowledge representation.Our framework generalizes the constraint logic programming scheme ofJa�ar and Lassez to make it applicable to knowledge representation: theconstraint language is not required to be a sublanguage of predicate logic andmay come with more than one interpretation, and the interpretations of theconstraint language are not required to be solution compact.We present a semantic type discipline for our generalized de�nite clausespeci�cations and establish a notion of well-typedness that is decidable pro-vided the underlying constraint language is decidable. Finally, we give a typeinference rule for computing most general well-typed weakenings of speci�ca-tions.The research reported here has been funded by the EUREKA Project Protos(EU 56).Address for correspondence: Gert Smolka, WT LILOG, IBM Deutsch-land, Postfach 800880, 7000 Stuttgart 80, West Germany, smolka@ds0lilog.bitnet.To appear in Journal of Logic Programming



1 IntroductionIn the last few years a new model of logic programming has emerged thatviews a logic programming language as consisting of a constraint language ontop of which relations can be de�ned by means of de�nite clauses. Di�erentlogic programming languages can be obtained by employing di�erent con-straint languages. Conventional logic programming is obtained by employingequations that are interpreted in the algebra of �rst-order terms. Prolog II[Colmerauer et al. 83, Colmerauer 84] employs as constraint language equa-tions and disequations that are interpreted in the algebra of rational trees.The constraint language of Prolog III [Colmerauer 88] is interpreted in analgebra providing rational trees and rational numbers and allows for linearequations and inequations for numbers, boolean expressions for truth values,and equations and disequations for general terms. Other recent examples ofconstraint logic programming languages are CLP(R) [Ja�ar/Michaylov 87],CIL [Mukai 87] and CHIP [Dincbas et al. 88].Ja�ar and Lassez [86, 87] were the �rst to identify the new model, coinedthe name Constraint Logic Programming, and developed a general frameworkthat is parameterized with respect to the constraint language being employedand yields soundness and completeness results for a generic operational se-mantics relying on a constraint solver for the employed constraint language.A constraint solver is an algorithm deciding the satis�ability of constraintsystems. In conventional logic programming, the constraint solver solves e-quations in the Herbrand universe, which is accomplished by term uni�cation.The original motivation for the research reported in this paper was thedevelopment of a semantic foundation for the knowledge representation lan-guage LOGIN [A��t-Kaci/Nasr 86], where relations are de�ned with de�niteclauses over a constraint language consisting of so-called  -terms [A��t-Kaci86]. The �rst step of this enterprise was to come up with a logical reformu-lation of A��t-Kaci's  -term calculus and led to the development of FeatureLogic [Smolka 88], a decidable logic that generalizes A��t-Kaci's formalism byadding negation and quanti�cation. Feature Logic makes explicit that A��t-2



Kaci's  -terms, the feature descriptions developed by computational linguists[Kaplan/Bresnan 82, Rounds/Kasper 86, Johnson 87], and the knowledge rep-resentation language KL-ONE [Brachman/Schmolze 85, Levesque/Brachman87] are all closely related members of the same family of logics. These logicso�er attributive concept descriptions that are interpreted as sets and are builtfrom sorts and binary relations (called attributes, roles or features). Givenan attributive concept description C, a constraint x:C constrains the valuesof the variable x to elements of C.Ideally, the second step of giving a semantic foundation to LOGIN shouldhave consisted in simply applying Ja�ar and Lassez's [86, 87] constraint logicprogramming scheme (CLP, for short) to Feature Logic. However, this failedfor three reasons:1. CLP requires that the constraint language is interpreted in a single �xeddomain. This is in accordance with the data structure paradigm underly-ing current programming languages, which views programs as computingwith data structures that are, in most applications, merely representa-tions of the objects one is actually interested in. For knowledge represen-tation, however, data structures as representations of real objects are notadequate. Instead, one talks directly about the objects of interest, as thisis accomplished, for instance, by the Tarski semantics of Predicate Logic.Since, in general, we have only partial information about the world wewant to reason about, we need to take into account all worlds that areconsistent with our partial knowledge. Thus we have to generalize CLPsuch that the constraint language can come with more than one inter-pretation and a constraint is considered satis�able if there is at least oneinterpretation in which it has a solution.2. CLP requires that the interpretations of constraint languages be \so-lution compact", which implies that every element of an interpretationmust be obtainable as the unique solution of a possibly in�nite set ofconstraints. While solution compactness is sensible for \data structure"interpretations, it is not acceptable for \real world" interpretations. CLPneeds solution compactness since it provides soundness and completenessresults for negation as failure. However, since the constraint language3



can provide for logical negation (for instance, disequations in Prolog IIor set complements in Feature Logic) we feel that there is no further needfor the problematic negation as failure.3. CLP assumes that the constraint language is expressed in Predicate Log-ic: constraints must be formulas of Predicate Logic and interpretationsmust be interpretations of Predicate Logic. However, neither FeatureLogic, KL-ONE, nor the order-sorted predicate logic underlying Eqlog[Goguen/Meseguer 86] satisfy these assumptions. Although these for-malisms can be reduced to Predicate Logic in principle, providing cus-tomized model theories and notations for them is crucial in keeping themtechnically simple and in supporting the adequate intuitions. So whatCLP is lacking is a su�ciently abstract formalization of the notion of aconstraint language.In this paper we present a framework that generalizes CLP so that theshortcomings discussed above are completely avoided.We start with a de�nition of constraint languages that is general enoughto cover all mentioned formalisms. In our analysis, a constraint is a piece ofsyntax constraining the values the variables occurring in it can take. There isno need to know anything about the internal structure of a constraint. Sincewe are not concerned with negation as failure, we don't need to impose anyrequirements on the interpretations of constraint languages. A prominentexample of a constraint language is Predicate Logic, where the formulas serveas constraints.Next we show that every constraint language can be extended conserva-tively to a constraint language providing for relational atoms, the proposi-tional connectives, and quanti�cation. By taking equations with their Tarskiinterpretations as constraint language, this construction yields Predicate Log-ic. We show that, for every set S of de�nite clauses in the extension of anarbitrary constraint language L, every interpretation of L can extended toa minimal model of S. This generalizes the key result of conventional logicprogramming to our framework, which is not restricted to Horn theories.4



