
Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

Research
Report

RR-95-08

An Abstract Machine for Oz

Michael Mehl, Ralf Scheidhauer, and Christian Schulte

June 1995

Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH

Postfach 20 80
67608 Kaiserslautern, FRG
Tel.: + 49 (631) 205-3211
Fax: + 49 (631) 205-3210

Stuhlsatzenhausweg 3
66123 Saarbrücken, FRG
Tel.: + 49 (681) 302-5252
Fax: + 49 (681) 302-5341

Deutsches Forschungszentrum
für

Künstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum für
Künstliche Intelligenz, DFKI) with sites in Kaiserslautern and Saarbrücken is a non-profit
organization which was founded in 1988. The shareholder companies are Atlas Elektronik,
Daimler-Benz, Fraunhofer Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, Sema
Group, Siemens and Siemens-Nixdorf. Research projects conducted at the DFKI are
funded by the German Ministry of Education, Science, Research and Technology, by the
shareholder companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence
and other related subfields of computer science. The overall goal is to construct systems
with technical knowledge and common sense which - by using AI methods - implement a
problem solution for a selected application area. Currently, there are the following research
areas at the DFKI:2 Intelligent Engineering Systems2 Intelligent User Interfaces2 Computer Linguistics2 Programming Systems2 Deduction and Multiagent Systems2 Document Analysis and Office Automation.

The DFKI strives at making its research results available to the scientific community. There
exist many contacts to domestic and foreign research institutions, both in academy and
industry. The DFKI hosts technology transfer workshops for shareholders and other inter-
ested groups in order to inform about the current state of research.

From its beginning, the DFKI has provided an attractive working environment for AI re-
searchers from Germany and from all over the world. The goal is to have a staff of about
100 researchers at the end of the building-up phase.

Dr. Dr. D. Ruland
Director

An Abstract Machine for Oz

Michael Mehl, Ralf Scheidhauer, and Christian Schulte

DFKI-RR-95-08

This work appears in: Programming Languages, Implementations, Log-
ics and Programs, Seventh International Symposium, PLILP’95, Springer-
Verlag, LNCS, September 20-22, 1995, Utrecht, The Netherlands.

This work has been supported by the Bundesminister für Bildung, Wis-
senschaft, Forschung und Technologie (Hydra, ITW 9105), the Esprit Work-
ing Group CCL (contract EP 6028), and the Esprit Basic Research Project
ACCLAIM (contract EP 7195).

c
 Deutsches Forschungszentrum für Künstliche Intelligenz 1995

This work may not be copied or reproduced in whole of part for any commercial purpose. Permission to
copy in whole or part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by
permission of the Deutsche Forschungszentrum für Künstliche Intelligenz, Kaiserslautern, Federal
Republic of Germany; an acknowledgement of the authors and individual contributors to the work;
all applicable portions of this copyright notice. Copying, reproducing, or republishing for any other
purpose shall require a licence with payment of fee to Deutsches Forschungszentrum für Künstliche
Intelligenz.

ISSN 0946-008X

An Abstract Machine for OzMichael Mehl, Ralf Scheidhauer, and Christian SchulteProgramming Systems LabGerman Research Center for Arti�cial Intelligence (DFKI)Stuhlsatzenhausweg 3, D{66123 Saarbr�ucken, Germanyfmehl,scheidhr,schulteg@dfki.uni-sb.deJune 27, 1995AbstractOz is a concurrent constraint language providing for �rst-class procedures,concurrent objects, and encapsulated search. DFKI Oz is an interactive imple-mentation of Oz competitive in performance with commercial Prolog and Lispsystems. This paper describes Amoz, the abstract machine underlying DFKIOz. Amoz implements rational tree constraints, �rst-class procedures, localcomputation spaces for deep guards, and preemptive and fair threads.

Contents1 Introduction 32 An Informal Computation Model 43 An Example: Mapping Lists 74 The Constraint Store 85 Introducing Amoz 96 Threads and Matching 117 Local Computation Spaces 138 First-class Procedures 17

2

1 IntroductionOz is a concurrent constraint language [20, 19, 17, 6, 22] providing for functional,object-oriented, and constraint programming. It has a simple yet powerful compu-tation model [19, 20], which extends the concurrent constraint model [10, 16] by�rst-class procedures, deep guards, concurrent state, and encapsulated search.DFKI Oz [11] is an interactive implementation of Oz based on an incrementalcompiler and an abstract machine. It features a programming interface based onGNU Emacs, an object-oriented interface to Tcl/Tk, powerful interoperability fea-tures, a garbage collector, and support for stand-alone applications. Performance iscompetitive with commercial Prolog and Lisp systems.This paper describes an abstract machine, called Amoz, which covers impor-tant aspects of the DFKI Oz abstract machine. Amoz implements rational treeconstraints, �rst-class procedures, deep guards, and threads, leaving aside mutablestate for objects [19], record constraints [21], as well as �nite domain constraintsand encapsulated search [18].Constraint Store. By the very idea of concurrent constraint programming,computation emerges from adding constraints to a store. In this paper, we considerconstraints over rational trees (as in Prolog II [5]) that enjoy a variable-centerednormal form: adding constraints results in binding variables. This is utilized inAmoz: binding variables triggers procedure application, reduction of conditionals,and readiness of threads.First-class Procedures. Oz provides for �rst-class procedures typical of mod-ern functional languages (e.g., Haskell [7], Scheme [3], and SML [12]). First-classprocedures in Oz support higher-order functional programming [19], concurrentobject-oriented programming [6], and encapsulated search [17]. In Amoz, execu-tion of a procedure de�nition dynamically creates a procedure (called closure infunctional languages) and stores the procedure under a so-called name. Procedureapplication is triggered by binding a variable to a name, from which the procedureto be applied is retrieved.Deep Guards. Deep guards allow any expression in the guard of a condition-al. Reduction of a deep guard is done in a local computation space. The mainpoint of discussing deep guards here is to show implementation techniques for localcomputation spaces. Local computation spaces are needed to encapsulate search,and encapsulation of search is a must in a concurrent and reactive language. It iswell known that the problem has not been solved in the Japanese Fifth GenerationProject, leaving them with two incompatible language designs: concurrent logicprogramming and (constraint) logic programming. AKL was the �rst language thatsolved this problem, employing a design based on deep guards [8]. Oz, on the otherside, employs a higher-order search combinator that uses local computation spacesbut does not presuppose deep guards [17].3

