
Mihael Mehl
The Oz Virtual MahineReords, Transients, and Deep Guards

Mihael Mehl
The Oz Virtual MahineReords, Transients, and Deep Guards
Dissertationzur Erlangung des GradesDoktor der Ingenieurwissenshaften (Dr.-Ing.)der Tehnishen Fakult�atder Universit�at des Saarlandes
Saarbr�uken1999

Das Promotionskolloquium fand am 18. Mai 1999 statt.Dekan: Prof. Wolfgang PaulGutahter: Prof. Gert SmolkaProf. Peter van Roy

To my familyBarbara, Lukas, and Julius

AbstratIn this thesis we desribe the design and implementation of a virtual mahineLVM for the exeution of Oz programs. Oz is a onurrent, dynamially typed,funtional language with logi variables, futures, by-need synhronization, reords,feature onstraints, and deep guard onditionals. The LVM supports light-weightthreads, �rst-lass proedures, exeption handling, transients as generalization oflogi variables, futures, and onstraint variables, reords and open reords, andmultiple omputation spaes to implement the deep guard onditional. We dis-uss the modular, open, and extensible design of the LVM. Tehniques for theeÆient implementation of the store on standard hardware are shown. The LVMsubsumes well-known virtual mahines for funtional, logi, and imperative lan-guages.
ZusammenfassungIn dieser Arbeit beshreiben wir das Design und die Implementierung einer vir-tuellen Mahine LVM f�ur die Ausf�uhrung von Oz Programmen. Oz ist einenebenl�au�ge, dynamish getypte, funktionale Sprahe mit logishen Variablen,Futures, by-need Synhronization, Reords, Feature Constraints, und einer be-dingten Anweisung mit tiefen W�ahtern. Die LVM unterst�utzt leihtgewih-tige Threads, Prozeduren als Datenstrukturen erster Ordnung, Ausnahmebe-handlung, Transients als Verallgemeinerung von logishen Variablen, Futuresund Constraint-Variablen, Reords und o�ene Reords, sowie multiple Bereh-nungsr�aume zur Implementierung der bedingten Anweisung mit tiefen W�ahtern.Wir diskutieren ein modulares, o�enes und erweiterbares Design der LVM undzeigen Tehniken zur eÆzienten Implementierung des Speihers auf aktuell ver-f�ugbarer Hardware. Die LVM subsummiert virtuelle Mashinen f�ur funktionale,logishe und imperative Sprahen.

vii

viii

Extended AbstratIn this thesis we desribe the design and implementation of a virtual mahineLVM for the exeution of Oz programs. Oz is a onurrent, dynamially typed,funtional language. For didatial reasons we restrit the language to a subset,alled L.The fous of this work is on non-standard extensions of funtional languages.These extensions inlude logi variables to represent unknown values and futuresas read-only views on variables. These kinds of unknown values are generalizedto transients.Beside synhronization on determination of transients the language L supportsby-need synhronization whih provides for lazy programming. For the repre-sentation of data strutures L supports trees and their partial desription withreords, feature onstraints, and width onstraints. L allows for multiple ompu-tation spaes, whih are the foundation for implementing searh engines. Compu-tation spaes are introdued for the implementation of the deep guard onditionaloperator whih allows to deide entailment and disentailment.We de�ne the semantis of the language informally as a graph rewriting engineon the language graph. The language graph de�nes a representation of the datastrutures of the language. The language is de�ned as a small set of rewritingoperations on the language graph.We show how the model of the language graph an be extended to explain mul-tiple omputation spaes. The extended graph model allows to explain oniselyhow bindings of variables are propagated, how entailment and disentailment isdeteted, and how two spaes are merged.The LVM is a virtual mahine whih serves as an intermediate level between thehigh-level language L and a onrete hardware. It hides the platform-spei�details and serves as a well de�ned target language for the ompilation of Lprograms.In this thesis we present a modular, open, and extensible design and implemen-tation of the LVM. The main modules of the virtual mahine are the store andthe engine.The store represents the data strutures of the language. It is desribed witha re�ned graph model whih makes essential properties of the implementationexpliit, e.g. the usage of registers and heap memory.The engine onsists of a sheduler, a worker, and an emulator. The shedulermaintains the runnable threads using a simple round robin sheduling poliy.The LVM supports extremely light-weight threads and thousands of threads anbe reated and sheduled eÆiently. ix

The LVM has a single worker to exeute threads. The worker maintains the tasksof a thread and implements exeption handling. The state of the worker is leanto allow for eÆient ontext swithes between onurrent threads.The state of the worker is rih enough for the eÆient exeution of mahineprograms through a threaded-ode emulator. The byte-ode of mahine programsis ompat and adapted for emulation. The byte-ode ontains diret referenes tonodes in the store, whih allows for ertain optimizations, e.g. avoiding dynamitype tests.Transients are de�ned in the LVM as a generalization of unknown values, inlud-ing logi variables, futures, and onstraint variables. The ommon properties oftransients are the single-assignment property and automati synhronization ofthreads on their determination.The LVM supports the representation of high-level symboli data-strutures withgraefully degrading performane wrt. expressivity. Simple data-struture likelists, integers, and literals are represented highly optimized. The performanedereases smoothly only when more expressive primitives, like reords with dy-nami arities and feature onstraints, are used.The LVM is extensible in multiple ways. New data strutures and transienttypes an be integrated with varying degree of eÆieny and omplexity. At thebottom layer a sophistiated tagging sheme allows to eÆiently represent theentral data strutures, whih inlude integers, optimized variables and futures,list elements, and literals. At a medium layer the vast majority of data struturesare represented, e.g. proedures, reords, and objets. At the highest layer newdata types an be integrated easily using an objet-oriented approah with latebinding.The LVM design is open for experimentation with new features and onepts.Beside the extension of data strutures it also allows to easily extend the engine.It is for example easy to integrate new funtionality as built-in proedures andbyte-ode instrutions.We show tehniques for the eÆient implementation of the store on standardhardware. The representation of dynamially typed values in the store is im-plemented as a hybrid mix of tagged pointers and tagged objets. We explainthe automati memory management of the LVM, whih is based on a free listsand a stop-and-opy garbage olletor. A liveness analysis performed duringthe garbage olletion allows to release memory whih is referred from unusedregisters of the LVM.
x

Erweiterte ZusammenfassungIn dieser Arbeit beshreiben wir das Design und die Implementierung einer vir-tuellen Mahine LVM f�ur die Ausf�uhrung von Oz Programmen. Oz ist eine ne-benl�au�ge, dynamish getypte, funktionale Sprahe. Aus didaktishen Gr�undenbeshr�ankten wir uns auf eine Teilsprahe von Oz, die wir L nennen.Der Shwerpunkt unserer Arbeit liegt auf untypishen Erweiterungen von funktio-nalen Sprahen. Diese Erweiterungen umfassen unter anderem logishe Variablenzur Repr�asentation von noh niht bekannten Werten und Futures, die nur-leseZugri�e auf Variablen de�nieren. Diese und andere Arten von unbekannten Wer-ten werden generalisiert zu Transients.Neben der Synhronization auf Transients, erlaubt L auh die by-need Syn-hronization, die es unter anderem erlaubt, die Auswertung von Ausdr�ukenzu verz�ogern, bis sie ben�otigt werden. Zur Repr�asentation von Datenstruktu-ren unterst�utzt die Sprahe L B�aume und ihre partielle Beshreibung durhReords, Feature-Constraints und Width-Constraints. L erlaubt multiple Be-rehnungsr�aume, die die Grundlage f�ur die Implementierung von Suhmashi-nen bilden. Berehnungsr�aume werden zur Implementierung von bedingten An-weisungen mit tiefen W�ahter eingesetzt, die es erlauben Erf�ullbarkeit und Un-erf�ullbarkeit zu entsheiden.Wir de�nieren die Semantik der Sprahe informell als ein Graphersetzungssystemauf dem Sprahgraphen. Der Sprahgraph de�niert die Repr�asentation der Da-tenstrukturen der Sprahe. Die Sprahe wird de�niert durh eine kleine Mengevon Ersetzungsregeln angewendet auf den Sprahgraphen.Wir zeigen, wie das Model des Sprahgraphen erweitert werden kann, um multipleBerehnungsr�aume zu erkl�aren. Das erweiterte Graphenmodell erlaubt es pr�azisezu erkl�aren, wie die Bindung von Variablen propagiert wird, wie die Erf�ullbarkeitbzw. Unerf�ullbarkeit entshieden wird, und wie zwei Berehnungsr�aume ver-shmolzen werden.Die LVM ist eine virtuelle Mashine, die eine Abstraktionsebene zwishen derHohsprahe L und einer konkreten Hardware realisiert. Sie verbirgt irrelevan-te plattformspezi�she Details und dient als wohlde�nierte Zielsprahe f�ur dieKompilierung von L Programmen.In dieser Arbeit pr�asentieren wir einen modularen, o�enen und erweiterbarenDesign sowie eine Implementierung der LVM. Die zentralen Module der virtuellenMashine sind der Speiher und die Verarbeitungsmashine.Der Speiher repr�asentiert die Datenstrukturen der Sprahe. Er ist beshriebenals verfeinertes Graphenmodell, das wihtige Eigenshaften der Implementierungexplizit maht, zum Beispiel die Verwendung von Registern und dem Haldenspei-her. xi

Die Verarbeitungsmashine besteht aus einem Sheduler, einem Worker, und ei-nem Emulator. Der Sheduler verwaltet die rehenf�ahigen Threads durh eineeinfahe zyklishe Warteshlange (round-robin). Die LVM erlaubt extrem leiht-gewihtige Threads, wobei Tausende von Threads eÆzient erzeugt und verwaltetwerden k�onnen.Die LVM hat einen einzigen Worker zur Ausf�uhrung eines Threads. Der Workerverwaltet die Auftr�age des Threads und implementiert die Ausnahmebehandlung.Der Zustand des Workers ist sehr kompakt, um die eÆziente Threadumshaltungzu erm�oglihen.Der Zustand des Workers ist reih genug, um die eÆziente Ausf�uhrung von Ma-shinenprogrammen durh einen ,,threaded-ode" Emulator zu erlauben. DerByteode f�ur Mashinenprogramme ist sehr kompakt und zugeshnitten auf einenEmulator-basierten Ansatz. Der Byteode enth�alt direkte Referenzen auf Kno-ten im Speiher, die bestimmte Optimierungen, wie zum Beispiel die Vermeidungdynamisher Typ�uberpr�ufungen, erlauben.Transients werden in der LVM als Verallgemeinerung unbekannter Werte, wie zumBespiel logisher Variablen, Futures und Constraint Variablen, eingef�uhrt. Diewihtigsten Merkmale von Transients sind, da� sie genau einmal gebunden werdenk�onnen und Threads automatish auf ihre Determiniertheit synhronisieren.Die LVM unterst�utzt die Repr�asentation von hohsprahlihen, symbolishen Da-tenstrukturen mit einer Performanz, die sih an die gew�unshte Expressivit�at an-pa�t. Auf der untersten Ebene steht ein elaboriertes Tag-Shema zur Verf�ugung,das die eÆziente Repr�asentation wihtiger Datenstrukturen, wie zum Beispielganze Zahlen, optimierte Variablen und Futures, Listenelemente und Literale,erlaubt. Auf der mittleren Ebene wird der gr�o�te Teil der Datentypen, wie zumBeispiel Prozeduren, Reords und Objekte, realisiert. Auf der h�ohsten Ebeneerlaubt eine einfahe Shnittstelle, basierend auf Objekten mit sp�ater Bindung,die einfahe Integration neuer Datentypen.Das Design der LVM ist o�en, um Experimente mit neuen Ideen und Konzeptendurhf�uhren zu k�onnen. Neben der Erweiterung von Datenstrukturen erlaubtdie LVM auh die Erweiterung der Verarbeitungsmashine. Zum Beispiel istes einfah m�oglih zus�atzlihe Funktionalit�at durh eingebaute Prozeduren undMashinenbefehle zu realisieren.Wir zeigen Tehniken f�ur die eÆziente Implementierung des Speihers auf aktu-ell verf�ugbarer Hardware. Die Repr�asentation von dynamish typisierten Wertenim Speiher ist implementiert als eine hybride Mishung von markierten Zeigernmit markierten Objekten. Wir erkl�aren die automatishe Speiherverwaltung derLVM, die auf Freispeiherlisten und einem ,,stop-and-opy" Speiherbereinigungs-algorithmus basiert. Eine Lebendigkeitsanalyse wird w�ahrend der Speiherberei-nigung durhgef�uhrt, die es erlaubt den Speiher von niht verwendeten Registernfreizugeben. xii

Aknowledgments
I thank foremost the whole team of the Programming Systems Lab at DFKI andat the University of Saarbr�uken. The atmosphere was stimulating and a lot offruitful disussion took plae over the years.I thank my advisor, Prof. Gert Smolka, as a great soure of inspiration and newideas and as a very knowledgeable expert in the �eld of programming languages.I admire his ompetene to explain and analyze ompliated topis in a preiseand lear manner. He ommuniated his insights and ideas to us, suh that wewere able to onvert them into a pratial useful system.For seven years I shared my oÆe with my olleague Ralf Sheidhauer and wedeveloped many ideas presented in his and my thesis in lose ollaboration. Iespeially thank him for his lear mind wrt. the onrete realization of interestingbut often too abstrat and generi solutions of mine.I thank Martin Henz, Denys Duhier, Ralf Sheidhauer, and Leif Kornstaedt forreading and ommenting early drafts of this thesis. They gave me valuable hints,but I'm to be blamed for not following them.I thank my olleagues Prof. Seif Haridi, Prof. Peter Van Roy, Kostja Popov,Per Brand, and Erik Klintskog for the international atmosphere in our projet.I enjoyed the workshops with you very muh, beause you showed me that thereis often more than one right opinion and how ompromises an be found in afriendly environment. Kostja was in the ore team for the implementation ofMozart from the beginning and it was always possible to disuss with him all thenasty but nevertheless essential details of the implementation.I thank my employer, the German Researh Center for Arti�ial Intelligene(DFKI), for supporting me and my work and for giving our projet room for thebasi researh on programming languages with no immediate pratial applia-tion. My work at DFKI was funded by the German Government (BMBF) undergrant ITW 9105 and ITW 9601. The German Telekom, my urrent employer,gave me some support in the �nal stage of this work.At the end, but not for the smallest part, I want to thank my family, espeiallymy wife, my parents, and my parents in law, for their help, support, and patienexiii

during the very very time onsuming preparation of this thesis. My kids, Lukasand Julius, deserve thanks for their e�ort to show me that life is not only work.Mihael Mehl, January 1999

xiv

Contents
1 Introdution 11.1 Conepts behind Oz . 11.1.1 First-lass funtions . 31.1.2 Transients: Logi variables, futures 31.1.3 Threads, exeptions, and by-need synhronization 31.1.4 Reords and feature onstraints 41.1.5 Cells and built-in abstrat data types 41.1.6 Deep guard onditional and spaes 41.2 Contributions . 51.3 Struture of the thesis . 81.4 Context of the thesis . 92 The language L 112.1 Overview . 112.2 Computation model . 142.3 The language graph . 162.3.1 Values . 182.3.2 Invariants for graph rewriting 192.4 Sequential exeution . 192.4.1 Data strutures . 202.4.2 Funtions . 212.4.3 Pattern mathing . 212.4.4 Delarations . 22xv

2.4.5 Core operators . 222.4.6 Syntati onveniene . 222.5 Exeptions . 232.5.1 Exeption handlers . 242.5.2 Raising an exeption . 242.5.3 Disussion . 242.6 Logi variables . 252.6.1 Uni�ation . 262.7 Futures . 292.8 Conurreny . 302.8.1 Threads . 302.8.2 Synhronization and suspension 312.8.3 By-need synhronization 322.8.4 Cells . 332.8.5 Disussion . 352.9 Feature onstraints . 362.9.1 Constraints over trees . 362.9.2 Open reords . 372.10 Spaes . 392.10.1 The multiple store graph model 392.10.2 Entailment . 422.10.3 Disentailment . 422.10.4 Merging . 442.10.5 Deep guard onditionals 442.10.6 Other situated nodes . 452.10.7 Disussion . 462.11 Examples . 472.11.1 Funtional programming: Append 472.11.2 Conurrent lazy programming: Hamming 482.11.3 Feature onstraints: Paths 49xvi

3 The virtual mahine LVM 513.1 Overview . 513.1.1 Modules of the LVM . 523.1.2 The engine . 533.2 The mahine language . 573.2.1 Pikles . 573.2.2 Instrutions . 613.2.3 Addressing modes . 653.2.4 Disussion . 663.3 A re�ned graph model . 673.3.1 Node lassi�ation . 673.3.2 Reords . 713.3.3 Transients . 723.3.4 Uni�ation . 773.3.5 Disussion . 783.4 Sequential exeution . 793.4.1 Worker . 793.4.2 Store operations . 803.4.3 Control . 823.4.4 Proedures . 833.4.5 Built-in proedures . 873.4.6 Status register . 903.4.7 Exeptions . 913.5 Threads . 923.5.1 Thread model . 923.5.2 Sheduler . 933.5.3 Suspensions . 953.5.4 Events . 963.5.5 Disussion . 963.6 Spaes . 973.6.1 Overview of the extended engine 98xvii

3.6.2 Threads and spaes . 993.6.3 The sript tehnique . 1003.6.4 Binding windows and relative simpli�ation 1053.7 Other virtual mahines . 1073.7.1 Prolog Abstrat Mahines 1073.7.2 The abstrat mahine of AKL 1083.7.3 LIFE . 1093.7.4 The Java Virtual Mahine (JVM) 1093.7.5 Funtional languages . 1093.7.6 Erlang's virtual mahines (JAM, TEAM/BEAM) 1113.8 Summary of the design priniples 1124 Implementation aspets 1174.1 Storage representations . 1174.1.1 Tagged objets . 1184.1.2 Tagged pointers . 1194.1.3 The LVM tag sheme . 1224.1.4 Disussion . 1234.2 Transients . 1254.2.1 Referenes . 1254.2.2 Representation of Transients 1254.2.3 Variables . 1264.2.4 Futures . 1264.2.5 By-need Futures . 1274.2.6 Binding . 1274.2.7 Suspensions . 1284.2.8 Usage patterns . 1294.2.9 Uni�ation . 1324.2.10 Extending transients . 1344.3 Reords . 1364.3.1 Literals . 136xviii

4.3.2 Reord representations . 1384.3.3 Arity . 1394.3.4 The reord interfae . 1414.3.5 Disussion . 1444.4 Feature onstraints . 1454.5 Extensions . 1494.5.1 Standard extensions . 1494.5.2 Virtual extensions . 1514.6 Memory Management . 1534.6.1 Priniples . 1534.6.2 Primitives . 1544.6.3 The implementation of the garbage olletor 1554.6.4 Optimized transients . 1574.6.5 Liveness analysis . 1574.6.6 Lists . 1605 Conlusion 1635.1 Summary . 1635.2 Engineering onsiderations . 1645.2.1 C++ vs. C as implementation language 1645.2.2 The role of the target platform 1655.3 Future work . 1675.3.1 Improve ompilation . 1675.3.2 Reuse existing tehnology 1675.3.3 Funtional ore . 1685.3.4 Distribution . 168Bibliography 169Index 179
xix

xx

List of Figures
1.1 Overview of the layers. 22.1 Expressions and ore operators of L. 122.2 Syntati sugar. 132.3 Extensions. 152.4 Type names and the type hierarhy of L. 152.5 A omputation spae. 162.6 Units of L. 172.7 An example of a language graph. 172.8 Reords and trees. 192.9 A graph uni�ation algorithm . 272.10 Binding variables. 282.11 Uni�ation with futures . 292.12 By-need syhronization. 332.13 An example of an open reord. 372.14 Closing an open reord. 382.15 A tree of omputation spaes. 402.16 Propagation of a binding. 422.17 Entailment after propagation. 433.1 The modules of the LVM. 523.2 The engine of the LVM. 533.3 The state of the LVM. 553.4 The registers of the engine. 57xxi

3.5 The main proedure of the engine. 583.6 The pikle format. 593.7 From Oz soure to the LVM. 603.8 Instrutions (Part I) . 623.9 Instrutions (Part II) . 633.10 Instrution arguments. 643.11 Instrution format . 653.12 Classi�ation of nodes. 683.13 Examples of node representations. 693.14 Tagged nodes. 693.15 Fields are glued with their heap node. 703.16 Binding transients with multiple referenes. 733.17 Tasks. 803.18 Built-ins of the LVM. 873.19 Return odes. 883.20 The status register. 903.21 Thread states. 933.22 The extension of the engine for spaes. 983.23 Engine state with spaes. 993.24 Installation and deinstallation. 1014.1 The LVM tag sheme. 1224.2 Seondary tags. 1234.3 A possible dereferene bug. 1304.4 Seondary tags. 150

xxii

Chapter 1IntrodutionIn this thesis we explain the implementation of the language Oz. Oz is a multi-paradigm programming language integrating onurrent onstraint programmingwith �rst-lass funtions, high-level onstraint based data strutures, onurrentobjets, powerful synhronization primitives, state of the art onstraint systems,and exible searh engines.We present the implementation as a virtual mahine LVM whih adds an inter-mediate abstration between the high-level language Oz and the low-level detailsof onrete mahines.1.1 Conepts behind OzThe foundation for Oz was laid in the -alulus [94℄ for onurrent program-ming, whih integrates logi variables, names, �rst-lass funtions, and ells intoa formal alulus. Seminal ontributions to the foundation of Oz are the intro-dution of �rst lass spaes and searh ombinators as a generalization of deepguard ombinators [93, 90℄ and the integration of spaes, searh ombinators, and�nite domain onstraints into a onstraint programming framework [91℄.The full language Oz is de�ned and explained in [95, 96, 35, 36℄.Mozart is the third release of the Oz system [72, 73, 66℄. Mozart implements thelanguage Oz and provides additionally the infrastruture needed for appliationdevelopment with Oz.The struture of the Oz implementation is outlined as a pyramid in Figure 1.1.To explain the implementation of the LVM we use a top down approah. Con-epts, tehniques, and insights are introdued at the highest possible layer andmore and more details are added in lower levels.The following paragraphs introdue basi onepts of Oz.1

2 CHAPTER 1. INTRODUCTION

Transients
Records
Chunks

Threads

Spaces

Constraint Store

Implementation

Pickle/Instruction Script
Trail
Home

Language

Virtual Machine

Core

Store Deep guardsEngine

Declare

Operators

Functions

Spaces

Features

Transients

Store

Graph

Rewriting

Threads
Worker/Emulator

Computation Model

Extension

Figure 1.1: Overview of the layers.

1.1. CONCEPTS BEHIND OZ 31.1.1 First-lass funtionsOz has �rst-lass funtions1. Funtions are dynamially reated losures enap-sulating the environment in whih they are de�ned. Funtions an be passed asarguments to funtions and returned as values of funtions; they an be storedin data strutures; and they even an be stored persistently on �les.First-lass funtions are a distinguishing feature of funtional languages like Stan-dard ML [63℄, Haskell [75℄, Lisp [50, 31℄, and Sheme [51℄.1.1.2 Transients: Logi variables, futuresOz supports logi variables, whih are not yet known values. A logi variablean be assigned one and is than transparently replaed by this binding. Logivariables are a powerful onept to express partial data strutures, to synhronizemultiple threads, and to eÆiently support all-by-referene output arguments.A future is a read-only view on a variable, whih allows to build safe partialdata-strutures, whih an be modi�ed only by a produer and not by onsumers.Futures are transparently bound when their variable is bound.Transients are de�ned as a generalization of unknown values, inluding logivariables, futures, and onstraint variables. The ommon properties of transientsare the single-assignment property and automati synhronization of threads ontheir determination.The use of logi variables in programming languages starts with Prolog [55℄. Theidea of futures oured in Multilisp [34℄ for expressing the results of parallelomputations.1.1.3 Threads, exeptions, and by-need synhronizationOz is a onurrent language with extremely light-weight threads. Thousands ofthreads an be exeuted simultaneously. Threads in Oz are fair and preemptivelysheduled. Threads in Oz allow for oarse-grained onurrent programming, al-though the implementation an handle thousands of threads.Threads are a well-known onepts in operating systems, but their support inprogramming languages is still in the early stages. Threads are now standard-ized for the C/C++ language in the POSIX environment [43℄ and the languageJava [30℄ also support these POSIX-like threads.1In the literature �rst-lass funtions are sometimes alled higher-order funtions.