We then present an operational semantics for our general de�nite clausespeci�cations that generalizes the SLD-resolution method [Lloyd 84] employedin conventional logic programming and prove its soundness and completeness.In the second part of the paper, we present a semantic type discipline forour generalized de�nite clause speci�cations. The discipline exploits the ideathat declarations of relation symbols in a sorted language can be expressedas implications; for instance, to declare that the relation plus takes integersas arguments, we can write the implicationplus(x; y; z) ! x: int & y: int & z: int:If Feature Logic is used as underlying constraint language, we can constrainthe arguments of a relation with complex feature terms employing intersec-tions, complements and feature constraints. The idea even applies to conven-tional logic programming, where we can write declarations likep(x; y) ! 9 z: y = f(x; z):We establish a weak notion of well-typedness by saying that a de�niteclause speci�cation S is implicitly well-typed with respect to a set D of dec-larations if every minimal model of S is a model of D. Next we establish astrong notion of well-typedness by de�ning explicitly well-typed clauses andshow that explicitly well-typed speci�cations are implicitly well-typed. Ex-plicit well-typedness is decidable provided the underlying constraint languageis decidable. Furthermore, we show that our operational semantics is typesafe, that is, the reduction of an explicitly well-typed goal with an explicitlywell-typed clause yields again an explicitly well-typed goal. Finally, we givea type inference rule that can be used to compute a most general explicitlywell-typed weakening of a speci�cation. We show that, if the explicitly well-typed speci�cation S 0 is obtained from S by type inference, S 0 and S havethe same minimal models provided S is implicitly well-typed.Acknowledgement. Our de�nition of constraint languages was inu-enced by a draft of Manfred Schmidt-Schau� outlining an axiomatic founda-tion of uni�cation theory. 5



2 Constraint LanguagesWe start with a very general de�nition of constraint languages. The basicidea is that a constraint is some piece of syntax constraining the values ofthe variables occurring in it. Our de�nition does not make any assumptionsabout the syntax of constraints.A constraint language is a tuple (VAR;CON;V; INT) such that1. VAR is a decidable, in�nite set whose elements are called variables2. CON is a decidable set whose elements are called constraints3. V is a computable function that assigns to every constraint � a �nite setV� of variables, called the variables constrained by �4. INT is a nonempty set of interpretations, where every interpretationI 2 INT consists of a nonempty set DI , called the domain of I, and asolution mapping [[�]]I such that:4.1 an I-assignment is a mapping VAR! DI , and ASSI is the set ofall I-assignments4.2 [[�]]I is a function mapping every constraint � to a set [[�]]I of I-assignments, where the I-assignments in [[�]]I are called the solu-tions of � in I4.3 a constraint � constrains only the variables in V�, that is, if � 2 [[�]]Iand � is an I-assignment that agrees with � on V�, then � 2 [[�]]I.Predicate logic a prominent example of a constraint language: the well-formed formulas are the constraints, V� are the free variables of a formula �,and for every Tarski interpretation I the solutions [[�]]I are the I-assignmentssatisfying �. Viewing predicate logic as a constraint language abstracts awayfrom the syntactic details of formulas.The following de�nitions are all made with respect to some given con-straint language. Most of the de�nitions generalize terminology that is well-known for predicate logic. 6



A constraint � is satis�able if there exists at least one interpretationin which � has a solution. A constraint � is valid in an interpretation I if[[�]]I = ASSI , that is, every I-assignment is a solution of � in I. Conversely,we say that an interpretation I satis�es a constraint � if � is valid in I.An interpretation is a model of a set � of constraints if it satis�es everyconstraint in �.A renaming is a bijection VAR ! VAR that is the identity exceptfor �nitely many exceptions. If � is a renaming, we call a constraint �0 a�-variant of a constraint � ifV�0 = �(V�) and [[�]]I = [[�0]]I� := f�� j � 2 [[�0]]Igfor every interpretation I. A constraint �0 is called a variant of a constraint� if there exists a renaming � such that �0 is a �-variant of �.Proposition 2.1. A constraint is satis�able if and only if each of its variantsis satis�able. Furthermore, a constraint is valid in an interpretation I if andonly if each of its variants is valid in I.A constraint language is closed under renaming if every constraint �has a �-variant for every renaming �. A constraint language is closed underintersection if for every two constraints � and �0 there exists a constraint such that [[�]]I \ [[�0]]I = [[ ]]I for every interpretation I. A constraintlanguage is decidable if the satis�ability of its constraints is decidable.Let � be a set of constraints and I be an interpretation. The solutionsof � in I are de�ned as[[�]]I := [�2� [[�]]I;where [[�]]I := ; if � is empty. Note that this de�nition interprets a set ofconstraints disjunctively, while the above de�nition of a model interprets aset of constraints conjunctively. To ease our notation, we often abbreviate asingleton f�g to �. 7



