
A Linear First-Order Functional
Intermediate Language for Verified

Compilers

Sigurd Schneider, Gert Smolka, Sebastian Hack

Saarland University, Saarbrücken, Germany

To appear without appendix in Proc. of ITP 2015, Nanjing, China, Springer LNAI

We present the linear first-order intermediate language IL for verified com-
pilers. IL is a functional language with calls to a nondeterministic environ-
ment. We give IL terms a second, imperative semantic interpretation and
obtain a register transfer language. For the imperative interpretation we
establish a notion of live variables. Based on live variables, we formulate
a decidable property called coherence ensuring that the functional and the
imperative interpretation of a term coincide.

We formulate a register assignment algorithm for IL and prove its correct-
ness. The algorithm translates a functional IL program into an equivalent
imperative IL program. Correctness follows from the fact that the algorithm
reaches a coherent program after consistently renaming local variables. We
prove that the maximal number of live variables in the initial program bounds
the number of different variables in the final coherent program. The entire
development is formalized in Coq.

1 Introduction

We study the intermediate language IL for verified compilers. IL is a linear functional
language with calls to a nondeterministic environment.

We are interested in translating IL to a register transfer language. To this end, we give
IL terms a second, imperative interpretation called IL/I. IL/I interprets variable bind-
ing as assignment, and function application as goto, where parameter passing becomes
parallel assignment.

For some IL terms the functional interpretation coincides with the imperative inter-
pretation. We call such terms invariant. We develop an efficiently decidable property we
call coherence that is sufficient for invariance. To translate IL to IL/I, translating to the

1

1 Introduction

coherent subset of IL suffices, i.e. the entire translation can be done in the functional
setting.

The notion of a live variable is central to the definition of coherence. Liveness analysis
is a standard technique in compiler construction to over-approximate the set of variables
the evaluation of a program depends on. Coherence is defined relative to the result of a
liveness analysis.

1 let i = 1 in

2 fun f (j,p) =

3 let c = p <= m in

4 if c then

5 let k = p * j in

6 let m = p + 1 in

7 f (k,m)

8 else

9 j

10 in f (i,n)

1 i := 1;

2 fun f (i,n) =

3 c := n <= m;

4 if c then

5 i := n * i;

6 n := n + 1;

7 f (i,n)

8 else

9 i

10 in f (i,n)

Figure 1: Program (a) and (b) computing F (n,m) := n ∗ (n+ 1) ∗ . . . ∗m

Inspired by the correspondence between SSA [8] and functional programming [10, 2],
we formulate a register assignment algorithm [9] for IL and show that it realizes the
translation to IL/I. For example, the algorithm translates program (a) to program (b).
Correctness follows from two facts: First, register assignment consistently renames pro-
gram (a) such that the variable names correspond to program (b). Second, program (b)
is coherent, hence let binding and imperative assignment behave equivalently. Parameter
passing in IL/I can be eliminated by inserting parallel assignments [9]. In program (b),
all parameters i, n can simply be removed, as they constitute self-assignments.

A key property of SSA-based register assignment is that the number of imperative
registers required after register assignment is bounded by the maximal number of simul-
taneously live variables [9], which allows register assignment to be considered separate
from spilling. We show that our algorithm provides the same bound on the number of
different variable names in the resulting IL/I term.

1.1 Related Work

Correspondences between imperative and functional languages were investigated already
by Landin [11]. The correspondence between SSA and functional programming is due to
Appel [2] and Kelsey [10] and consists of a translation from SSA programs to functional
programs in continuation passing style (CPS) [15, 1]. Chakravarty et al. [6] reformulate
SSA-based sparse conditional constant propagation on a functional language in admin-
istrative normal form (ANF) [16]. Our intermediate language IL is in ANF, and a
sub-language (up to system calls) of the ANF language presented in Chakravarty et al.
[6].

Two major compiler verification projects using SSA exist. CompCertSSA [3] integrates
SSA-based optimization passes into CompCert [13]. VeLLVM [19, 18] is an ongoing effort

2

2 IL

to verify the production compiler LLVM [12]. Both projects use imperative languages
with φ-functions to enable SSA, and do not consider a functional intermediate language.
As of yet, neither of the projects verifies register assignment in the SSA setting. In the
non-SSA setting, a register allocation algorithm, which also deals with spilling, has been
formally verified [5].

Beringer et al. [4] use a language with a functional and imperative interpretation for
proof carrying code. They give a sufficient condition for the two semantics to coin-
cide which they call Grail normal form (GNF). GNF requires functions to be closure
converted, i.e. all variables a function body depends on must be parameters.

Chlipala [7] proves correctness for a compiler from Mini-ML to assembly including
mutable references, but without system calls. Register assignment uses an interference
graph constructed from liveness information. Chlipala restricts functions to take exactly
one argument and requires the program to be closure converted prior to register assign-
ment. This means liveness coincides with free variables and values shared or passed
between functions reside in an (argument) tuple in the heap: Effectively, register as-
signment is function local. Chlipala does not prove bounds on the number of different
variables used after register assignment and does not investigate the relationship to
α-equivalence.

1.2 Contributions and Outline

• We formally define the functional intermediate language IL and its imperative
interpretation, IL/I. We establish the notion of live variables via an inductive
definition. We identify terms for which both semantic interpretations coincide via
the decidable notion of coherence.

• Inspired by SSA-based register allocation, we formulate a register assignment al-
gorithm for IL and prove that it realizes an equivalence preserving transformation
to IL/I. We show the size of the maximal live set bounds the number of names
after register assignment.