4 CHAPTER 1. INTRODUCTIONThe exeption mehanism of Oz allows to raise and handle �rst lass exeptions.Exeptions o�er a well-de�ned interfae to handle errors. Exeptions are foundin all modern languages, e.g. Java [30℄, Standard ML [63℄, and C++ [16℄.By-need synhronization integrates lazy onurrent programming into Oz. By-need synhronization returns a future, whih will be bound by a onurrentthread. This thread is only reated, when the value of the future is requested.The future need not be expliitly requested, but when a thread synhronizes onthe value of the future it is impliitly requested.A well-known lazy funtional programming language is Haskell [75℄.1.1.4 Reords and feature onstraintsOz has reords as powerful data-strutures to desribe rational trees. A rationaltree is a possibly in�nite tree with labelled links and primitive values at the leaves.A reord is a desription of a node and all its links. With logi variables reordsallow to express trees where some nodes are unknown.Feature onstraints allow to express inomplete trees where not all links areknown. A feature onstraint de�nes that a ertain link exists, without de�n-ing all other links.Oz supports several other onstraint systems beside trees, e.g. �nite domains and�nite sets, and it is extensible for other onstraint systems. In this work we takefeature onstraints as an example to show how onstraint systems are integratedwith Oz.Constraints over rational trees were introdued in Prolog II [19℄. The foundationfor reords in Oz was laid in [98℄.1.1.5 Cells and built-in abstrat data typesState is introdued in Oz through a primitive entity alled a ell. A ell is aontainer for one value. The ontent of a ell may be aessed and exhangedwith a new value.Reords, ells, and �rst-lass funtions allow to build a state-of-the-art objetsystem [42℄. In this work we will show how to integrate a restrited form ofobjets as built-in abstrat data types into the LVM.1.1.6 Deep guard onditional and spaesOz supports multiple omputation spaes to build powerful searh engines. Aomputation spae enapsulates a omputation. A omputation spae has a er-

1.2. CONTRIBUTIONS 5tain state, namely running, entailed, stable, or disentailed. Threads an synhro-nize on this state. Two spaes an be merged together and a spae an be opiedto reate an independent lone.We show the deep guard onditional as an instane of the general onept ofspaes, whih allows to disuss how the synhronization on entailment and dis-entailment works and how spaes are merged.Deep guards were �rst introdued in AKL [48℄, whih was the �rst languageimplementing the onurrent onstraint programming model [86℄. Conurrentonstraint programming integrates the paradigms of onurrent logi program-ming [92℄ and onstraint logi programming [44, 45, 46℄. In Oz deep guardsare generalized to �rst-lass omputation spaes, whih allow to express manydi�erent deep guard ombinators and to build exible searh engines [90, 88, 89℄.1.2 ContributionsIn this thesis we present the design and implementation of a virtual mahinefor a subset L of the full language Oz. L is a multi-paradigm language whihinludes reords, feature onstraints, logi variables, futures, funtions, threads,exeptions, and onditionals.This thesis presents idealizations of the real VM that we have implemented inthe Mozart system [66℄. The thesis provides suÆient information to reonstrutthe implementation.A huge amount of our work, beside the design desribed here, went into engi-neering, oding, and supporting a pratial, useful, and stable implementation.The eÆieny of the LVM is omparable to the implementation of modern high-level languages, e.g. Standard ML, Java, Prolog, Lisp, Smalltalk. A detailedevaluation of the LVM is given in [87℄.An idealization of the LVM for rational tree onstraints, �rst lass funtions, loalomputations for deep guards, and preemptive and fair sheduling was publishedin [62℄. The integration of feature onstraints and their graefully degradingrepresentation was desribed in [108℄.Modular and open designThe design of the LVM is modular and orthogonal to ope with the omplexity.The modules of the LVM orrespond losely to the primitives of the language.The modules de�ne a regular lean interfae.The design is open in the sense that

6 CHAPTER 1. INTRODUCTION1. Design deisions and possibilities, espeially with respet to the trade-o�between eÆieny and simpliity, are made expliit.2. The hooks needed for the integration of new features, e.g. new data andontrol strutures, are identi�ed.The virtual mahine of Oz subsumes well-known virtual mahines for logi, fun-tional, and imperative languages.The top-level modules of the LVM are the store, the engine, and spaes.StoreThe store implements the eÆient representation of values, variables, futures,and onstraints. We desribe the store with a re�ned graph model, whih makesentral aspets of the design expliit. In this graph model di�erent representationswith varying omplexity and eÆieny are expressible.Reords and feature onstraints give the expressivity to de�ne high-level datastrutures. We show how this expressivity maps to a graefully degrading rep-resentation wrt. the expressivity. Closed reords an be represented with aneÆieny similar to strutures in the WAM. The performane overhead for thereation, aess, and deomposition of reords with symboli features is minimalompared to strutures in Prolog implementations. Only when the additionalexpressivity provided by the dynami reation of arities, �rst lass features, andfeature onstraints is used, a moderate ost has to be paid.We show an abstration, alled transients, to support logi variables, futures,and onstraint variables. Transients are generalized to allow for the integrationof new types of unknowns. We analyze the ost of adding transients to a languagewhih only has determined values.Reords with named features allow to de�ne abstrat data-types. Abstrat data-types an be built into the LVM with a small interfae. We desribe a layeredapproah to implement abstrat data-types with varying performane and om-plexity.The store is subjet to automati memory management using a stop-and-opyolletor and elaborated tehniques to reuse memory as soon as possible. Weexplain the liveness analysis to ensure that unused registers are deteted anddisuss the impat of the optimized representation of variables in �elds to memorymanagement.

1.2. CONTRIBUTIONS 7EngineThe engine takes are of the exeution of mahine programs. We present a om-pat mahine model onsisting of the sheduler, the worker, and the emulator.Threads are managed by a round-robin sheduler with priorities. The tehniques,whih allow to reate and maintain thousands of threads eÆiently, are explained.The LVM is a sequential implementation with a single worker to exeute threads.We desribe the ontext swithing overhead for the eÆient installation and de-installation of threads by the worker, whih is due to a ompat representationof the state of the worker.The worker exeutes �rst-lass funtions with all-by-referene arguments usinglogi variables for passing output arguments. The worker implements exeptions,where the trade-o� between an eÆient installation of exeption handlers and aneÆient lookup for the handler in the ase of an exeptional ondition is disussed.Although the state of the worker is ompatly represented it is well-suited for aneÆient exeution of the byte ode by the emulator.We present a lassi�ation of the mahine instrutions, whih shows how muhsupport for various language onepts is required.The idea of having pikles, whih de�ne an external representation of Oz data-strutures, allows for a novel aount to byte ode where instrutions an diretlyrefer to data-strutures in the store. The loader reates an internal representationfrom a pikle. The transformation and optimizations of the byte ode performedby the loader at run time are explained.SpaesSpaes allow to express enapsulated omputations with onstraint propagationand are an essential building blok for onstraint programming and searh. Weuse onditionals as an instane of the general onept of �rst lass spaes to dis-uss the omplexity introdued to the LVM for supporting �rst-lass omputationspaes.We de�ne an extension of the single store graph model to a multiple store graphmodel whih allows to explain at an intermediate level between the high-levelonstraint view and the low-level implementation the key aspets of spaes.We show the hooks needed in the LVM to support spaes and the implementa-tion of the sript tehnique for representing multiple bindings of variables. Weompare the sript tehnique with the binding window tehnique.

8 CHAPTER 1. INTRODUCTION1.3 Struture of the thesisThe top of the pyramid is the omputation model and an informal de�nitionof the subset of the full Oz language in Chapter 2. The omputation model isde�ned as a number of threads omputing over a shared store. We introduethe units represented in the store, i.e. values, variables, and futures, and theoperations performed on the store when exeuting threads.The next step down the pyramid is the explanation of the VM in Chapter 3. Itsmain parts are the store and the engine. At the virtual mahine level a re�nedgraph model is de�ned whih allows to disuss many aspets of the representationof dynamially typed units.We de�ne a sequential imperative register-based mahine for Oz, whih onsistsof a mahine language, the sheduler, and the worker. The onnetion betweenthe high-level language and the mahine language is explained by showing theompilation of L expressions into mahine programs.The loader is presented as a translator for an external representation of mahineprograms, alled a pikle, into a internal graph and threaded-ode representation.The sheduler is the omponent whih is responsible for the fair, preemptivesheduling of the runnable threads. It selets a thread whih is then exeuted bya worker. The worker is responsible for swithing ontexts when a new threadmust be installed or deinstalled. The worker exeutes the tasks of a single threadand emulates the instrutions.The issues introdued with the integration of spaes to the LVM are disussednext. We identify the hooks required in the other parts of the VM, explainthe sript and binding window tehnique for representing multiple bindings ofvariables, the propagation of bindings, and the algorithm for deiding entailment.Then we ompare the LVM with other virtual mahines for high-level languagesand summarize the main design goals.After this disussion of the high-level aspets of the LVM we explain the imple-mentation aspets in Chapter 4.We explain how the di�erent unit types are represented. The transient abstra-tion is introdued and its speialization to logi variables, futures, and onstraintvariables. The next part de�nes reord onstraints and their graefully degradingimplementation. We explain the extension mehanism for de�ning abstrat datatypes and explain how they an be integrated smoothly into the LVM.This part on the desription of the store is ompleted with an explanation of theautomati memory management.The thesis onludes in Chapter 5 with a summary, engineering onsiderations,and some remarks about future work.

1.4. CONTEXT OF THE THESIS 91.4 Context of the thesisThe LVM was designed and implemented in lose ollaboration with my ol-league Ralf Sheidhauer. Many parts of my work overlap with his thesis [87℄. Hedesribes the implementation of the ore of the funtional language L, whihis based on dynamially typed Standard ML extended by onurreny, logivariables, and omplex synhronization onditions for patterns. His fous is onthe eÆient implementation of the ore language, a performane analysis of theMozart implementation of L, disussion of omplex synhronization onditions,and the omparison of Mozart with a VM, based on funtions. My fous is onthe non-standard extensions of the funtional ore and their graefully degradingintegration into the VM.Spaes and onstraint inferene engines whih exploit the power of �rst lassomputation spaes are introdued and disussed in [90, 88, 89℄. The fous of mywork wrt. to spaes is their interation with the di�erent modules of the LVMand an analysis of implementation tehniques for maintaining multiple bindingsof variables.The design of the objet system for Oz is explained by Martin Henz [42℄. Thefous of his work is on the impat of onurreny for the design and the usageof an objet system. Objets are a high-level abstration built on top of thelow-level onept of extension interfae-types, whih is desribed in my thesis.Finite domain variables are an instane of transients, whih allow for the eÆientrepresentation of onstraints over �nite domains of integers [91℄. The appliabilityof the onstraint solving apabilities of Oz was demonstrated with the shedulingworkbenh [116, 117, 118℄.The addition of �nite set variables [69, 68℄ as another instane of transients alsouses the extension interfae to integrate �nite set values as an abstrat data type.For the eÆient implementation of onstraints, whih implement propagationof information between onstraint variables, propagators were introdued as are�nement of threads, whih are ompletely implemented in C++ to avoid theoverhead for the worker and the emulation [70℄.Reently a distribution model [40, 107, 39℄ was developed and implemented, whihallows the transparent distribution of the store among multiple sites.

10 CHAPTER 1. INTRODUCTION

Chapter 2The language L
In this hapter we de�ne the language L1. L is a subset2 of Oz, whih ontainsonly a minimal ore language and the extensions relevant for my work.The syntax and semantis of L is based on Standard ML [63, 74℄. A majordeviation is the replaement of the stati type system of Standard ML by adynami type system [97℄. L extends Standard ML with logi variables andfutures, exible reords and feature onstraints, onurreny, and deep guardonditionals. The ore of L is the same as the language desribed in [87℄.2.1 OverviewWe introdue the language in a onise and informal manner to show the re-quirements for our implementation at a high-level. We assume basi knowledgeof Standard ML. We use evaluation rules and a graph rewriting model to de�nethe semantis of the language.In the following setions we desribe a omputation model and a graph modelfor the data strutures of the language. After that we explain the semantis ofore language and of our extensions, namely logi variables, futures, threads, by-need synhronization, reord onstraints, and deep guard onditionals. Finallywe show the expressiveness of the language by disussing seleted examples.The ore language of L is given in Figure 2.1. We use some syntati sugar whihis summarized in Figure 2.2.In addition to the Standard ML syntax we use strings with ' as delimiters todenote atoms, whih are �rst-lass symboli onstants in L, e.g. ’person’.1The name of L is spelled out as Language.2The language we de�ne is subset with minor modi�ations for a better idealization and tosimplify the explanation. 11

12 CHAPTER 2. THE LANGUAGE L

Expressionse ::= y identi�erj onstantj { 1 = e1,..., n = en} reord onstrutionj fn x => e funtion de�nitionj e e0 appliationj let d in e end delarationj case e of r1|...| rn pattern mathingd ::= val x = e value delarationj name N name delaration ::= i integer onstantj a atom onstantj M name identi�err ::= p => e math rulep ::= { 1 = p1, ..., 1 = pn} reord patternj onstant patternj x variable patternCore operators+,-,... : int * int -> int arithmeti<,<= : int * int -> bool omparisonreord : (fea * T) list -> re dynami reordsselet : re * fea -> T �eld seletionFigure 2.1: Expressions and ore operators of L.

2.1. OVERVIEW 13

Abbreviation Core syntax
True name True boolean true
False name False boolean false
() name () the singleton value
x::y fHead = x, Tail = y g list element
[x1, ..., xn] , n � 0 x1::...::xn::nil list
(y1, ..., yn) f1 = y1,, n = yn g tuple (n > 1)
let d; d0 in e end let d in let d0 in e end end delaration sequenee; e0 let val x = e in e0 end expression sequene
if y then e else e0 case y of True => e| x => e0 simple onditional
fn p1 => e1j ...j pn => en

fn x => case x of p1 => e1j ...j pn => en

funtional pattern
fun x p1 => e1j ...j x pn => en

val x =
let val x = lvar () in

unif (x, fn p1 => e1j ...j pn => en);
x

end

reursive funtions
Figure 2.2: Syntati sugar.

14 CHAPTER 2. THE LANGUAGE LWe use apitalized identi�ers N;M for names. Names in L are �rst lass itizens,whih an be used as expressions and as �eld names of reords. In the reordonstrution and in patterns the �eld names are integers, atoms, and statiallybound names.Features are integers, atoms, and names used as �eld names of reords.Reords an be dynamially onstruted with the record operator. It takes apair-list of pairwise distint features and orresponding �eld values and onstrutsa reord. Fields of reords an be aessed with the select operator, whih takesa reord and a feature as arguments and returns the �eld value under the seletedfeature.In the syntax we use the letter x resp. N for a binding ourrene of an identi�erand y resp. M for a free ourrene. L has the same soping rules as Standard ML.Patterns must be linear, i.e. all identi�ers in binding position of reord patternsare pairwise distint. The synhronization onditions for patterns are explainedin Setion 2.8.We use the usual Standard ML preedenes and allow to use parentheses () togroup expressions.The referenes of Standard ML are alled ells in L. We use the name ell in thisthesis to avoid onfusion with the referene nodes introdued at the LVM level(see Chapter 3).Most of the language primitives an be niely fatored out from the expressionsyntax by using prede�ned funtions, alled operators. Figure 2.3 shows theoperators for implementing our extensions. These extensions will be explained inthe following setions.The operators are shown with their type to guide the intuition of the reader. Thistype language is not used in L and di�ers from the type language in Standard ML.The type restritions shown in Figure 2.3 are enfored at run time (dynamially)and not statially. The type names and the type hierarhy are listed in Figure 2.4.We assume a type T at the top of the type hierarhy, whih allows for exampleto use T list for lists of arbitrary values. Cells and other ontainer types in Lan ontain arbitrary values.2.2 Computation modelComputation in L is organized in omputation spaes (see Figure 2.5). A om-putation spae ontains a number of threads exeuting over a shared store.The store represents the data strutures. The main fous of our work are theoperations performed on the store. The ontrol aspets are basially the onesknown from Standard ML.

2.2. COMPUTATION MODEL 15Exeptionsath : (()->'a)*('b->'a)->'a install handlerthrow : 'a -> 'b raise exeptionCellsref : T -> ref new ell:= : ref * T -> () assign! : ref -> T aessexhange : ref * T -> T exhangeVariables and futureslvar : () -> T logi variableunif : 'a * 'a -> () uni�ationfuture : 'a -> 'a futureThreadsspawn : (() -> ()) -> () thread reationwaitOr : T * T -> () synhronizationbyNeed : (() -> 'a) -> 'a by-need synh.Tree onstraintsfeatureC : re * fea * val -> () feature onstraintwidthC : re * int -> () width onstraintDeep guardsond : ('a->())*('a->'b)*(()->'b)->'b onditionalFigure 2.3: Extensions.Type DesriptionT topre reordint integerfun funtionref elllit literal (name or atom)atom atomname name() singletonbool boolean valuefea feature (lit or int)'a list list of 'a
intrec fun

T

ref

lit

atomname

bool ()Figure 2.4: Type names and the type hierarhy of L.

16 CHAPTER 2. THE LANGUAGE LThread . . . ThreadStoreFigure 2.5: A omputation spae.A thread is the sequential ontrol for the evaluation of losures. A losure onsistsof an expression of the language and an environment. The environment de�neshow the free identi�ers of expressions are bound to nodes in the store.Threads are the only ative entities in the omputation model. The exeution ofa thread happens in steps. A step is de�ned by an evaluation rule for a losure.The evaluation rules for expressions and operators of the ore language follow theStandard ML semantis and they are summarized in Setion 2.4.Threads ommuniate only via shared nodes in the store. Threads an read fromand write into the store and they an synhronize on ertain onditions of nodes.The omputation is interleaved and fair. Interleaved means that the exeutionsteps are atomi and do not overlap. Fairness requires that a possible exeutionstep of a thread will eventually happen.2.3 The language graphThe semantis of our language is de�ned as a graph rewriting engine. The datastrutures of the language are modeled as nodes in a direted graph with labellednodes and labelled direted links. This graph is alled the language graph.The language graph is built from units. A unit is a labelled node with a �nitenumber of links. Figure 2.6 shows all units of our language.A unit an be added to a graph by onneting its open links to already existingnodes in the graph. When a unit is added to a graph no dangling referenesremain. Figure 2.7 shows an example of a graph.In our language it is not possible to reate a yle in the graph by adding newunits. Cyles an be reated through expliit graph rewriting steps, whih areell assignment (see Setion 2.8) and variable binding (see Setion 2.6).

2.3. THE LANGUAGE GRAPH 17
...f1 fn

Record

...

x/e

x1 xn

Function Cell

Variable Open Record

fnf1

w: m

345 ’a’ N

Integer Atom Name

Future

fut

By-need future

x/e

Figure 2.6: Units of L.

con N;
val y = lvar ();
val z = 1::2::nil
val x = {‘a‘ = (y, ref (z)), 1 = z, N = fn x => z};

x:
N

Nil2

z

x/z

’a’
1

1 2

y:

z:
Head Tail

Head Tail

1

Figure 2.7: An example of a language graph.

18 CHAPTER 2. THE LANGUAGE L2.3.1 ValuesThe graph represents values. Values are stateless mathematial entities. Thevalues of L are primitive values (numbers and symbols), and (in�nite) trees withlabelled direted edges. The leaves of these trees are the primitive values.Primitive values Numeri values and symboli values are primitive values ofL. For every primitive value a unit exists whih is labelled with this value. Withthese units leaf nodes of trees with no departing link are reated.The numeri values of L are integers 0; 1;�1; 2;�2; : : : of arbitrary size, with theusual mathematial meaning.The symboli values are atoms and names. Atoms are �nite strings over a �niteset of haraters. Names are an in�nite set of distint values with no furtherstruture.An essential property of names is that they are only available through a generator.Whenever a name unit is added to the store it obtains a fresh name, whih isdistint from all existing names in the store.We onsider in many aspets ells and funtions (whih are introdued later) alsoas primitive values similar to names, e.g. ells and funtions an be leafs of trees.Reords Compound trees are represented in the store using reord units. Areord is a node with a �nite number of departing links. These links are labelledwith pairwise distint features. A feature is an integer, an atom, or a name.The set of features is alled the arity of the reord. The number of features isalled the width of the reord.The pair of a feature and the node at the end of the link labelled with this featureis alled a �eld. The feature is then alled the �eld name and the node is the�eld value. The operation to traverse a link from a reord is alled �eld seletionor �eld aess.Reords in our language are exible reords, whih are very di�erent from statireords of Standard ML. In L features are �rst-lass values and it is possible toselet a �eld without knowing all the other features of the reord. It is furthermorepossible to reate reords whose feature are not known at ompile time, e.g.feature passed as arguments to funtions.Figure 2.8 shows how a tree an be onstruted from units.

2.4. SEQUENTIAL EXECUTION 19
1 a

N M

ba c

1

1 a MN

2a b c

1 2

Figure 2.8: Reords and trees.2.3.2 Invariants for graph rewritingExatly three graph rewriting operations are performed during the exeution ofthreads:node reation New nodes an be reated and added to the graph.binding Transient nodes an be bound to other nodes. In the graph modelthis operation superimposes the new node onto the transient nodes. Thismakes the transient node transparent. The transient node disappears fromthe graph and all inoming links are redireted to the new node. Anothermetaphor for binding a node v to a node n is that all edges to v are redi-reted to n (see Setion 2.6).assignment Cells an assigned to new values. In this ase the ontent link ofthe ell is redireted to a new node.These strong invariants on graph rewriting simplify the reasoning about L pro-grams. They are also very useful for building parallel and distributed implemen-tations, but in our sequential and imperative implementation of the LVM theseinvariants are not exploited.2.4 Sequential exeutionIn this setion we explain the exeution of a single thread. A thread is thesequential ontrol for the evaluation of losures.

20 CHAPTER 2. THE LANGUAGE LA losure of an expression e is a pair of an environment u and the expression ewritten as hu,ei. The environment is a mapping of every free identi�er x in theexpression e to a node n in the store. In the following we use the notation x alsofor the node bound to x in the environment u. Furthermore we use the notationx also for the value of the node if it represents a primitive value. The ontextallows usually to disambiguate the di�erent meanings easily.An exeution step an side e�et the store and evaluates a losure. The evaluationof a losure has one of the following outomes:� It evaluates to a node in the store.� It redues to one or more new losures.� It raises an exeption.In the following we use formulations like \if x is a node of type ..." then thismeans that� The thread has to synhronize on x until it is no variable and no future.Synhronization is explained in setion 2.8 where threads are introdued.� If the node x is of a di�erent type an exeption is raised. The exeptionmehanism of L is introdued in setion 2.5.2.4.1 Data struturesIdenti�ers The losure hu,yi evaluates to the node bound to y in u.Atoms The losure hu,ai adds an atom node with label a to the store andevaluates to this node.Integers The losure hu,ii adds an integer node with label i to the store andevaluates to this node.Reord onstrution The evaluation of hu,{ 1 = y1, ..., n = yn} i tests�rst if 1; : : : ; n are pairwise distint features.If the test sueeds a reord node with the arity f1; : : : ; ng is added to the store.For all i 2 f1; : : : ; ng the link labelled with the feature i is onneted to the nodeyi. The reord onstrution evaluates to this node.If y1; : : : ; yn are not pairwise distint features the reord onstrution raises anexeption.

2.4. SEQUENTIAL EXECUTION 212.4.2 FuntionsA funtion is a losure of a funtion de�nition expression fn x => e. We useabstrations �x=e as ompat notation for the funtion de�nition.Funtions are represented with funtion units. A funtion unit is a node labelledwith a funtion de�nition and labelled links for the free identi�ers in the funtionde�nition.Funtion de�nition The evaluation of the funtion de�nition hu,fn x => eiadds a funtion unit to the store whih labelled with the funtion de�nition. Thelinks for the free identi�ers of the abstration are onneted to their binding inu. The funtion de�nition evaluates to the just added funtion node.Appliation The evaluation of the appliation hu,e e0i �rst evaluates hu,ei toy and then hu,ei to y0. Then it tests if the y is a funtion.If y is a funtion labelled with an abstration �x=e00 the appliation evaluatesto the losure hu0,e00i. The new environment u0 ontains the bindings of the freeidenti�ers of the abstration and the binding of the formal argument x to theatual argument y0.2.4.3 Pattern mathingThe evaluation of hu,case y of r1|...| rni sequentially tests if y mathes oneof the patterns p1; : : : ; pn in the math rules r1; : : : ; rn.The reord pattern { 1 = p1, ..., n = pn} => e mathes if y is a reord withthe arity f1; : : : ; ng. Then the �eld values are sequentially mathed againstthe patterns p1; : : : ; pn. If all these mathes are suessful the ase expressionevaluates to the losure hu0,ei, where u0 is derived from u by adding the bindingsfor the binding identi�ers in the patterns.The onstant pattern => e mathes if the value of y is equal to the primitivevalue . Then the ase expression evaluates to the losure hu,ei.The variable pattern x => e mathes always and evaluates to the losure hu0,ei,where u0 is derived from u by adding the binding of the identi�er x to the nodey.

22 CHAPTER 2. THE LANGUAGE L2.4.4 DelarationsThe evaluation of the value delarations hu,let val x = e in e0 endi reatestwo new losures: the expression hu,ei and the abstration hu,�x=e0i. The ex-pression hu,ei is evaluated �rst and then the abstration hu,�x=e0i is applied toresult of this evaluation.Sequential exeution of losures an be explained suh that the thread has a stakof losures to exeute and the value delaration pushes the abstration hu,�x=e0ion this stak and evaluates �rst the expression hu,ei. Only when this has �nished,the losure found on the stak is exeuted.The evaluation of the name delarations hu,let name N in e endi adds a newname node to the store and evaluates to the expression hu0,ei, where u0 is derivedfrom u by adding the binding of N to the new name.2.4.5 Core operatorsThe arithmeti operators +, �, �, div, mod, <, <= evaluate with their usualmathematial semantis. We use the in�x notation for these operators.The select operator takes two arguments a reord and a feature and evaluatesto the �eld value of the reord seleted by the feature.The record operator allows to reate reords dynamially. It takes a list of pairsontaining �eld names and �eld values as argument an reates a reord.2.4.6 Syntati onvenieneSequenes A sequenes of delarations an be ombined into one delarationusing a semiolon as separator.
let d; d0 in e end is an abbreviation for let d in let d in e end end.A delaration let val x = e in e0 end an be simpli�ed into the sequenee; e0 if the identi�er x does not our free in e0Tuples A reord with an arity of f1; : : : ; ng is alled a tuple. Tuples are em-inent, beause they are optimized in the LVM. A tuple { 1 = y1,..., n = yn}(n > 1) an be written as (y1,..., yn) . A tuple with two �elds is alled a pair.

2.5. EXCEPTIONS 23Names We assume that the following identi�ers are bound to distint namesin every exeution environment and annot be redelared:� true and false for boolean values.� () for the singleton value.� Head, Tail, and Nil for onstruting lists.Lists As a onvenient syntax for lists the notation x::y is used for the reordwritten as fHead:x, Tail:y g. The empty list Nil an be written as [] . A listwith a �xed number of elements x1; : : : ; xn an be written as [x1; : : : ; xn℄.The tuples and list syntax is also allowed in patterns and expands to the orre-sponding reord pattern.Funtions The ore syntax has only single argument funtions. Multiple ar-guments are passed as tuples. For onveniene the syntax
fn p1 => e1 j ... j pn => enis an abbreviation for
fn x => case x of p1 => e1 j ... j pn => enThis allows for example to write a funtion with two arguments as
fn (x,y) = > ...Boolean onditional if y then e else e0 is an abbreviation for case y
of true => e| x => e0, where x is an identi�er not ourring free in e0.2.5 ExeptionsExeptions are a powerful onept to handle errors and to built non-standard on-trol strutures [28, 29℄. In this setion we explain the semantis of the exeptionmehanism in L.An exeption is a ondition deteted during the evaluation of an expression whihannot be handled loally. In suh a situation an exeption is raised.An exeption handler an be installed for an expression. When an exeptionis raised during the evaluation of the expression it is aught by the exeptionhandler. When an exeption is aught the ontrol is transfered to the handler.