Given a set V of variables, the V -solutions of a set � of constraints inan interpretation I are de�ned as[[�]]IV := f�jV j � 2 [[�]]Ig = [�2�f�jV j � 2 [[�]]Igwhere �jV is the restriction of � to V . We say that a set of constraints � isV -subsumed by a set of constraints �0 and write � �V �0 if [[�]]IV � [[�0]]IVfor every interpretation I. Obviously, V -subsumption de�nes a preorder onsets of constraints. The corresponding equivalence relation� �V �0 :() � �V �0 ^ �0 �V �is called V -equivalence.Proposition 2.2. Renaming is homomorphic with respect to to V -subsumption, that is, if � and �0 are renamings that agree on V , �0 is a�-variant of a constraint �,  0 is a �0-variant of a constraint  , and � �V  ,then �0 ��(V )  0.A constraint language is called compact if for every set V of variables,every constraint �, and every set of constraints �, � is V -subsumed by � ifand only if � is V -subsumed by some �nite subset of �.Predicate Logic is a compact and undecidable constraint language thatis closed under renaming and intersection.3 Relational ExtensionsWe now present a construction that, given a constraint language L and aset R of relation symbols, extends L conservatively to a constraint languageR(L) providing for relational atoms, the propositional connectives, and quan-ti�cation. If the constraints of L are the equations between �rst-order termsand the interpretations of L are the usual Tarski interpretations, then theextension R(L) is Predicate Logic. 8



From now on we assume that a set of relation symbols is given, whereevery relation symbol comes with a natural number specifying the number ofarguments it takes.A constraint language L and a decidable set R of relation symbols de�nea constraint language R(L) extending L as follows:1. the variables of R(L) are the variables of L2. the constraints of R(L) are de�ned inductively as follows:2.1 every constraint of L is a constraint of R(L)2.2 if r is a relation symbol of R and ~x is a tuple of pairwise distinctvariables, then the atom r(~x) is a constraint of R(L), provided thetuple ~x has as many elements as r has arguments2.3 the empty conjunction ; is a constraint of R(L); furthermore, ifF and G are constraints of R(L), then the conjunctionF &G andthe implication F ! G are constraints of R(L)2.4 if x is a variable and F is a constraint of R(L), then the existentialquanti�cation 9x:F is a constraint of R(L)3. the variables constrained by a constraint of R(L) are de�ned induc-tively as follows: if � is an L-constraint, then V� is de�ned as in L;V(r(x1; : : : ; xn)) := fx1; : : : ; xng; V; := ;; V(F &G) := VF [ VG;V(F ! G) := VF [ VG; V(9x:F ) := VF � fxg4. an interpretation A of R(L) is obtained from an L-interpretation I bychoosing for every relation symbol r 2 R a relation rA on DI taking theright number of arguments, and by de�ning:4.1 DA := DI4.2 [[�]]A := [[�]]I if � is an L-constraint4.3 [[r(~x)]]A := f� 2 ASSA j �(~x) 2 rAg4.4 [[;]]A := ASSA, [[F &G]]A := [[F ]]A \ [[G]]A9



4.5 [[F ! G]]A := (ASSA � [[F ]]A) [ [[G]]A4.6 [[9x:F ]]A := f� 2 ASSA j 9 � 2 [[F ]]A 8 y 2 VF: y = x _ �(x) =�(y)g.Since R(L) is a constraint language, all de�nitions we have made for con-straint languages apply to R(L). This shows in particular that the notion ofa constraint language can be applied iteratively.As mentioned before, this construction yields Predicate Logic if the con-straints of L are the equations between �rst-order terms and the interpreta-tions of L are the usual Tarski interpretations. In R(L) an atom r(s1; : : : ; sn)takes the form9x1: : : :9xn: (p(x1; : : : ; xn) & x1 = s1 & : : : & xn = sn);where x1; : : : ; xn are pairwise distinct variables not occurring in the argumentterms s1; : : : ; sn.In the rest of the paper R will always be a decidable set of relationsymbols and L will always be a constraint language. Furthermore, � and will always denote L-constraints and F and G will always denote R(L)-constraints.Proposition 3.1. Let � be a renaming and F be an R(L)-constraint. ThenF 0 is a �-variant of F if F 0 can be obtained from F by replacing every variablex with �(x) and every L-constraint � with a �-variant of �. Thus R(L) isclosed under renaming if L is closed under renaming.4 De�nite ClausesA de�nite clause is an R(L)-constraint of the formA1 & : : : &An & �! B;where n � 0, A1; : : : ; An and B are atoms, and � is an L-constraint. We maywrite a clause as B  � &G or B  G. A de�nite clause speci�cationis a set of de�nite clauses. 10