Threads. Languages like Prolog II and AKL have a single thread of controlin which all computations are performed. However, this is insu�cient for the �negrained concurrency found in concurrent constraint languages. Since general fairnessdoes not seem practical, Oz provides for multiple threads that are scheduled fairly.In Amoz threads are lightweight, implemented as multiple stacks of tasks that arescheduled preemptively and fairly.The design of abstract machines for constraint based languages has been pio-neered by the Warren Abstract Machine (WAM) [25, 1]. The implementation ofDFKI Oz has been in
uenced by the AGENTS implementation of the concurrentconstraint language AKL [8]. AKL is a deep guard language providing for en-capsulated search. However, AKL does not provide for �rst-class procedures andthreads. cc(FD) [23] is a constraint programming language specialized for �nitedomain constraints. It is a compromise between a
at and a deep guard languagein that combinators (i.e., cardinality, disjunction, and implication) can be nested inguards, but procedure applications cannot. As AKL, it does not support �rst-classprocedures and threads.The paper is organized as follows. Section 2 gives an informal presentation ofthe computation model, and Sect. 3 gives an example. Section 4 shows uni�cationfor rational trees, and Sect. 5 introduces Amoz. Threads and a limited case ofconditional are introduced in Sect. 6. Section 7 extends the abstract machine forlocal computation spaces. Procedures are introduced in Sect. 8.2 An Informal Computation ModelThis section gives an informal presentation of the computation model underlying thesublanguage of Oz considered in this paper. A full description of Oz's computationmodel can be found in [20].The notion of a computation space is central to the com-putation model. A computation space consists of a numberof tasks1 connected to a store. storetask � � � taskComputation proceeds by reducing tasks with respect to the information con-tained in the store. A task is reduced as soon as the store contains su�cient infor-mation. When a task is reduced new information may be written to the store ornew tasks may be created. Tasks are short-lived: they cease to exist once they arereduced. Some tasks may spawn local computation spaces, thus creating a tree ofcomputation spaces. As computation proceeds, new local computation spaces arecreated and existing spaces are removed or merged with their parent space.The store consists of a constraint store and a procedure store. The constraint1In other papers on Oz tasks are called actors.4

store contains constraints x = y and x = f(y) in a normal form. The constraint storegrows monotonically. The constraints are interpreted in a �xed �rst-order structure,called the universe. The universe contains rational trees (as in Prolog II [4, 5]), anextension to records is straightforward [21]. Suppose that � is the conjunction ofall constraints in the store. We say that the store entails a constraint , if � ! is valid in the universe. The procedure store contains the bindings of names toprocedures (to be explained later).The tree of computation spaces satis�es the invariant that constraints of a localcomputation space entail constraints of their parent space (\local spaces know theconstraints of global spaces"). A constraint is imposed by adding it to the local storeand all stores below in the tree of computation spaces. Hence, imposition maintainsthe invariant on the tree of spaces. A computation space fails , if a constraint isimposed such that the constraints in the store become unsatis�able in the universe.If a computation space fails, all spaces below fail. If a space fails, all its tasks arediscarded.There are two kinds of tasks: elaborators and conditional tasks . An elaboratoris a task that executes an expression. Expressions are:E; F;G ::= x = y j x = f(y) constraintsj local x inE end declarationj E F compositionj proc fx ygE end procedure de�nitionj fx yg procedure applicationj if x inE then F elseG fi conditionalElaboration of a constraint x = y or x = f(y) imposes it.Elaboration of a declaration local x inE end creates a new variable local to thecomputation space and an elaborator for E. Within E the new variable is referredto by x. The space is called the home of x. Declaration of multiple variableslocal x y inE end abbreviates local x in local y inE end end.Elaboration of a composition E F creates separate elaborators for E and F .Elaboration of a procedure de�nition proc fx yg E end chooses a new name a,writes the binding a : y=E to the procedure store, and creates an elaborator for theconstraint x = a. A name is a constant in the universe. There are in�nitely manydi�erent names. Since procedures are associated with new names when they arewritten to the procedure store, a name cannot refer to more than one procedure.Elaboration of a procedure application fx y1 � � �yng waits until there is a namea, such that the constraint store entails x = a and the procedure store containsa binding a : z1 � � �zn=E. When this is the case, an elaborator for the expressionE[y1=z1; : : : ; yn=zn], where the formal parameters have been replaced by the actualparameters, is created. 5