24 CHAPTER 2. THE LANGUAGE LInformation an be passed from the point where an exeption is raised to thehandler of the exeption. This information is alled the exeption value, whih isusually abbreviated to \the exeption". In L the exeption value is an arbitrarynode in the store. The handler is a funtion in L and when the exeption isaught this funtion is applied to exeption value.Exeption handlers an be nested. In this ase the innermost handler athesthe exeption and alls its handler. The exeption handler is deinstalled when itathes an exeption, i.e. further exeptions are aught by the next handler.Threads install a default exeption handler before evaluating an expression, suhthat exeptions annot esape their thread. The default exeption handler typi-ally prints a message3.2.5.1 Exeption handlersThe catch operator is applied to a pair of two funtions (x; y). The appliationof the handle operator installs the exeption handler y during the evaluation ofthe funtion x applied to the singleton value ().When the evaluation of x returns a node n, the exeption handler is removed andthe catch operator also evaluates to the node n.When an exeption is raised during the evaluation of x the exeption handleris removed and the catch operator evaluates to the appliation of the handlerfuntion y to the exeption value.2.5.2 Raising an exeptionThe throw operator has an exeption value as argument. The evaluation ofthis operators never returns, but transfers ontrol and the exeption value to theinnermost installed exeption handler.Exeptions are raised impliitly, when an error ours, e.g. reord onstrutionraises an error if its features are not pairwise disjoint and the appliation raisesan exeption if the �rst argument is no funtion.2.5.3 DisussionThe main problems and the design spae for exeption handling have been knownsine a long time [28, 29℄. The exeption mehanism of L is similar to the onede�ned in Standard ML.3Failure exeptions in spaes are handled speially (see Setion 2.10).

2.6. LOGIC VARIABLES 25Typed exeptions Many languages like Standard ML [63℄, C++ [16, 53℄ andJava [30℄ use typed exeptions and the exeption mehanism is extended suhthat an exeption handler is only used if it mathes the type of the exeptionvalue.In L this an be expressed by writing exeption handlers suh that they analyzethe exeption value. In the ase that they annot handle an exeption they simplyre-raise it.Finally A �nally expression allows to protet the evaluation of an expressionsuh that independent of the suess or failure of this evaluation a leanup ex-pression is evaluated. This an for example be used to ensure that alloatedresoures are released.In L �nally an be implement with the following funtion:
val finally = fn (body, final) = >
let

name Suc; name Exc;
val result = catch (fn () = > (Suc, body ()),

fn exc = > (Exc, exc))
in

final ();
case result
of (Suc, value) = > valuej (Exc, exc) = > throw exc

endThe �nally funtion is applied to a pair of two funtions. The �rst funtion isthe body whih is exeuted and might raise an exeption. The seond funtion isthe �nal leanup whih is applied regardless of the suess or failure of the �rstfuntion.2.6 Logi variablesA logi variable is a plae holder for a not yet known value. Logi variables wereintrodued as a language primitive with the language Prolog [55, 56, 71℄ as thefoundation for logi programming. Logi variables have been also reognized aspowerful onept for synhronization in onurrent languages [94℄. For onstraintlogi programming logi variables have been extended with attributes to representdomain information.A logi variable is represented with a variable unit in the store. A variable unitis a node with no departing links. The lvar operator adds a variable node tothe store and evaluates to it.

26 CHAPTER 2. THE LANGUAGE L2.6.1 Uni�ationThe graph rewriting operation on variables is binding. A variable an be boundto another node of the store. Binding a variable makes it transparent, i.e. thevariable node disappears and all inoming edges are redireted to the node it isbound to.Binding is not a primitive operation in L, but it is impliitly performed by uni-�ation. Uni�ation is a omplex graph rewriting operation to make two nodesequivalent wrt. to the equivalene relation de�ned below. If it is possible theuni�ation performs a minimal number of variable bindings until two nodes areequal. If this is not possible the uni�ation fails.We �rst de�ne an equivalene relation on nodes. Then we present an uni�ationalgorithm.Equivalene of nodes The equivalene relation of nodes is de�ned as thegreatest relation, whih sati�es the following onditions:� Every node is equivalent to itself.� Two primitive nodes are equivalent i� they represent the same value.� Two reord nodes are equivalent i� they have the same arity and if theequivalene relation holds for every pair of orresponding �eld values.The uni�ation algorithm The uni�ation algorithm implemented in theLVM is a variation of the uni�ation algorithm for rational trees resp. ylistrutures [18, 98, 38℄. An overview of the algorithm is given in Figure 2.9.The uni�ation algorithm maintains a todo stak and an explored set. The todostak ontains pairs of nodes whih must be uni�ed. The explored set ontainspairs of already uni�ed reords. Initially the explored set is empty and the todostak ontains the pair of the two nodes to unify. In every step of the uni�ationalgorithm a pair of nodes is popped from the todo stak and proessed. Thealgorithm terminates if the todo stak is empty and returns a termination status,whih is either sueed or fail.Two nodes are proessed in the following ways� If both nodes or their values are the same, or if they are in the explored setthe proessing step sueeds and nothing needs to be done.� If both nodes are reords with the same label and arity, then they are addedto the explored set and orresponding pairs of �elds are pushed on the todostak.

2.6. LOGIC VARIABLES 27
INPUT:

node n1;
node n2;

OUTPUT:
enum fSUCCEED, FAILg status;

INIT:
todo = new stack();
todo.push(n1, n2);
explored = new set();
status = SUCCEED;

LOOP:
while (!todo.isEmpty())

(a, b) = todo.pop();

if (a != b)
if (isVar(a))

bind(a,b)
else if (isVar(b))

bind(b,a)
else if (member(fa,b g,explored))

// nothing
else if (isRecord(a) &&

isRecord(b) &&
arity(a) == arity(b))

explored.add(fa, b g);
for (f in arity(a))

todo.push(select(a,f), select(b,f))
else

explored.add(fa, b g);
status = FAILFigure 2.9: A graph uni�ation algorithm

28 CHAPTER 2. THE LANGUAGE L
val x = lvar ();
val y = (1, x, 2);

1
2 3

1 2

1
2 3

1 2

y

x

y
unif (x,y)

Figure 2.10: Binding variables.� If a node is a variable it is bound to the other node.� In all other ases the nodes are put into the explored set and the uni�ationstatus is set to failed.The algorithm terminates beause in every step1. the open set beomes smaller or2. an element is added to the explored set or3. a variable is bound.The graph is �nite and no new nodes are added during the uni�ation. Thereforethe number of elements in the explored set must be �nite and only �nitely manybindings of variables an be done. This means that eventually the open set mustbe empty.Note that the uni�ation ontinues even in the ase that failure is deteted. Wedo this to ensure that the uni�ation algorithm is independ of the order in withthe �elds of reords are explored.The unif operator The unif operator is applied to a pair of nodes andperforms their uni�ation. If the uni�ation fails the evaluation of the unifoperator raises an exeption, else it evaluates to the singleton value.The exeption raised by the unif operator is speially marked, beause in nestedomputation spaes it is treated in as disentailment ondition (see Setion 2.10).The exeption is alled a failure exeption.Binding variables an introdues yles into the graph. Figure 2.10 shows anexample of a reord y with a variable x under feature 2 and the yle introduedby the uni�ation of x and y.

2.7. FUTURES 29
f x

f x f’

fut

f’

fut

f x

fut
unif (x,f’)

f x f xy

f x

1

unif (x,1)
fut

y

fut fut
unif (x,y)

Figure 2.11: Uni�ation with futures2.7 FuturesFutures are read-only views of logi variables. With futures the sope where avariable an be bound an be statially limited.When the variable is bound to a non-variable a future of this variable is boundsimultaneously to the same node as the variable. Futures are represented in thestore as a future unit and variables are extended with a link to their future.Figure 2.11 shows some interesting ases for binding variables with futures. In the�rst ase when the variable is bound to a determined node both the variable andits future are superimposed by this node. The seond ase show what happenswhen a variable is bound to another variable: only the variable is bound thefuture is unhanged exept that it is now a future for a di�erent variable. Thethird ase shows that if the variable is bound to another future f 0 this future issuperimposed on the variable x and its future f .The future operator takes one argument. If this argument is a variable whihdoes not yet have a future, a future node is reated. The future operatorevaluates to this future of the variable. If the argument is no variable the futureoperator evaluates to its argument.Extending uni�ation Futures require to extend the uni�ation algorithm.When a future and a determined node are uni�ed it is not allowed to bind thefuture. In this ase it is not yet deidable, if the future and the determined nodeare equivalent or not. Therefore the uni�ation has a termination status to signalthis ase, whih is alled suspend.

30 CHAPTER 2. THE LANGUAGE LA seond aspet of futures is the extension of the equivalene relation suh thata future is equivalent to its variable, i.e. unif (x, future (x)) must sueed.To avoid that the semantis of uni�ation depends on the order how the nodes areproessed the uni�ation algorithm ontinues after deteting the suspend status.Thus it is possible that later on failure is deteted.The pairs of nodes whih ould not be uni�ed due to futures are olleted andwhen the uni�ation does not fail they are saved to restart the uni�ation, whenone of the futures is bound. The next setion on threads explains how threadsare suspended and resumed.An interesting ase is unif ((f,x),(1,1)) , where f is the future of x . In thisase the uni�ation algorithm �rst disovers that the equivalene of f and 1 isnot deidable, but later x and simultaneously f is bound to 1. In this ase theuni�ation is restarted and in this seond run it returns suessfully.Transients and determined nodes We all variable and future nodes in thestore transients, beause they are only temporarily visible and disappear whenthey are bound. Non-transient nodes are alled determined.Disussion Futures are useful for example to implement ports [49℄ with safestreams. A safe stream is a stream, where the open tail is a future, whih annotbe orrupted by readers. Only the writer has aess to the variable behind thisfuture.Note that the name future is used with various meanings in the literature. Ourfutures are only onerned with the read-only aspet of logi variables. Futuresin the style of Multilisp [34℄ are related to futures with by-need synhronizationand they are disussed below.2.8 ConurrenyIn this setion we explain how onurreny is integrated in L.2.8.1 ThreadsMultiple threads of ontrol an be reated with the spawn operator. The spawnoperator is applied to a funtion as only argument and reates a new threadwhih has as the initial losure the appliation of this funtion to the singletonvalue.

2.8. CONCURRENCY 31After the reation of the new thread the spawn operator evaluates to the single-ton value without any synhronization on the new thread. Communiation andsynhronization only happens through nodes shared with the spawned funtion.A thread an for example ommuniate with other threads through the bindingof variables and ell exhanges.Threads are exeuted onurrently, they are independent, and they are sheduledfairly. Conurreny in L means that the evaluation steps are interleaved, but donot overlap. The threads are independent in the sense that the only onnetionbetween them is through shared nodes in the store. Fairness requires that if anevaluation step on a thread is possible it will eventually happen.2.8.2 Synhronization and suspensionThreads synhronize on the determination of transients. We explain the synhro-nization tehnique with the waitOr operator. The waitOr operator is applied totwo arguments and evaluates to the singleton value, if at least one of its argumentsis a determined node.When both arguments are transients the waitOr operator annot be evaluatedand bloks the further exeution of its thread. The thread is said to suspendon the transient arguments. The waitOr operator and the suspended threadsbeomes exeutable if one of the transients is bound to a determined node.The synhronization on transients is a monotoni ondition. If an evaluation ofan expression is possible at a ertain moment, it an be evaluated also after anyhange in the store. This holds beause the binding of a transient is a monotonioperation4.The waitOr operator allows for example to express timeouts. For example bywaiting onurrently on a thread produing a result and another thread produinga timeout ondition.Wait The funtion wait de�ned below is a simpli�ation of the waitOr oper-ator whih suspends on a single argument.
fun wait x = waitOr (x, lvar ());Other suspensions Any operator whih expets a determined value suspendswhen it is applied to a transient, e.g. arithmeti operators suspend until botharguments are determined and the appliation e e0 suspends until e is determined.4In spaes bindings are retrated and the monotoniity might be violated, but it makes onlya di�erene when the spae fails anyway (see Setion 2.10).

32 CHAPTER 2. THE LANGUAGE LIn our language we use a very simple synhronization ondition for pattern math-ing. Pattern mathing in our language is attened out and suspends if one ofthe sequential simple mathes is not deideable. Sheidhauer [87℄ analyses moreomplex synhronization onditions, where for example the math
case (x,x)
of (1,2) = > e1j y => e2redues to e2 even when x is not determined. In our language this example isequivalent to
case (x,x)
of (x1,x2) = >
case x1
of 1 =>
case x2
of 2 => e1j y => e2j y => e2j y => e22.8.3 By-need synhronizationA di�erent kind of synhronization is by-need synhronization, whih essentiallyallows for lazy programming.To explain it we �rst de�ne the notion of a requested transient. A transient isrequested if a thread is suspended and waits until this transient is bound. Forexample if x is a variable and a thread tries to evaluate x+ 1 then x is requested.By-need synhronization is introdued with the byNeed operator. The byNeedoperator is applied to a funtion f and evaluates to a future for a newly reatedvariable x. When this future is requested a new thread is spawned whih uni�esthe variable x with the result of the appliation of the funtion f to the singletonvalue. Figure 2.12 shows how a by-need future is bound when it is requested.Disussion The by-need synhronization in L is similar to the onept of fu-tures in Multilisp [34, 26℄. Multilisp distinguishes two operators for futures.(future E) returns a future and starts the omputation to evaluate E in a on-urrent resp. parallel thread. With (delay E) the evaluation of E only startswhen the value of the future is requested.Futures are proposed as extensions for C++ and Java [57, 85℄. In these proposalfutures are not de�ned as transparent data types, but expliit operations arerequired to ast a future into a determined value. A major problem of this

2.8. CONCURRENCY 33
f

f requested unif (x, 2)
f

x x

f

2
y/unif(x,1+1)

Figure 2.12: By-need syhronization.approah is that for every funtion a deision has to be made if futures areallowed or not. This espeially requires to redesign all libraries.By-need synhronization allows to easily express the lazy funtional programmingstyle as promoted by lazy funtional languages, e.g. Haskell [75℄. In Setion 2.11the lazy reation of hamming numbers is shown as an example.2.8.4 CellsCells are the only stateful data strutures of L. In onnetion with onurrenystateful nodes must be handled arefully, e.g. onurrent aess and assign oper-ations must be properly synhronized.The exchange operator is a generalization of the assignment operator := ofStandard ML. exchange assigns a new node to the ell and returns the oldontent of the ell in a single atomi step. This extension is essential beause itprovides a powerful synhronization primitive.Loks The exchange operator with logi variables allows to express loks formutual exlusion. A lok is implemented as a ell where the ontent indiates ifthe lok is free or not. The usage of the ell is de�ned suh that the operation toaquire the lok exhanges the ontent of the ell with a fresh variable and waitsuntil the old ontent is determined. When the lok is released the just reatedvariable is bound to the singleton value.
(� create a new lock �)
fun newLock () = ref ();

(� aquire lock, execute body, release lock �)
fun sync (lock,body) =

let val new = lvar ();
val old = exchange (lock, new)

in
case old of () = >

34 CHAPTER 2. THE LANGUAGE L
let val result = body ()
in

unif (new, ());
result

end
end;The funtion newLock reates a ell with the singleton value as initial ontent.The funtion sync takes a lok and a proedure as arguments. It exhangesthe ontent of the ell with a fresh variable and waits until the old ontent isdetermined. The the body is exeuted and with the uni�ation of the freshvariable with the singleton value the lok is released.Without logi variables the exhange primitive is already expressive enough toimplement loks, but the implementation does not have the following propertiesof our implementation� The implementation is simple.� The thread whih must wait for a lok needs no busy waiting.� No starvation an happen. Every thread ompeting for the lok will even-tually obtain it, when it is released properly.Cell aess With logi variables access an be expressed with the exchangeoperation.

fun access cell =
let val new = lvar ();

val old = exchange (cell, new)
in

unif (new, old);
new

endIn L access is a primitive operator, beause it has a di�erent semantis wrt.multiple omputation spaes. The ontent of a ell an be aessed, but nothanged when the ell is global in a spae (see Setion 2.10).Abstrat data types We onsider ells in this thesis beause we want toexplain how the VM supports built-in abstrat data types, whih are a gener-alization of reords and ells. The built-in abstrat data types are for examplethe data-strutures on whih the objet implementation of Oz is built. Henz [42℄disusses how an objet system an be build on top of a onurrent onstraintlanguage with ells.

2.8. CONCURRENCY 35An example of an suh an abstrat data type is a bit array. A naive implemen-tation whih represents a bit array as a list of ells with ontent 0 or 1 is givenbelow.
let

name BitArray;
fun unbox (b, i) =

nth (select (b, BitArray), i);
fun box (id, l) =f id = (), BitArray = l g;
fun new1 size =

if size >0
then ref 0::new1 (size �1)
else [];

fun new size =
let con Id
in

box (Id, new1 size);
end

fun set (b,i) = exchange (unbox (b,i), 1);
fun clear (b,i) = exchange (unbox (b,i), 0);
fun get (b,i) = ! (unbox (b,i));

in f’new’=new, ’set’=set,
’clear’=clear, ’get’=get g

endIn Chapter 4 we show how eÆient native C/C++ implementations of suh ab-strat data-types an be easily integrated into the LVM with a generi extensionmehanism.2.8.5 DisussionJava/POSIX threads Threads in L are very di�erent from threads in Java [30℄.The semantis of threads in Java is driven by the available tehnology in mod-ern operating system. These are typially based on the POSIX 1003.1 stan-dard [15, 43℄.The POSIX standard ares a lot about memory ahe e�ets and makes expliitthat only when using syhronization primitives the (possibly ahed) memoryis updated. In L no ahing e�ets are visible at the language level. If animplementation uses memory ahes it has to guarantee that the illusion of aunique store is not violated.

36 CHAPTER 2. THE LANGUAGE LPOSIX does not speify a sheduling poliy. The standard allows but does notrequire that onforming implementations support di�erent sheduling methods.This means that for example preemptive sheduling is platform dependent andan appliation annot rely on fairness assumptions.Parallelism Conurreny does not prevent parallelism, but a parallel imple-mentation has to preserve the invariant that overlapping evaluation steps are notvisible [80℄.2.9 Feature onstraintsIn this setion we extend reords suh that it beomes possible to representinomplete partial information about branhes in trees.With reords and logi variables it is already possible to desribe partial trees,where some of the nodes are not yet known. Feature onstraints extend thismodel and allow to desribe reord nodes where the features are partially known.Feature onstraints allow to represent for example information about paths in atree without knowing the whole shape of tree, i.e. the arities of some reord nodesare underspei�ed. Feature strutures in natural-language proessing systems arean example where this is useful.Reords and feature onstraints in L are based on reords for logi program-ming [98℄ and on the work done on -terms in LIFE [3, 78℄. The implementationof eÆient reord onstraints for onurrent onstraint programming in the Ozsystem was desribed in [108℄In the following setions we �rst desribe a generi set of onstraints over treesand show then how reords and feature onstraints of L �t into this model.2.9.1 Constraints over treesThe struture underlying the tree onstraint system [98℄ of L ontains in�nite setsof features, integers, and rational trees. Rational trees are possibly in�nite treeswith direted links labelled with features. The onstraint system is losed underonjuntion and existential quanti�ation of domain variables. The onstraintsystem has the following basi onstraints.� The feature onstraint feature(t; f; t0) states that t is a rational tree witha link to the tree t0 whih is labelled with the feature f .

2.9. FEATURE CONSTRAINTS 37
1

‘b‘‘a‘

x w:10

featureC(x,’a’,1)

widthC(x,10)
featureC(x,’b’,x)

Figure 2.13: An example of an open reord.� The width onstraint width(t; n) (n 2 f1; 2; :::g) states that t is a rationaltree with exatly n outgoing links.� The equality onstraint t = t0 states that the trees t and t0 are equal.In full generality this onstraint system is not analyzed yet [102, 103, 10℄. In thefollowing we explain the implemented sublass of L.2.9.2 Open reordsReords as introdued in Setion 2.3 above are an instane of the tree onstraintwhih is restrited to onstraints of the form:9t; t1; : : : ; tnwidth(t; n) ^ 8i 2 f1; : : : ; ng feature(t; fi; ti):The features fi and the number n in this onstraint are onstants and the featuresmust be pairwise distint.Open reords are reords where not all features are known. Open reords aredesribed by the onstraints width(t; n) resp. feature(t; f; t0), where the width nand the feature f are onstants.In the store open reords are represented as variables with attributes. Attributesallow to attah information to a variable. The semantis of some operations, e.g.uni�ation, is extended for variables with attributes.Variables representing open reords have the attributes width and �elds. Thewidth attribute if de�ned ontains a number and the �elds attribute ontains aset of pairs of a feature and a node (see Figure 2.13).The onstraints on the attributes of a variable are� Every feature ours at most one in the �elds attribute.

38 CHAPTER 2. THE LANGUAGE L
1

‘b‘‘a‘

x w:-

featureC(x,’a’,1)
featureC(x,’b’,x)

widthC(x,2)

1

‘b‘‘a‘

x

Figure 2.14: Closing an open reord.� The number of elements in �elds attribute is less than the value of the widthattribute.An open reord is automatially losed, when its width attribute beomes equalto the number of elements in the �elds attribute. Closing means that the variableis bound to a reord, where the �elds of the reords are exatly the elements ofthe �elds attribute (see Figure 2.14).The featureC and widthC operator implement the feature resp. width on-straints and the uni�ation is extended to support the equality onstraint onopen reords.The featureC operator The featureC operator is applied to three argu-ments (x; f; y) and suspends until f is a feature and x is not a future. Thefollowing ases ourCondition Ationx is a variable whih does not ontainthe feature f in its �eld attribute. The feature f and the �eld value y areadded. Impliitly the open reord maybe losed.x is a variable with the feature f and�eld value y0 in its �eld attribute or xa reord with a feature f and the �eldvalue y0. Then the featureC operator reduesto the uni�ation of y and y0.Otherwise. A failure exeption is raised.The widthC operator The widthC operator is applied to two arguments (x; n)and suspends until the �rst argument is no future and the seond argument is apositive integer.

2.10. SPACES 39Condition Ationx is a variable whih does not have thewidth attribute and not more than nentries in the �eld attribute. The width attribute with value n isadded to the variable. Impliitly theopen reord may be losed.x is a variable with width attributeequal to n or x is a reord with widthn. Nothing needs to be done.Otherwise. A failure exeption is raised.Extending the uni�ation algorithm The uni�ation algorithm must beextended to support open reords. If an open reord x is uni�ed with anothernode y , then it bound as usual and its attributes are imposed to the new binding.Imposing means that the attributes of x are added to the node y as if the widthCand featureC operators for these attributes are applied.� If x has a width attribute n, then widthC (y, n) is exeuted.� For all features fi with �eld values zi in the �elds attribute of x theoperator featureC (y, fi, zi) is exeuted.2.10 SpaesMultiple omputation spaes are the basis for building exible searh enginesin the onurrent onstraint programming paradigm [90, 91, 88, 89℄. In thisthesis we fous on the implementation of entailment, disentailment and mergingof spaes. Therefore we de�ne one operator, namely the deep guard onditional,whih requires exatly the abilities to detet entailment and disentailment andto merge spaes.We �rst de�ne a multiple store graph model with introdues situated nodes. Afterthat we explain the deep guard onditional operator.2.10.1 The multiple store graph modelA omputation spae is a number of threads exeution over a shared store. Theexeution of a thread an reate new subordinated omputation spaes. The newomputation spae is initialized with a opy of the urrent store and an initialthread.

40 CHAPTER 2. THE LANGUAGE L
Space 1

Space 2 Space 3

x’ x’’

x

Figure 2.15: A tree of omputation spaes.Every node in the opy is linked to its original. This is essential to de�ne prop-agation and merging. The basi invariant between spaes is that the graph in asubordinated spae is a extension of the graph in the store of its parent spae. Theintuition should be that subordinated spaes see every hange in their parent'sstore, but not vie versa.With this onstrution a tree of omputation spaes an be build (see Figure 2.15).The �gure shows how a graph and its opy in a subordinated spae are linkedtogether. The top-most spae is alled root or toplevel spae.When a spae is reated a new variable is reated in this spae, whih is alledthe root variable. The root variable is used to ommuniate omputation resultsbetween a spae and its parent spae. The initial thread exeutes a funtionwhih is applied to this root variable.Situated nodes The theoretial foundation [95℄ of omputation spaes is basedon a delarative semantis where the store is modeled as a onstraint with existen-

2.10. SPACES 41tially quanti�ed variables. In the graph model we replae the notion of existentialquanti�ation with the notion of situated nodes.Transients and ells are situated nodes. The spae where a situated node isreated is alled the home spae of a node. A situated node is alled a loal nodein its home spae and a global node in subordinated spaes. Figure 2.15 shows aglobal variable x0 in the opy and its orresponding loal variable x in the originalspae.In the following we restrit situated nodes to logi variables. Other types ofsituated nodes are introdued later.Store invariant The store invariant ensures the onsisteny of stores in a treeof omputation spaes. It is de�ned suh that the graph in a subordinated spaeis an extension of the graph in its parent:� A subordinated graph ontains all nodes and links of the graph of its parent.When new nodes are added then these nodes are opied to subordinatedspaes. The opies preserve the onnetion to their original nodes.� A subordinated graph an ontain additional units and links.� Global variables in spaes an be bound. Suh a binding is alled speula-tive. A speulative bindinge an be retrated.Binding and propagation When a variable is bound this binding is propa-gated to all subordinated spaes. Propagation ensures that the �rst requirementof the store invariant holds.Propagating a binding retrats already existing speulative bindings in subordi-nated spaes and replaes these speulative bindings with the new binding.Retrating a binding means that an assumption made during a previous uni�a-tion is invalidated. To ensure that no information is lost a new thread is reatedin the subordinated spae whih uni�es the old and the new binding.Figure 2.16 shows how a binding is propagated to a subordinated spae.Binding order When two variables must be bound and one is global and theother is loal, the loal variable is bound to the global variable. This ensures thata minimal number of speulative bindings are done per spae.

42 CHAPTER 2. THE LANGUAGE L

1

x
2

2

2

2

unif (x,2)

unif (1,2)

FAILEDFigure 2.16: Propagation of a binding.2.10.2 EntailmentThe distintion of loal and global variables is essential to deide entailment of aspae. A spae is entailed if� all threads are terminated and� the onstraint represented in a store is entailed by the onstraint of itsparent store.The seond part of the entailment ondition expressed in terms of our graphmodel means that no global variable is speulatively bound in the store.Figure 2.17 shows a simple example how entailment is deteted after propagation.In step (1) the uni�ation of a loal variable z with a global variable x binds theloal variable. In step (2) a speulative binding of x to 1 is added. In step (3) xis bound in its home spae to y. This binding is propagated to the subordinatespae. This requires a uni�ation step, whih leads to the speulative binding ofy to 1. In step (4) y is bound in its home spae to 1. After the propagation ofthis binding the subordinated spae is entailed.2.10.3 DisentailmentThe detetion of disentailment is build on top of the exeption mehanism of L.When the unif or another onstraint operator detets failure they raise a speialexeption, alled a failure exeption.