• All results in this paper have formal Coq proofs, and the development is available
online (see Section 9). We omit proofs in the paper for space reasons. This version
contains an appendix.

The paper is structured as follows: We introduce the languages in Section 2 and Section 3.
Program equivalence is defined in Section 4. We define invariance in Section 5, establish
a notion of live variables in Section 6, and present coherence in Section 7. Register
assignment is treated in Section 8.

2 IL

Values, Variables, and Expressions We assume a set V of values and a function β :
V→ {0, 1} that we use to simplify the semantic rule for the conditional. By convention,

3

2 IL

η ::= e | α extended expression

Term 3 s, t ::= letx = η in s variable binding

| if e then s else t conditional

| e value

| fun f x = s in t function definition

| f e application

Figure 2: Syntax of IL

v ranges over V. We use the countably-infinite alphabet V for names x, y, z of values,
which we call variables.

We assume a type Exp of expressions. By convention, e ranges over Exp. Expressions
are pure, their evaluation is deterministic and may fail, hence expression evaluation is
a function J·K : Exp → (V → V⊥) ⇀ V⊥. Environments are of type V → V⊥ to
track uninitialized variables. We assume a function fv : Exp → set V such that for all
environments V, V ′ that agree on fv(e) we have JeKV = JeKV ′. We lift J·K pointwise to
lists of expressions in a strict fashion: JeK yields a list of values if none of the expressions
in e failed, and ⊥ otherwise.

Syntax IL is a functional language with a tail-call restriction and system calls. IL
syntactically enforces a first-order discipline by using a separate alphabet F for names
f, g of function type, which we call labels. IL uses a third alphabet A for names α which
we call actions. The term letx = α in . . . is like a system call α that non-deterministically
returns a value. The formal development treats system calls with arguments. Their
treatment is straightforward and omitted here for the sake of simplicity.

IL allows function definitions, but does not allow mutually recursive definitions. The
syntax of IL is given in Figure 2.

Semantics The semantics of IL is given as small-step relation −→ in Figure 3. Note
that the tail-call restriction ensures that no call stack is required. The reduction relation
−→ operates on configurations of the form (F, V, s) where s is the IL term to be
evaluated. The semantics does not rely on substitution, but uses an environment V :
V → V⊥ for variable definitions and a context F for function definitions. Transitions
in −→ are labeled with events φ. By convention, ψ ranges over events different from τ .

E 3 φ ::= τ | v = α

A context is a list of named definitions. A definition in a context may refer to previous
definitions and itself. Notationally, we use contexts like functions: If a context F can be
decomposed as F1; f : a;F2 where f 6∈ domF2, we write Ff for a and F f for F1; f : a.

4

3 Imperative Interpretation of IL: IL/I

Op
JeKV = v

F |V | letx = e in s
τ−→ F |V [x 7→ v] | s

Cond
JeKV = v β(v) = i

F |V | if e then s0 else s1
τ−→ F |V | si

Extern
v ∈ V

F | V | let x = α in s
v=α−→ F | V [x 7→ v] | s

Let

F |V | fun f x = s in t
τ−→ F ; f : (V, x, s) |V | t

App
JeKV = v Ff = (V ′, x, s)

F |V | f e
τ−→ F f |V ′[x 7→ v] | s

Figure 3: Semantics of IL

Otherwise, Ff = ⊥. To ease presentation of partial functions, we treat f : ⊥ as if f was
not defined, i.e. f 6∈ dom (f : ⊥). We write ∅ for the empty context.

A closure is a tuple (V, x, s) ∈ C consisting of an environment V , a parameter list
x, and a function body s. Since a function f in a context F ; f : . . . ;F ′ can refer to
function definitions in F (and to itself), the first-order restriction allows the closures to
be non-recursive: function closures do not need to close under labels. An application fe
causes the function context F to rewind to F f , i.e. up to the definition of f (rule App).
In contrast to higher-order formulations, we do not define closures mutually recursively
with the values of the language.

A system call let x = α in s invokes a function α of the system, which is not assumed
to be deterministic. This reflects in the rule Extern, which does not restrict the result
value of the system call other than requiring that it is a value. The semantic transition
records the system call name α and the result value v in the event v = α.

IL is linear in the sense that the execution of each term either passes control to a
strict subterm, or applies a function that never returns. This ensures no run-time stack
is required to manage continuations. While, by contrast, uses sequentialization ; to
manage a stack of continuations.

3 Imperative Interpretation of IL: IL/I

We are interested in a translation of IL to an imperative language that does not require
function closures at run-time. We introduce a second semantic interpretation for IL
which we call IL/I to investigate this translation. IL/I is an imperative language, where
variable binding is interpreted as imperative assignment. Function application becomes a
goto, and parameter passing is a parallel assignment to the parameter names. Closures
are replaced by blocks (x, s) ∈ B and blocks do not contain variable environments.

5

4 Program Equivalence

Consequently, a called function can see all previous updates to variables. For example,
the following two programs each return 5 in IL/I, but evaluate to 7 in IL:

1 let x = 7 in

2 fun f () = x in

3 let x = 5 in f ()

1 let x = 7 in

2 fun f () = x in

3 fun g x = f() in

4 let y = 5 in g y

To obtain the IL/I small-step relation −→I , we replace the rules F-Let and F-App
by the following rules:

I-Let

L |V | fun f x = s in t
τ−→I L; f : (x, s) |V | t

I-App
JeKV = v Lf = (x, s)

L |V | f e
τ−→I Lf |V [x 7→ v] | s

4 Program Equivalence

To relate programs from different languages, we abstract from a configuration’s internal
behavior and only consider interactions with the environment (via system calls) and
termination behavior. IL’s reduction relation forms a labeled transition system (LTS)
over configurations.