The elaboration of a conditional is more involved. We will proceed in two steps.First, we consider the special case if y in x = f(y) thenF elseG fi, where variablesin y are pairwise di�erent (\pattern matching"). This case is especially instructivefor Amoz in Sect. 6. Its elaboration creates a conditional task . The conditionaltask waits until the store either entails 9y x = f(y), in which case an elaboratorfor local y in x = f(y)F end is created, or entails :9y x = f(y), in which case anelaborator for G is created.The general conditional ifxinEthenF elseGfi subsumes the previous simpli�edcase. Its elaboration creates a conditional task spawning a local computation space.We call the expression x inE the guard of the conditional. A guard is called deep ifE is not a constraint. The local computation space is created with a store containingthe constraints from the parent store and an elaborator for local x inE end.We say that the guard is entailed if its associated computation space S is notfailed, S has no tasks left, and its parent store entails 9y �, where y are the localvariables of S and � is the conjunction of constraints of S's store. Due to themonotonic growth of the constraint store, entailment of a guard is a stable property,i.e., it continues to hold when computation proceeds. A conditional task must waituntil its guard is either entailed or failed (i.e., its corresponding local computationspace is failed). If the guard is failed, the conditional task reduces to an elaboratorfor the expression G (its else constituent). If the guard is entailed, the constraintsof the local store are merged with its parent store's constraints. Merging amountsto changing the local variables' home space to the parent space. By this, localvariable bindings are made global. Then, the expression F (its then constituent) iselaborated.So far we have not made any assumptions about the order in which tasks areexecuted. Such assumptions are necessary, however, so that one can write fair ande�cient programs. Without such assumptions a single in�nite computation, e.g., adata base query server, which is intended to run forever, could lead to starvation ofall other computations.A thread is a nonempty sequence of tasks. Each task belongs to exactly onethread. When a computation space is failed, its tasks are discarded, which includestheir removal from the threads they reside on.A thread can run by reducing its �rst task if it is reducible, or otherwise bymoving its �rst task to a newly created thread. Reducing a task on a thread meansto reduce the task and replace it with the possibly empty sequence of tasks it hasreduced to. The order of replacing tasks is de�ned as follows. For the task ofa composition E F the task for E goes before the task for F . For the task of aconditional, the task for the guard goes before the task of the conditional itself.If a thread contains a single not yet reducible task it is called suspended , andrunnable otherwise. Upon creation of a thread it is suspended. If the task of a6

suspended runnable runningcreate wake schedulepreempt runFigure 1: Di�erent states of threads.suspended thread becomes reducible, the thread becomes runnable. We say it iswoken.Amoz is sequential, based on a single worker, where multiple runnable threadsare scheduled preemptively and fairly. Only one thread can run at a time, it iscalled running . Making a runnable thread running is called to schedule the thread.Figure 1 sketches the handling of threads.3 An Example: Mapping ListsA procedure mapping a list Xs to a list Ys by applying a procedure P to all elementsof both lists can be written as follows:proc {Map Xs P Ys}if Xr X in Xs=c(X Xr) thenlocal Y Yr in Ys=c(Y Yr) {P X Y} {Map Xr P Yr} endelse Xs=nil Ys=nil fiendLists are represented as trees c(t1 c(t2 : : : c(tn nil))). The procedure is referredto by a variable Map, as to be expected in a language with �rst-class procedures.To illustrate the operational semantics of Map, assume that the procedure de�-nition has been elaborated. Now we enter the expressiondeclare Xs P Ys in {Map Xs P Ys}whose elaboration creates new variables for Xs, P, and Ys and reduces the procedureapplication {Map Xs P Ys} to a conditional task. The declare expression is a variantof the local expression whose scope extends to expressions the programmer enterslater. The conditional task cannot be reduced since there is no information aboutthe variable Xs in the store.Now we enter the constraint (every occurrence of '_' creates a fresh variable)Xs=c(_ c(_ _))Since Xs=c(_ c(_ _)) entails the constraint in the guard of the conditional, it isreduced with its then-part. This imposes the constraint Ys=c(Y Yr), applies P to Xand Y, and elaborates the recursive application {Map Xr P Yr}. A new conditional7

task is created which immediately reduces. Once more a conditional task is createdwhich this time cannot be reduced. The store now entails Xs=c(_ c(_ _)) andYs=c(_ c(_ _)). Two elaborators for the application of P have been created, butcannot reduce, since no de�nition for P has been elaborated yet. Both have beenmoved to newly created threads.By entering the constraint Xs=c(s(o) c(s(s(o)) nil)) the conditional task isreduced to its else-constituent. Now the store entails Xs=c(s(o) c(s(s(o)) nil))and Ys=c(_ c(_ nil)). Then we enter a procedure de�nition for P.proc {P X Y} if Z in X=s(Z) then Y=Z else Y=o fi endBoth threads where the tasks for the application of P reside on are run, eachcreating a conditional task. After their reduction, the store entails:Xs=c(s(o) c(s(s(o)) nil)) Ys=c(o c(s(o) nil))Suppose that the de�nition entered for P would be more involved, e.g., primefactorization of large integers. In this case, prime factorization of each list elementwould proceed in a round-robin fashion.Threads are created implicitly. However, by using thread E end as abbreviationfor local x in if in x = a then E else a = a fi x = a end, we can explicitly statethat reduction of E must advance fairly.4 The Constraint StoreThis section explains how rational trees are represented in the constraint store andhow they are uni�ed. More details on this can be found in [21].The constraint store consists of various kinds of nodes : tuples, names (explainedin Sect. 8), variables, and references. Rational trees are composed of these nodes.The constraint store is a dynamic memory area, thus nodes must be explicitlyallocated. Nodes are built according to the following de�nition, where the codeof the abstract machine is presented in a C++-like notation.struct Node fenum fTUPLE, NAME, VAR, REFg tag;union fNode �ref;struct fLabel label; Node �args[];g tuple;g;g;As presentation proceeds, the union part will be extended to host information usedwith names and variables. Representation of nodes in this paper are chosen withsimplicity rather than e�ciency in mind. The DFKI Oz asbtract machine employstagged pointers instead of a tagged data objects.8