2.10. SPACES 43

Space 2

Space 1

Space 2

Space 1

x: y:

z z

x: y:

unif (x, z)
z = lvar ()

unif (x, 1)

x: y: x: y:x: y:

x: y:
1

z

x/y:

z

x/y:

unif (x, y)

x/y:

unif (x, 1)

z

x/y:

x/y:

z

x/y: 1

z

x/y: 1

unif (1, 1)

unif (x, 1)

x/y: 1

val y = lvar ();
val t = (x, y);

val x = lvar (); 1 2 3

4

Figure 2.17: Entailment after propagation.

44 CHAPTER 2. THE LANGUAGE LWhen suh a failure exeption reahes the default exeption handler of a thread,the spae is marked as failed. A spae marked as failed is disentailed. All sub-ordinated spaes of a failed spae are marked as aneled. The threads in failedand aneled spaes are not further exeuted.In L we use reords with the single feature name Failure as indiation for failureexeutions. The �eld value of this exeptions an ontain an arbitrary value whihan be used for debugging purposes.2.10.4 MergingA spae an be merged into its parent spae. The purpose of merging is to makethe omputation of a subordinated spae available in its parent.Merging involves the following operations� New nodes and links are opied from the merged spae to its parent. Loalnodes of the merged spae beome loal nodes of their parent.� The node of the root variable is typially made available (see onditionalbelow).� All threads of the merged spae are moved to its parent.� All subordinated spaes of the merged spae are merged to its parent.� Speulative bindings in the merged spae are turned into uni�ation oper-ations in the parent spae.For the deep guard onditional only the �rst two operations are relevant. Whena spae is entailed it has no threads, no subordinated spaes, and no speulativebindings.2.10.5 Deep guard onditionalsThe deep guard onditional cond is an operator whih takes three funtions
(guardF, thenF, elseF) as arguments. The evaluation of cond happens intwo steps.In step one a new spae is reated as de�ned above. The new spae has aninitial thread ontaining the appliation of the funtion guardF to the root vari-able. The seond step of the evaluation happens when the spae is entailed ordisentailed.

2.10. SPACES 45If the spae is entailed it is merged with its parent and the cond operator evaluatesto the appliation of the thenF funtion to the root variable.If the spae is disentailed the cond operator evaluates to the appliation of the
elseF funtion to the singleton value.2.10.6 Other situated nodesCells in spaes Cells are situated nodes. When the ontent of a loal ell ishanged this hange is propagated to all subordinated spaes.The ontent of a global ell an be aessed, but it annot be modi�ed. This isthe reason why L has two built-in operators for ells.The exchange operator applied to a global ell raises an exeption. An alterna-tive design deision would be to suspend the exhange operation on global ells.In L we have hoose exeption, beause it is easy to implement. Suspending thethread does not seem really useful and would add an unneessary omplexity tothe implementation.Futures in spaes Global futures loose the read-only protetion and are treatedas logi variables. Speulative binding of global futures in spaes is allowed.Only when a spae is merged the speulative binding is redone in the parent spaeusing uni�ation, whih will suspend if the future is loal. Note, that in L thissituation does not our, beause only entailed spaes are merged.Treating global futures in the same way as loal futures, i.e. every binding attemptsuspends has an unwanted e�et. The problem whih ours is the following: as-sume an expression unif (x, 1); if x = 1 then ... is exeuted in a spaewhere x is a global variable. Later an expression unif (x, f) , where f is afuture is exeuted in the home spae of x. In this situation the speulative bind-ing of x must be retrated and a thread unifying f and 1 must be exeuted inthe subordinated spae. This thread will of ourse orretly suspend, but thedeision based on speulative binding annot be retrated.A speulative binding fores the lazy omputation of futures introdued with the
byNeed operator.Feature onstraints in spaes Feature onstraints are represented as vari-ables with attributes. These attributes play a similar role as variable bindingswrt. to spaes.Variables with attributes preserve the invariant that attributes in subordinatedspaes inherit all attributes from their parent. Global variables may have addi-tional attributes not available in parent spaes.

46 CHAPTER 2. THE LANGUAGE LPropagation of attributes is similar to the propagation of bindings. If an attributeonit ours during propagation the attribute is replaed by the new one. Theold attributes are restated with the widthC resp. featureC operator as in theuni�ation ase.A spae is not entailed if the attributes of a global variable are stronger than theattributes of the variable in the parent spae.2.10.7 DisussionStability, loning and injeting With the deep guard onditional it is possi-ble to synhronize on entailment or disentailment of a spae. To express onstraintprogramming and exible searh engines spaes must support stability, loning,and injetion.Stability is the property that a spae is neither entailed, nor disentailed, but ithas no threads whih an exeute and no hange in the store of a parent spaean ever hange this situation.Injetion allows to add a thread to a subordinate spae. The injeted threadexeutes a user-de�ned funtion applied to the root variable. With injetion it ispossible to add for example new onstraints into a spae.Cloning of a spae reates an independent opy. In a lone global nodes are stilllinked to the orresponding nodes in the parent, but all loal nodes are fresh.For example a lone of a loal ell is a new ell independent of it original. Thelone of a global ell on the other side is onneted to the orresponding ell inthe parent spae.In this work we will not explain how stability, loning, and injeting is imple-mented. These onepts are disussed further in [90, 91, 89℄.Pattern mathing Pattern mathing an be explained as an instane of theonditional. The ase expression
case y of fc1=x1,...,cn=xn g => ean be expressed with the deep guard onditional as
cond (fn x => let val ... xi = lvar () ... in

unif(x, (x1, ..., xn)),
unif(y, fc1 = x1, ..., cn = xn g)

end,
fn x => let val ... xi = lvar () ... in

unif(x, (x1, ..., xn));
e

end,
fn x => throw ...)

2.11. EXAMPLES 47The ase statement is well suited as a primitive of the ore language. The asestatement an be explained without introduing spaes. Its implementation ismuh simpler and muh faster then with spaes.Semantially it is onvenient to de�ne pattern mathing with the deep guardonditionals to have a single semanti foundation instead of two slightly di�erentmodels. Espeially when using elaborated synhronization onditions for asestatements the semantis with deep guards has advantages. The major disadvan-tage of this semantis is that a lot of e�ort has to but into the optimization ofthe simple ase [87, 14, 78℄.In [87℄ an extension of pattern mathing is disussed whih allows oreferenesin patterns and rejets mathes of reords with oreferenes early, e.g. the eval-uation of the expression val x = lvar (); case (x,x) of (a,b) = > ...would suspend in our language forever. This mathing rule would be rejetedimmediately in the extension of the ase statement disussed in [87℄.2.11 ExamplesTo show the usefulness of the language L a few simple examples in di�erentprogramming paradigms are shown.2.11.1 Funtional programming: AppendAs a language based on Standard ML it is trivial in L to write funtions like appfor onatenating lists or map for applying a funtion to all elements of a list.Note that these funtion do not require any expliit ode to synhronize on tran-sients. The exeution of the pattern mathing on the input arguments bloksautomatially if an inomplete list is provided and resumes its exeution if thelist is further instatiated. Furthermore the map funtion does not blok, if thelist elements are transients.
(� Functional append �)
fun appF (nil, ys) = ysj appF (x::xr, ys) = x::appF (xr,ys);

(� Functional map �)
fun map (nil, f) = nilj map (x::xr, f) = f x :: map (xr,f);A major extension of L are logi variables and futures. Beside their usage aspowerful ommuniation primitives they allow to write an eÆient tail-reursiveversion of the list onatenation.

48 CHAPTER 2. THE LANGUAGE L
(� Tail�recursive append with futures�)
fun appFut (nil, ys, zs) = unif (zs, ys)j appFut (x::xr, ys, zs) =

let val zr = lvar () in
unif (zs, x :: future (zr));
appFut (xr, ys, zr)

end;This implementation is eÆient beause the tail-reursion does not need memoryfor reating and unwinding the reursion stak. This approah of reating re-ursive data strutures top-down, an be also used in language with destrutiveoperations. It is unlear if a ompiler an automatially transform a funtion like
appF into an equivalent funtion using destrutive operations internally, whihare not visible. E.g. the following transformation of appFut to appD is safe,beause no intermediate unde�ned values are ever visible outside of the funtion:
fun appHelp (nil, ys, zs) =

replaceTail (zs, ys)j appHelp (x::xr, ys, zs) =
let val zr= x::Undefined
in

replaceTail (zs, zr);
appHelp (xr, ys, zr)

end;
fun appD (nil, ys) = ysj appD (x::xr, ys) =

let val zs= x::Undefined in
appHelp (xr,ys,zs);
zs

end;An advantage of appFut as opposed to appD is that it an be used as an agentin a onurrent appliation whih onsumes a stream xs and produes a stream
zs even in the ase that xs is not fully determined and has an open end.In this senario appFut is furthermore safe, beause the reader of the outputstream annot orrupt the open tail, beause it is always a future, whih annotbe bound.2.11.2 Conurrent lazy programming: HammingThe lazy generation of hamming numbers is a small example whih shows howby-need futures support lazy funtional programming.
(� Hamming numbers �)

2.11. EXAMPLES 49
(� A lazy stream merger �)
fun m (xs, ys) =

byNeed (fn () = >
case xs of x::xr = >

case ys of y::yr = >
if x<y then x::m (xr, ys)
else

if x>y then y::m (xs, yr)
else x::m (xr, yr));

(� A lazy n times generator �)
fun t (xs, n) =

byNeed (fn () = >
case xs of x::xr = >

n�x :: t (xr, n));

(� hs is a lazy stream of Hamming numbers �)
val hs = lvar ();
unif (hs, 1 :: m (m (t (hs, 2),

t (hs, 3)),
t (hs ,5)));

(� h is the 10000th hamming number:� 288325195312500000 �)
val h = nth (hs, 10000);The example is also useful as a benhmark for threads in L, beause for everyrequest of a by-need future a new thread is spawned.2.11.3 Feature onstraints: PathsAs an example for feature onstraints we de�ne a funtion to impose path on-straints on trees. A path onstraint de�nes that a ertain path exists in a treeand returns the node at the end of this path.
fun path (rs, p::pr) =

let
val rr = lvar ()

in
featureC (rs, p, rr);
path (rr, pr)

endj path (rs,[]) = rs;

(� example �)
val r = lvar ();

50 CHAPTER 2. THE LANGUAGE L
val p = path (r, [1,2,3,4]);
unif (p,5);The path equality used in a deep guard onditional tests if the node at the endof two path starting at the same node are the same.
fun pathEq (n,p1,p2) =

cond (fn m =>
(unif (m, path (n,p1));

unif (m, path (n,p2))),
fn n => n,
fn () = > false);The following examples shows how the path onstraint and the path equality testan be used.

(� entailment of records �)
val z = lvar ();
val y = ((1, (z, z), 3), 1);
val v = pathEq (y, [1,2,1], [1,2,2]);

(� returns z �)
(� entailment of open records �)
val y = lvar ();
val z = path (y,[1,2,1]);
unif (z, path (y,[1,2,2]));
val v = pathEq (y, [1,2,1], [1,2,2]);

(� returns z �)
(� disentailment �)
val z = lvar ();
val y = ((1, (1, 2), 3), 1);
val v = pathEq (y, [1,2,1], [1,2,2]);

(� returns false �)

Chapter 3The virtual mahine LVM
In this hapter we desribe a virtual mahine (LVM) for L.3.1 OverviewThe virtual mahine is a re�nement of the language model de�ned in the previoushapter.� The graph model of the store is re�ned to make essential aspets of therepresentation expliit.� The language of the LVM is de�ned as an imperative low-level mahinelanguage, whih is well suited for an emulator based approah.� The mahine language allows to integrate stateless data strutures, i.e.reords and proedures, into the byteodes of mahine programs. An ex-ternal format, alled pikles, is de�ned to represent mahine programs andstateless data strutures.� The ontrol for the exeution of mahine programs is de�ned as a singlethreaded engine.� The mahine language supports proedures with multiple arguments. Fun-tions are implemented with a new variable as output argument.� A ompat representation of multiple omputation spaes is de�ned us-ing the sript tehnique for maintaining multiple bindings of variables indi�erent spaes. As an alternate tehnique for this binding windows aredisussed. 51

52 CHAPTER 3. THE VIRTUAL MACHINE LVM
Store

Constraints Objects

Distribution

Library

Engine SpacesPickle

Figure 3.1: The modules of the LVM.3.1.1 Modules of the LVMThe LVM is modularized as follows (see also Figure 3.1):store The store of the LVM is a high level abstration for storing dynamiallytyped values. It is at a high level ompared to the linear storage model ofstandard hardware, but it provides a good intermediate model for explain-ing the design deision for representing data strutures (see Setion 3.3).engine The engine is the sequential ontrol for the exeution of programs. Theengine has mahine registers and staks, and exeutes an imperative ma-hine language. This part of the LVM arhiteture maps very well to om-mon hardware arhitetures (see Setion 3.4).pikling Exeutable programs are stored in an external format, alled a pikle.A loader is responsible to transform a pikle into an internal representation,whih onsists of a graph in the store and of the program ode as threadedode suited for emulation. Pikles an be reated from the internal repre-sentation of a graph (see Setion 3.2).spaes For the maintenane of multiple omputation hooks are supplied in theengine and store modules, e.g. when a thread terminates entailment mustbe heked and when a global variable is bound the spae management mustbe involved (see Setion 3.6).onstraints Other onstraint systems are integrated into the LVM as extensionsof logi variables with attributes to represent domain information. For theeÆient implementation of onstraint propagation a re�nement of threads,alled propagators, is used, whih allows to implement speialized threadsin C++.

3.1. OVERVIEW 53
Worker EmulatorScheduler

emulate

suspend
idle

run

terminate,preempt

next

pop,push,raise

Figure 3.2: The engine of the LVM.In this work we only onsider the representation of open reords. Otheraspets of the onstraint extensions of Oz are disussed in [70, 69, 118℄.distribution The LVM supports the transparent distribution of the store amongmultiple sites. In this thesis we desribe only the entralized system withoutdistribution. Aspets of distribution in Oz is explained in [40, 107, 39℄.objets The support for objets in the LVM is only partially touhed in our workwhen we explain how to integrate new built-in abstrat data-types. Otherparts e.g. the support for eÆient �rst-lass messages, the maintenane ofthe self register, and the eÆient aess to attributes and objet features isnot part of our work. Objets in Oz are disussed in [42℄.library Other parts of the LVM are ommon libraries and funtions, e.g. forstaks, queues, haraters, and strings, and an interfae to the operatingsystem, e.g. for I/O and memory management.The desription of the LVM in this thesis is an idealization of the onrete im-plementation Mozart [66℄. The LVM is explained at suh a level that the maindesign deisions and design alternatives are made expliit. The desription isdetailed enough to understand the Mozart implementation and it allows for thereonstrution of the Mozart VM.3.1.2 The engineThe engine is the sequential ontrol for the exeution of onurrent threads. Themain parts of the engine are the sheduler, the worker, and the emulator.

54 CHAPTER 3. THE VIRTUAL MACHINE LVMA high-level objet model of the engine, where the sheduler, the worker, and theemulator are objets sending messages to eah other, is shown in Figure 3.2. Theobjets and messages are explained in the following paragraphs.The LVM is a single threaded operating system proess. The light-weight threadsof the language are implemented as user-level threads with a round robin shedul-ing poliy. The sheduler is responsible for the fair and preemptive shedulingof onurrent threads. When bi runnable thread exists the sheduler runs in theidle loop, typially waiting for I/O. When one or more threads are runnable thesheduler selets one using a fair strategy and invokes the worker to run thisthread.The worker exeutes a single thread until it is �nished or until the preemptionondition is reahed. In the �rst ase the worker sents the terminate message tothe sheduler and in the seond the preempt message.A thread ontains tasks, whih are exeuted sequentially following a stak dis-ipline. A task is a losure ontaining the byteode, a proedure environment,and a loal environment. The environments are mappings from indies to nodesin the store. The proedure environment is alloated per proedure and is aes-sible through the G registers. The loal environment is alloated per proedureativation and is aessible through the Y registers.The worker exeutes the tasks and sents the emulate message to the emulatorto exeute the mahine ode of a task. The emulator interprets instrution perinstrution of the byteode indiated with the next message, until it reahes theend of the instrution sequene (pop), until a new task is reated (push), or untilan exeption is raised (raise). In these ases ontrol is passed bak to the worker.Control is passed to the sheduler with the suspend message, when the exeutionof an instrutions must blok, e.g. when a determined node is expeted, but atransient node is found.The main parts omprising the state of the engine are shown in Figure 3.3 andan overview of their role is given in the following paragraphs.Store The graph store, the atom and arity table, and the operations on thegraph are disussed in Setion 3.3. For the introdution of the LVM it is suÆientto understand that the graph has labelled nodes, with direted labelled links. Thenodes in the store are referened through mahine registers and from the mahineode.Instrutions and built-in proedures The operations performed by the en-gine are de�ned by the instrution set and by a number of prede�ned proedures,alled built-ins. The instrutions have the advantage that they are part of theworker with full aess to the state of the LVM and with an eÆient dispath.

3.1. OVERVIEW 55

GPC Y

Running

GPC Y

SR

Status

...

definition(...)
callX(1)

putConst(n,1)

Runnable

Suspension

Thread

1

’bill’

N

env

1 2

M

x/e

’a’ ’b’

Task

1: flower

4: f
...

2: a
3: bill

...

2: {1,2}
1: {’a’,’b’,1}

3: {N}
4: {Hd,Tl}

Arity table

Program store

Atom table

Graph store

... X

Global registersFigure 3.3: The state of the LVM.

56 CHAPTER 3. THE VIRTUAL MACHINE LVMBuilt-in proedures on the other side allow to fator out parts of the engine tomake the emulator lean. The overhead for built-in proedures is a funtion allwith the preparation of its arguments and the test of the return status.X and SP A worker maintains the state for the exeution of a single thread.The worker has a �xed number of global registers X to store temporary referenesto nodes and to pass arguments to proedures.The register SP is the struture pointer whih is used to read or write the �eldsof reord inrementally (see Setion 3.4).Threads and tasks A thread has a stak of tasks. A task onsists of a triple(PC; Y;G), where PC is the address of the next instrution in the program store,Y is a loal environment with a number of registers, and G is a referene to theurrent proedure. The tasks of the LVM are similar to stak frame in imperativelanguages. The worker exeutes the tasks on the stak sequentially. A task isexeuted by emulating the instrution at the PC using the loal environmentand the environment de�ned by the urrent proedure. The loal environment isimplemented as a node in the store with a �xed number of modi�able �elds.Program store The program store ontains mahine programs. A mahineprogram is a sequene of mahine instrutions. A mahine instrution onsistsif a byteode and arguments. Every instrution has an address. The programounter, whih is stored in the PC register, ontains the address of the urrentlyexeuted instrution.The internal representation of the program store uses threaded ode for an ef-�ient emulation. This internal representation is not relevant for this overviewof the design of the LVM. In the following we use a readable assembler syntaxfor instrutions, whih is summarized in Figure 3.8 on page 62 and Figure 3.9 onpage 63.Implementation Implementing the model presented above diretly in C++,where the sheduler, worker, and emulator are objets sending messages to eahother, is not possible. It would reate deeply nested reursion staks, beause theC++ standard does not require tail-all optimization and only very few C/C++ompiler implement it.The implementation is therefore broken down into a single proedure with la-bels and gotos as outlined in Figure 3.5. The main registers of the engine aresummarized in Figure 3.4.

3.2. THE MACHINE LANGUAGE 57type register name desription
Space� space urrent spae
Thread � running running thread
ThreadQueue runnable runnable threads
ProgramCounter PC program ounter
Tagged[] X global registers
Tagged � Y loal environment
Procedure � G proedure environment
volatile unsigned SR status register
union f

Tagged exception; raised exeption
Tagged suspendVarList; transients listg retInfo return infoFigure 3.4: The registers of the engine.The sheduler is implemented with the entry points Schedule , Suspend , Terminate ,and Preempt (see Setion 3.5). The worker is implemented with the entry points

Raise , Pop and Run. The push method to reate a new task is diretly imple-mented in the orresponding instrutions (see Setion 3.4). The emulator usesthe threaded ode tehnique [11, 21, 54℄ as an eÆient method to dispath on theinstrution1.3.2 The mahine languageThe mahine language of the LVM is an imperative language with instrutionsand built-in proedures. A ompiler translates the high-level language L into thismahine language.3.2.1 PiklesA pikle is a losed representation of a graph spawned by a node in the store.Pikles ontain stateless repliable nodes and ode. Repliable nodes are nodeswhih have no state. Reords and proedures are repliable and ells and tran-sients are non-repliable. If a graph spawned by a node ontains a non-repliablenode it annot be represented as a pikle.1The GNU C++ ompiler supports the nonstandard feature of omputed labels, whihis need for threaded ode generation. The implementation provides a ompilation swith todisable threaded ode.

58 CHAPTER 3. THE VIRTUAL MACHINE LVM
engine() f

runnable = ... // initialize

Schedule:
if (SR) handleEvents();
while (runnable �>empty()) idle();
running = runnable �>get();
startTimer(TimeSlice);
goto Run;

Suspend:
running �>saveX(X);
goto Schedule;

Terminate:
goto Schedule;

Preempt:
running �>saveX(X);
runnable �>add(running);
goto Schedule;

Raise:
running �>raise(retInfo.exception);
goto Run;

Pop:
goto Run;

Run:
if (statusReg) goto Preempt;
if (running �>empty()) goto Terminate;
(PC,Y,G) = running �>popTask();
goto �PC; // threaded code emulator

MOVEX X: ...
PC+=3;
goto �PC;

CALLX: ...
running �>push(...);
goto Run;

RETURN:
goto Run;

... g Figure 3.5: The main proedure of the engine.

3.2. THE MACHINE LANGUAGE 59e ::= int(s) integerj atom(s) atomj name(s) global namej re(n; e1; e01; : : : ; en; e0n) reordj tup(n; e1; : : : ; en) tuplej ons(e; e0) list elementj pro(s; [e1; : : : ; en℄; lbl; :::) proedurej bi(s) built-in proedurej v : e labelled expressionj ref(v) referenev ::= an identi�er label of a nodes ::= a stringlbl ::= an identi�er ode labelFigure 3.6: The pikle format.Pikles allow to reate persistent representation of nodes and ode. The reationof suh a representation is alled pikling and the operation to internalize a pikleis alled loading. Pikling takes a node and reates the pikle representation ofthe graph spawned by the node. The load operation reads the pikle desrip-tion, reates an internal representation, and returns the node whih was used forpikling.A pikle onsists of two major parts: the representation of the nodes and therepresentation of the byteode. Figure 3.6 shows an overview of the representationof the nodes v. The byteodes are summarized in Figure 3.8 and Figure 3.9.Integers, atoms, and reords The representation of a node starts with a tag,e.g. int, atom, followed by a number of arguments. Integers int(s) and atomsatom(s) are represented using a string representation for their numeri resp.symboli value. Reords are represented as re(n; e1; e01; : : : ; en; e0n) with theirwidth n, their features e1; : : : ; en and the orresponding �eld values e01; : : : ; e0n.Tuples tup(n; e1; : : : ; en) are represented as ompat reords without the featuresand list elements ons(e; e0) also without the features and the width.Names For the representation of names as name(s) the LVM generates aunique string s. This string s is build of several omponents: a unique iden-ti�er for the LVM proess and a unique ounter value whih is hoosen when anew name is reated.The unique identi�er for a LVM proess is reated from the internet address ofomputer (ip address), the time when the LVM was started (timestamp), the

60 CHAPTER 3. THE VIRTUAL MACHINE LVM
Source Compiler Pickle Loader Engine

Store

Program
Machine-Figure 3.7: From Oz soure to the LVM.proess id (pid), and a random number. Under the assumption that all hostshave a unique internet address this ip address, the timestamp, and the pid wouldalready give a unique identi�ation of an LVM proess, but many hosts do nothave a unique ip address therefor some form of randomness is added.Referenes Cyles in the graph are represented using labelled nodes v : e. A la-belled node is referred by a referene ref(v). For example v : tup(2; ref(v); ref(v))is the representation of the tree generated by the expression

let val x = lvar () in unif (x, (x,x)); x end.Proedures The representation of a proedure pro(s; [e1; : : : ; en℄; lbl; :::) hasas �rst argument a globally unique string as de�ned above for names. The fol-lowing argument ontains the nodes e1; : : : ; en stored in the G registers. Thelast argument lbl is the ode label of the start of byteode for the proedurebody. A proedure has further arguments, e.g. a print name and other debugginginformation, whih are irrelevant here.Built-in proedures are represented as bi(s), where s is a unique name of a built-inproedure, e.g. 'reord' or 'newName'.Compiling and loading Pikles are reated by the Oz ompiler. The Ozompiler translates an Oz soure �les using a given environment into a pikle(see Figure 3.7). The pikles reated by the ompiler are funtors. A funtor2is a data struture whih onsists of a spei�ation of its dependeny (importedmodules), a proedure, and a spei�ation of the resulting module. When thepikle is loaded into the LVM the import dependenies are resolved. Then theproedure of the funtor is applied to the nodes obtained by this resolution. Theappliation returns a module.The loader onverts the pikle format of the byteode to the internal formatexeuting the following steps:2We do not explain the details of funtors here (see [22℄ for more information).

3.2. THE MACHINE LANGUAGE 61� Create the graph representation.� Internalize strings to atoms, stati names, and integers.� Internalize feature lists to arities.� Convert the byteode into threaded ode [11, 21, 54℄.� Initialize the inline ahes of ertain instrutions.� Internalize built-in names to built-in proedures.� Internalize swith tables for the indexing instrutions.� Resolve optimized alls.� Platform dependent byte order onversion.3.2.2 InstrutionsThe instrutions of the LVM are summarized in Figure 3.8 and Figure 3.9. Thenumber of instrution is less than 150, whih is an indiation that the byteode ofthe LVM is very ompat. In this setion we give only an overview of the existinginstrutions. In the following setions we introdue them step by step.The instrutions are strutured into the following ategoriesStore operations The reation and aess of symboli data strutures is an es-sential property of the LVM and it has a number of instrutions to eÆientlymaintain them.The LVM does some optimizations for numeri data by implementing someof the arithmeti operators as instrutions, but we have not spent muhe�ort to ompete with other languages wrt. numeri alulations.Control The LVM has extensive support for simple tests and pattern mathingon reords. Furthermore instrutions for threads, exeptions, loks, anddeep guards are available.Proedures Proedures are at the heart of the LVM. Many instrutions supportthe de�nition and appliation of proedures and the maintenane of theloal environment.Uni�ation The LVM has a number of instrutions to support the eÆientompilation of uni�ation. The major reason for optimized uni�ation isthat the LVM uses variables to pass output arguments.