Definition 1 A reduction system (RS) is a tuple (Σ, E ,−→, τ, res), s.t.

(1) (Σ, E ,−→) is a LTS

(2) τ ∈ E

(3) res : Σ→ V⊥

(4) res σ = v ⇒ σ −→-terminal

An internally deterministic reduction system (IDRS) additionally satisfies

(5) σ
φ−→ σ1 ∧ σ

φ−→ σ2 ⇒ σ1 = σ2 action-deterministic

(6) σ
φ−→ σ1 ∧ σ

τ−→ σ2 ⇒ φ = τ τ -deterministic

4.1 Partial Traces

We consider two configurations in an IDRS equivalent, if they produce the same partial
traces. A partial trace π adheres to the following grammar:

Π 3 π ::= ε | v | ⊥ | ψπ

We inductively define the relation . ⊆ Σ × Π such that σ . π whenever σ produces the
trace π. In the following, we write trace for partial trace.

Tr-Tau

σ
τ−→ σ′ σ′ . π

σ . π

Tr-End

σ . ε

Tr-Trm
σ −→-terminal

σ . res σ

Tr-Evt

σ
ψ−→ σ′ σ′ . π
σ . ψ, π

6

4 Program Equivalence

The traces a configuration produces are given as Pσ = {π | σ . π}.

Definition 2 (Trace Equivalence) σ ' σ′ :⇐⇒ Pσ = Pσ′

Lemma 1 σ silently diverges if and only if Pσ = {ε}.

4.2 Bisimilarity

We give a sound and complete characterization of trace equivalence via bisimilarity.
Bisimilarity enables coinduction as proof method for program equivalence, which is more
concise than arguing about traces directly. We say a configuration σ is ready if the next

step is a system call. We write σ2
R
 σ1 for ∀σ′1, σ1

φ−→ σ′1 ⇒ ∃σ′2, σ2
φ−→ σ′2 ∧ σ′1 R σ′2.

We write σ ⇓ w (where w ∈ V⊥) if σ −→∗ σ′ such that σ′ is −→-terminal and res(σ′) =
w.

Definition 3 (Bisimilarity) Let (S, E ,−→, res, τ) be an IDRS. Bisimilarity ∼ ⊆ S×S
is coinductively defined as the greatest relation closed under the following rules:

Bisim-Silent

σ1 −→+ σ′1 σ2 −→+ σ′2 σ′1 ∼ σ′2
σ1 ∼ σ2

Bisim-Term
σ1 ⇓ w σ2 ⇓ w

σ1 ∼ σ2

Bisim-Extern

σ1 −→∗ σ′1 σ2 −→∗ σ′2 σ′1, σ
′
2 ready σ′1

∼
 σ′2 σ′2

∼
 σ′1

σ1 ∼ σ2

Bisim-Silent allows to match finitely many steps on both sides, as long as all transitions
are silent. This makes sense for IDRS, but would not yield a meaningful definition
otherwise. Bisim-Extern ensures that every external transition of σ′1 is matched by
the same external transition of σ′2, and vice versa. This ensures that if two programs
are in relation, they react to every possible result value of the external call in a bisimilar
way. The premises that σ′1, σ

′
2 are ready is there to simplify case distinctions by ensuring

that the next event cannot be τ .

Theorem 1 (Soundness and Completeness) Let (S, E ,−→, res, τ) be an IDRS and
σ, σ′ ∈ S. Then: σ ∼ σ′ ⇐⇒ σ ' σ′

The semantics of IL and of IL/I each forms an IDRS. We define res such that res(σ) =
v if σ is of the form (F, V, e) and JeKV = v. Otherwise, res(σ) = ⊥. The definitions for
IL/I are analogous. To relate configurations IL to IL/I, we form a reduction system on
the sum ΣF + ΣI of the configurations and lift −→ and res accordingly. It is easy to see
that the resulting reduction system is internally deterministic. If not clear from context,
we use an index σF , σI to indicate which language a configuration belongs to.

7

5 Invariance

5 Invariance

We call a term invariant if it has the same traces in both the functional and the imper-
ative interpretation.

Definition 4 (Invariance) A closed program s is invariant if

∀V, (∅, V, s)F ' (∅, V, s)I

Invariance is undecidable. We develop a syntactic, efficiently decidable criterion sufficient
for invariance, which we call coherence. Coherence simplifies the translation between IL
and IL/I.

Coherence is based on the observation that some IL programs do not really depend
on information from the closure. Assume Ff = (V ′, x, s) and consider the following IL
reduction according to rule App:

(F, V, f e) −→ (F f , V ′[x 7→ v], s)

If V agrees with V ′ on all variables X that s depends on, then the configuration could
have equivalently reduced to (F f , V [x 7→ v], s). This reduction does not require the
closure V ′ and is similar in spirit to the rule I-App. Coherence is a syntactic criterion
that ensures V and V ′ agree on a suitable set X at every function application. We
proceed in two steps:

1. Section 6 introduces the notion of live variables, which identifies a set that contains
all variables a program depends on.