Uni�cation of two trees residing in the constraint store works as follows:Bool unify(Node �xin, Node �yin) fNode �x = deref(xin); Node �y = deref(yin);if (x==y) return True;if (x!tag==VAR) f bind(x,y); return True; gif (y!tag==VAR) f bind(y,x); return True; gif (x!tag==NAME jj y!tag==NAME jj x!tuple.label6=y!tuple.label)return False;Node �xargs[] = x!tuple.args; Node �yargs[] = y!tuple.args;rebind(x,y);for (int i = 0; i<width(y!tuple.label); i++)if (unify(xargs[i],yargs[i]) == False) return False;return True;gNode �deref(Node �n) f return (n!tag==REF) ? deref(n!ref) : n; gvoid bind(Node �f, Node �t) f f!tag = REF; f!ref = t; gvoid rebind(Node �f, Node �t) f f!tag = REF; f!ref = t; gThe function deref follows a chain of references until a non-reference node isreached. The functions bind and rebind make their �rst arguments into a referencepointing to its second argument. Note that bind and rebind are identical, but as thepresentation proceeds they will be enhanced in di�erent ways. After dereferencingboth arguments, x and y point to variable, tuple, or name nodes. In case they pointto the same node, uni�cation is done. If one of them points to a variable, thenbind binds the variable to the other node. If both point to tuples with the samelabel (which implies the same width, i.e., the same number of subtrees, as well), xis made pointing to y by rebind. Uni�cation continues recursively for all subtrees ofthe tuples. Otherwise, False is returned. Note that two names can be uni�ed onlyif they are identical.In each recursive call the number of tuple and variable nodes in the constraintstore is decremented by one. Additionally the invariant holds that chains of refer-ences are acyclic. This implies termination of uni�cation. In Amoz it is importantthat uni�cation is variable-centered : it results in binding variables.5 Introducing AmozThis section introduces Amoz by presenting compilation and execution of declara-tion, composition, equation, and tuple construction.9

#define DISPATCH f PC++; goto emulate; gengine() femulate: switch (�PC) fcase ALLOCATE(n):E = new Node�[n];DISPATCH;/� further instructions will be filled in here �/gfail: /� handling of failure in unification �/g Figure 2: The emulator loop of Amoz.Elaboration is implemented by execution of abstract machine instructions. Elab-orating an expression E corresponds to executing the corresponding instructionsC[[E]] as given by the compiler. In the following we consider only expressions, thatare closed (i.e., without free variables) and renamed apart (i.e., each variable isdeclared only once).To compile an expression E, the set V of variables declared in E is computed,where variables declared in procedure de�nitions are left aside (they are treated inSect. 8). For each variable x 2 V an index A[[x]] is allocated, so that Amoz can referto a variable x by its index A[[x]].Amoz needs several registers. The program counter PC points to the currentlyexecuted instruction. The environment E is an array mapping the index A[[x]] ofvariable x to the variable's node in the store: E[A[[x]]]. The emulator loop shown inFig. 2 contains the single instruction ALLOCATE(n). Instructions for an expression Ewhose set of variables V has n elements are preceded by an instruction ALLOCATE(n)to allocate memory for the variables in E.Execution of local x in E end creates a fresh variable node in the store andwrites a reference to it to the environment E[A[[x]]]. On the left of the diagrambelow the instructions obtained by compilation are shown, whereas on the right theimplementation of newly introduced instructions is shown.C[[local x inE end]] �CREATE VAR(A[[x]])C[[E]] case CREATE VAR(i):E[i] = new Node htag: VARi;DISPATCH;Composition is compiled into concatenation of the respective instruction se-quences: C[[E F]] � C[[E]]C[[F]].An equality constraint is translated to an instruction calling the uni�cationalgorithm as presented in Sect. 4. 10

C[[x = y]] �UNIFY(A[[x]],A[[y]]) case UNIFY(i,j):if (unify(E[i],E[j])==False) goto fail;DISPATCH;Tuple construction x = f(y) proceeds in three steps. First, a node holding thetuple to be constructed is allocated. A reference to it is held in register S. Second,the arguments are constructed and entered to the tuple's node. The last step uni�esthe constructed tuple with x.C[[x = f(y1 : : : yn)]] �CREATE TUPLE(f=n)PUT ARG(1,A[[y1]])� � �PUT ARG(n,A[[yn]])UNIFY S(A[[x]]) case CREATE TUPLE(f=n):S=new Node htag:TUPLE,tuple:hlabel:f=n,args:new Node�[n]ii;DISPATCH;case PUT ARG(i,j):S!tuple.args[i] = E[j];DISPATCH;case UNIFY S(i):if (unify(S,E[i])==False) goto fail;DISPATCH;The compilation scheme presented above is simpli�ed; the integration of opti-mization techniques known from the WAM [25, 1, 24] like read/write mode uni�ca-tion, and allocation of temporary variables to registers is straightforward and is notdetailed.6 Threads and MatchingThis section introduces threads through a restricted form of conditional expressionthat implements pattern-matching. Conditionals considered herein are of the formif y in x = f(y) then E else F fi, where the variables in y are pairwise distinct.They can be reduced, if and only if the variable x is bound. The case where x isnot bound, introduces threads into Amoz.Threads in Amoz are stacks of tasks. They have the type Thread and feature thecommon operations push, pop, and isEmpty. A task TASK(l) points to an abstractmachine instruction located at label l. Amoz is extended by three registers: running(of type Thread) for the currently running thread, runnable (of type ThreadQueue)for the queue of runnable threads, and timeOver for a
ag that will be set to TRUEby an external source (e.g., the operating system) after a certain amount of time.Adding a task to the currently running thread is performed by the PUSH instruc-tion. The RETURN instruction tries to execute the topmost task from the currentlyrunning thread. If the currently running thread has no tasks left, another thread is11