Conventional logic programs are de�nite clause speci�cations over E ,where the constraints of E are conjunctions of equations between �rst-orderterms and the corresponding ground term algebra is the only interpretationof E . To meet our de�nition of de�nite clauses, the clauseapp(H.R, L, H.RL)  app(R, L, RL),for instance, is rewritten to the equivalent clauseapp(X, L, Y)  (X=H.R & Y=H.RL) & app(R, L, RL)having X=H.R & Y=H.RL as E-constraint.We will show that the nice properties of conventional logic programsextend to de�nite clause speci�cations over arbitrary constraint languages.The base of an R(L)-interpretation A is the L-interpretation that A isextending. TwoR(L)-interpretations are called base equivalent if they havethe same base.We de�ne a partial ordering on the set of all R(L)-interpretations by:A � B :() A and B are base equivalent and 8 r 2 R: rA � rB:Proposition 4.1. Let A and B be two R(L)-interpretations and A be anR(L)-atom. Then [[A]]A � [[A]]B if A � B.The intersection Ti2I Ai of a family (Ai)i2I of base equivalent R(L)-interpretations is obtained by intersecting the denotations of the relation sym-bols and is again an R(L)-interpretation. Analogously, the unionSi2I Ai ofa family (Ai)i2I of base equivalentR(L)-interpretations is obtained by joiningthe denotations of the relation symbols and is again an R(L)-interpretation.Proposition 4.2. Let I be an L-interpretation. Then the set of all R(L)-interpretations extending I is a complete lattice.Proposition 4.3. The intersection of a family of base equivalent models ofa de�nite clause speci�cation S is a model of S.The following theorem generalizes the key result for conventional logicprograms to general de�nite clause speci�cations.11



Theorem 4.4. [De�niteness] Let S be a de�nite clause speci�cation inR(L) and I be an L-interpretation. Then the equationsrA0 := ;; rAi+1 := f�(~x) j (r(~x) G) 2 S ^ � 2 [[G]]Aigde�ne a chain A0 � A1 � � � � of R(L)-interpretations whose base is I. More-over, the union Si�0Ai is the least model of S extending I.Proof. By induction on i one easily veri�es that Ai � Ai+1. Sinceevery Ai is an R(L)-interpretation extending I, the union A := Si�0Ai isan R(L)-interpretation extending I.To show that A is a model of S, let A G be a clause of S and � 2 [[G]]A.We have to show that � 2 [[A]]A. By the iterative de�nition of A we knowthat there is some i such that � 2 [[G]]Ai. Hence � 2 [[A]]Ai+1 � [[A]]A.To show that A is a minimalmodel of S, let B be a base equivalent modelof S. By induction on i one veri�es easily that Ai � B for every i. HenceA = Si�0Ai � B.A setM of R(L)-constraints is called a de�nite speci�cation if everyL-interpretation can be extended to a minimal model ofM. The De�nitenessTheorem says that every de�nite clause speci�cation is a de�nite speci�cation.Many of the interesting properties of de�nite clause speci�cations dependsolely on their de�niteness. If M is a de�nite speci�cation in R(L), thenM uniquely de�nes the relations of R, that is, for every L-interpretationMde�nes unique minimal denotations for the relation symbols of R.A goal is a possibly empty conjunction of L-constraints andR(L)-atoms.To ease our notation, we identify a goal with the multiset consisting of itsconstraints.An observation is an implication � ! G consisting of an L-constraint� and a goal G.Proposition 4.5. LetM be a de�nite speci�cation. Then an observation isvalid in every model ofM if and only if it is valid in every minimal model ofM. 12



LetM be a de�nite speci�cation. AnM-answer of a goal G is a satis-�able L-constraint � such that the observation �! G is valid in every modelofM. The preceding proposition says that theM-answers of a goal are com-pletely characterized by the minimal models ofM. Thus we say that a set �ofM-answers of a goal G is complete if [[�]]AVG = [[G]]AVG for every minimalmodel A ofM.Proposition 4.6. Let M be a de�nite speci�cation, G be a goal, � be anM-answer of G, and � be a complete set ofM-answers of G. Then:1. [[�]]IVG � [[�]]IVG for every L-interpretation I2. if L is compact, then there exists a �nite subset �0 � � such that[[�]]IVG � [[�0]]IVG for every L-interpretation I.Proof. The second claim follows immediately from the �rst claim. Toshow the �rst claim, suppose that I is an L-interpretation. SinceM is de�nite,there exists a minimal model A ofM whose base is I. Hence[[�]]IVG = [[�]]AVG � [[G]]AVG = [[�]]AVG = [[�]]IVGsince � is anM-answer of G and � is a complete set ofM-answers of G.5 Operational SemanticsIn this section we show that one can obtain a complete interpreter for gen-eral de�nite clause speci�cations by generalizing the SLD-resolution method[Lloyd 84] employed in conventional logic programming. Although our proofsare much more general than the proofs for conventional logic programminggiven in [Lloyd 84], they are clearer and simpler. In particular, we give a newcomplexity measure based on a multiset ordering that provides for a strongcompleteness result making a careful distinction between don't care and don'tknow choices.In the following we assume that L and R are given, S is a de�nite clausespeci�cation in R(L), and V is a �nite set of variables.13



We de�ne (S; V )-goal reduction as the binary relation r�!S;V on theset of goals given by the rule:A &G r�!S;V F &Gif A F is a variant of a clause of Ssuch that (V [ VG) \ VF � VA.Proposition 5.1. [Soundness of Goal Reduction] If G r�!S;V F , then[[F ]]A � [[G]]A for every model A of S.We will now show that goal reduction is a complete rule for inferringS-answers, provided all necessary variants of the clauses of S exist, which iscertainly the case if L and hence R(L) are closed under renaming. The mostimportant ingredient of the completeness proof is a well-founded complexitymeasure on goals that can be decreased by goal reduction. From the De�nite-ness Theorem we know that every minimal model A of S can be obtained asthe union A = Si�0Ai of a chain A0 � A1 � � � � being uniquely de�ned forA. This provides for the following de�nitions:1. if A is a minimal model of S, A is an atom and � 2 [[A]]A, then thecomplexity of � for A in A iscomp(�;A;A) := minfi j � 2 [[A]]Aig2. if A is a minimal model of S, G is a goal, and � 2 [[G]]A, then thecomplexity comp(�;G;A) of � for G in A is the multiset consisting ofthe complexities comp(�;A;A) of the atoms A in G.On the multiset complexities we de�ne a well-founded total ordering byM �M 0 :() 9 multisets X �M and X 0 �M 0 such thatM = (M 0 �X 0) [X and8 x 2 X 9 x0 2 X 0: x < x0;where �, �, [, and 2 stand for the appropriate multiset operations (see[Dershowitz/Manna 79] for details on multiset orderings).14