2. Section 7 gives the inductive definition of coherence and shows that coherent pro-
grams are invariant.

6 Liveness

A variable x is significant to a program s and a context L, if there is an environment V
and a value v such that (L, V, s)I 6' (L, V [x 7→ v], s)I . Significance is not decidable, as
it is a non-trivial semantic property.

Liveness analysis is a standard technique in compiler construction to over-approximate
the set of variables significant to the evaluation of an imperative program. While usual
characterizations of live variables rely on data-flow equations [14], we define liveness
inductively on the structure of IL’s syntax. To the best of our knowledge, such an
inductive definition is not in literature. The inductive definition factorizes the correctness
aspect from the algorithmic aspect of liveness analysis.

We embed liveness information in the syntax of IL by introducing annotations for
function definitions: The term fun f x : X = s in t is annotated with a set of variables
X.

8

6 Liveness

6.1 Inductive Definition of the Liveness Judgment

We define inductively the judgment live, which characterizes sound results of a liveness
analysis.

Λ ` live s : X where
Λ : context (set V) liveness for functions
X : set V live variables
s : Exp expression

The predicate Λ ` live s : X can be read as X contains all variables significant to s in
any context satisfying the assumptions Λ. The context Λ records for every function f a
set of variables X that we call the globals of f . Assuming x are the parameters of f ,
we will arrange things such that the set X ∪ x contains all variables significant for the
body of f , but never a parameter of f : X ∩ x = ∅. Throughout the paper, Λ is always
a (partial) mapping from labels to globals, and X denotes a set of variables.

Live-Op
fv(η) ⊆ X

X ′ \ {x} ⊆ X
x ∈ X ′

Λ ` live s : X ′

Λ ` live letx = η in s : X

Live-Exp
fv(e) ⊆ X

Λ ` live e : X

Live-App
X1 ⊆ X fv(e) ⊆ X

Λ; f : X1; Λ′ ` live f e : X

Live-Cond
fv(e) ⊆ X

X1 ∪X2 ⊆ X
Λ ` live s1 : X1

Λ ` live s2 : X2

Λ ` live if e then s1 else s2 : X

Live-Fun
Λ; f : X1 ` live s1 : X1 ∪ x
Λ; f : X1 ` live s2 : X2

X1 ∩ x = ∅
X2 ⊆ X

Λ ` live fun f x : X1 = s1 in s2 : X

Figure 4: Liveness: An approximation of the significant variables for IL/I

6.1.1 Description of the Rules.

Live-Op ensures that all variables free in η are live. Every live variable of the con-
tinuation s except x must be live at the assignment. We require x to be live in the
continuation. Live-Cond ensures that the live variables of a conditional at least con-
tain the free variables of the condition, and the variables live in the consequence and
alternative. Live-Exp ensures that for programs consisting of a single expression e at
least the free variables of e are live. Live-App ensures that the free variables of every
argument are live, and that the globals X1 of f are live at the call site. Live-Fun
records the annotation X1 as globals for f in Λ, ensures that X1 ∪ x is a large enough
live set for the function body, and that X1 does not contain parameters of f . The live
variables X2 of the continuation t must be live at the function definition.

Theorem 2 (Liveness is Decidable) For all Λ, X and annotated s, it is efficiently
decidable whether Λ ` live s : X holds.

9

7 Coherence

The proof of Theorem 2 is constructive and yields an efficient, extractable decision pro-
cedure. The decision procedure recursively descends on the program structure, checking
the conditions of the appropriate rule in every step.

6.2 Liveness Approximates Significance

We show that the live variables approximate the significant variables. We write L |= Λ
if a context L satisfies the assumptions Λ, and define:

LiveCtx1
L |= Λ X ∩ x = ∅ Λ; f : X ` live s : X ∪ x

L; f : (x, s) |= Λ; f : X

LiveCtx2

∅ |= ∅

LiveCtx1 ensures that X does not contain parameters and that X ∪x is a large enough
live set for the function body s under the context Λ; f : X.

We can now formally state the soundness of the live predicate. We prove that if
Λ ` live s : X, then X contains at least the significant variables of s in every context L
that satisfies the assumptions Λ. We write V =X V ′ if V and V ′ agree on X, that is if
∀x ∈ X,V x = V ′x.

Theorem 3 For every program s, if Λ ` live s : X and L |= Λ and V =X V ′, then
(L, V, s)I ' (L, V ′, s)I .

7 Coherence

Coherence is a syntactic condition that ensures that a program is invariant. Coherence
is defined relative to liveness information Λ ` live s : X.

In the following programs, the set of globals of f is {x}. The program on the left is
not invariant, while the program on the right is coherent.

1 let x = 7 in

2 fun f () : {x} = x in

3 let x = 5 in f ()

1 let x = 7 in

2 fun f () : {x} = x in

3 let y = 5 in f ()

In the program on the left in line 3, the value of x is 5 and disagrees with the value of
x in the closure of f . In the program on the right, x was not redefined, hence both IL
and IL/I will compute 7. We say a function f is available as long as none of f ’s globals
were redefined. The inductive definition of coherence ensures only available functions
are applied.

7.1 Inductive Predicate

The coherence judgment is of the form Λ ` coh s , where s is an annotated program
and Λ is similar to the context in the liveness judgment. We exploit that contexts realize
a partial mapping, and maintain the invariant that Λ maps only available functions to

10

7 Coherence

their globals, and all other functions to ⊥. The inductive definition given below ensures
that only available functions are applied.