62 CHAPTER 3. THE VIRTUAL MACHINE LVMStore operations (28)
moveXX(i; j) [/XY/YX/GX℄ register move
moveMoveXYXY(i; j; i0; j0) [/YXYX/YXXY℄ multiple register move
putRecordX (ar; i) [/Y℄ reate reord node
putListX (i) [/Y℄ reate list node
putConstant (v; i) load node in register
setVariableX (i) [/Y℄ put new var in �eld
setVoid (n) put n new vars in �elds
setValueX (i) [/Y℄ put value in �eld
setConstant (v) put onstant in �eld
select (i; v; j; key; ind) �eld seletion with ahing
createVariableX (i) [/Y℄ reate new variable
createVariableMove (i; j) . . . ombined with move
inlinePlus (i; j; k) addition
inlinePlus1 (i; j) add one
inlineMinus (i; j; k) subtration
inlineMinus1 (i; j) subtrat one
testLT (i; j; l) less than test
testLE (i; j; l) less or equal testControl (23)
matchX (i; ht) [/Y℄ indexing
getVariableX (i) [/Y℄ get value from �eld
getVarVarXX (i; j) [/XY/YX/YY℄ . . . double value
getVoid (n) skip �elds
testConstantX (i; v; l) [/Y℄ equality test
testRecordX (i; ar; l) [/Y℄ test arity
testListX (i; l) [/Y℄ test list element
testBoolX (i; l; l) [/Y℄ test boolean
testBI (bi; lo; l) built-in appliation and test
try (l) install exeption handler
popEx deinstall exeption handler
lock (l, i) require lok
cond (l; l0) onditional
branch (l) forward jumpProedures (35)
definition (i; proBody) proedure de�nition
definitionCopy (i; proBody; vopy) . . . optimized
endDefinition (l) marker
callX (i; n) [/Y/G℄ �rst-lass appliation
tailCallX (i; n) [/Y/G℄ . . . tail-reursive
directCall (v; n) �rst-order appliation
directTailCall (v; n) . . . tail-reursive
callBI (v; lo) built-in appliation
return end of task
allocateL (i) environment alloation
allocateL1 [/2/3/4/5/6/7/8/9/10℄ . . . with �xed size
deallocateL (i) environment dealloation
deallocateL1 [/2/3/4/5/6/7/8/9/10℄ . . . with �xed sizeFigure 3.8: Instrutions (Part I)

3.2. THE MACHINE LANGUAGE 63
Uni�ation (17)

unifyXX (i; j) [/XY℄ uni�ation
getRecordX (ar; i) [/Y℄ . . . with reord
getListX (i) [/Y℄ . . . with list
getListValVar (i; j; k) . . . ombined
getConstantX (v; i) [/Y℄ uni�ation with onstant
unifyVariableX (i) [/Y℄ read/write variable in �eld
unifyVoid (n) read/write variables in �elds
unifyValueX (i) [/Y℄ read/write value in �eld
unifyValVarX (i; j) [/Y℄ . . . ombined
unifyConstant (v) read/write onstant in �eldObjets (14)
getSelf (i) read self register
setSelf (i) write self register
inlineAt (v; i; key; ind) attribute aess
inlineAssign (v; i; j; key; ind) attribute assignment
sendMsgX(v; i; ar; key; val) [/Y℄ message sending
tailSendMsgX (v; i; ar; key; val) [/Y℄ . . . tail-reursive
applMethX (ami; v) [/Y/G℄ method appliation
tailApplMethX (ami; v) [/Y/G℄ . . . tail-reursiveDebugging (9)
skip no operation
raiseError (v; v0; v00; v000) raise error exeption
debugEntry (: : :) enter proedure
debugExit (: : :) exit proedure
globalVarname (v) print name of G register
localVarname (v) print name of Y register
clearY (i) mark register unused
profileProc start pro�ling
endOfFile markerFigure 3.9: Instrutions (Part II)

64 CHAPTER 3. THE VIRTUAL MACHINE LVMi; j; k register indiesn positive numberv a label of a nodev label of a onstant nodel ode labelar reord aritypri proedure infodi diret all infoami appliation method infoht hash table aheFigure 3.10: Instrution arguments.Objets We will not explain the instrutions whih support objets. They arelisted here just to give an impression how muh support is given for objetsin the LVM.Debugging The ompiler an generate extra ode, whih allows a debugger torelate the byteode to the soure ode and to pro�le the ode.The identi�ers used for arguments are summarized in Figure 3.10. We explainthem when we introdue the instrutions.Diret nodes An unusal aspet of the Oz byteode is the diret referene tonodes in the store from the byteode. In the instrution tables the argumentsontaining suh diret nodes are indiated with a v pre�x.Diret nodes in instrutions provide for ertain optimizations:� Nodes an be aessed diretly without an indiretion through registers.� Nodes need not to be stored in proedure environments.� It beomes possible to use unboxed representation of some data strutures.The optimized �rst-order appliation is for example transformed at run-time into an internal instrution using an unboxed representation of theproedure.� Some data strutures, e.g. strings, atoms, and names, an be reated atload time and need no resoures at run time.Diret nodes are inserted by the ompiler. The ompiler an reate these nodesat ompile time, e.g. strings, atoms, and names. Diret nodes may be also taken

3.2. THE MACHINE LANGUAGE 65void* CodeLabelint32 Arg1. . .int32 ArgNFigure 3.11: Instrution formatfrom the ompiler environment, e.g. referenes to already loaded proedures for�rst-order appliations. When the ompiler reates a pikle all nodes referred tofrom the byteode are pikled too.The possibilities opened by using diret nodes in the ompiler-VM interfae arenot fully explored yet, but the urrent usage shows already that they are veryuseful.Internal format The program store is represented as an array of 32-bit words.An instrution starts with a pointer to the native ode implementing the instru-tion (threaded ode). The following words are the arguments of the instrutionand their number depends on the type of instrution (see Figure 3.11). Thenumber of words needed for an instrution is alled the size of the instrution.In the internal format more instrutions are supported than listed above. In thefollowing we will explain these extensions to the byteode when they are needed.3.2.3 Addressing modesThe instrutions of the virtual mahine an use three di�erent addressing modesfor refering nodes in the graph store:� The X addressing mode uses the global X registers, whih are alloatedper thread.� The Y addressing mode uses the loal environment, whih is alloated perproedure invokation.� The G addressing mode uses the proedure environment, whih is alloatedper proedure de�nition.In the assembler notation the symbol Ri represents one of these modes plus anindex. Register indies start with zero. For example the register G5 refers to thesixth entry in the urrent proedure environment.

66 CHAPTER 3. THE VIRTUAL MACHINE LVMSupporting all addressing modes for all instrutions makes the instrution set veryregular, but a drawbak is that too many opodes are needed. Three opodesare for example neessary for instrutions with one register argument and nineopodes are required for instrutions with two register arguments.The LVM instrution set is designed suh that frequently used addressing modesare diretly supported, e.g. the call instrution supports all three addressingmode. When an addressing mode is used infrequently at least the X addressingmode is supported, beause it is always possible to load any register into an Xregister with additional moves.3.2.4 DisussionThreaded ode Threaded ode [11, 21, 54℄ is the state of the art method for avery eÆient dispath on the byteodes of instrutions. Threaded ode requiresthat the implementation language supports omputed jumps. In our ase theC++ language does not support omputed jumps, but the GNU C++ ompilerhas an extension whih supports them.A drawbak of threaded ode is that the emulator is one huge C++ proedure,whih makes it hard for the C++ ompiler to generate highly optimized ode.An alternative whih was reently proposed by Magnusson, et al. [61℄ is based onthe assumption that a C++ ompiler does the tail all optimization and manymahine registers are available. In this ase every instrution an be implementedas a funtion whih does a tail-all to the next instrution. The state of theemulator is passed in the arguments of these funtions.Stak mahines Many virtual mahines use an operand stak instead of globalregisters, e.g. the JVM [60℄. A major advantage of a stak mahine is that noregister alloation is neessary in the ompiler. For these mahines advanedruntime optimizations resp. optimizations when translating the mahine ode tonative ode are neessary [23, 24℄.Closure onversion The G addressing mode an be removed using a ompi-lation tehnique alled losure onversion [7℄. The losure onversion adds addi-tional arguments to every proedure through whih the free variables are passedwhen the proedure is applied. A drawbak of losure onversion is that it maybe neessary to save the free variables from the additional arguments in the loalenvironment. This is not neessary in our approah, beause the free variablesare stored in the global environment.

3.3. A REFINED GRAPH MODEL 67Closure onversion ould also be applied to our language. It would redue thenumber of instrutions, but it would not give any speed up, beause the G ad-dressing mode does not inur an overhead in our emulator-based LVM.3.3 A re�ned graph modelThis part of the thesis desribes a re�ned graph model for the store of the LVM.The store is a module of the LVM whih is independent of the exeution model.It provides hooks to support multiple omputation spaes whih are explained inSetion 3.6.The level of detail exposed in the re�ned graph model is suh that the key de-sign deisions and optimizations of the implementation an be disussed, e.g.optimized representation of variables in strutures, usage of registers, storageonsumption, and memory management.The re�nements of the graph model whih are explained below an be summarizedas followstagged nodes Units are represented as tagged nodes.three-level tagging sheme A unit is either represented as a single taggednode, a tagged node with a heap node, or a tagged node with a generinode.referene nodes Binding of variables is implemented with referene nodes.eÆient yle hek The yle hek in the uni�ation algorithm is imple-mented with a destrutive operation on the graph.3.3.1 Node lassi�ationFigure 3.12 shows a lassi�ation of nodes in the LVM. In the following paragraphsthe properties of the di�erent node types are de�ned.The nodes in the LVM store an be lassi�ed into tagged nodes and heap nodes,whih are de�ned below.Tagged nodes are small nodes. Tagged nodes have a label, alled the tag. Thetag disriminates di�erent kinds of units. Tagged nodes are small nodes,beause they must �t into one mahine word of the real mahine. All datastrutures represented in the graph are referred to through a tagged node.

68 CHAPTER 3. THE VIRTUAL MACHINE LVM
Direct

Tagged

Node

Heap

GenericLabelledUnlabelledPointerFigure 3.12: Classi�ation of nodes.Diret nodes are tagged nodes with an additional label. The tag and thislabel is suÆient to represent a unit diretly.Pointer nodes are tagged nodes with have a single link to a heap node.Pointer nodes store only the type information of a unit diretly. Otherparts of the representation are stored in the heap node.Heap nodes are nodes of arbitrary size. Heap nodes are only referred to throughpointer nodes. They represent those parts of a unit whih does not �t inthe tagged node.Unlabelled heap nodes are heap nodes with do no have a seondary tag.The primary tag in the pointer node is suÆient to disriminate thetype of the unit.Labelled heap nodes are heap nodes with a seondary tag . The and theseondary tag together disriminate the type of the unit.Generi heap nodes are heap nodes whih hide the details of their rep-resentation. These nodes are only aessible through a number ofinterfae funtions.A unit is either represented as a diret node or as a pointer node and a heap node(see Figure 3.13).Figure 3.14 shows an overview of the tags in the LVM. The onept of taggednodes is essential for the design, beause:1. Every tagged nodes needs the same amount of memory. This means amemory ell storing suh a node an be used and maybe updated to storedi�erent nodes of this lass. Espeially for a dynamially typed languagethis property is needed, beause nodes of arbitrary types an for examplebe passed as arguments and stored in �elds.

3.3. A REFINED GRAPH MODEL 69
CONS

REC

GEN

tagged node

pointer node generic heap node

vt: gc, type, ...

pointer node unlabelled heap node

Hd Tl

pointer node labelled heap node

TUP

1
INT

Figure 3.13: Examples of node representations.
Tag Diret pointer toREF tagged refereneWREF tagged write refereneVAR spae optimized variableFUT spae optimized futureTRANS labelled gen. transientCONS unlabelled list elementREC labelled reord or tupleLIT labelled atom or nameINT int value small integerFLOAT unlabelled oat valueEXT labelled labelled extensionGEN generi generi extensionFigure 3.14: Tagged nodes.

70 CHAPTER 3. THE VIRTUAL MACHINE LVM
Graph view

Tagged Heap

Implementation view

Tagged Heap

Figure 3.15: Fields are glued with their heap node.2. The word size of tagged nodes is the natural size for operations of proes-sors, e.g. load, store, and arithmeti instrutions typially operate mosteÆiently on words.Fields Heap nodes in the LVM have a regular struture. They an have multiplelabels, e.g. a seondary tag or an arity, and a number of �elds. The number of�elds is alled the �eld width. The �elds are ordered and they are aessed bynumbers f1; : : : ; ng.A �eld has a �eld value, whih is a tagged node. In the LVM all �eld values anbe modi�ed. When new heap nodes are reated all �eld values are initialized tothe tagged zero, whih is a speial tagged node, with tag zero and pointer �eldzero, used to indiate an exeptional value. The initialization of the heap nodesupdates this tagged zeros to useful values.An essential aspet of �elds is that a heap node with n �elds has enough storageto represent the n tagged nodes in the �elds. When we draw a graph (see Fig-ure 3.15) we use arrows between the heap node and its �elds values, but thesearrows are speial beause they do not need any memory. A piture whih givesa better intuition is that of a heap node with diretly glued tagged nodes.Changes to the graph invariants A onsequene of storing tagged nodes in�elds and registers is that these nodes an be overwritten and thus destroyed.This is a major hange with respet to the language graph, beause in the re�nedgraph one has to be very areful when reating links to tagged nodes, that thislink is not broken unintentionally by overwriting the �eld resp. register.To alleviate this problem no links to nodes in registers an be reated and onlylinks to nodes in �elds whih are not modi�ed are reated in the LVM.

3.3. A REFINED GRAPH MODEL 71Register nodes Register nodes are a sublass of tagged nodes whih an bestored in registers of the LVM. The unique property of register nodes is thatthey an be repliated without hanging the meaning of the unit they represent.Exept for transients (TRANS, VAR, FUT) all tagged nodes of the LVM havethis property.This property is for example needed to make the register alloation independentof the store. The ompiler an move and opy nodes between registers freely.Another example is the initialization of �elds in new heap nodes. They an beinitialized by opying register nodes into the �elds values.3.3.2 ReordsThe LVM supports di�erent representations for reords: as names and atoms, aslist elements, as tuples, and as other reords.Literals Literals are names and atoms. They are represented as tagged pointerswith the tag LIT. Their heap node has a seondary tag to distinguish atoms andnames.The heap node of an atom is labelled with the string of haraters for the atom.A string is internalized into the LVM through an atom table whih guaranteethat every atom is represented with an unique node. The atom table maps astring uniquely to an atom node in the store.The heap node of a name is labelled with a number and its home spae. Thenumber is used for generating a hash value for the eÆient implementation of thearity (see below). A seond reason for a number is that names must be orderedto simplify the reation of new arities. Names are situated in spaes and needtherefore a home spae (see Setion 3.6).Non-primitive reords List elements are represented as tagged pointers (CONS)with an unlabelled heap node with �elds for the head and tail of the list. Listelements obtain speial optimizations beause they are the most frequently usedkinds of reords.The representation of tuples and other reords is not really di�erent. Only therepresentation of the arity (see below) is optimized in the ase of tuples. Reordsare represented as tagged pointers with the tag REC. The heap node has thearity as label and �elds. The number of �elds of the heap node is equal to thewidth of the reord.Reords are always represented in a anonial form. This means that everyoperation produing a reord needs to normalize it, if it is a list element or a

72 CHAPTER 3. THE VIRTUAL MACHINE LVMtuple. The reason for this is that the equivalene test in the uni�ation algorithmbeomes simple. Two reords are only equal if at least the tags in the taggednodes are the same and also the arities in the ase of non-list reords.Arities A reord arity is a partial funtion from the set of features to a integer.The features f1; : : : ; ng are mapped to the numbers f1; : : : ; ng.The arity has the additional funtionality to eÆiently implement the memberfuntion to test if a feature is in the domain of the arity funtion. The arityfuntion is therefore extended to a total funtion mapping the features not in thedomain to the index 0.Arities are uniquely represented in the LVM. For every set of features a uniqueentry in the arity table is used. The osts for reating resp. �nding a unique arityhave to be paid when new reords are reated. In many ases the arity an bereated at ompile resp. load time. Only when arities are reated dynamiallythe osts for reating a unique arity must be paid at run-time.Unique arities allow to test the equality of two arities very eÆiently. This isfor example neessary for inline-ahing of �eld seletions and for the eÆientuni�ation and mathing of reords.For the eÆient ompilation of reord onstrution and reord math (see Se-tion 3.4) a global order on all features must exist. This order must be onsistentwith the mapping of the arities: if f < f 0 wrt. to the global order then in everyarity ontaining f and f 0 the mapping of f must be less than the mapping of f 0.3.3.3 TransientsAn essential hange in the re�ned graph model is the representation of transients.In the language graph the binding of transients was explained as superimpositionof a new node on the transient. It is pratially not possible to implement thisoperation diretly, beause all links to the transient annot be redireted to itsbinding.Referenes Transients in the LVM use a variation of the representation intro-dued in the WAM for logi variables. A transient is only aessible through anindiretion, alled a referene. A referene is tagged pointer with the tag REFwhere the pointer refers to another tagged node.Transients are represented as tagged pointers with tag TRANS and a labelledheap node, whih ontains a seondary tag for the di�erent kinds of transients,the home spae, the suspensions, and possibly attributes.

3.3. A REFINED GRAPH MODEL 73
REFREF REF

TRANS

VAR

x:

unif (y, z)

VAR

REF REF

TRANS

REF

TRANS

FUT

y: z:

unif (x, 1)

REFREF REF

INT1

REF REF REF REF

TRANS

FUT

z:

REF

Figure 3.16: Binding transients with multiple referenes.Binding A transient is bound by overwriting its tagged node with a new taggednode. Figure 3.16 shows a variable x with multiple referenes whih is bound tothe number 1 and a uni�ation of a variable y with a future z .Dereferening The referene nodes are not hanged when a variable is boundand remain in the graph. When binding a transient to another transient a hainof referenes is reated. A referene node an therefor refer to a transient node,another referene node, or a determined node.The LVM handles these ases by transparently dereferening tagged nodes, beforeusing them. The dereferene operation follows a hain of referene nodes untilthe end. The dereferene operation is performed whenever the type of a node isneeded.Van Roy [104, 105, 106℄ uses an alternative design for dereferening for high-performane Prolog implementations. In this approah referenes are not deref-erened transparently, but an expliit operation to dereferene a node is used.This sheme is espeially useful if the ompiler �nds out, e.g. with global analysistehniques, where no referenes ever our.

74 CHAPTER 3. THE VIRTUAL MACHINE LVMIn most ases the dereferene operation is needless, beause only very few ref-erene nodes exist in typial programs. The LVM an irumvent the problemof useless dereferene operation, beause it is dynamially typed. Whenever anode of a ertain type is expeted, e.g. an integer in an arithmeti operation, atype test has to be performed anyway to ensure that the node is of the expetedtype. In the LVM the test for the expeted type is done before the derefereneoperation. Only if the node is not of the expeted type a dereferene operationis performed and the type test is repeated.The following program fragment shows the example of an operation to add oneto a node, whih is expeted to be an integer.
Tagged plus1(Tagged a) f
if (!isInteger(a)) f

a=deref(a);
if (!isInteger(a)) error;g

// perform operation on integer node
...gSafe dereferening As already pointed out transient nodes are no registernodes and they annot be dupliated. A problem whih ourred frequently dur-ing the implementation was the repliation of transients after using dereferening.One has to be very areful that the node obtained by the dereferene operator isonly stored in registers if it is no transient.To irumvent this kind of bugs an alternative to the dereferening until the endof a referene hain is the safe dereferening whih guarantees that only registernodes are returned. A referene node is only returned if it is the last referene ina hain whih points to a transient.Shorten referene hains The virtual mahine guarantees that no yli ref-erene hain an be reated, but referene hains an be arbitrary long. Possiblemeans to shorten referene hains3 are:� A heuristis whih binds newer to older transients is useful for the funtionalprogramming style, where two types of variables our frequently: shortlived temporary variables whih are bound quikly after their reation andlong lived variables whih are for example bound at the end of a reursion.3With spaes using the sripting tehnique the shortening of hains needs speial are,beause it must be possible to undo bindings of transients.

3.3. A REFINED GRAPH MODEL 75� When the garbage olletor traverses the graph store it shortens the refer-ene hains, suh that only referenes to transient nodes remain.� Nodes an be dereferened before they are stored in a �eld. Under theassumption that referenes are rare and most nodes are aessible withouta referenes the overhead for this tehnique is to high for a little gain andis not used in the LVM.� Similar is the tehnique to shorten referene hains when aessing a �eld,whih is also not performed in the LVM.Transients in �elds Transient nodes are not stored in the registers of theLVM diretly. They an be stored only on the heap and have to be referenedindiretly with referene nodes in registers.It is however possible to store transients diretly in �elds. This is useful to savememory. Espeially with the optimized representation explained below somevariables need no memory at all. Transients in �elds are alled diret transients.When a transient in a �eld is aessed, e.g. to store it in another �eld or amahine register, a ompliation ours, beause transients annot be repliated.The aess to suh a �eld needs to reate a referene to this �eld whih an thenbe stored in registers and other �elds.To avoid that every �eld aess introdues a sometimes superuous referene nodea test is performed for every �eld aess if the �eld ontains a diret transient ornot. Alloating transients in �elds requires speial are in the opying garbageolletor to ensure that diret transients are not opied out from their �elds (seeChapter 4).In the WAM representation of variables no suh problem ours beause variablesare represented as self referenes and an aess resp. opy of suh a self refereningpointer automatially turns it into a referene to the variable.Transients annot be stored diretly in �elds of ells, beause these are overwrittenand potentially reated referenes to this transient will refer to a wrong value afteran exhange.Optimized variables The LVM supports an optimized representation of vari-ables, with a single tagged pointer node with tag VAR. The pointer �eld of thisnode refers to the home spae of the variable (see Setion 3.6).The optimized variable is a variable with no suspensions and no attributes. When-ever a suspension or attributes are added to this variables its representation istransformed into the unoptimized transient representation.

76 CHAPTER 3. THE VIRTUAL MACHINE LVMThe major reason for the introdution of optimized variables is that the LVMuses proedures with variables as all-by-referene parameters for returning out-put and has no support for funtions with a return value. Variables are thusreated frequently whih are only introdued for the output argument and theiroptimization has a real inuene on the performane of almost every program.The seond e�et of optimized variables is that they an be diretly stored in�elds of reords without requiring additional memory. In onnetion with theall-by-referene ability this means that strutures an be eÆiently onstrutedtop-down with tail-reursive proedures.In the following example of the append proedure app to onatenate two liststhe output list zs is onstruted top-down. The temporary variable zr needs nomemory, beause it an be diretly alloated in the tail �eld of the list x::xr .The reursive appliation of app then gets a referene node to the tail �eld asthird argument.
fun app (nil, ys, zs) = unif (zs, ys)j app (x::xr, ys, zs) =

let val zr = lvar () in
unif (zs, x :: zr);
app (xr, ys, zr)

end;Optimized futures It is often useful to use futures instead of variables instrutures whih are visible to onurrent threads to protet them. For examplein a onsumer-produer appliation where the ommuniation hannel is imple-mented as a stream it is usually desirable that only the onsumer is able to writeto the stream. In this ase the onsumer would reate a stream where the tailis a future. The orresponding variable would be only visible to the onsumer.With the implementation of futures desribed above memory for a variable anda future would be needed besides the memory for the stream.The proedure appFut shows an append proedure with futures. The tail of thelist is the future of zr to avoid that a onurrent reader an write on the outputstream.
fun appFut (nil, ys, zs) = unif (zs, ys)j appFut (x::xr, ys, zs) =

let val zr = lvar () in
unif (zs, x :: future zr);
appFut (xr, ys, zr)

end;A variable with a future an be represented similarly to the optimized variablesdesribed before. An optimized future is a tagged node with tag FUT and a

3.3. A REFINED GRAPH MODEL 77pointer to the spae. Similar to the optimized variable it is turned into thetransient representation when a thread suspends on it.To represent the variable of this future we introdue a seond kind of referenes,namely write referenes, with the tag WREF. The variable of a future is thenrepresented as a write referene to the optimized future. When this variableshould be bound the dereferene operation disovers that the referene is a writereferene to a future and the binding operations replaes the future with the newbinding.A variable an be assigned only when the hain of referenes to the future ontainsonly write referenes. When a usual referene is found in the hain this meansthat the variable represented with the write referene was already bound. Onlyin the ase that a transient must be bound the dereferening operation has to beextended to test that only write referenes are found.When a �eld with an optimized future is aessed a usual referene is reated.When a �eld with an optimized variable is aessed a read-write referene isgenerated.3.3.4 Uni�ationThe basi idea of a pratial implementation of the uni�ation algorithm is toimplement the equivalene lasses by binding one struture to the other andreating a referene similar to binding variables.This algorithm has quadrati omplexity, beause the referene hains an growto the size of the tree, but for pratial programs this does not our and theoverhead for this implementation is muh smaller ompared to overhead for main-taining the equivalene set.This implementation of uni�ation reates sharing of ommon strutures. Insome ases this is a desired feature to redue the memory onsumption and italso is a kind of memorization. To avoid problems with spaes the sharing mustbe retratable. Therefore the uni�ation algorithm trails every struture bindingand undoes all binding when the uni�ation terminates (suessfully or not).The destrutive uni�ation is only possible beause the LVM has a single workerand uni�ation is a non-interruptible atomi operation.For an optimized implementation of uni�ation it is essential to try the frequentlyused ases �rst. Beause the LVM implements output arguments of funtions asall-by-referenes parameters, it ours very frequently that a variable is reatedbefore a funtion appliation with is bound to a value inside the funtion. Theunify instrution therefore �rst tests for this very ommon ase.