emulate: : : :case PUSH(l):push(running, TASK(l)); PC++;if (timeOver) goto preempt; else goto emulate;case RETURN:goto run;run:if (isEmpty(running)) goto schedule;TASK(l) = pop(running); PC = l; goto emulate;schedule:if (isEmpty(runnable)) // terminate Amozrunning = dequeue(runnable); goto run;preempt:push(running, TASK(PC)); timeOver=FALSE;enqueue(runnable, running); goto schedule;Figure 3: Extending the emulator loop for threads.scheduled. Preemption is checked in the PUSH instruction only, since it is the onlyinstruction by which tasks can be added dynamically to a thread.The emulator loop is extended as shown in Fig. 3. Note that the loop deals onlywith runnable threads, creation and waking of threads is explained below.We will need in the following that variables are extended such that suspendedthreads can be attached to them:struct Node f: : : fstruct fThreadQueue �suspg var; : : :g : : :g;The special form of conditional compiles as follows:C[[if y1 � � �yn in x = f(y1 � � �yn) thenE elseF fi]] �PUSH(L1)DELAY(A[[x]])MATCH(f/n,Le)GET ARG(1,A[[y1]])...GET ARG(n,A[[yn]])C[[E]]RETURNLe: C[[F]]RETURNL1: case DELAY(i):S=deref(E[i]);if (S!tag6=VAR) DISPATCH;enqueue(S!var.susp,new Thread hTASK(PC)i);goto run;case MATCH(f=n,le):if (S!tag==TUPLE && S!label==f=n) DISPATCH;PC=le;goto emulate;case GET ARG(i,j):E[j]=S!tuple.args[i];DISPATCH;The �rst instruction pushes a task on the running thread, thus �xing where12

execution proceeds after the conditional. The instruction DELAY checks whetherthe variable x is bound. In case x is bound, it is matched against the patternand execution continues with the instructions for either E or F depending on theoutcome of the match. Otherwise, the conditional must wait until x is bound. Inthis case a new thread consisting of the single task to reexecute the DELAY instructionis created. This thread is attached to the node of x. Execution continues by poppingthe next task from the current thread.Binding a variable wakes all suspended threads attached to it by adding themto the queue of runnable threads. This is implemented by extending the procedurebind (cf. Sect. 4):void bind(Node �f, Node �t) frunnable=concat(runnable,f!susp);f!susp=hi; f!tag=REF; f!ref=t;g7 Local Computation SpacesThis section introduces local computation spaces to Amoz, and shows how they areused for implementing conditionals with deep guards.Local computation spaces are represented in the machine as follows:struct Space fSpace �parent;NodePair �script[];enum fALIVE, FAILED, ENTAILEDg state;int counter;Instr� entailed, failed;g;The parent component points to the space directly above, linking spaces tothe tree of spaces. In the root space, i.e., the topmost space, it is NULL. Amoz isequipped with a register curSpace pointing to the current computation space, whichis initialized with the root space. A task TASK(s,l) now also carries the space s towhich it belongs.Local constraints are maintained in the script, consisting of pairs of nodes (tobe explained later).The �eld entailed (failed) points to an instruction where execution proceedsin case the local space is entailed (failed). In our case of a conditional, these �eldspoint to the �rst instruction of its then respectively else constituent.Entailment of computation spaces. A computation space is entailed if nospaces exist below, it has no tasks left, and its local constraints are entailed by itsparent's constraints. To check the �rst two conditions for a space, the �eld counter13

counts its tasks and the spaces below. The counter is maintained upon creationof new spaces, failure of spaces, merging of entailed spaces, and upon pushing andpopping of tasks to the currently running thread.A local constraint is entailed if it does not bind any global variables (this is awell known property of rational tree constraints [21], sometimes also referred to asquietness). Binding of variables needs to support entailment checking: the directionof binding becomes important, that is, global variables must not be bound to localvariables [21]. This introduces the need to check for locality of variables. Therefore,a variable node in the store contains its home space, which is initialized upon variablecreation:struct Node f: : : struct fThreadQueue �susp; Space �home;g var; : : :g;case CREATE VAR(i):E[i]=new Node htag:VAR var:hsusp:hi home:curSpaceii;DISPATCH;Checking locality of a variable must take into account that a computation spaceis merged with its parent's space upon entailment. Testing whether a variable islocal to a space is implemented by applying the function isCurrent to the variable'shome �eld.Bool isCurrent(Space �s) freturn (s==curSpace jj s!state==ENTAILED && isCurrent(s!parent));gIn DFKI Oz, the garbage collector shortens parent chains, such that memoryused by entailed spaces can be reclaimed.As in the previous section, upon binding of variables suspended threads needto be woken. DFKI Oz incorporates an important optimization, that only threadsbelow the current space are woken. Maintaining the script will be explained later.void bind(Node �f, Node �t) fif (t!tag==VAR && isCurrent(t!home)) swap(f,t);if (!isCurrent(f!home)) add(curSpace!script,hf,ti);f!tag=REF; f!ref=t;wake(f);if (t!tag==VAR) wake(t);gvoid wake(Node �n) frunnable=concat(runnable,n!susp);g 14