Coh-Op
bΛcV\{x} ` coh s

Λ ` coh letx = η in s

Coh-Exp

Λ ` coh e

Coh-App
Λf 6= ⊥

Λ ` coh f y

Coh-Cond
Λ ` coh s Λ ` coh t

Λ ` coh ifx then s else t

Coh-Fun
Λ; f : X ` coh t bΛ; f : XcX ` coh s

Λ ` coh fun f x : X = s in t

7.1.1 Description of the Rules.

Coh-Op deals with binding a variable x. Every function that has x as a global (i.e.
x ∈ Λf) becomes unavailable, and must be removed from Λ. We write bΛcX to remove
all definitions from Λ that require more globals than X. Trivally, bΛcV = Λ. To remove
all definitions from Λ that use x as global, we use bΛcV\{x}.

Formally, the definition of bΛcX exploits the list structure of contexts:

b∅cX = ∅
bΛ; f : ⊥cX = bΛcX ; f : ⊥

bΛ; f : X ′cX = bΛcX ; f : X ′ X ′ ⊆ X
bΛ; f : X ′cX = bΛcX ; f : ⊥ X ′ 6⊆ X

Coh-App ensures only available functions can be applied, since Λ maps functions that
are not available to ⊥. Coh-Fun deals with function definitions. When the definition of
a function f is encountered, its globals X according to the annotation are recorded in Λ.
In the function body s, only functions that require at most X as globals are available,
so the context is restricted to bΛ; f : XcX .

Theorem 4 (Coherence is Decidable) For all Λ and annotated s, it is efficiently
decidable whether Λ ` coh s holds.

7.2 Coherent Programs are Invariant

Given a configuration (F, V, t) such that Ff = (V ′, x, s), the agreement invariant
describes a correspondence between the values of variables in the function closure V ′

and the environment V . If the closure of f is available, the closure environment V ′

agrees with the primary environment V on f ’s globals X: V ′ =X V . We write F, V |= Λ
if ∀f ∈ domF ∩ dom Λ, V ′ =X V (where Λf = X and Ff = (V ′, x, s)).

Function application continues evaluation with the function body from the closure.
Assume Ff = (V ′, x, s) and consider the IL reduction:

(F, V, f e) −→ (F f , V ′[x 7→ v]a, s)

If coherence is to be preserved, s must be coherent under suitable assumptions. We say
Λ approximates Λ′ if whenever Λf is defined, it agrees with Λ′ and define Λ � Λ′ :⇐⇒
∀f ∈ dom Λ, Λf = Λ′f . The context coherence predicate Λ ` cohF ensures that all
function bodies in closures are coherent. It is defined inductively on the context:

11

8 Translating from IL/F to IL/I via Coherence

CohC-Emp

∅ ` coh ∅

CohC-Bot
Λ ` cohF

Λ; f :⊥ ` cohF ; f :b

CohC-Con
Λ′ ` live s : X ∪ x Λ; f :X � Λ′

bΛ; f : XcX ` coh s Λ ` cohF

Λ, f : X ` cohF ; f : (V, x, s)

CohC-Con encodes two requirements: First, the body of f must be coherent under the
context restricted to the globals X of f (cf. Coh-Fun). Second, X ∪ x must suffice
as live variables for the function body s under some assumptions Λ′ such that Λ; f : X
approximates Λ′. Approximation ensures stability under restriction: Λ ` cohF ⇒
bΛcX ` cohF .

We define strip(V, x, s) = (x, s) and lift strip pointwise to contexts.

Theorem 5 (Coherence implies Invariance) Let Λ ` coh s and Λ ` cohF and
Λ′ ` live s : X such that Λ � Λ′. Then for all V =X V ′ such that F, V |= Λ, it holds
(F, V, s)F ' (strip F, V ′, s)I .

Theorem 5 reduces the problem of translating between IL/I and IL to the problem
of establishing coherence. For the translation from IL to IL/I, it suffices to establish
coherence while preserving IL semantics. Since SSA and functional programming corre-
spond [10, 2], the translation from IL/I to IL can be seen as SSA construction [8], and
the translation from IL to IL/I, which we treat in the next section, as SSA destruction.

8 Translating from IL/F to IL/I via Coherence

The simplest method to establish coherence while preserving IL semantics is α-renaming
the program apart. A renamed-apart program (for formal definition see Subsection 11.3)
is coherent, since every function is always available. The properties of α-conversion
ensure semantic equivalence.

We present an algorithm that establishes coherence and uses no more different names
than the maximal number of simultaneously live variables in the program. This algo-
rithm corresponds to the assignment phase of SSA-based register allocation [9]. The
algorithm requires a renamed-apart program as input to ensure that every consistent
renaming can be expressed as a function from V → V. We proceed in two steps:

1. We define the notion of local injectivity for a function ρ : V → V. We show that
renaming with a locally injective ρ yields an α-equivalent and coherent program
ρ s.

2. We give an algorithm rassign and show that it constructs a locally injective ρ that
uses the minimal number of different names.

We introduce more liveness annotations before every term in the syntax, i.e. wher-
ever a term s appeared before, now a term 〈X〉 s appears that annotates s with the set
X. From now on, s, t range over such annotated terms. We define the projection
[〈X〉 s] = X. The annotation corresponds directly to the live set parameter X of the
relation Λ ` live s : X, hence it suffices to write Λ ` live s for annotated programs.