78 CHAPTER 3. THE VIRTUAL MACHINE LVM3.3.5 DisussionThree-layered representation sheme The LVM supports many built-indata types, e.g. small integers, big integers, atoms, names, reords, logi variables,futures, ells, and proedures, and it is extensible to support even more types.This is possible beause it uses a sheme with three layers: tagged nodes, taggedextensions, and generi extension.The bottom layer are tagged nodes. Tagged nodes allow to implement frequentlyused data types like small integers, lists, literals, variables and futures, eÆiently.Tagged extensions are not as eÆient as tagged nodes, but there overhead isvery small ompared to the ost of operations on the data they represent, e.g.arithmeti on big numbers (see Chapter 4).Generi extensions allow through a small set of interfae funtion the integrationof arbitrary new data types. This interfae is very onvenient to experimentwith no types and to add data types where unbox, box, and type tests are notperformane ritial (see Chapter 4).The same layered approah is also used for transients, with optimized represen-tations as tagged nodes for variables and futures, and a generi representationas transient heap nodes. In Chapter 4 we show the virtual funtion interfae fortransients whih allows to integrate other types of transient values.Other transient representations The representation of variables in the mostpopular mahine for Prolog, the WAM [110, 111, 1℄, inspired muh of the represen-tation of transients in the LVM. The representation of variables as self-referenesfrom the WAM whih is extremely useful for making the alloation of variablesin �elds and their aess eÆient annot be used in the LVM, beause we supportmultiple omputation spaes and a variable needs to represent its home spae.The WAM alloates variables also in the registers of the environments. Theseunsafe variables have to be treated arefully suh that they are moved to the heap,if they extend the lifetime of their ativation reord. In the LVM variables arenever alloated in registers, but it should be possible to integrate this tehniqueinto the LVM. It is questionable what the gain of this optimization ould be underour assumption of an infrequent use of logi variables.Return value plaement Van Roy [105℄ proposes an optimized representationof uninitialized variable for high-performane Prolog implementations. In theLVM we do not use this tehnique beause the number of variables used foroutput arguments of funtions whih are not alloated in �elds is very small. Itis furthermore unlear how to integrate spaes and uninitialized variables.

3.4. SEQUENTIAL EXECUTION 79In logi programming and in the LVM return values are passed in memory usinglogi variables as all-by value parameters. Funtional languages typially usemahine registers to plae return values. Both approahes have advantages anddisadvantages, e.g. the logi approah works very well for the tail-reursive top-down onstrution of strutures and the funtional approah works very well fornumeri problems.Bigot and Debray [13℄ disuss how to ombine the plaement of return valuesin logi programming and funtional programming and how to provide ompilersupport for an optimal plaement poliy.Sheidhauer [87℄ analyses the di�erene between the two plaement poliies forOz.Taylor's sheme Taylor [101℄ proposed a sheme to represent variables suhthat no referenes remain after a variable is bound. This sheme was analyzed in[59℄ and the authors ame to the onlusion that for Prolog the gain is doubtful.Taylors sheme is not ompatible with the idea of tagged register nodes in theLVM, beause their essential property is that they are repliable and keepingtrak of all valid replias inurs to muh overhead.In the funtional programming style referenes our very infrequently and asexplained above the possibility of referene hains does not have an e�et on theeÆieny of programs whih do not have referenes.3.4 Sequential exeutionIn this setion we explain how a single thread is exeuted by the worker. We ex-plain the instrutions to reate and aess nodes, proedure de�nitions, proedureappliations, and pre-de�ned built-in proedures.3.4.1 WorkerThe worker exeutes the tasks of a thread in sequential order. The tasks on thethread are of di�erent types, namely ontinuations, save tasks, and handler tasks(see Figure 3.17).A ontinuation task (PC;G; Y) is a losure of a mahine program starting atthe ode address PC. G and Y are the environment for the exeution of theinstrutions. G is the referene to the proedure node in the store and Y is areferene to the loal environment.

80 CHAPTER 3. THE VIRTUAL MACHINE LVMtask type task ontentontinuation (PC;G; Y)save task save(X1; : : : ; Xn)handler task ex(PC;G; Y)Figure 3.17: Tasks.The worker exeutes ontinuations by loading them into the orresponding taskregisters PC, G, and Y . A ontinuation is then exeuted by an emulator in thea feth-deode-exeute yle. Instrutions are fethed from the program store atthe address PC and exeuted using the G, Y and X registers to address nodesin the store.In the literature a ontinuation task is sometimes alled proedure invoation orativation reord of proedures.Saving X registers The worker maintains a single set of global registers X,but it provides the illusion that every thread has its private set of X registers. Theillusion is preserved by saving all valid X registers when a thread is preemptedor suspended and restoring them when the thread is restarted.A save task ontains all urrently valid nodes in the X registers. When theworker restarts the exeution of this thread the �rst task to exeute is the savetask, whih restores the values of the X registers.The valid X registers are only approximated when a save task is reated. TheLVM saves all X registers from zero to maxX, where maxX is the maximal num-ber of X registers used in a proedure. This number is alulated by the ompilerand stored in the proedure de�nition instrution. During garbage olletion theexat number of used X registers is alulated using a liveness analysis algorithm(see Chapter 4).Exeption handler task A handler task is reated for exeption handling.They are never exeuted diretly, but they are used as a marker on the stak ofa thread, when an exeption is raised (see Setion 3.4.7 below).3.4.2 Store operationsIn this setion we give a brief overview of the instrutions for reating and a-essing nodes. An example for reating a reord node is the funtion f as follows
fun f z =
let val x=lvar ();

3.4. SEQUENTIAL EXECUTION 81
val y=f’a’=1, ’b’=x, ’c’=zg

in
...

endIt ompiles into the following snippet of a pikle
v0: proc(s,[],lbl,...)
v1: int(1)
...
% X[0] contains z
% X[1] contains x
% X[2] contains y
lbl:
createVariableX(1)
putRecordX(ar(’a’, ’b’, ’c’),2)
setConstant(v1)
setValueX(1)
setValueX(0)
...The createVariableX(1) instrution adds a variable node to the store andputs a referene to it into the register X1. The putRecordX instrution adds areord node with arity fa; b; g to the store and stores it into register X2.The �elds of the reord are not yet initialized. The struture pointer SP is setto the �rst �eld of the reord suh that the following instrutions an initializethe �elds of the reord.The instrution setConstant(v1) writes the node represented at the piklelabel v1 (the integer one) into the �rst �eld and inrements the struture pointer(SP). setValueX(1) resp. setValueX(0) write x stored in X1 resp. z stored inX0 into the remaining �elds of the reord.The struture pointer (SP) is a generalization of the tehnique known from theWAM to aess the �elds of tuples. In the LVM it allows to aess the �eldsof reords. The insight here is that if the arity of a reord is known at ompiletime then the ompiler an already ompute the mapping of features to indies.This mapping de�nes the order of the set instrutions suh that the �elds anbe onseutively written.Similar to the WAM the uni�ation of reords is optimized using get and unifyinstrutions. For example the funtion
fn x =>
let val y=lvar()
in

unif(x, f’a’:y ’b’:y g)
end

82 CHAPTER 3. THE VIRTUAL MACHINE LVMis ompiled into the byteode
% X[0] contains x
% X[1] contains y
getRecordX(ar(’a’, ’b’),0)
unifyVariableX(1)
unifyValueX(1)3.4.3 ControlIn this setion we briey explain the basi ideas for ompiling pattern mathing.In detail the ontrol aspets of the ore language are disussed in [87℄.A ase statement is ompiled into a match (i; ht) instrution, whih ontains ahash table ht whih maps primitive values and reord arities to ode labels. Weuse the notation ht(1 : l1; : : : ; n : ln; : : : ; ar1 : l01; : : : ; arm : l0m; else : le) for ahashtable whih maps the onstants i to the labels li and the arities ari to thelabels l0i. The math instrution has the else label le, whih is used if no othermath is found in the hash table. The instrution suspends if the register Xi isa transient value4.The following ase expression
case x of f’a’=x1, ’b’=x2g => unif(o,x1+x2)j 1 => 2j x => 3is ompiled to
v2: int(2)
v3: int(3)
...
% X[0] contains x
% X[1] contains o
matchX(0,ht(1:l1,ar(’a’, ’b’):l2,else:l3))
l1:

getConstant(v2,1)
return

l2:
getVarVar(0,2)
inlinePlus(0,2,0)
unifyXX(0,1)
return

l3:
getConstant(v3,1)
return4In mozart the math instrution is extended to support early failure for attributed variables.

3.4. SEQUENTIAL EXECUTION 83To eÆiently deompose reords the match instrutions initializes the struturepointer (SP) suh that getVariableX instrutions an be used to read the �eldvalues of reords. The instrution getVarVar (i; j) is a ombination of two get-

VariableX instrutions and reads the next two �elds into the registers Xi andXj.As optimization of the match instrution with a single ase the test instru-tions are provided, e.g. testConstantX (i; v; l) is equivalent to the instrution
matchX (i; ht(v : l1; else : l)), where l1 is a label added to the diretly followinginstrution.3.4.4 ProeduresFuntions of the language L are represented as proedures in the LVM. Fun-tions are onverted to proedures by adding an impliit argument, whih is usedas all-by-referene argument for the result value. This means every funtion
fn x => e is transformed into a proedure with two arguments. In the oursyntax the resulting funtion would be fn (x, y) = > unif (y, e) .In the LVM proedures with many arguments are allowed. The tehnique howsingle argument funtions an take advantage of the multiple argument allingonvention of the LVM is not disussed in detail here. Briey every proedureand every proedure appliation knows the expeted resp. supplied arity andduring the appliation the proper onversions are done. When a proedure whihexpets a single argument is alled with multiple arguments these are pakagedinto a single reord. When a proedure whih expets multiple arguments isalled with a single argument this is unpaked during the appliation.Proedures are �rst lass values and they are dynamially reated. First lassvalue means that proedures are nodes in the graph store, whih an for examplebe passed as parameters to proedures and stored in other strutures.Dynami reation means that proedures not only have a stati part, the ode,but also a dynami part, the proedure environment. The proedure environmentenapsulates the values of the free variables of a proedure at the moment of theproedure de�nition.To store temporary values during a proedure invoation a loal environment anbe alloated (see below).Proedure de�nition Proedures are reated dynamially with the instru-tion definition (i; proBody). The proedure body proBody ontains thestati information about the proedure. We use the notation pb(ode : lbl; arity :n; g : pe(r0 : i0; : : : ; rm : im); maxX : k; : : :) for the proedure body. The �elds ofthe proedure body are

84 CHAPTER 3. THE VIRTUAL MACHINE LVM� A ode label lbl for the start of the byteode of the proedure.� The arity n of the proedure whih de�nes the number of arguments.� The proedure environment pe(r0 : i0; : : : ; rm : im), where rl 2 f0x0;0 y0;0 g0gand il is an index. rl : il means that the lth entry of the proedure envi-ronment is in register Ril , where R is X resp. Y resp. Z) if rl is 'x' resp. 'y'resp. 'z'. The node in Ril an be addressed with the G-addressing mode asGl in body of the proedure.� The maximal number (maxX) of X registers used in the proedure. Thisnumber is used for saving the X registers for ontext swithes.� Further stati information, e.g. debug information like the proedure name,the �le, and line number.The instrution definition (i; pb) where pb is pb(ode : lbl; arity : n; g : pe;maxX :k; : : :) and pe is pe(r1 : i1; : : : ; rm : im) reates a new proedure node in the graphstore with m �elds, whih are initialized with the nodes stored in Ri1 ; : : : ; Rim .The proedure node is labelled with the proedure body pb. A referene to theproedure node is written into the register Xi.As an example we show the ompilation of the funtion f with argument x anda free ourrene of c .
val c=1;
fun f x = x+c;It is ompiled to the pikle
v1: int(1)
...
% X[0] = c
% X[1] = f
putConstant(v1,0)
definition(1,pb(code:lbl, arity:2,

g:pe(x:0), maxX=2,...))
...
lbl:

moveGX(0,2)
inlinePlus(0,2,0)
unifyXX(0,1)
returnProedure appliation The proedure appliation callX (i; n) waits until Xiis a determined node. If Xi is no proedure or the number of atual arguments ndoes not math the expeted number of formal arguments an exeption is raised.

3.4. SEQUENTIAL EXECUTION 85If Ri is a proedure node with label pb(ode : lbl; arity : n; g : pe;maxX :k; : : :) then a ontinuation (lbl;�; Ri) is reated. The loal environment in thisontinuation is initially empty.The worker saves the urrent ontinuation from the task registers on the taskstak and starts with the exeution of this new ontinuation.Return The ode of a proedure is terminated with the return instrution.The exeution of this instrution informs the worker to exeute the next taskfrom the thread.Tail-all Tail-all optimization is essential in languages without loop onstruts.The ompiler inserts the instrution tailCallX (i; n) for a sequene callX (i; n);
return of an appliation and a return instrution. When the worker exeutes
tailCallX (i; n) it reates a new ontinuation task as for the callX (i; n) instru-tion, but does not save the urrent ontinuation from the task registers onto thestak.For tail-alls the task stak does not grow and therefore arbitrary deep reur-sions are possible. Tail-all optimization is trivial in LVM, beause there are nointer-task referenes. In other words ommuniation between tasks is done onlythrough the global X registers and the graph store. This is in ontrast to manyother imperative languages, where referenes to loal stak frames an be passedas arguments or where stak frames are linked together.Calling onvention The LVM has a single alling onvention for user-de�nedproedures. A proedure has a �xed number of input arguments and no outputarguments. The arguments an be seen as all-by-referene parameters, beauseonly referenes to nodes in the store are passed as arguments.The parameter are passed in the X registers, where X0; : : : ; Xn ontain the atualarguments. The ontent of the other X registers is unde�ned.We use a aller-save model for registers whih means that the aller is responsiblefor saving X registers into the loal environment before an appliation. After anappliation the ontent of the X registers is unde�ned.Optimized appliation The instrution directCall (v; n) is an instane ofthe all-instrution where the ompiler statially knows that the proedure is a�xed value and will not hange.The virtual mahine optimizes this ase by using an unboxed representation forthe proedure. Furthermore the test if the number of atual and formal arguments

86 CHAPTER 3. THE VIRTUAL MACHINE LVMmath is performed only one. The details of these optimized alls are explainedin [87℄.The performane di�erene between the optimized and the non-optimized appli-ation is approximately a fator of two. A diret all is almost as eÆient as ajump. A small overhead has to be paid for the preemption test.Loal environment Loal environments allow to store temporary values dur-ing a proedure ativation. A loal environment whih allows to store n referenesto nodes is reated with the instrution allocate (n). Loal environments areaddressed with the Y addressing mode.In the virtual mahine the alloation of the loal environment is separated fromthe reation of proedure tasks to allow for optimized alloations in di�erentbranhes of the omputation, e.g. in many proedures no loal environment isneeded in one of the branhes of the omputation.Loal environments have the property that they are single referened, whih is animportant invariant for memory management. After the dealloation the storageof loal environments an be immediately reused. This reuse provides for loalityof memory usage whih maximizes the use of ahes.Loal environments are expliitly dealloated with the deallocate (n) instru-tion. The expliit dealloation allows to reuse memory as soon as possible. Analternate design would be the impliit dealloation when the task terminates.This design would limit the possibilities of a ompiler to alloate and dealloatemany di�erent environments on one paths of a proedure, e.g. to trim the envi-ronment to the urrent need, and it would inur an overhead even for proedureswhih do not need an environment.Example As a very small example we show the byteode generated for theappend funtion to onatenate two lists
fun app (nil, ys, zs) = unif (zs, ys)j app (x::xr, ys, zs) =

let val zr = lvar () in
unif (zs, x :: zr);
app (xr, ys, zr)

end;The funtion app is ompiled into the following pikle
vApp:

proc(s,[],lbl)

...
definition(0,pb(code:lbl, arity:3, g;[],maxX:3,...))

3.4. SEQUENTIAL EXECUTION 87Name/In/Out desriptionreord/1/1 dynami reord onstrutionselet/2/1 �eld seletionnewCell/1/1 ell reationellAess/1/1 ell aessellExhange/2/1 ell exhangenewName/0/1 name generation�,div,mod/2/1 arithmetifuture/1/1 futurewaitOr/2/0 synhronizationbyNeed/1/1 by-need synhronizationfeatureC/3/0 feature onstraintwidthC/2/0 width onstraintraise/1/0 raise an exeptionspawn/1/0 fork a threadFigure 3.18: Built-ins of the LVM.
...
lbl:

matchX(0,ht(nil:l1, cons:l2 else:l3))
l1:

unifyXX(1,2)
return

l2:
getVarVar(3,0)
getListValVar(2,3,2)
directTailCall(vApp,3)

l3:
raiseError(...)3.4.5 Built-in proeduresSimilar to the usage of operators in the language de�nition the virtual mahinehas built-ins. Built-ins implement ore funtionality of the LVM whih is notdiretly available through instrutions. The built-ins of the LVM are summarizedin Figure 3.18.Built-in proedures are a exible extension mehanism for adding new funtion-ality to the engine of the LVM.The designer of the VM has the hoie to implement operations as mahineinstrutions or as built-in proedures. The trade-o� between these possibilities

88 CHAPTER 3. THE VIRTUAL MACHINE LVMReturn ode Explanation
PROCEED suessful termination
SUSPEND blok the thread
RAISE raise an exeption. . . other speial purpose odesFigure 3.19: Return odes.is that the dispath for instrutions is muh faster than the appliation of abuilt-in. The number of instrutions should be small to redue the omplexityof the emulator. The overhead for alling a built-in proedure an, for example,be tolerated if it is muh smaller than the time spend for the operation itself,e.g. dynami reation of an arity. Built-in proedures are also well suited if thefuntionality they provide is not time ritial at all. They are very useful forexperimentation.The instrution callBI (vbi; lo) implements the appliation of built-in proe-dures, where vbi is a referene to a node representing the built-in proedure andlo is the mapping of the X registers to the input and output arguments. Thebuilt-in proedure is alled with the mapping as argument.Return odes The result of the appliation of a buil-in funtion an be su-essful, it may require to suspend the thread, or it raises an exeption. Theseonditions are signalled with a return ode. The return odes are listed in Fig-ure 3.19.When a built-in proedure returns PROCEEDit was suessful and the next in-strution is exeuted.When a built-in proedure suspends, signaled with the SUSPENDreturn ode, itreturns a list of transients in the �eld suspendVarList in the register retInfo .In this ase the worker saves the urrent task (PC; Y;G) and the X registers.Then it reates a suspension to reshedule the thread when any of the transientsin the register retInfo.suspendVarList is bound. The appliation of the built-in proedure is retried when the thread is woken up. The suspension mehanismis explained in Setion 3.5.When a built-in proedure raises an exeption then the exeption value is putinto the retInfo.exceptionValue register. The worker is then responsible tosearh for an exeption handler as desribed in Setion 3.4.7.The callBI instrution is a speial ase of the call instrution whih is ex-plained in Setion 3.4. The ompiler generates the optimized built-in all if itstatially known that a built-in proedure is applied.

3.4. SEQUENTIAL EXECUTION 89The main di�erene between the generi appliation and the built-in appliationis that the later is an inlined appliation. For inlined appliations the ompilerdoes not generate ode to save the global registers Xi into the loal environment,beause the built-in proedure only modi�es the registers marked as output valuesin the loation mapping lo and leaves all other registers unhanged.For example the ompilation of the following two funtions shows the di�erenebetween the inlined ompilation of selet in f1 and the non-inlined ompilationof a user-de�ned funtion in f2 .
fun f1 (x,y) =
let val z = select(x,y)
in

(x,z)
end

fun f2 (x,y) =
let val z = g(x,y)
in

(x,z)
endThe ompilation of f1 is short and straightforward.

% function f1
% X[0]=x
% X[1]=y and z
% X[2]=output
l f1:

callBI(vselect,loc([0,1],[1])
getRecordX(ar(1,2),2)
unifyValueX(0)
unifyValueX(1)
returnIn the byteode for f2 a loal environment is needed to save three registers beforethe appliation of the funtion g.

% function f2
% Y[0]=x
% Y[1]=output
% Y[2]=z
l f2:

allocateL3
moveXY(0,0)
moveXY(2,1)
createVariableX(2)
moveXY(2,2)
callG(0,2)

90 CHAPTER 3. THE VIRTUAL MACHINE LVMBit 0 1 2 3 4 : : : 31Flag NeedGC PreemptThread IOReady Timer unusedNeedGC Trigger a garbage olletion. (see Chapter 4)PreemptThread The time slie for a thread is expired.IOReady An I/O hannel is ready for new data. (see Chapter 4)Timer The user timer is expired. (see also hapter Chapter 4)Figure 3.20: The status register.
getRecordY(ar(1,2),1)
unifyValueY(0)
unifyValueY(2)
deallocateL3
return3.4.6 Status registerBefore exeuting a task the worker heks if a bit in the status register is set(see Figure 3.20). The status register signals events that have to be handledsynhronously to guarantee mutual exlusion for the store. These events areasynhronously deteted, e.g. in the memory management layer during the allo-ation of new memory, when the operating system delivers Unix signals, whenpreemption or user-de�ned timers expire, or when I/O hannels are ready.The worker preempts the exeution of a thread when any bit in the status registeris set. The ost of the synhronization is: reading the status register, a test if itis zero, and a onditional branh.Disussion Various methods for the eÆient integration of I/O are disussedin [81, 5℄. For an emulator-based approah our method seems to be well-suited.One possible optimization is to lower the frequeny of synhronization points byusing a ounter stored in a native register. The ounter is deremented at everysynhronization point, but the status register is only heked when the ounteris expired.In an implementation of the LVM whih supports multiple workers the statusregister is obsolete. The tehniques to synhronize the onurrent workers an bealso used to synhronize the asynhronous events.Another alternative would be to give up fairness of threads and provide primitivesat the user level to preempt and yield a thread. This approah is for examplehosen for Java: the sheduling poliy and fairness assumptions are not spei�ed,

3.4. SEQUENTIAL EXECUTION 91but these are implementation and platform spei�. Oz is designed as a languagewhih supports eÆient onurreny, whih is salable to thousands of threads.Leaving fairness unspei�ed would lead to nonportable designs, whih depend onertain implementations resp. platforms.3.4.7 ExeptionsExeption handling is implemented in the LVM with the instrution sequene asfollows
try (L). . . body . . .
popExThe try instrutions installs the exeption handler during the exeution of thebody and the popEx instrution removes the handler.The try instrution �rst reates a handler task ex(L;G; Y 0), where Y 0 is a opyof the urrent loal environment Y , and pushes this handler as a marker on thetask stak.After the installation of the handler the following instrutions are exeuted untilan exeption is raised or the popEx instrution is exeuted. When no exeptionis raised during the exeution of the exeption body the handler task is removedfrom the top of the stak by the popEx instrution.The generi ompilation of catch (body, handler) operator does not takeadvantage of the loal and proedure environment. Only if the ompiler knowsthe de�nition of the body resp. handler proedure it an generate more eÆientode to reuse the environments.Exeptions are �rst-lass values and the built-in proedure raise (i) raises theexeption with value Xi. When a built-in proedure returns the exeption statusode the worker searhes for the topmost handler task on the task stak. If suha task ex(PC;G; Y) is found all tasks inluding the handler task are removedfrom the stak. Then the exeption value is moved to X0 and the handler task isexeuted. If no handler is found on the task stak a default handler is exeuted,whih usually prints the exeption and terminates the thread.The main ost fators of the LVM exeption handling are� Two instrutions must be exeuted to install and deinstall the handler ifno exeption is ever raised.� For the ompiler the exeption handler, and the ode following return aredi�erent tasks, i.e. nothing about the ontent of the X registers, exept forX0 in the exeption body, an be assumed.

92 CHAPTER 3. THE VIRTUAL MACHINE LVM� Optimizations whih reorder instrutions have to be very areful to respetthe exeption semantis, e.g. moving onstant expressions out of a proedureis not allowed when this expression ould possibly raise an exeption.Handler register A simple optimization of the mehanism to �nd an exeptionhandler is the introdution of a handler register per thread, whih ontains areferene to the topmost exeption handler task. To allow the eÆient update ofthe handler register all handler tasks are then linked together.Tail-all optimization Exeption handling prevents tail-all optimization forthe exeption body, beause the exeption handler has to be expliitly deinstalledwith the instrution popEx .It is possible to impliitly disard the exeption handler whenever the worker seessuh a task at the top of the thread. This would allow to replae the sequene
popEx ;return by a single return . A small drawbak of this solution is thatthe loal environment annot be shared between the exeption body and theexeption handler, but it has to be expliitly opied.Disussion The LVM exeption mehanism is similar to the Standard ML ofNew Jersey (SML/NJ) implementation of exeption handling [7℄. In SML/NJan expliit exeption stak of handlers is maintained, whih is updated wheneverthe omputation enters and exists the exeption body. In the LVM the exeptionstak and the task stak are integrated, whih allows for the tail-all optimization.In imperative languages, e.g. GNU C++ [99℄ and the JVM [60℄, exeption han-dling is implemented with tables, whih map a range of program ode to anexeption handler. When an exeption is raised for eah stak frame a lookup inthe exeption table has to be performed. The advantage of exeption tables isthat no instrution is exeuted at runtime when no exeption is raised.The LVM design does not use exeption tables, beause a design goal was thatraising an exeption should be eÆient and enables the use of exeptions as apowerful programming onstrut for non loal exits of reursive funtions andbloks.3.5 Threads3.5.1 Thread modelThe LVM exeutes at most one thread at a time. A thread an be in one of threestates: runnable, running, or bloked (see Figure 3.21).

3.5. THREADS 93
runnable running

blocked

terminatecreate schedule

preempt

wakeup suspend

Figure 3.21: Thread states.A new thread is reated with the spawn built-in applied to a proedure. Theinitial task on this thread is the appliation of the proedure. The new thread isinitially in the runnable state, whih means that it has the potential to exeuteits next task.When a thread is seleted for exeution its state hanges from runnable to runningand the worker starts its exeution. In the LVM exatly one thread is in the staterunning, beause it has a singe worker.An exeution of a running thread an be preempted to guarantee fairness withother runnable threads. In this ase the status of the thread is hanged fromrunning to runnable.When the running thread suspends on one or more transients it beomes bloked.A bloked thread is woken up when a transient on whih it suspends is bound.A running thread terminates when its task stak is empty.3.5.2 ShedulerThe sheduler is responsible for maintaining the runnable threads and assignsa thread to the worker for exeution. The sheduler ontrols the preemptionof the thread exeuted by the worker to guarantees fairness among all runnablethreads. The runnable threads are stored in a queue and the sheduler uses asimple round-robin poliy to selet a thread for the worker.A preemption timer is started and the worker exeutes the thread. When thepreemption timer expires the time slie for the running thread is over and itis preempted. Preemption of a running thread only happens when the workeris ative. During the emulation of instrutions the preemption is ignored anddelayed until the next synhronization point.