Bindings done by the procedure rebind must be done local to a space as well.This can be achieved by doing them only temporarily during uni�cation and un-doing them after �nishing unify. For sake of brevity we omit the straightforwardrede�nition of unify and rebind.Finally, the procedure isEntailed tests whether a space is entailed:Bool isEntailed(Space �s) freturn s!state==ALIVE && s!counter==0 && s!script==higMaintaining multiple computation spaces. In a space, all constraints fromspaces above must be visible. In a sequential implementation this can be achievedby doing variable bindings in place and maintaining a script of globally visiblechanges, supporting fast access to both local and global bindings. The globallyvisible changes are bindings of global variables. They are written to the script inthe procedure bind. Other schemes for multiple constraint stores are known, e.g.,[15, 13, 14].Suppose that the current space is S1, and a task in a di�erent space S2 mustbe run. All constraints local to spaces between S1 and the root must be removed,and all constraints between the root and S2 must be made visible2 . Removal ofconstraints is called leaving , whereas making constraints visible is called entering .void leave(Space �s) fif (s==NULL) return;leaveSpace(s);leave(s!parent);g Bool enter(Space �s) fif (s==NULL) return True;if (!enter(s!parent)) return False;return enterSpace(s);gLeaving a single space removes all bindings contained in its script. Enteringupdates curSpace, and performs uni�cation of all pairs in the script. Note, that itis not su�cient to perform binding, since the left hand side of a script entry maybe bound already.void leaveSpace(Space �s) fforeach hx,ti in s!scriptx!tag = VAR;g Bool enterSpace(Space �s) fcurSpace=s;if (s!state==FAILED) return False;foreach hx,ti in s!scriptif (unify(x,t)==False)return False;s!script=hi; return True;g2DFKI Oz and the AGENTS implementation of AKL use the straightforward optimization notto go up to the root space, but to the closest common ancestor of S1 and S2.15

Deep guards. Now we consider conditionals with deep guards. Their compila-tion is as follows:C[[if x1 � � �xn inE thenF elseG fi]] �PUSH(L1)CREATE SPACE(Lt,Le)CREATE VAR(A[[x1]])� � �CREATE VAR(A[[xn]])C[[E]]CHECK ENTAILEDLt: C[[F]]RETURNLe: C[[G]]RETURNL1:
case CREATE SPACE(lt,le):Space �s=new Space hstate:ALIVE,entailed:lt, failed:le,script:hi, counter:0,parent:curSpacei;curSpace!counter++; curSpace = s;DISPATCH;case CHECK ENTAILED:if (isEntailed(curSpace)) fmerge(); goto emulate;g else fforeach hx,ti in s!scriptenqueue(x!var.susp,newThread(PC));goto run;gThe instruction CREATE SPACE links the newly created space to the tree, updatesthe current space's counter, and enters the created space. By newThread(l) a newthread with one task to execute the instruction at l in the current space is created.The instruction CHECK ENTAILED checks if the space is entailed. In case the spaceis not yet entailed, new threads are added to the global variables bound in thisspace. These threads contain the task to reexecute the CHECK ENTAILED instruction.Otherwise, the function merge merges the current space with its parent space.void merge() fcurSpace!state=ENTAILED;PC=curSpace!entailed;curSpace=curSpace!parent;curSpace!counter--;gRunning a thread now needs to enter the computation space of the task. Whenpopping a task TASK(s,l), then the space s is entered and its counter is decremented.When this task has been executed (i.e., when reaching run again) entailment ischecked, because it could have been the space's last task. Amoz also needs tohandle failure of a space, because failed spaces must be discarded from the tree ofspaces. Spaces below a failed space are not marked as failed immediately, insteadenter detects them and discards their tasks. The extended emulator loop is shownin Fig. 4.The cost of pushing and popping tasks of the form TASK(s,l) can be reduced byhaving two kinds of tasks TASK S(s) and TASK L(l). The latter will simply jump tothe instruction at label l, where the (costly) former will enter space s and maintain16

fail:if (curSpace!status==ALIVE) fcurSpace!state = FAILED;PC = curSpace!failed;curSpace=curSpace!parent;curSpace!counter--;goto emulate;ggoto run; run:if (isEntailed(curSpace)) fmerge(); goto emulate;gif (isEmpty(running)) goto schedule;TASK(s,l)=pop(running);s!counter--;leave(curSpace);if (enter(s)==False) goto fail;PC=l;goto emulate;Figure 4: Extending the emulator loop for local computation spaces.counter as explained above. Now tasks of kind TASK S(curSpace) need to be pushedjust before curSpace is left.Pattern matching conditionals as shown in the previous section can be used asan optimization to conditionals with deep guards. This makes indexing techniquesapplicable as known for Prolog [24], Concurrent Logic Programming languages [9],and CC languages [2]. Further techniques for optimization of
at guards includingcomposition of equations and arithmetic tests have been integrated into DFKI Oz.8 First-class ProceduresThis section introduces procedure de�nition and application to Amoz. Nodes carry-ing the tag NAME are extended to support binding to procedures. Procedures resembleclosures known from functional programming languages.struct Node f: : : struct fInstr �lb; int arity; Node �free[];g proc;g;A procedure de�nition is compiled to instructions creating the procedure andinstructions for the body of the procedure (z1; � � � ; zk denote the free variables oflocal y1 � � �yn inE end):
17