Now we are ready for the de�nition of the complexity measure we areactually going to use. Let A be a minimal model of S, G be a goal and� 2 [[G]]AV . Then the V -complexity of � for G in A iscompV (�;G;A) := minfcomp(�;G;A) j � 2 [[G]]A ^ � = �jV g;where the minimum is taken with respect to the multiset ordering.Theorem 5.2. [Completeness of Goal Reduction] Let L be closed underrenaming, A be a minimal model of S, G be a goal, A be an atom in G, and� 2 [[G]]AV . Then there exists a clause C in S such that1. (S; V )-goal reduction of G on A using a variant of C is possible2. if G1 is obtained from G by (S; V )-goal reduction on A using a variantof C, then � 2 [[G1]]AV and compV (�;G1;A) < compV (�;G;A).Proof. Let G = A &G0 and � 2 [[A &G0]]A such that � = �jVand compV (�;G;A) = comp(�;G;A). Furthermore, let A = r(~x) andi := comp(�;A;A). Then �~x 2 rAi . Hence there exists a clause r(~y ) F inS and an assignment  2 [[F ]]Ai�1 such that ~y = �~x .Now let � be a renaming and r(~x) H be a �-variant of r(~y ) F suchthat ~x = �(~y ) and (V [ VG0) \ VH � Vr(~x ). Such a variant always existssince L and hence R(L) are closed under renaming, V is �nite, and thereare in�nitely many variables. Since H &G0 can be obtained from G by an(S; V )-goal reduction on A, we have the �rst claim.To show the second claim, we have to show that � 2 [[H &G0]]AV and thatcompV (�;H &G0;A) < compV (�;G;A).We know that ��1 2 [[H]]Ai�1 and that ��1 and � agree on ~x . Hencethere exists an assignment � 2 ASSA that agrees with � on V [VG0 and with��1 on VH. One veri�es easily that � agrees with � on V , that � 2 [[G0]]A,15



and that � 2 [[H]]Ai�1 � [[H]]A. Hence � 2 [[H &G0]]AV andcompV (�;H &G0;A) � comp(�;H &G0;A)= fcomp(�;H;A)g [ comp(�;G0;A)< fig [ comp(�;G0;A)= comp(�;G;A) = compV (�;G;A):Corollary 5.3. [Weak Completeness of Goal Reduction] Let L beclosed under renaming,A be a minimalmodel of S, G be a goal and � 2 [[G]]AV .Then there exists an S-answer � of G such that G r�!�S;V � and � 2 [[�]]AV .Proof. By induction on compV (�;G;A), using the Completeness andSoundness Theorems.The Completeness Theorem is stronger than the corollary since it makesa careful distinction between don't care and don't know choices: a completeinterpreter can choose any atom in the goal to be reduced, has to try allclauses de�ning the relation symbol of the atom, and can reduce the goalwith any suitable variant of the clause being tried.In conventional logic programming the search space is signi�cantly re-duced by exploiting the fact that only clauses whose head uni�es with theatom to be reduced need to be tried. This crucial optimization generalizesnicely to our framework. To show this, we de�ne an additional inference rule,called V -constraint solving:� & �0 &G c�!V �00 &Gif � & �0 �V [VG �00 and�, �0, and �00 are L-constraints.Proposition 5.4. [Constraint Solving] Let G be a goal and G c�!V G0.Then: 16



1. [[G]]AV = [[G0]]AV for every interpretation A of R(L)2. compV (�;G;A) = compV (�;G0;A) for every minimal model A of S andevery � 2 [[G]]AV .Next we require that the underlying constraint language L comes witha set of normal L-constraints such that every normal L-constraint is sat-is�able, and that for every satis�able conjunction of L-constraints and every�nite set V of variables there exists a V -equivalent normal L-constraint. Forconventional logic programming, the normal constraints are the equationalrepresentations of idempotent substitutions.Finally, we require that the goal to be reduced contains only one L-constraint that has to be normal and that the constraints in the clauses of Sbe normal. Obviously, a de�nite clause speci�cation can be transformed tothis format without changing its models.The optimized interpreter works as follows: immediately after a goal re-duction step, the constraint solving rule is applied to the conjunction � &�0 consisting of the normal constraint from the reduced goal and the normalconstraint from the applied clause, where a so-called constraint solver at-tempts to compute a normal constraint that is equivalent to � & �0. If theconstraint solver detects that � & �0 is unsatis�able, then the interpreter triesimmediately another clause since this part of the search space cannot containany answers. In conventional logic programming, the constraint solver is giv-en by a term uni�cation procedure, where uni�cation succeeds if and only ifthe corresponding equations are satis�able in the ground term algebra.6 A Type DisciplineA declaration is an R(L)-implication of the formA ! 9y1: : : :9yn: �;where A is an atom, � is a satis�able L-constraint, and y1; : : : ; yn are thevariables in V� � VA. For convenience we use the abbreviation A!9 �.17