94 CHAPTER 3. THE VIRTUAL MACHINE LVMPreemptive sheduling The worker beomes ative during the emulation atertain synhronization points. The synhronization points are hosen suh thatthey are met frequently, but not too frequently.Æ(t) << d The time between to synhronization points Æ(t) should be muhsmaller then the duration of the time slie d.o << Æ(t) The overhead at the synhronization points to hek if the shedulerrequests preemption o should be muh smaller than the time between twosynhronization points.The LVM has two synhronization points. The �rst is the reation of new tasks,e.g. when applying a proedure. The seond is when a task is popped fromthe stak. This sheme guarantees fairness, beause unbound omputations areonly possible through the reation of new tasks5. The synhronization pointwhen popping a task is neessary to avoid that the unwinding of a deeply nestedreursion does not impose an arbitrary delay on preemption.Light-weight threads Threads in Oz are extremely light-weight, i.e. thou-sands of threads an be reated and sheduled. The major reasons for the ef-�ieny of LVM threads are that no random preemption takes plae and thatthreads are implemented at the user level and not at the operating system level.Fixed synhronization points for preemption ensure that the state of the enginewhih has to be saved and restored when sheduling a thread is very small, i.e. theX register, the self register, and the urrent task have to be saved and restored.The overhead for testing the preemption ondition at the synhronization pointis small.Fairness The sheduler guarantees fairness for the exeution of all runnablethread by preempting the worker. The preemption ondition an be a timeouton a timer provided by the operating system or a timeout on the number ofinstrutions (or tasks) exeuted by the worker.Preempting the worker means that the worker returns the thread to the sheduler.It does so only after the exeution of the urrent task is stopped. The fairnessondition is ful�lled, beause the exeution of every task is bound by an upperlimit.One reason for delaying the preemption is that this gives a strong invariant foratomiity: the exeution of a task is never interrupted. While exeuting a task the5Exept for naive proedures implemented through the LVM native API. The time for theseproedures is potentially unbound.

3.5. THREADS 95virtual mahine an be in an inonsistent state, e.g. unde�ned values in registersand in the store, as long as it is onsistent again when the exeution of the taskstops.The seond reason is that the global X registers are shared among all threads.To make this feasible a thread has exlusive aess to them during the exeutionof a task. Whenever a task stops the X registers are saved on the thread byreating a save task, whih restores the X registers when the thread is exeutedagain.Disussion The sheduler is an orthogonal unit in the virtual mahine. There-fore it an be extended easily to support sophistiated sheduling tehniques, e.g.priorities or resoure-based sheduling.A disadvantage of this user-level thread pakage is that it annot take advantageof multiples proessors. Two models are proposed to use multi-proessors. Onemodel is a parallel implementation of the LVM [80℄ and the seond model is adistributed implementation of the LVM whih uses shared memory as an eÆientommuniation layer [39℄.3.5.3 SuspensionsThreads an suspend on transients. This means that the thread is removed fromthe runnable queue of the sheduler until the transient is bound.Suspending a thread on a transient involves the following steps� A suspension is reated, whih ontains a referene to the thread.� This suspension is hooked onto the transient.� The worker is informed that the urrent task is suspended.A suspension is woken up when a transient is bound. Waking up a suspensioninforms the sheduler that the thread is runnable.Using suspensions as indiretion between transients and threads is neessary be-ause it is possible that a suspension is hooked to many transients. To explainthis we use the built-in waitOr (x; x0), whih suspends the thread if both x andx0 are transients. If one of these transients is bound the thread is woken up. Inthis ase the suspension has to be unhooked from the other transient to avoidfurther wakeups.To optimize the wakeup operation the unhook operation is done lazily. Thesuspension is marked when the wakeup is done. It is not unhooked from theother transients suspending on the disjuntive ondition. Suspensions marked asdone are skipped during the wakeup.

96 CHAPTER 3. THE VIRTUAL MACHINE LVM3.5.4 EventsThe alarm mehanism of the operating system allows to trigger a signal handlerafter a ertain time. In the engine this alarm signal is used to exeute a hekfuntion at regular time intervals. This funtion serves di�erent purposes:� PreemptThread The expiration of the time slie of a thread is heked.� IOReady I/O hannels are wathed for data.� Timer User-de�ned timer events are handled.The hek funtion is triggered every 10 ms and sets the orresponding bits in thestatus register. As explained above the engine eventually preempts the exeutionof instrutions and handles the events deteted in the hek funtion.Threads are preempted at every 5th lok tik, whih means that the time slieof a thread is 50 milliseonds. This is implemented with an alarm timer whih isinitialized when a new thread is sheduled.In the LVM it is possible to blok a thread on the ability to read resp. writean I/O hannel. The implementation maintains a list of all threads waiting forI/O and their resp. I/O hannels. During exeution of the hek funtion theoperating system is polled if one of these I/O hannels is ready for read resp.write.An alternative approah to polling I/O would be asynhronous I/O, whih hasthe advantage that the operating system informs the engine when I/O is available.The drawbak of asynhronous I/O is that it is not portable between di�erentplatforms.The LVM supports soft real-time ontrol with timers. A thread an be delayedfor a ertain amount of time with the primitive delay t where t is the time todelay in milliseonds. This is implemented with a list of threads. This list issorted aording to the time after the delay. During the exeution of the hekfuntion only the time after the �rst delay is tested for expiration.3.5.5 DisussionThe thread model of L has the property that threads are expliitly reated.Before reahing this model we investigated two other approahes: the �ne-grainedonurreny and jobs as an intermediate granularity.In the �ne-grained model the omposition of two expressions is onurrent. Se-quential exeution an only be spei�ed using data ow synhronization. In

3.6. SPACES 97AKL [47℄ this onurreny model was used. It has the advantage that it supportsvery well the delarative onstraint programming style.The �ne-grained model introdues a huge burden on the implementation, beausemany optimizations possible in a sequential environment are not possible, e.g.the lifetime of X registers is muh shorter. A major disadvantage of �ne-grainedonurreny wrt. the language de�nition is that it is very diÆult to ombinestateful programming with data ow-only synhronization.A hybrid job model was designed, where a job is a sequene of expressions witha sequential exeution strategy. A program is a sequene of jobs, whih arealso exeuted sequentially, but when an expression suspends a new onurrentthread is reated for the suspended job. This model was designed as a ompro-mise between the �ne-grained onurrent onstraint approah and the expliitonurreny approah.At the LVM level this job model has some nie properties, e.g. in most asesthe thread reation and sheduling overhead was saved, beause jobs did notsuspend frequently. On the other side the maintenane of the jobs inurred anoverhead, beause the tasks on the task stak had to be grouped into jobs. Itturned out that the impliit thread reation in the job model was to ompliatedas a programming onept.The ompromise hosen in Oz is now suh that threads must be expliitly reatedand for onstraint programming built-in light-weight threads alled propagatorsare used.3.6 SpaesIn this setion we introdue the extension of the virtual mahine, whih areneeded to support multiple omputation spaes.The basi servies provided by the virtual mahine are the exeution of threadssituated in spaes and the detetion of entailment and disentailed. The virtualmahine is extended with an additional storage area for spaes, with a trail, andwith a spae register. A single instrution for the deep guard onditional is addedto reate a new spae and to synhronize on entailment or disentailment of thisspae.The main re�nement of the spae model introdued at the LVM layer is therepresentation of multiple omputation spaes multiplexed into a single store.We introdue the sript tehnique for maintaining multiple transient bindingsand ompare it to the binding window tehnique.

98 CHAPTER 3. THE VIRTUAL MACHINE LVM
Scheduler Worker Emulatorinstall

fail

suspend

exit

except

emulate

terminate

idle

push,pop

suspend

preempt

raise

next

failed?

ok?

other?

failure?

discarded?

Figure 3.22: The extension of the engine for spaes.3.6.1 Overview of the extended engineThe engine model is extended for spaes with hooks for the installation, termi-nation, and suspension of threads and for the detetion of failure exeptions asoutlined in Figure 3.22.The hooks are drawn as boxes and have the following funtions:install When a thread is seleted for exeution its spae is installed, i.e. thesript is exeuted.exit When a thread is terminated the entailment and stability ondition aretested.exept The exeption mehanism is extended to detet failure exeptions.fail If a failure exeption is raised and not handled by an exeption handler orthe installation of the sript fails, then the spae is marked as failed andonsidered as disentailed.

3.6. SPACES 99
counter
flags
script
root
thread

SpaceTrail

���
���
���
���

���
���
���
���

�
�
�
�

��

������������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
�����������������

���������
���������
����������

�
�
�

�
�
�
�

����
����
����
����

����
����
����
����

Home

Spaces

Suspension

1

’a’ ’b’

Graph store

Thread

Home

Figure 3.23: Engine state with spaes.suspend When a thread is suspended a hook is needed for deteting stability,whih is not further explained in this thesis.A new ompartment of the engine is the store of spaes. Figure 3.23 shows astore, where situated nodes and threads are labelled with their home spae.The LVM is extended with a spae register space whih ontains the urrentspae. The trail keeps trak of the installed speulative bindings.A spae has a referene to its parent spae, a ounter for the number of non-terminated threads, a sript ontaining the speulative bindings, a number ofags, a referene to the root node, and a referene to the thread ontaining theonditional whih waits until entailment or disentailment of the spae is deteted.3.6.2 Threads and spaesThreads are situated in spaes. This is implemented in the virtual mahine by areferenes from the thread to its spae. This means that the thread \knows" itsspae. No referenes from the spae to its threads are needed. The number of

100 CHAPTER 3. THE VIRTUAL MACHINE LVMnon-terminated threads is ounted per spae to deide one part of the entailmentondition.When new threads are reated they inherit the spae from the urrent thread. Inthis spae the thread ounter is inremented. A new spae is equipped with aninitial thread.Beause the engine refers to the spae of the urrent thread very often, this isstore in a space register. The spae register is initialized from the thread whenits exeution starts.In the LVM all runnable threads are maintained by the sheduler in a globalthread queue. An alternate design to a global queue would be an organization ofthe runnable threads per spae. These loal queues are used in AKL and havethe advantage that the loality of exeution is exploited6.When a spae is failed all threads belonging to this spae must be terminated.To avoid referenes from a spae to all its threads this is done lazily. Lazy meansthat when a thread situated in a failed spae or below is sheduled for exeutionit is disarded during the installation, when the failed spae is disovered.3.6.3 The sript tehniqueThe basi problem of deeps guards is to eÆiently represent speulative bindings.In this setion we desribe the sript tehnique for maintaining multiple bindingsof transients in di�erent spaes.Every spae has a sript. The sript ontains all speulative bindings of globaltransients of a spae. The sript ontains pairs of nodes: a global transient nodeand its speulative binding.To eÆiently aess the urrent binding of transients the spae of a thread isinstalled. A spae is installed by installing its sript. The installation of the sriptmakes all the speulative bindings ative by exeuting the uni�ation algorithmwith every pair of nodes in the sript.The speulative bindings have to be undone when the worker exeutes anotherthread in a di�erent spae. For this purpose the speulative bindings are pushedonto a stak, alled the trail. Speulative bindings may be reated during theinstallation of the sript and during the exeution of a thread in a spae.The entries on the trail are pairs of a referene to the tagged node whih wasspeulatively bound and its old ontent, e.g. its old tag and pointer.6This approah is taken for propagators, whih implement built-in threads for onstraintpropagation.

3.6. SPACES 101

deinstall

11

���
���
���
���

z:

u:
1

1 2 1 2

Store Script Trail

...

...

...
y:

x:
21

u, 2

mark

install

z:

u:
1

1 2 1 2

Store Script Trail

...

...

...
y:

x:
21

REF u:

z:

u:
1 2 1 2

Store Script

x, 1
y, z

Trail

...

...

...
y:

x:
2

Figure 3.24: Installation and deinstallation.When the worker leaves a spae it is deinstalled. Deinstallation writes all speu-lative bindings from the trail into the sript and retrats the speulative bindingsin the store.Bindings of loal transients are not trailed and orrespondingly never written intothe sript. These bindings need not to be deinstalled, beause the loal transientsare not visible in the parent spae.Figure 3.24 shows the installation and deinstallation of a spae. During theinstallation the unifations of x with 1 and of y with z are performed. Weassume that x was already bound globally and therefore the �rst uni�ation is ano op. The seond uni�ation speulatively binds u, whih is trailed and duringthe deinstallation this speulative binding is written to the sript.

102 CHAPTER 3. THE VIRTUAL MACHINE LVMInstallation and deinstallation of paths L allows arbitrarily nested spaesand the worker has to install the sripts in all spaes from the root of the om-putation tree to the spae of the thread.The algorithm to install a path from the root spae to a target spae has twophases: a ollet phase and an ativate phase. The ollet phase starts from thetarget spae and ollets all spaes on the path to the root of omputation treeon a stak. For this purpose every spae needs a referenes to its parent spae.In the ativate phase the spaes on the stak are installed.The deinstallation of a path simply starts from the urrent spae and deinstallsall spaes up to the root spae.If the worker deinstalls a spae and installs another spae this an be optimizedby performing the deinstallation only until a ommon anestor of both spaes isreahed. The installation of the path an started from this ommon anestor. ToeÆiently �nd the ommon anestor spaes are marked when they are installed.The olletion phase starts as usual at the target spae, but it stops when a spaeis found whih is marked as installed. This spae is the ommon anestor andthe deinstallation and installation proedure an proeed from there.To write the loal bindings into the sript of the orret spae during the dein-stallation the trail has to be segmented with one segment per spae on the path.When the worker starts to install a spae a new segment is alloated on the trail.When a spae is deinstalled the transients in the top segment are deinstalled andthis segment is removed from the trail.The trail/sript tehnique outlined above requires that the binding of a tran-sient in the store an be undone. This implies that the virtual mahine is notallowed to shrink existing referene hains, while speulative bindings of tran-sients are stored on the trail. This requires for example speial are when doinga garbage olletion. In the LVM garbage olletion is performed when all spaesare deinstalled and no speulative binding is ative.Propagation The onsisteny ondition for bindings in a tree of omputationspaes is that every transient is bound at most one on every path from its hometo any desendant spae. To preserve this ondition a binding is propagated toall hild spaes. Propagation removes the speulative bindings and reexeutesthe uni�ation algorithm with the new and the old binding in the subordinatedspaes.To �nd all speulative bindings the suspensions are extended for spaes. When aspae is deinstalled whih has speulative bindings a suspension is reated whihhas a referene to the spae. This suspension is hooked to every transient whihis speulatively bound in the spae.

3.6. SPACES 103The propagation of bindings is not done immediately when a new binding isadded, but it is done lazily. A wakeup thread is reated in all spaes ontainingloal bindings. A wakeup thread has an empty task stak. The purpose ofthe wakeup thread is to install its spae and thereby performing the impliitpropagation of bindings.The propagation happens impliitly during the exeution of the sript. As ex-plained above the sript ontains pairs of nodes, whih are uni�ed during theinstallation of the sript. In the ase of propagation both nodes are possiblydetermined values. The appliation of the uni�ation algorithm guarantees thatthe equality of the two nodes is preserved or that the spae is failed.An interesting property of the installation tehnique is that onstraint propaga-tion is done lazily. Whenever a thread is exeuted in a spae it is ensured thatall onstraints are propagated to this spae, beause the sript is installed beforethe exeution starts.A little optimization is implemented in the LVM whih ensures that for everyspae a wakeup thread is only reated if needed. When a thread enters therunning state its spae is marked as propagated. If this mark is already set thereation of the wakeup thread is omitted, beause a runnable thread situated inthis spae exists whih ensures that the propagation takes plae. The mark isdeleted when the spae is installed.Failure A spae is failed when a failure exeption is raised and not handled. Thefailed spae is deinstalled7 and marked as failed to allow for the lazy terminationof its threads and the threads in hild spaes.Entailment The entailment ondition for a spae has two parts: it ontains nospeulative bindings and and all threads are terminated. For the LVM the �rstondition is equivalent to the test if the trail resp. sript is empty.The test that all threads are terminated an be implemented with a ounter,whih is inremented for every new thread and deremented for every terminatedthread.It is suÆient to hek for entailment when a thread terminates. Both onditionsare only ful�lled together if the last thread terminates.Merging The merge operation for entailed spaes onsists of three parts: mak-ing the merged spae transparent, merging the sript, and merging the threadounter. Merging the thread ounter simply adds the ounter of the merged spaeto the urrent spae.7Creating the sript is not neessary, beause the spae will never be installed again.

104 CHAPTER 3. THE VIRTUAL MACHINE LVMA merged spae is marked as transparent, whih means that all operations ontransparent spaes are redireted to the parent spae. Spaes are made trans-parent to avoid a omplex mahinery for updating all referenes from transients,suspensions, and threads to the spae. This is similar to the tehnique for bindingtransients and has the same overhead for dereferening.The speulative bindings stored in the sript of the merged spae are added tothe urrent spae through uni�ation and thereby propagated to the subordinatedspaes.Transient - transient bindings Bindings of transients to transients have tobe treated speially. The main reason for potential problems is that transientsare not ordered and the uni�ation of two variables may bind them in any order.For example when exeuting the following ode fragment it may happen that inthe onditional (1) the transient x is bound to y and at position (2) y is boundto x .
val x=lvar();
val y=lvar();

spawn fn () = >
cond (fn () = > unif (x, y), ..., ...); (� 1 �)

unif (y, x); (� 2 �)In this situation the wakeup mehanism would not trigger propagation, beausein (1) a suspension is only added to x and in (2) only the suspensions of y arewoken.Two possible symmetri solutions to �x this problem are:1. Suspensions are added to both nodes if a transients is speulative bound toanother transient.2. The suspensions of both transients are woken, when a transient is boundto another transient.The �rst solution is realized in the LVM. It has the advantage that, in the aseof binding a loal transients to a value, it is not neessary to test that the boundvalue is a transient. In this ase work has to be done only when a speulativebinding is written into the sript8.Both solution have the problem that too many unneessary wakeups may beperformed. Therefore we did an experimental implementation of speial kinds8A seond reason for this approah is that stability an be deteted easily

3.6. SPACES 105of suspensions for this ase. These suspension allowed to perform the wakeupexatly when needed. It turned out that the ase of speulative bindings betweentwo transients ours very infrequently and no optimization of this ase is needed.3.6.4 Binding windows and relative simpli�ationMany tehniques are proposed in the literature to provide multiple views ontrees of onstraint stores with shared variables. Espeially in the ontext of OR-parallel Prolog implementations sophistiated tehniques are developed. Guptaand Jayaraman [33℄ give an overview of the known tehniques and lassify theseaording to three eÆieny riteria: onstant time aess to the urrent bindingin a spae, onstant time thread reation, and onstant time thread swithing.They show that at most two of these riteria an be simultaneously satis�ed.Beside of these three eÆieny problems a virtual mahine with deep guard op-erators like the LVM must also implement the entailment test and the mergeoperation of two spaes, whih are not needed in Prolog implementations.In the following paragraph we present two other tehniques to represent multiplebindings.Binding arrays The binding array method was introdued in the ontext ofProlog implementations by D. S. Warren [113℄. The motivation for the bindingarrays was to allow for an exploration of the searh tree using other strategiesthan the built-in depth-�rst order of Prolog, but keeping the same performaneas baktraking. The tehnique was independently developed for OR-parallelexeution of Prolog by D. H. D. Warren [112℄.The basi idea of the method is to alloate forwarder lists in every spae. Theseforwarder lists maintains the speulative bindings. When a global variable isbound in a spae an entry is added to the forwarder list, instead of modifyingthe variable node and trailing it. To aess the value of a variable a lookup inall forwarder lists up to the home of the variable is exeuted, until a binding isfound or the home spae is reahed.The lookup is optimized with a binding array. This is a struture alloated perworker whih ontains all forwarders on the path from the urrent spae of theworker to the root spae. The binding array allows to aess variable values inonstant time9.The omplexity of this sheme for a single worker traversing the searh spaedepth-�rst is the same as for baktraking, beause the overhead for dereferening,binding, and unbinding is onstant.9The binding array an be implemented as an array beause in eah path of the omputationtree the variables an be numbered onseutively.

106 CHAPTER 3. THE VIRTUAL MACHINE LVMThe overhead for swithing the ontext is linear in the number of speulative bind-ings whih is aeptable beause ontext swithes are assumed to be infrequentompared to the amount of work done in one spae.The binding sheme of Penny The binding sheme of the parallel AKL sys-tem, Penny [65, 64℄, uses a simple forwarder list without binding arrays. Theauthors argue that this simple sheme is very good for typial appliations, be-ause ontext swithing an be done in onstant time and the forwarder lists aretypially very short. Furthermore the trees of omputation spaes are typiallyat and bushy and not deeply nested.To eÆiently �nd the suspended binding the forwarder list ontains, beside spe-ulative bindings, also loal suspensions. The suspension for a binding is added tothe forwarder list in the parent spae. If the parent is the home spae suspensionsare added to the suspension list of the variable itself.If a global variable is bound the forwarder list of the urrent spae is searhed forsuspensions. If a loal variable is bound the suspension list of the variable arewoken up.The beauty and the beast The beauty and the beast algorithm [78℄ is atrue inremental algorithm for deiding entailment for at guards with featureonstraints. The basi idea is to avoid any kind of unneessary reomputation byreating a so-alled beast storing all the work already done.This algorithm was only studied in theory but a pratial implementation is stilloutstanding. Under the assumptions that speulative bindings are very infrequentit is questionable if this approah leads to an improved algorithm.Situated simpli�ation A formalization of the entailment and disentailmenttests and proof of its orretness for rational tree onstraints for deep guards isgiven in [77℄.The authors de�ne the situated simpli�ation as an extension of the uni�ationalgorithm, whih propagates bindings immediately. When the uni�ation termi-nates the path onsisteny ondition holds, whih states that at most one bindingfor every variable on every path exists.In the situated simpli�ation and the beauty and the beast algorithm the equiv-alene sets of strutures disovered during the uni�ation are reorded to avoidtheir reomputation.

3.7. OTHER VIRTUAL MACHINES 107Comparison The sript tehnique as implemented in the LVM is a simplebinding method if the virtual mahine has a single worker. It is also used in thesequential implementation of AKL [47℄. AKL only supports Prolog struturesand the extension of the sript tehnique to reords is de�ned in [98℄.The reason for using the sript tehnique for implementing multiple in LVM anbe summarized as follows:� The virtual mahine has a single worker. This implies that at every momentonly a single view on the bindings has to be eÆiently supported.� Spaes are used primarily for enapsulating omputations for onstraintprogramming and searh, where the vast amount of time is spent in prop-agators and for loning.� The overhead for ontext swithes for the worker, i.e. moving from one spaeto another, is small ompared to the exeution time within a ontext. Thetime slie for the exeution of a thread is muh longer then time needed toswith the ontext. In onstraint solving problems many threads run in thesame ontext.� Only very few global variables are speulatively bound. The overwhelmingmajority of bindings are for loal variables. The overhead for implementinga truly inremental algorithm is therefore not related to its bene�ts.In our implementation a suspension is reated for eah deinstallation of the sript.This an be optimized by reating a single thread per spae whih has the roleof the wakeup thread and whih is responsible for propagating bindings into thisspae.The sript tehnique in the LVM has quadrati omplexity for examples withinremental bindings, beause� All bindings in the sript are exeuted, even if a single binding must bepropagated.� Struture-struture bindings are not stored in the sript and must be reex-euted for every installation of the sript.3.7 Other virtual mahines3.7.1 Prolog Abstrat MahinesThe design of LVM was inuened to a great extend by Warren's design of theabstrat mahine for Prolog, alled WAM [110, 111, 1℄.

108 CHAPTER 3. THE VIRTUAL MACHINE LVMThe LVM uses the basi tehniques developed for the WAM to represent symbolistrutures on a heap. This representation was adapted for reords. The LVM usesthe same optimized representation of lists as found in many Prolog implementa-tions. The optimizations for ompiling uni�ation into low level instrutions anbe diretly applied.The LVM supports logi variables, but their representation ould not be optimizedinto self-referenes, beause variables are situated in spaes and need to representtheir home pointer.In the LVM variables are never alloated on the stak resp. in Y registers, butonly on the heap. Therefore no onept of unsafe variables is needed.L does not support baktraking as primitive searh strategy, but �rst lassspaes, whih allow to eÆiently program di�erent searh strategies [89℄. Themajor di�erene for the virtual mahine is that many environments resp. spaesare ative simultaneously. Instead of generating hoie points and trailing hangesthe virtual mahine supports loning, i.e. opying, of spaes.Like the WAM the virtual mahine of L has global resp. temporary registers Xand loal resp. permanent registers Y. Arguments are passed through X registersin both mahines. To support �rst-lass proedures the LVM has an additionalregister G for addressing the proedure environment.The design of the LVM is targeted for an emulator-based approah and not fora high-performane native implementation. It is expeted that the tehniquesdeveloped for high-performane Prolog implementation, e.g. Van Roy's [105℄, orTaylor's [101℄, an be adapted.3.7.2 The abstrat mahine of AKLThe Agents system [47℄ is the �rst implementation of AKL [27, 37℄ a deep guardprogramming language. Many implementation tehniques for deep guards werepioneered in the Agents system.L radially di�ers from AKL in its ontrol strategy. Conurreny in AKL is �negrained as opposed to L, whih supports ourse grained onurreny. The im-plementation onurreny for L requires to support preemption of omputationsto guarantee fairness among threads and reativity. Exeption handling is notsupported in AKL, beause it is only useful in the paradigm of threads.Searh in AKL is built-in and impliitly triggered. In L searh is �rst-lass [89℄.The LVM supports a riher set of data types than AKL, e.g. names, reords, and�rst lass proedures are essential parts requiring new implementation tehniques.The basi data type for stateful programming in AKL is a port. Compared toells in L the implementation of ports is of a similar omplexity.