C[[proc fx y1 � � �yngE end]] �PROCDEF(Lb,n,k)UNIFY S(A[[x]])MOVE C(A[[z1]],1)� � �MOVE C(A[[zk]],k)JUMP(L1)Lb: B[[y1 � � �yn,E]]L1: case PROCDEF(l,n,k):S=new Node htag:NAME, proc:hlb:l,arity:n,free:new Node�[k]ii;DISPATCH;case MOVE C(i,j):S!proc.free[j]=E[i];DISPATCH;case JUMP(l):PC=l; goto emulate;The PROCDEF instruction creates a new NAME node. The free �eld is �lled byMOVE C instructions. Free variables are addressed by a new register F within thebody of a procedure similarly to how other variables are addressed by E. Thus weallow access to F in instructions like UNIFY.B[[y1 � � �yn,E]] compiles the body: it allocates an environment of size k = m+n,where m is the number of declared variables within E (cf. Sect. 5), and n is thenumber of arguments. Parameters, which are passed in argument registers A[1] toA[n] as in the WAM, are �rst saved into the environment. Then the compiler createscode for the body.B[[y1 � � �yn,E]] �ALLOCATE(k)MOVE E(1,A[[y1]])� � �MOVE E(n,A[[yn]])C[[E]]RETURN case MOVE E(i,j):E[j]=A[i];DISPATCH;An application fx y1 � � �yng checks whether x is bound to a name, moves y1 � � �yninto A[1] to A[n], pushes the instruction following the application on the currentlyrunning thread, sets register F to point to x's procedure, and jumps to the body ofthe procedure. Since an ALLOCATE instruction in the procedure's body will changeE we have to modify the task data structure to also contain the environment E andfree variable F registers.
18

local Z P inZ=aproc {P X}X=Zendend
ALLOCATE(2)CREATE VAR(E[0]) % Z ! E[0]CREATE VAR(E[1]) % P ! E[1]CREATE TUPLE(a/0)UNIFY S(E[0]) % Z=aPROCDEF(Lp,1,1) % Z is freeUNIFY S(E[1])MOVE C(E[0],0) % Z!F[0]JUMP(Le)Lp: ALLOCATE(1)MOVE E(1,E[0]) % X ! E[0]UNIFY(E[0],F[0]) % X=ZRETURNLe: RETURNFigure 5: Example code for a procedure de�nition.C[[fx y1 � � �yng]] �PUSH(L1)DELAY(A[[x]])MOVE A(A[[y1]],1)� � �MOVE A(A[[yn]],n)APPLY(A[[x]],n)L1: case PUSH(l):push(running,TASK(curSpace,l,E,F));DISPATCH;case MOVE A(i,j):A[j]=E[i];DISPATCH;case APPLY(i,n):S=deref(E[i]);if (S!tag6=NAME jj S!proc.arity6=n) goto fail;F=S!proc.free;PC=S!proc.lb; goto emulate;In Fig. 5 we show the compilation of a procedure P, which uni�es its argumentwith the variable Z.The scheme presented above imposes an overhead to the handling of procedurescompared to the �rst order case as exempli�ed by Prolog. Therefore the DFKI Ozcompiler performs some important optimizations to eliminate these extra costs, aswe will describe now.The ALLOCATE instruction takes memory from a heap (and not from a stack asProlog does) and there is no DEALLOCATE instruction at the end of a procedure.This is due to concurrency: when the end of a procedure is reached, there may besuspended threads referring to the environment. DFKI Oz does the following: thecompiler inserts a DEALLOCATE instruction, and environments are allocated from a19

free-list. Every environment has a
ag which is set if there exist suspended threads.The DEALLOCATE instruction checks this
ag, and frees the environment only if the
ag is not set.The execution of the instructions for a procedure de�nition is quite costly due toprocedure creation. The instructions are only executed once per procedure, whereasthe procedure itself can be applied many times. To reduce the cost of a procedureapplication the instructions PUSH, DELAY and APPLY can be collapsed into one instruc-tion. Additionally, the compiler tries to determine by static analysis whether x infx y1 � � �yng is bound to a procedure with arity n. Experience shows that it succeedsin most cases, especially in all cases where procedures are used as in Prolog: thecompiler replaces the PUSH, DELAY, APPLY sequence by a special instruction FASTAPPLYtaking as argument the instruction address for the procedure de�nition of x. Thiseliminates the extra costs of the general scheme.AcknowledgementsWe would like to thank Tobias M�uller, Konstantin Popov, and Gert Smolka forhelping us with the design and/or implementation of the abstract machine for Oz.We are grateful to the Programming Systems Group at SICS for sharing their ex-periences in implementing SICStus Prolog and AKL with us. Martin Henz, MartinM�uller, Tobias M�uller, Joachim Niehren, Gert Smolka, Ralf Treinen, Peter VanRoy, and the anonymous referees provided helpful comments on this paper. Theresearch reported in this paper has been supported by the Bundesminister f�urBildung, Wissenschaft, Forschung und Technologie (FTZ-ITW-9105), the EspritProject ACCLAIM (PE 7195), and the Esprit Working Group CCL (EP 6028).
20