12

8 Translating from IL/F to IL/I via Coherence

8.1 Local Injectivity

We define inductively a judgment ρ ` inj s where ρ : V → V and s is an annotated
program. We use the following notation for injectivity on X:

f � X :⇐⇒ ∀x y ∈ X, f x = f y =⇒ x = y

The rules defining the judgement are given below and require ρ to be injective on every
live set X annotating any subterm:

Inj-Op
ρ� X ρ ` inj s

ρ ` inj 〈X〉 letx = η in s

Inj-Val
ρ� X

ρ ` inj 〈X〉 e

Inj-App
ρ� X

ρ ` inj 〈X〉 f y

Inj-Cond
ρ� X ρ ` inj s ρ ` inj t

ρ ` inj 〈X〉 ifx then s else t

Inj-Fun
ρ� X ρ ` inj s ρ ` inj t

ρ ` inj 〈X〉 fun f x : X1 = s in t

Let VB(s) be the set of variables that occur in a binding position in s, and fv(s) be
the set of free variables of s. For our theorems, several properties are required:

(1) The program must be without unreachable code, i.e. in every subterm fun f x =
s in t it must be the case that f is applied in t.

(2) A variable in VB(s) must not occur in a set of globals in Λ. We define Λ ⊆ U :
⇐⇒ ∀f ∈ dom Λ, Λ f ⊆ U .

(3) A variable in VB(s) must not occur in the annotation [s]. We write s ⊆ U if for
every subterm t of s it holds that every x ∈ [t] is either in U or bound at t in s.

For renamed-apart programs, these conditions ensure that the live set X in Inj-Fun
always contains the globals X1 of f (cf. Live-App).

Theorem 6 Let s be a renamed-apart program without unreachable code such that
Λ ` live s, Λ ⊆ fv(s) and s ⊆ fv(s). Then

ρ ` inj s =⇒ ρ (bΛc[s]) ` coh (ρ s)

Theorem 6 states that the renamed program ρ s is coherent under the assumptions
ρ (bΛc[s]), i.e. the point-wise image of bΛc[s] under ρ.

Renaming with a locally injective renaming produces an α-equivalent program (for
formal definition see Subsection 11.2), and hence preserves program equivalence:

Theorem 7 Let s be a renamed-apart program without unreachable code such that
Λ ` live s, Λ ⊆ fv(s) and s ⊆ fv(s). Let ρ, d : V → V such that ρ is the inverse of d on
fv(s). Then ρ ` inj s =⇒ ρ, d ` ρ s ∼α s

13

9 Formal Coq Development

8.2 A Simple Register Assignment Algorithm

The algorithm rassign is parametrized by a function fresh : set V → V of which we
require freshX 6∈ X for all finite sets of variables X. Based on fresh, we define a function
freshlist X n that yields a list of n pairwise-distinct variables such that (freshlist X n) ∩
X = ∅. The SSA algorithm must process the program in an order compatible with the
dominance order to work [9]. In our case it suffices to simply recurse on s as follows:

rassign ρ (〈X〉 letx = η in s) = rassign (ρ[x 7→ y]) s
where y = fresh (ρ([s] \ {x}))

rassign ρ (〈X〉 if e then s else t) = rassign (rassign ρ s) t
rassign ρ (〈X〉 e) = ρ
rassign ρ (〈X〉 f e) = ρ
rassign ρ (〈X〉 fun f x : X ′ = s in t) = rassign (rassign (ρ[x 7→ y]) s) t

where y = freshlist (ρ([s] \ x)) |x|

We prove in Theorem 8 that the algorithm is correct for any choice of fresh and
freshlist , as long as they satisfy the specifications above.

Theorem 8 Let s be renamed-apart such that Λ ` live s, Λ ⊆ fv(s) and s ⊆ fv(s). Let
ρ be injective on [s]. Then: rassign ρ s ` inj s.

Our implementation of fresh implements the heuristic of simply choosing the smallest
unused variable. Theorem 9 shows that for this choice of fresh, the largest live set
determines the number of required names. We use S(k) to denote the set of the k
smallest variables, and VO(s) to denote the set of variables occurring (free or in a binding
position) in s.

Theorem 9 Assume fresh X yields a variable less or equal to |X|. Let s be renamed-
apart such that Λ ` live s, Λ ⊆ fv(s) and s ⊆ fv(s). Let k be the size of the largest
set of live variables in s, and rassign ρ s = ρ′. If ρ(fv(s)) ⊆ S(n) then ρ′(VO(s)) ⊆
S(max{n, k}).

We prove a slightly generalized version of Theorem 9 by induction on s.

9 Formal Coq Development

Each theorem and lemma in this paper is proven as part of a larger Coq development,
which is available online1. The development extracts to a simple compiler that, for
instance, produces program (b) when given program (a) from the introduction as input.

The formalization uses De-Bruijn representation for labels, and named representation
for variables. Notable differences to the paper presentation concern the treatment of
annotations, the technical realization of the definition of liveness, and the inductive
generalizations of Theorems 6-9.

1http://www.ps.uni-saarland.de/~sdschn/publications/lvc15

14

http://www.ps.uni-saarland.de/~sdschn/publications/lvc15

10 Conclusion

10 Conclusion

We presented the functional intermediate language IL and developed the notion of co-
herence, which provides for a canonical and verified translation between functional and
imperative programs. We formulated an register assignment algorithm by recursion on
the structure of IL that achieves the same bound on the number of required registers
as SSA-based register assignment. Coherence allowed us to justify correctness without
directly arguing about program semantics by proving that the algorithm α-renames to
a coherent program.