Proposition 6.1. A declaration r(~x) !9 � is valid in an R(L)-interpretation A if and only if rA � f�(~x) j � 2 [[�]]Ag.Declarations prescribe upper bounds for relations. If L is a constraintlanguage with sorts, typical declarations might be:plus(X,Y,Z) !9 X:int & Y:int & Z:intlikes(X,Y) !9 X:person & Y:person.If Feature Logic [Smolka 88] is employed as the underlying constraint lan-guage, the arguments of a relation can be constrained with feature termsemploying intersections, unions, complements and feature constraints. Sim-ilar declarations are possible using the concept and role descriptions of KL-ONE [Levesque/Brachman 87]. The idea even applies to conventional logicprogramming, where we can write declarations likep(x; y) ! 9 z: y = f(x; z):Giving declarations for the relation symbols of a de�nite clause speci-�cation makes it easier to understand the speci�cation since looking at thedeclarations alone already gives one a rough understanding of the speci�edrelations. Declarations are much easier to understand than clauses since adeclaration speci�es an upper bound for a relation without recourse to otherrelations.We establish an undecidable notion of well-typedness by saying that ade�nite speci�cation M satis�es a set D of declarations if every minimalmodel ofM is a model of D.Proposition 6.2. LetM be a de�nite speci�cation and D be a set of decla-rations. Then the following conditions are equivalent:1. M satis�es D2. M[D is a de�nite speci�cation3. M andM[D have the same minimal models.18



Furthermore, if the above conditions are satis�ed, then an observation is validin every model ofM if and only if it is valid in every model ofM[D.Proof. \(1) ) (2)". Let I be an L-interpretation. We have to showthat I can be extended to a minimal model ofM[D. SinceM is a de�nitespeci�cation, I can be extended to a minimalmodel A ofM. Hence we knowby our assumption that A is a model ofM[D. To show that A is a minimalmodel ofM[D, let B � A be a model ofM[D. Then B is in particular amodel ofM and hence B = A since A is a minimal model ofM.\(2)) (3)". Let A be a minimal model ofM. SinceM[D is a de�nitespeci�cation by assumption, we know that M [ D has a minimal model Bsuch that A and B have the same base. In particular, we know that B is amodel ofM. Since A is a minimal model ofM, we know that A � B. SinceB is a model of D, we hence know that A is a model ofM[D. Since B is aminimal model ofM[D, we thus know that A = B. Hence A is a minimalmodel ofM[D.Let A be a minimalmodel ofM[D. Then A is a model ofM and, sinceM is de�nite, M has a minimal model B � A. Since A is a model of D, weknow that B is a model of D. Hence B is a model ofM[D and, since A is aminimal model ofM[D, we know that A = B. Hence A is a minimal modelofM.\(3)) (1)". Trivial.The observational equivalence of M and M [ D follows from (3) andProposition 4.5.In practice, a major advantage of type disciplines is that one can detectspeci�cation errors automatically by checking whether a speci�cation is well-typed. This, of course, requires that the well-typedness of a speci�cationis decidable. Our current notion of well-typedness, however, is undecidableeven if the underlying constraint language is decidable. We will now devise astronger more syntactically oriented notion of well-typedness that is decidableif the underlying constraint language is decidable.19



An atom A is well-typed under an L-constraint � with respect to adeclaration D if � �VA  for every variant A !9  of D. Note that, ifA and D have di�erent relation symbols, then A is well-typed under everyL-constraint with respect to D.Proposition 6.3. Let � be an L-constraint and A !9  be a variant of adeclaration D. Then A is well-typed under � with respect to D if and only if� �VA  .Proof. Follows from Proposition 2.2.Let D be a set of declarations. A de�nite clause C is well-typed withrespect to D if every atom of C is well-typed under the L-constraint of Cwith respect to every declaration of D. (For technical convenience, we don'trequire that the L-constraint of a well-typed clause be satis�able.) A de�niteclause speci�cation S is well-typed with respect to D if every clause of S iswell-typed with respect to D.Proposition 6.4. Let L be a constraint language such that, for every re-naming � and every �nite set V of variables, �-variants are computable andV -subsumption is decidable. Then the well-typedness of �nite de�nite clausespeci�cations with respect to �nite sets of declarations is decidable.Theorem 6.5. Let L be closed under renaming, S be a de�nite clause spec-i�cation and D be a set of declarations. Then S satis�es D if S is well-typedwith respect to D.Proof. Let A be a minimalmodel of S, r(~x)!9 � be a declaration of D,and � be an A-assignment such that �~x 2 rA. We have to show that thereexists an assignment  2 [[�]]A that agrees with � on V~x .Since L is closed under renaming, we can assume without loss of gener-ality that ~x = ~y for every clause r(~y ) G in S.Using the construction of the De�niteness Theorem, we know that �~x 2rAi+1 for some i. Hence there exists a clause r(~x)  & F and an assignment20