References[1] Hassan A��t-Kaci. Warren's Abstract Machine: A Tutorial Reconstruction. LogicProgramming Series. The MIT Press, Cambridge, MA, 1991.[2] Per Brand. A decision graph algorithm for CCP languages. In Leon Sterling, ed-itor, Proceedings of the 1995 International Conference on Logic Programming,pages 433{448, Kanagawa, Japan, June 1995. The MIT Press.[3] William Clinger and Jonathan Rees. The Revised4 Report on the AlgorithmicLanguage Scheme. LISP Pointers, IV(3):1{55, July-September 1991.[4] Alain Colmerauer. Prolog and in�nite trees. In K.L. Clark and S.-A. T�arnlund,editors, Logic Programming, pages 153{172. Academic Press, 1982.[5] Alain Colmerauer. Equations and inequations on �nite and in�nite trees. InProceedings of the 2nd International Conference on Fifth Generation ComputerSystems, pages 85{99, 1984.[6] Martin Henz, Gert Smolka, and J�org W�urtz. Object-oriented concurrent con-straint programming in Oz. In Vijay Saraswat and Pascal Van Hentenryck,editors, Principles and Practice of Constraint Programming, chapter 2, pages27{48. The MIT Press, Cambridge, MA, 1995.[7] Paul Hudak, Philip Wadler, et al. Report on the programming language Haskell.Technical Report YALEU/DCS/RR/777, Yale University, 1990.[8] Sverker Janson. AKL - A Multiparadigm Programming Language. Dissertation,SICS Swedish Institute of Computer Science, Uppsala University 1994, SICSBox 1263, S-164 28 Kista, Sweden, 1994.[9] Shmuel Kliger and Ehud Shapiro. From decision trees to decision graphs. InSaumya Debray and Manuel Hermenegildo, editors, North American Confer-ence on Logic Programming, pages 97{116, Austin, TX, 1990. The MIT Press.[10] Michael J. Maher. Logic semantics for a class of committed-choice programs.In Jean-Louis Lassez, editor, Logic Programming, Proceedings of the FourthInternational Conference, pages 858{876, Melbourne, 1987. The MIT Press.[11] Michael Mehl, Tobias M�uller, Konstantin Popov, and Ralf Scheidhauer. DFKIOz user's manual. DFKI Oz documentation series, German Research Centerfor Arti�cial Intelligence (DFKI), Stuhlsatzenhausweg 3, D-66123 Saarbr�ucken,Germany, 1994.[12] Robin Milner, Mads Tofte, and Robert Harper. De�nition of Standard ML.The MIT Press, Cambridge, MA, 1990.21

[13] Johan Montelius and Khayri A. M. Ali. An And/Or-parallel implementationof AKL. New Generation Computing, 13{14, August 1995.[14] Andreas Podelski and Gert Smolka. Situated simpli�cation. In Proceedingsof the First International Conference on Principles and Practice of ConstraintProgramming, LNCS, Marseille, France, September 1995. Springer-Verlag. Toappear.[15] Andreas Podelski and Peter Van Roy. The beauty and beast algorithm: quasi-linear incremental tests of entailment and disentailment over trees. In MauriceBruynooghe, editor, Logic Programming: Proceedings of the 1994 InternationalSymposium, pages 359{374, Ithaca, NY, November 1994. The MIT Press.[16] Vijay A. Saraswat and Martin Rinard. Concurrent constraint programming. InProceedings of the 7th Annual ACM Symposium on Principles of ProgrammingLanguages, pages 232{245, San Francisco, CA, January 1990. ACM Press.[17] Christian Schulte and Gert Smolka. Encapsulated search in higher-order con-current constraint programming. In Maurice Bruynooghe, editor, Logic Pro-gramming: Proceedings of the 1994 International Symposium, pages 505{520,Ithaca, NY, November 1994. The MIT Press.[18] Christian Schulte, Gert Smolka, and J�org W�urtz. Encapsulated search andconstraint programming in Oz. In Alan H. Borning, editor, Second Workshop onPrinciples and Practice of Constraint Programming, Lecture Notes in ComputerScience, vol. 874, pages 134{150, Orcas Island, WA, May 1994. Springer-Verlag.[19] Gert Smolka. A foundation for higher-order concurrent constraint program-ming. In Jean-Pierre Jouannaud, editor, 1st International Conference on Con-straints in Computational Logics, Lecture Notes in Computer Science, vol. 845,pages 50{72, M�unchen, Germany, September 1994. Springer-Verlag.[20] Gert Smolka. The de�nition of Kernel Oz. In Andreas Podelski, editor, Con-straints: Basics and Trends, Lecture Notes in Computer Science, vol. 910, pages251{292. Springer-Verlag, 1995.[21] Gert Smolka and Ralf Treinen. Records for logic programming. Journal ofLogic Programming, 18(3):229{258, April 1994.[22] Gert Smolka and Ralf Treinen (ed.). DFKI Oz documentation series. DeutschesForschungszentrum f�ur K�unstliche Intelligenz, Stuhlsatzenhausweg 3, D{66123Saarbr�ucken, Germany, 1994.[23] Pascal Van Hentenryck, Vijay Saraswat, and Yves Deville. Design, implemen-tation and evaluation of the constraint language cc(FD). In Andreas Podelski,editor, Constraint Programming: Basics and Trends, Lecture Notes in Com-puter Science, vol. 910, pages 293{316. Springer-Verlag, 1995.22

[24] Peter Van Roy. 1983-1993: The wonder years of sequential Prolog implemen-tation. Journal of Logic Programming, 19/20:385{441, May/July 1994.[25] David H. D. Warren. An abstract Prolog instruction set. Technical Note309, SRI International, Arti�cial Intelligence Center, Menlo Park, CA, October1983.RemarkThe DFKI Oz system and papers of authors from the Programming Systems Labat DFKI are available through WWW at http://ps-www.dfki.uni-sb.de/ orthrough anonymous ftp from ps-ftp.dfki.uni-sb.de.

23