11 Appendix

11.1 Table of Variable Names and Types

Variable Type comment
V set set of values
β V→ {0, 1} conversion to truth value
v V value
Exp set set of expressions
V set set of variables
e Exp expression
x, y, z V variables
F set set of lables
f, g F labels
A set set of actions
η Exp +A extended expression
α A action
Term set set of terms
s, t Term terms
V V → V⊥ environment
C set set of closures
F context of C
E set set of events
φ E event
τ E silent event
B set set of blocks
L context of B
Σ set set of states (LTS)
σ Σ state, configuration
Π set set of partial traces
π Π partial trace
ε Π empty trace

15

11 Appendix

11.2 α-Equivalence

We formalize a generalization of alpha equivalence as an inductively defined judgment
ρ, d ` s ∼α t where ρ, d : V → V and s, t are terms. The mapping ρ describes how the
free variables of s map to free variables of t, and d describes how the free variables of t
map to free variables of s. If ρ, d ` s ∼α t holds, then d is the inverse of ρ on fv(s), i.e.

∀x ∈ fv(s), d(ρ x) = x

Symmetrically, ρ is the inverse of d on fv(t).
The formalization assumes a similar judgment ρ, d `Exp e ∼α e′ for α-equivalence of

expressions. The variable case of judgment for expressions explains how ρ and d are
used:

Alpha-Var
ρx = y dy = x

ρ, d `Exp x ∼α y

Alpha-Var ensures that ρ maps x to y and d maps y to x.
The other rules of the expression judgment are structurally recursive and we omit

them.

Alpha-Op
ρ, d `Exp η ∼α η′ ρ[x 7→ x′], d[x′ 7→ x] ` s ∼α s′

ρ, d ` letx = η in s ∼α letx′ = η′ in s′

Alpha-Val
ρ, d `Exp e ∼α e′

ρ, d ` e ∼α e

Alpha-App
∀i, ρ, d `Exp ei ∼α e′i

ρ, d ` f e ∼α f e′

Alpha-Cond

ρ, d `Exp e ∼α e′
ρ, d ` s ∼α s′

ρ, d ` t ∼α t′

ρ, d ` if e then s else t ∼α if e′ then s′ else t′

Alpha-Fun

ρ[x 7→ x′], d[x′ 7→ x] ` s ∼α s′ ρ, d ` t ∼α t′ |x| = |x′|
ρ, d ` fun f x = s in t ∼α fun f x′ = s′ in t′

Figure 5: Inductive judgment generalizing α-equivalence

The relation has several pleasant properties.

Lemma 2 (Reflexivity) id , id ` s ∼α s

Lemma 3 (Symmetry) ρ, d ` s ∼α s′ ⇒ d, ρ ` s′ ∼α s

Lemma 4 (Transitivity) ρ1, d1 ` s ∼α s′ ⇒ ρ2, d2 ` s′ ∼α s′′ ⇒ ρ1 ◦ ρ2, d2 ◦ d1 `
s ∼α s′

16

11 Appendix

We validate our definition and prove soundness with respect to trace equivalence '.
We define

V =ρ,d V
′ :⇐⇒ ∀xy, ρx = y ⇒ dy = x⇒ V x = V ′y

We relate two closures in the following way:

(V, x, s) =α (V ′, x′, s′)

:⇐⇒ |x| = |x′| ∧ ∃ρ d, V =ρ,d V
′ ∧ ρ[x 7→ x′], d[x′ 7→ x] ` s ∼α s′

We then lift =α point-wise to contexts of the same length.

Theorem 10 If F =α F
′ and V =ρ,d V

′ then (F, V, s) ' (F ′, V ′, s′).

In the formal development we have an additional formalization of IL which uses De-
Bruijn representation also for variables (and not just for labels). We give a translation
from the named IL to De-Bruijn IL, and prove this translation correct with respect
to trace equivalence. We then show that terms that are α-equivalent by our inductive
definition translate to identical terms in De-Bruijn representation.

11.3 Definition of Renamed Apart

A program is renamed apart, if every variable x occurring in a binding position does not
occur free and x is different from every variable occurring in a different binding position.
We formulate an inductive predicate X ` sapartX ′ that ensures this property. The
predicate maintains the invariant that all free variables of s are in X, and that X ′

contains exactly the variables occurring in binding positions in s.

Apart-Op
fv(e) ⊆ X X ∪ {x} ` sapartX ′

X ` letx′ = η′ in s′ apartX ′ ∪ {x}

Apart-Val
fv(e) ⊆ X

X ` eapart ∅

Apart-App
fv(e) ⊆ X

X ` f eapart ∅

Apart-Cond
fv(e) ⊆ X
Xs ∩Xt = ∅

X ` sapartXs

X ` tapartXt

X ` if e then s else tapartXs ∪Xt

Apart-Fun
X ` tapartXt

X ∪ x ` sapartXs uniquex

x ∩X = ∅
(Xs ∪ x) ∩Xt = ∅

X ` fun f x = s in tapartXs ∪Xt ∪ x

Figure 6: Inductive definition of renamed apart

Lemma 5 (Disjoint) If X ` sapartX ′ then X ∩X ′ = ∅.

Lemma 6 (Relation to free and bound variables) IfX ` sapartX ′ and then fv(s) ⊆
X and X ′ = VB(s).