� 2 [[ ]]A such that �~x = �~x . Since S is well-typed, we know  �V~x �. Hencethere exists an assignment  2 [[�]]A such that  agrees with � and hence with� on V~x .A goalG is well-typedwith respect to D if every atom in G is well-typedunder some L-constraint in G with respect to D.Proposition 6.6. [Well-Typed Programs Don't Go Wrong] Let S bea de�nite clause speci�cation that is well-typed with respect to a set D ofdeclarations, and let G be a goal that is well-typed with respect to D. ThenG0 is well-typed with respect to D if G0 is obtained from G by (S; V )-goalreduction or V -constraint solving.7 Type InferenceIn the following we assume that S is a de�nite clause speci�cation and D is aset of declarations.We will show that, if S satis�es D, one can compute, by superposing thedeclarations of D with the clauses of S, a de�nite clause speci�cation S 0 thatis well-typed with respect to D such that S and S 0 have the same minimalmodels. Thus S and its well-typed version S 0 are observationally equivalent.We will also show that, in general, S 0 [D is semantically weaker than S [D,that is, has more nonminimal models than S [ D.This result together with the results of the preceding section clari�es therelationship between our two notions of well-typedness. Type inference is alsouseful for practical applications since one can write an abbreviated de�niteclause speci�cation S together with a set D of declarations and automaticallyinfer the \intended" well-typed speci�cation S 0 satisfying D. If type inferenceis used for this purpose, it isn't necessary that the abbreviated speci�cationS satis�es D.We start by de�ning a quasi-ordering on de�nite clauses:(A � &G) � (A �0 &G) :() �0 �VA[VG �:21



If C � C 0, we say that C 0 is aweakening of C. Note that, ifC 0 is a weakeningof C, the clauses C and C 0 are equal up to their L-constraints.To render a clause well-typed with respect to D, we will replace it witha minimal weakening that is well-typed with respect to D. The next propo-sitions says that it doesn't matter which minimal well-typed weakening wechoose.Proposition 7.1. If C 0 is a weakening of C, then every model of C is a modelof C 0.To compute minimal well-typed weakenings, we de�ne the following typeinference rule for de�nite clauses:(A � &G) t�!D (A �0 &G)if B is an atom in A &G andB !9  is a variant of a declaration of D such thatV \ (VA [ V� [ VG) � VB,� �VB  does not hold, and�0 �VA[VG � &  .Theorem 7.2. [Type Inference] Let L be closed under renaming and in-tersection and let C be a de�nite clause. Then:1. there are no in�nite chains C t�!D C1 t�!D C2 t�!D � � �2. if the type inference rule t�!D cannot be applied to C, then C is well-typed with respect to D3. if C t�!D C 0, then C 0 is a weakening of C such that3.1 if C 00 is a weakening of C that is well-typed with respect to D, thenC00 is a weakening of C 03.2 if S satis�es D and S 0 is obtained from S by replacing C with C 0,then S and S 0 have the same minimal models.22



Proof. 1. C has �nitely many pairs (B;D) such that B is an atomof C that is not well-typed under the L-constraint of C with respect to thedeclaration D 2 D. An application of the type inference rule reduces thenumber of these pairs.2. The claim is easily veri�ed using that L is closed under renaming andintersection.3. Let C = (A  � &G), C 0 = (A  �0 &G), B be an atom in C,B !9  be a variant of a declaration of D such that V \ (VA [V�[VG) �VB, and �0 �VA[VG � &  . Then C 0 is obviously a weakening of C.3.1. Let C 00 = (A  �00 &G) be well-typed with respect to D andlet �00 �VA[VG �. We have to show that �00 �VA[VG �0. Since we knowthat �0 �VA[VG � &  , it su�ces to show that �00 �VA[VG � &  . Let I bean L-interpretation and � 2 [[�00]]I. We have to show that there exists anassignment � 2 [[� &  ]]I that agrees with � on VA [ VG.Since �00 �VA[VG �, we know that there exists an assignment � 2 [[�]]Ithat agrees with � on VA[VG. Since B is well-typed under �00 with respect toB !9  , we know that �00 �VB  . Thus there exists an assignment  2 [[ ]]Ithat agrees with � and hence with � on VB. Since V \(VA[V�[VG) � VB,we can assume without loss of generality that  agrees with � on VA[V�[VG.Thus  2 [[� & ]]I and  agrees with � on VA [ VG.3.2. Let S satisfy D and let S 0 be obtained from S by replacing C withC0. Furthermore, let I be an L-interpretation and let A0 � A1 � � � � andA00 � A01 � � � � be the chains de�ning the extensions of I to minimal modelsof S and S 0 as in the proof of the De�niteness Theorem. We show by inductionon i that Ai = A0i for every i � 0. For i = 0 the claim is trivial. To showAi+1 = A0i+1, it su�ces to show that [[� &G]]AiVA = [[�0 &G]]AiVA.3.2.1. Let � 2 [[�0 &G]]Ai. We show that there exists an assignment� 2 [[� &G]]Ai that agrees with � on VA. Since �0 �VA[VG � & , we knowthat there exists an assignment � 2 [[�]]Ai that agrees with � on VA [ VG.Hence � 2 [[� &G]]Ai.3.2.2. Let � 2 [[� &G]]Ai and B be an atom in G. We show that23



there exists an assignment  2 [[�0 &G]]Ai that agrees with � on VA. SinceS satis�es D, we know that Ai satis�es B !9  . Hence there exists anassignment � 2 [[ ]]Ai that agrees with � on VB. Since V \ (VA [ V� [VG) � VB, we can assume without loss of generality that � agrees with �on VA [ V� [ VG. Hence � 2 [[� &  &G]]Ai. Since �0 �VA[VG � & ,there exists an assignment  2 [[�0]]Ai that agrees with � on VA [VG. Hence 2 [[�0 &G]]Ai and  agrees with � on VA.3.2.3. Let � 2 [[� &G]]Ai and B = A. We show that there exists anassignment  2 [[�0 &G]]Ai that agrees with � on VA. Since S satis�es D,we know that Ai+1 satis�es A !9  . Since � 2 [[A]]Ai+1, there exists anassignment � 2 [[ ]]Ai = [[ ]]Ai+1 that agrees with � on VA. Since V \ (V�[VG) � VA, we can assume without loss of generality that � agrees with �on VA [ V� [ VG. Hence � 2 [[� &  &G]]Ai. Since �0 �VA[VG � & ,there exists an assignment  2 [[�0]]Ai that agrees with � on VA [VG. Hence 2 [[�0 &G]]Ai and  agrees with � on VA.Corollary 7.3. Let S 0 be obtained from S by replacing every clause of Sby a minimal weakening that is well-typed with respect to D. Then S 0 iswell-typed with respect to D and, if S satis�es D, then S and S 0 have thesame minimal models.One could expect that S and S 0 not only have the same minimal modelsbut have the same models in general. By Proposition 7.1 we know that everymodel of S is a model of S 0. However, the following example shows that theother direction doesn't hold. This means that S 0 is semantically weaker thanS in that it allows for more nonminimal models than S.Example 7.4. Let L be the constraint language whose constraints are con-junctions of equations between �rst-order terms and let the ground term al-gebra be the only interpretation of L. Furthermore, let a declaration D andde�nite clauses C and C 0 be given as follows:D : p(x)!9 x = aC : p(x) q(x)C0 : p(x) x = a & q(x): 24



The minimal model of C has empty denotations for p and q and thus triviallysatis�es D. Note that C 0 can be obtained from C with type inference moduloD. Now let B be an interpretation such that pB = fag and qB is the set of allground terms (assume that there is more than one). Obviously, B is a modelof C 0 and D but is not a model of C.ReferencesH. A��t-Kaci, An Algebraic Semantics Approach to the E�ective Resolution ofType Equations. Theoretical Computer Science 45, 1986, 293{351.H. A��t-Kaci and R. Nasr, LOGIN: A Logic ProgrammingLanguage with Built-In Inheritance. The Journal of Logic Programming, 1986, 3, 185{215.R.J. Brachman and J.G. Schmolze, An Overview of the KL-ONE KnowledgeRepresentation System. Cognitive Science 9(2), 1985, 171{216.A. Colmerauer, H. Kanoui, and M. Van Caneghem, Prolog, Theoretical Prin-ciples and Current Trends. Technology and Science of Informatics 2,4, 1983,255{292.A. Colmerauer, Equations and Inequations on Finite and In�nite Trees. Proc.of the 2nd International Conference on Fifth Generation Computer Systems,1984, 85{99.A. Colmerauer, Final Speci�cations for Prolog-III. Manuscript, Esprit Refer-ence Number P1210(1106), February 1988. (See also: Opening the Prolog-IIIUniverse, Byte Magazine, August 1987.)N. Dershowitz and Z. Manna, Proving Termination with Multiset Orderings.Communications of the ACM, 22, 1979, 465{476.M. Dincbas, P. Van Hentenryck, H. Simonis, A Aggoun and T. Graf, Appli-cations of CHIP to Industrial and Engineering Problems. Proceedings of theFirst International Conference on Industrial and Engineering Applications ofArti�cial Intelligence and Expert Systems, Tullahoma, Tennessee, June 1988.J.A. Goguen and J. Meseguer, Eqlog: Equality, Types, and Generic Modules25



for Logic Programming. In D. DeGroot and G. Lindstrom (eds.), Logic Pro-gramming, Functions, Relations, and Equations; Prentice Hall 1986.J. Ja�ar and J.-L. Lassez, Constraint Logic Programming. Technical Report,Department of Computer Science, Monash University, June 1986.J. Ja�ar and J.-L. Lassez, Constraint Logic Programming. Proc. of the 14thACM Symposium on Principles of Programming Languages, Munich, 1987,111{119.J. Ja�ar and S. Michaylov, Methodology and Implementation of a CLP Sys-tem. Proceedings of the 4th International Conference on Logic Programming,J.-L. Lassez (Ed.), MIT Press, 1987.M.E. Johnson, Attribute-Value Logic and the Theory of Grammar. PhD Dis-sertation, Stanford University, 1987. To appear as CSLI Lecture Notes.R. Kaplan and J. Bresnan, Lexical-Functional Grammar, a Formal System forGrammaticalRepresentation. In J. Bresnan (Ed.), The Mental Representationof Grammatical Relations, The MIT Press, 1982, 173{381.H.J. Levesque and R.J. Brachman, Expressiveness and Tractability in Knowl-edge Representation and Reasoning. Computational Intelligence 3, 1987, 78{93.J.W. Lloyd, Foundations of Logic Programming. Springer Verlag, 1984.K. Mukai, Anadic Tuples in Prolog. Technical Report TR-239, ICOT, Tokyo,1987.W.C. Rounds and R.T. Kasper, A Complete Logical Calculus for RecordStructures Representing Linguistic Information. Proc. of the First IEEE Sym-posium on Logic in Computer Science, Boston, 1986, 38{43.G. Smolka, A Feature Logic with Subsorts. LILOG Report 33, IBM Deutsch-land, West Germany,May 1988. To appear in the proceedings of the Workshopon Uni�cation Formalisms|Syntax, Semantics and Implementation, Titisee,The MIT Press. 26