17

11 Appendix

11.4 A Procedure to Rename Apart

We define the procedure

apart : (V → V)→ (set V)→ Exp → (set V)× Exp

such that apart ρX s = (X, s′) ensures s′ is renamed apart and α-equivalent to s. X ′

contains the newly chosen variables now occurring in binding positions in s′. Theorem 11
and Theorem 12 make these claims precise.

apart ρX (letx = η in s) = (X ′ ∪ {y}, let y = ρ η in s′)
where (X ′, s′) = apart (ρ[x 7→ y]) (X ∪ {y}) s
where y = fresh X

apart ρX (if e then s else t) = (Xs ∪Xt, if (ρ e) then s
′ else t′)

where (Xs, s
′) = apart ρX s

where (Xt, t
′) = apart ρ (X ∪Xs) t

apart ρX e = (∅, ρe)
apart ρX (f e) = (∅, f (ρ e))
apart ρX (fun f x = s in t) = (Xs ∪Xt ∪ y, fun f y = s′ in t′)

where y = freshlist X |x|
where (Xs, s

′) = apart (ρ[x 7→ y]) (X ∪ y) s
where (Xt, t

′) = apart ρ (X ∪Xs ∪ y) t

Theorem 11 (apart renames apart) Let s be a program such that ρ(fv(s)) ⊆ X and
apart ρX s = (X ′, s′). Then: X ` s′ apartX ′.

Theorem 12 (Renaming apart respects α-conversion) Let s be a program such
that ρ(fv(s)) ⊆ X and apart ρX s = (X ′, s′) and let d be inverse to ρ on fv(s). Then
ρ, d ` s ∼α s′.

11.5 Joining the Parts

This section describes how the theorems proven in this paper fit together in a compiler.
Assume that the compiler uses IL as an intermediate language, and now wants to produce
code for an IL program s. The compiler procedes as follows:

1. Rename s1 apart, obtaining an α-equivalent program s2 (Theorem 12).

2. Run the algorithm rassign on s2 to obtain a register assignment ρ. Theorem
Theorem 8 ensures ρ is locally injective.

3. Rename s2 accoding to ρ and obtain s3, which is α-equivalent (Theorem 7) and
coherent (Theorem 6) because ρ is locally injective.

4. Theorem Theorem 5 ensures that s3 can be seen equivalently as an IL/I program,
hence the functional program s1 has been translated to an imperative program s3.

18

References

References

1. A. W. Appel. Compiling with Continuations. Cambridge, England: Cambridge University
Press, 1992.

2. A. W. Appel. “SSA is Functional Programming”. In: SIGPLAN Not. 33.4 (1998).

3. G. Barthe, D. Demange, and D. Pichardie. “A Formally Verified SSA-Based Middle-End
- Static Single Assignment Meets CompCert”. In: ESOP. 2012.

4. L. Beringer, K. MacKenzie, and I. Stark. “Grail: a Functional Form for Imperative Mobile
Code”. In: ENTCS 85.1 (2003).

5. S. Blazy, B. Robillard, and A. W. Appel. “Formal Verification of Coalescing Graph-
Coloring Register Allocation”. In: ESOP. 2010.

6. M. M. T. Chakravarty, G. Keller, and P. Zadarnowski. “A Functional Perspective on SSA
Optimisation Algorithms”. In: ENTCS 82.2 (2003).

7. A. Chlipala. “A verified compiler for an impure functional language”. In: POPL. 2010.

8. R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. “Efficiently Com-
puting Static Single Assignment Form and the Control Dependence Graph”. In: TOPLAS
13.4 (1991).

9. S. Hack, D. Grund, and G. Goos. “Register Allocation for Programs in SSA-Form”. In:
CC. 2006.

10. R. A. Kelsey. “A correspondence between continuation passing style and static single
assignment form”. In: SIGPLAN Not. 30 (3 1995).

11. P. J. Landin. “Correspondence between ALGOL 60 and Church’s Lambda-notation: part
I”. In: CACM 8.2 (1965).

12. C. Lattner and V. S. Adve. “LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation”. In: CGO. 2004.

13. X. Leroy. “Formal Verification of a Realistic Compiler”. In: CACM 52.7 (2009).

14. T. Nipkow and G. Klein. Concrete Semantics: With Isabelle/HOL. Springer Publishing
Company, Incorporated, 2014.

15. J. C. Reynolds. “The Discoveries of Continuations”. In: LSC 6.3-4 (1993).

16. A. Sabry and M. Felleisen. “Reasoning about Programs in Continuation-Passing Style”.
In: LSC 6.3-4 (1993).

17. S. Schneider, G. Smolka, and S. Hack. “A First-Order Functional Intermediate Language
for Verified Compilers”. In: CoRR abs/1503.08665 (2015).

18. J. Zhao, S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. “Formal Verification of
SSA-based Optimizations for LLVM”. In: PLDI. 2013.

19. J. Zhao, S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. “Formalizing LLVM Inter-
mediate Representation for Verified Program Transformations”. In: POPL. 2012.

19

	Introduction
	Related Work
	Contributions and Outline

	IL
	Imperative Interpretation of IL: IL/I
	Program Equivalence
	Partial Traces
	Bisimilarity

	Invariance
	Liveness
	Inductive Definition of the Liveness Judgment
	Description of the Rules.

	Liveness Approximates Significance

	Coherence
	Inductive Predicate
	Description of the Rules.

	Coherent Programs are Invariant

	Translating from IL/F to IL/I via Coherence
	Local Injectivity
	A Simple Register Assignment Algorithm

	Formal Coq Development
	Conclusion
	Appendix
	Table of Variable Names and Types
	-Equivalence
	Definition of Renamed Apart
	A Procedure to Rename Apart
	Joining the Parts