3.7. OTHER VIRTUAL MACHINES 1093.7.3 LIFEThe tree data strutures realized in the LVM are based on the foundational workon reords [98℄ and features [4℄. As part of the work on LIFE [2, 3, 78, 79℄reord-like strutures were analysed and implemented in a onurrent onstraintframework.3.7.4 The Java Virtual Mahine (JVM)The Java Virtual Mahine (JVM) [60℄ is a mahine designed for the implemen-tation of Java. Java is an imperative onurrent programming language usingthe objet-oriented imperative programming paradigm with automati memorymanagement.The JVM is designed to support a wide range of platforms inluding embeddedsystems. The language requirements wrt. fairness and unsynhronized update andaess in Java are very weak. This weakness simpli�es the implementation of theJVM ompared to the burden on the LVM to respet the interleaved semantisof L.The JVM is a stak based mahine, i.e. it has no general purpose mahine regis-ters, but operands and arguments are passed through a data stak. This approahompared to the register-based approah of LVM simpli�es the ompiler and theimplementation of the virtual mahines in some aspets, but many optimizations,e.g. using mahine registers for passing arguments, requires non-trivial runtimeoptimizations [23, 24℄.The design of the exeption mehanism in the JVM is optimized for the ase thatexeptions are raised only in rare irumstanes. An exeption handler inursno overhead at runtime if no exeption is raised. When an exeption is raisedall stak frames are sanned to test if its PC refers to a region proteted by anexeption handler. Using exeptions for non-standard ontrol primitives is notfeasible with this approah.The JVM does not support tail-all optimization, instead the usual loop on-struts of imperative languages, e.g. while and for, are supported. The designof the JVM does not prevent tail-all optimization, but it seems that tail-alloptimization has no priority for JVM developers.3.7.5 Funtional languagesMany ideas from the implementation of funtional languages [7, 76℄ apply verywell to the LVM. First-lass proedures in L are very similar to �rst-lass funtions

110 CHAPTER 3. THE VIRTUAL MACHINE LVMand ompilation tehniques like losure onversion and ontinuation passing ouldbe easily adapted to the LVM.Closure onversion transform proedures suh that its free variables beome addi-tional formal arguments. To suh a onverted proedure the values of the losureare passed as additional atual arguments. This tehnique makes the G address-ing mode obsolete and is espeially useful for native implementations and forelaborated ompiler optimizations.The ontinuation passing style is an alternative implementation to a stak basedimplementation of threads. In this approah every proedure is onverted intoa proedure with a ontinuation as additional argument. The ontinuation istail-alled at the end of the proedure instead of returning from the proedure.The ontinuation passed when alling a proedure is a losure representing theode whih follows the proedure all.Using ontinuation passing style for the a virtual mahine simpli�es the repre-sentation of threads, but requires to reate a lot of losures. It pays o� if theompiler aggressively optimizes the reation of losures.The onvention for returning values di�ers between L and funtional languages.In L logi variables are used to pass values bak to the aller of a proedure. Inthe LVM this is optimized for reating symboli data strutures. In the imple-mentation of funtional languages values are usually returned through registers.This typially avoids the overhead of reating and binding variables and oftenleads to a better register usage. On the other side it an hinder the tail reursionoptimization, e.g. the L proedure for onatenation app is tail reursive, whereasthe funtional version is not.Many funtional languages have single argument funtions. Multiple argumentsare realized with pairing. To get the same eÆieny as possible with multiplearguments a tehnique alled deforestation [109℄ an be used. The basi idea ofdeforestation is to delay the pairing as far as possible. If a pair for example ispassed as an argument to a proedure its �elds are passed separately and theyare never ombined into the struture if the proedure diretly deomposes itsargument. In the LVM we use a similar tehnique for the implementation of�rst-lass messages in the objet system.A major di�erene between L and many funtional language is the type system. InL everything is dynamially typed, whereas funtional languages, like StandardML and Haskell, have a strong type system. The dynami type system of Lhinders many optimizations whih take advantage of stati type information, e.g.avoiding dereferening and dynami type tests and representing values as unboxand untagged data strutures.Reppy [81, 82, 83, 84℄ desribes a onurrent extension (CML) of Standard ML.The ommuniation primitive of CML is a �rst-lass hannel with two syn-hronous operations. aept reads from and send writes to a hannel. Both

3.7. OTHER VIRTUAL MACHINES 111operations blok until a pair of threads meet at a hannel where one performs anaept and the other a send operation.The implementation of CML is build on top of Standard ML using its primitivesfor �rst-lass ontinuations and asynhronous signals to implement light-weightthreads. When a signal ours the urrent ontinuation is grabbed and passed toa signal handler. This allows to preempt a thread with its state aptured in theurrent ontinuation.3.7.6 Erlang's virtual mahines (JAM, TEAM/BEAM)Erlang [9℄ is a onurrent funtional language designed for telephony appliations.Two aspets of the language design are di�erent ompared to L: threads (whihare alled proesses in Erlang) have no shared memory and the language doesnot support stateful data types.As a funtional language Erlang requires proper tail-all optimization. The om-muniation is based on a message queue per proess and a wait primitive tosynhronize on messages in queue.For Erlang two sequential virtual mahines were designed: JAM [8℄ an emulator-based stak mahine and TEAM/BEAM [41℄ a high-performane native imple-mentation with a register based intermediate language.Both implementation use separate staks and heaps for every thread. The Erlangimplementation is also inuened by the WAM, e.g. for the representation of datastrutures they use tagged pointers and pattern mathing is implemented withindexing. Environments are alloated per pattern rule, whih is similar to theWAM where the environment is alloated per lause.Similar to the LVM Erlang has light-weight proesses with a well-de�ned seman-tis. The implementation is a single threaded OS proess with a round robinsheduler and possible preemption when exeuting alls.The memory management of Erlang is based on a opying garbage olletor.Garbage olletion is performed on a per-thread basis, beause every thread hasits own heap. A nie property of Erlang is that no yli data strutures an bereated, whih simpli�es the garbage olletion algorithm.The overhead for garbage olletion in Erlang is very high for examples withmany threads and a lot of ommuniation. The problem ours beause threadshave no shared memory and the messages must be opied between the threads.The problem is further enlarged by the fat that objet oriented programming issupported as ative objets with a thread per objet. Erlang has no stateful datastrutures and hene no possibility to express objets without thread.

112 CHAPTER 3. THE VIRTUAL MACHINE LVMAs a summary the shared store for threads in the LVM has the advantage that nodata strutures must be opied during the ommuniation among threads. Onthe other side the tehnique to alloate memory per thread in Erlang has theadvantage that independent and onurrent garbage olletion for eah threadis possible. Furthermore the distribution of threads among many sites and themapping of threads to multiple proessors beomes simpler.3.8 Summary of the design priniplesIntermediate level of abstration The virtual mahine hides irrelevant de-tails of onrete mahines. It provides suÆient high-level abstrations to avoidunneessarily ompliated ompilers. It provides enough low-level abstrationsto allow the ompiler to generate ode whih an be eÆiently emulated.A virtual mahine is a good implementation ompromise for a new programminglanguage, whih hanges frequently and where experiments with new ideas areperformed. A virtual mahine is not as exible, wrt. hanges, as an interpreter,but its performane is muh better.Another advantage of a virtual mahine is portability. The Mozart implementa-tion, whih is written in C/C++, has been adapted to many platforms.Emulator-based implementation The mahine language is designed for anemulator-based implementation. This means that the emulation overhead shouldbe minimized. Therefor the instrution set is oarse-grained: many miro in-strutions are ombined into one LVM instrution.An intermediate language as target for native ompilation has to be designed verydi�erently. The work of Van Roy [105℄ and Taylor [101℄ on high-performaneompilation of Prolog indiates that the intermediate language has to be at avery low-level and lose to the hardware to reah the speed of C/C++. Thisis de�nitely not the ase for the LVM, whih has for example high-level graphrewriting and synhronization instrutions.Using a simple maro expansion of the LVM mahine ode to native ode willsurely give some speedup, but it is not the right trak to reah a high-performaneimplementation.Single worker The virtual mahine is designed to run on single proessor ma-hines. A simple sheduler for onurrent threads is built into the virtual mahine.The single proessor model gives strong invariants for atomiity and simpli�es theimplementation of the interleaved semantis of L.

3.8. SUMMARY OF THE DESIGN PRINCIPLES 113Multiple worker arhitetures for onurrent onstraint languages are studiedin [80℄ and [64℄. In [80℄ the oarse-grained parallelism on the thread level ofL is exploited. [64℄ exploits �ne grained parallelism in the language AKL. Bothprojets show that a sequential virtual mahine is a good starting point to exploreparallelism.Shared memory arhiteture The graph store of the LVM is shared betweenall threads. This di�ers from message passing arhitetures, where all threadshave their own memory and ommuniation between threads is done by messagepassing. The only means to ommuniate between threads in the LVM is throughshared nodes. The LVM has no message passing primitives built-in, but they anbe expressed eÆiently using reords, transients and ells.A shared memory arhiteture has the advantage that data strutures need notto be opied when ommuniating between threads. Only a referene to a nodein the graph has to be atually sent from one thread to another.For parallel and distributed implementations shared data strutures require moree�ort in the synhronization ode of the implementation, but for programmersshared data strutures are very powerful.Memory management in shared arhitetures is also more ambitious: to relaimthe memory of nodes potentially many threads are involved and have to be syn-hronized. In Erlang implementations [41, 8℄ every thread (alled proess there)has its own memory management. Non-shared memory arhitetures allow for abetter real-time ontrol, beause threads are better deoupled. In the LVM (seehapter Setion 4.6) we use a stop and opy olletor, whih stops the exeutionof all threads, relaims the memory and after that restarts the exeution of thethreads.Automati memory management The LVM provides automati memorymanagement. Automati memory management is well-understood and standardin modern high-level languages [114, 115℄.The basi garbage olletion rule for the LVM is that only the nodes reahablefrom the runnable threads and threads pending on I/O or the timer are live data.In Setion 4.6 the implementation issues for the automati memory managementin the LVM is disussed.First-lass proedures The LVM has diret support for proedures with lex-ial sope and in�nite extend, so alled �rst-lass proedures. Basially thismeans that the proedure appliation installs the environment aptured at theproedure de�nition. The virtual mahine has an additional addressing mode for

114 CHAPTER 3. THE VIRTUAL MACHINE LVMthis environment. In an emulator-based implementation the support of �rst-lassproedures omes almost for free.An alternative approah to ompile �rst-lass proedures is losure onversion [7℄.This tehnique onverts �rst-lass proedures into proedures with an additionalargument ontaining the aptured losure. The advantage of this tehnique is thatno additional addressing mode is needed. A disadvantage of losure onversionis that it adds a level of indiretion to address a node.Tail all optimization The virtual mahine has no loop onstruts, but im-plements tail all optimization, i.e. if the last instrution of a proedure is anappliation, the stak frame of the aller is removed before the appliation. Tailall optimization allows to implement loop onstruts eÆiently. It has additionalexpressiveness, beause any tail all is optimized and for example mutually tailreursive proedures don't need spae on the stak of the thread.In an emulator-based implementation tail alls an be implemented almost aseÆiently as jumps. Therefore it is not neessary to ompliate the ompiler andengine with loop onstruts.Graph abstration The graph abstration is the anonial representation ofdata-strutures in high-level languages with automati memory management. Aunit with links to other nodes is the single primitive abstration for the repre-sentation of a value. The unit itself ontains type spei� salar information andthe links are direted and ordered onnetions to other nodes.With this single onept all primitive language data types an be implementedeÆiently. The graph abstration maps very well to imperative data struturesand automati memory management is straightforward.The store of the LVM is designed suh that it provides for eÆient representationsof dynamially typed values for an emulator based VM. The underlying assump-tion is that the ompiler does not ompute stati type information, e.g. an atualargument of a proedure (user-de�ned or built-in) an be of an arbitrary typeand the VM has to handle it dynamially.The store has to represent many di�erent types of values. We use a layered ap-proah. The ore layer ontains a few main data types, whih are implementedhighly eÆient using tagged pointers. The basi layer, whih ontains the ma-jority of types, is implemented with tagged objets. The extension layer, whihopens the system to add new data types, uses objets with late binding.The layered approah has the advantage that eÆieny an be traded with sim-pliity, e.g. experimental data-types an be added easily and the essential data-types, e.g. integers, referenes, and transients, an be optimized.

3.8. SUMMARY OF THE DESIGN PRINCIPLES 115Transient values are basially used for onstraint programming and synhroniza-tion of threads. The store is designed suh that transient values are almostgraefully degrading. If transient values do not our in programs there shouldbe no penalty. The major reason why this ould be ahieved in the LVM is,that all values are represented with dynami type information and the test fordetermination an be integrated at no ost with the type test.Another design goal is modularity and orthogonality of data strutures. Datatypes are implemented in the LVM independently. The glue is the tagging shemeat the ore layer, the tagged objets at the basi layer, and a virtual funtioninterfae at the extension layer.I/O as orthogonal onept Input and output is not integrated into the vir-tual mahine. I/O is modeled with ports as endpoints for ommuniation withthe outside world. A port [49℄ is an abstration for many many-to-one ommu-niation with a stream for the reader and a send proedure for the writer. Portsan be easily expressed in L (see [96℄).Output is modeled as a port to whih messages an be sent from MyOz and whihhave some impat on the outside. Input is modeled as a port on whih messagesarrive from the outside.No limitations The virtual mahine imposes no arti�ial limitations: the num-ber of loal registers Y is unlimited, arbitrary many threads an be reated andsheduled, the graph store is unlimited, arities and the number of subtrees an bearbitrary large, an in�nite number of new names an be generated, integers arenot limited. These requirements simplify the ompilation of the high-level lan-guage into the mahine language, but they require some e�ort when implementingthe virtual mahine.Control-stak and data heap The stak of tasks in threads is solely a ontrolstak and the data strutures of the language are stored on the heap. This setuplearly separates ontrol from data. This separation guarantees for example thatthe tail-all optimization an be applied for every tail reursive appliation.Built-in proedures Some of funtionality of the LVM is implemented asbuilt-in proedures, where performane is not an issue. This allows to keep thenumber of mahine instrutions small and foussed on the performane ritialaspets.Built-in proedures an also be used as a exible mehanism to extend the virtualmahine.

116 CHAPTER 3. THE VIRTUAL MACHINE LVMWith respet to ompiler optimizations built-in proedures an be handled likeother mahine instrutions, e.g. an appliation of a built-in does not invalidatethe ontents of X registers.

Chapter 4Implementation aspets
In this hapter some aspets of the implementation of the LVM in C++ aredisussed. The main fous is on the representation of the data-strutures in thestore.4.1 Storage representationsIn the LVM the type of every unit is available at runtime and the implementationhas to dynamially represent these types of units.The main tehniques for representing dynami type information are tagged ob-jets and tagged pointers. Typially an implementation has to �nd a ompromiseusing a hybrid mix to trade the simpliity of tagged objets vs. the eÆieny oftagged pointers.The virtual mahine supports more types than the language, beause varioussubtypes have optimized representations, e.g. lists and tuples. The LVM tagsheme uses a representation, whih allows for speed and memory optimizationsof frequently used data types.The operations on dynamially typed values are type tests, boxing, and unboxing.Types tests require the type of a unit and test if this unit is of a ertain requiredtype. Boxing reates a dynamially typed unit. Unboxing extrats the rawinformation from a dynamially typed unit.In a language where virtually all units are dynamially typed, these operationsare exeuted most frequently and therefore every optimization ontributes signif-iantly to the performane of the whole system.

117

118 CHAPTER 4. IMPLEMENTATION ASPECTS4.1.1 Tagged objetsTagged objets are simple data strutures whih have a type �eld and additional�elds depending on the type. Tagged objets of a ertain type an be implementedas sublasses of the lass TaggedObject .
class TaggedObject f
protected:
int type;
TaggedObject(int t) : type(t) fg

public:
int getType() f return type; ggA list element Cons for example an be implemented trivially as a tagged objetwith two additional �elds for the head and the tail of the list.

class Cons : public TaggedObject f
protected:

TaggedObject �head;
TaggedObject �tail;

public:
Cons(TaggedObject �h,TaggedObject �t)

: TaggedObject(CONS), head(h), tail(t) fg
TaggedObject �head() f return head; g
TaggedObject �tail() f return tail; ggSimilarly integers an be implemented as tagged objet with an additional integervalued �eld.

class Int : public TaggedObject f
protected:
int val;

public:
Int(int v)

: TaggedObject(INT), val(v) fg
int getInt() f return val; ggThe main advantage of the tagged objet implementation is its simpliity and reg-ularity, e.g. the memory management an use the invariant that all data strutureson the heap start with the type �eld.In a system using only tagged objets the mahine registers and the �elds of stru-tures, e.g. the head and tail in the lass Cons, ontain pointers to tagged objets.This means that tagged objets are always referened through an indiretion.

4.1. STORAGE REPRESENTATIONS 119The type test therefore requires not only a omparison but additionally a memoryaess for the indiret aess to the tagged objet. Boxing and unboxing are trivialasts with no runtime osts.4.1.2 Tagged pointersTagged pointers are a data struture whih �ts into a word of the target arhite-ture (typially 32 bits). The word is split into the tag (4 bits) and data �eld (28bits). The tag ontains the type informations. And the data �eld ontains thevalue. If the value does not �t in the data, then additional storage is alloatedand the data �eld ontains a pointer to this additional storage.Pointers Pointers are enoded into the 28 data bits of a tagged pointer ombin-ing two tehniques. First, every heap node is aligned to word size. This ensuresthat the least signi�ant two bits of a pointer are always zero, hene only 30 bitsmust be stored. Seond, only 230 bytes (1 GB) of the available virtual memory isused. These two tehniques allow to represent a pointer in 28 bits. The overheadfor tagging and untagging pointers is signi�ant.The lass Tagged shown below is an implementation of tagged pointers. It hasinitialization (Tagged onstrutors), update (set), and aess (get) methods.
class Taggedf
private:
static const mask=15;
static const bits=4;
unsigned int tagged;
void checkTag(int tag) f

Assert(tag >= 0 && tag <= mask);g
void checkVal(int val) f

Assert((val & (mask <<(32 �bits))) == 0);g
void checkPtr(void� ptr) f
unsigned int val=(unsigned int) ptr;
Assert((val&3)==0);
Assert((val&(3 <<30))==mallocBase);g

public:
Tagged() f tagged = 0; g
Tagged(void� ptr, int tag) f set(ptr,tag); g
Tagged(unsigned int val, int tag) f set(val,tag); g

120 CHAPTER 4. IMPLEMENTATION ASPECTS
void set(void� ptr, int tag) f

checkPtr(ptr);
checkTag(tag);
tagged = (((unsigned int)ptr) <<(bits �2)) j tag;g

void set(unsigned int val, int tag) f
checkTag(tag);
checkVal(val);
tagged = (val <<bits) j tag;g

unsigned int� getRef() f return &tagged; g
int tag() f return (tagged&mask); g
unsigned int getData() f return tagged >>bits; g
void� getPtr() f
return (void�)(mallocBase j((tagged >>(bits �2))&˜3));gg;Boxing The set methods implement boxing. They need one shift and onelogial OR operation. For the zero tag1 boxing redues to a single shift. Thisoptimization omes for free, when using an optimizing C++ ompiler.Unboxing The get methods implement unboxing. They need a single shift fornon pointer values. Pointers require a shift by two and a AND operation to putzeros in the two least signi�ant bits. Unboxing pointers an be ompiled into asingle shift if the tag has the bit pattern xx00 .On some arhitetures, where the heap segment annot be alloated at the bot-tom of the memory, i.e. the two most signi�ant bits of pointers are not zero,an additional operation to add the segment start is required when unboxing apointer.Type tests Type tests are done by masking out the bits of the tag and om-paring this tag with the required tag. The zero tag is optimized by the C++ompiler, beause the result of mask operation is already the negated result ofthe type test: false (zero in C++), if the tagged pointer has the zero tag andtrue (non-zero in C++) otherwise. When the result is immediately used in aonditional the C++ ompiler an remove the otherwise required negation andnormalization.1The zero tag is used for representing referenes in the LVM tag sheme.

4.1. STORAGE REPRESENTATIONS 121The check methods show how we implement method ontrats in C++ as amixture of omments and runtime heks: the Assert maro expands to theempty statement in the prodution system and to an expliit test with an errormessage in the development system.The following ode shows examples of a tagged pointer representation of listelements and integers.
class ConsData f
friend class Cons;

Tagged head;
Tagged tail;g;

class Cons : public Tagged f
public:

Cons(Tagged h, Tagged t) : Tagged() f
set(CONS, new ConsData(h,t));g

Tagged getHead() f return (�(ConsData �) getPtr()).head; g
Tagged getTail() f return (�(ConsData �) getPtr()).tail; gg;The list element does not �t into the tagged pointer and requires to alloateadditional data class ConsData for the head and tail �elds.

class SmallInt : public Tagged f
public:

Int(int i) : Tagged(INT,i) f g
int getInt() f return getData(); gg;The integer type implementation is a straight-forward re�nement of the Taggedlass with the limitation that only 28 bit integers an be stored.The advantage of the tagged pointer sheme is the smaller memory footprint anda better performane espeially for type tests. Tagged pointers an be storedin the �elds of strutures and in mahine registers. For some values,e.g. smallintegers, everything �ts into the tagged pointer and does not need additionalmemory. Compared to the tagged objets the type tests for tagged pointersrequire no memory aess, beause the type information is stored diretly in thepointer.The main drawbak of tagged pointers is that they impose several restritions.Pointers must �t into the remaining bits of the data �eld. For integers the im-plementation limits their range to [�227;+227� 1℄. The eÆient implementationof the arithmeti operators requires additional e�orts [87℄.

122 CHAPTER 4. IMPLEMENTATION ASPECTSNum Bits Tag Data Explanation0 0000 REF Tagged � referene4 0100 WREF Tagged � read-write referene8 1000 REF3 reserved12 1100 REF4 reserved1 0001 TRANS TransBody � transient5 0101 UVAR spae optimized variable9 1001 FUT spae optimized future13 1101 GC Tagged � garbage olletion2 0010 CONS ConsData � list element3 0011 REC Structure � reord or tuple6 0110 INT diret value small integer7 0111 EXT Extension � extension10 1010 VEXT ExtBody � generi/virtual extension11 1011 FLOAT Float � oating point value14 1110 unused15 1111 LIT Literal � literalFigure 4.1: The LVM tag sheme.Furthermore the number of available tag bits limits the number of possible repre-sentations for data-types. Instead of a �xed number of tag bits an implementationwith varying numbers bits is possible.Another variant of tagged pointers used in the LVM is an enoding where two bitsare used for tagging and 30 bits are available for data. This allows to representarbitrary pointers to word aligned data. It is for example used for the seondarytag to distinguish reords and tuples.4.1.3 The LVM tag shemeFigure 4.1 shows the tag sheme of the LVM. The di�erent types are explainedin the following setions. Pointer values are marked with a star, e.g. Tagged* isa pointer to a tagged pointer.The LVM uses a hybrid sheme of tagged pointers and tagged objets: as muhas needed is enoded as tagged pointer (see Figure 4.1). One tag EXT is reservedfor tagged objets whih have seondary tags as listed in Figure 4.2. Another tag
VEXTis reserved for virtual objets, whih uses late binding instead of an expliittag. These virtual objets are explained in Setion 4.5.The tagged pointer with all bits zero, the TaggedNULL, is reserved for speialproposes, e.g. for signalling errors and exeptions.

4.1. STORAGE REPRESENTATIONS 123Tag ExplanationPROC user-de�ned proedureBUILTIN built-in proedureCLASS lassOBJECT objetTHREAD �rst lass threadCELL ellSPACE �rst lass spaePORT portCHUNK hunkARRAY arrayDICT ditionaryLOCK lokFigure 4.2: Seondary tags.Integers Integers in the interval [�227 + 1;+227 � 1℄ are represented diretlyin the data part of the tagged pointer using the INT tag. Operations on theseintegers are optimized suh that no unboxing is needed.Integers outside this interval are represented as extension with a seondary tag(see Setion 4.5). These integers use an external pakage, namely the GNU multipreision library, version 2 to implement big integers and their operations.Floats Floats are represented as tagged pointers using the FLOAT tag. Theyrefer to a heap node ontaining a IEEE oating point with double preisionrepresentation of oat values. These heap nodes are aligned to double wordboundaries on the heap, beause oating point arithmeti requires it. It is thenpossible that for every oat a word is vasted on the heap for alignment.4.1.4 DisussionGudeman [32℄ gives a good overview of tehniques to represent values in dynam-ially typed languages and de�nes basi notions.The LVM tag sheme is a ompromise whih optimizes the ase that derefereningand test for determination must be done at runtime. As explained above the zerotag (REF in the LVM tag sheme) allows for optimized type tests, boxing andunboxing operations.We have also analyzed an alternative tag sheme, where no boxing and unboxingis needed for the REF tag. In this sheme all tags (0,4,8, and 12) with the

124 CHAPTER 4. IMPLEMENTATION ASPECTStwo least signi�ant bits of zero are used as REF tags. For small benhmarks(tak, nrev) boxing and unboxing of REF tags, espeially in onjuntion with thealloation of transients in strutures (see Setion 4.2), are done so frequently thatthis optimization implies a performane di�erene of approximately ten perent.In other appliations, e.g. the ompiler or the sheduler, the di�erene is notsigni�ant.The enoding of transients is suh that if a tagged pointer is known to be noreferene then the test if it is a transient is very heap: t is a transient if t&2==0 ,whih is similar to the test for a referene.Another optimization is the enoding of the CONStag for the representation oflists. The CONStag is espeially optimized, beause lists are a onvenient methodfor representing dynami data strutures and list iteration ours frequently inappliations. If it is known that a tagged pointer is no referene and no transientthen the test if t is CONSis a single AND operation t&13==0 .Using tagged pointers has a drawbak with respet to moving and opying values.A tagged pointer representing transients an never be opied, beause the identityof a transient is represented by its loation in memory. Therefore transients storedin registers and reord �elds must be handled arefully.In the LVM transients are never stored in registers. Registers an only ontainreferenes to transients on the heap. This allows to opy and move nodes betweenregisters without danger of oasionally reating opies of transients by movingtagged pointers. Furthermore this restrition of the implementation avoids theproblem of unsafe variables known from the WAM [1℄.Oz has integers of in�nite preision and in the implementation a subset alledsmall integers are represented eÆiently. Lisp [100℄ optimize integers even more.They use two tags: 0000 for positive and 1111 for negative values. Therefore notagging and untagging is needed and the overow test simply heks if the resultof an operation has a valid integer tag.The tag sheme of the LVM is optimized for a ompiler whih does no aggressivestati analysis to dedue stati type information. Other tag shemes are neededfor a highly optimizing ompiler. For example if it does stati analysis to detetdetermined and dereferened values [12℄, then the optimization for referenes andvariables would loose their prominent role.Other languages whih have stati type systems or where the ompiler an extratstati type information an often avoid using run-time tags. Untagged values anthen for example be stored diretly in registers. Dynami types are still needed,e.g. for doing garbage olletion [6℄, but there overhead during the exeution anbe often avoided. Possible type systems and type inferene for Oz are analyzedin [67℄

4.2. TRANSIENTS 125In the LVM proedures are represented as unboxed values when they are used in�rst-lass proedure appliations, i.e. at ompile time it is known that a appli-ation is always applied to the same proedure. Another example of a unboxedrepresentation is the referene to self during the exeution of methods, whih isstored as unboxed value in a LVM register.4.2 Transients4.2.1 ReferenesA referene in the LVM is a tagged pointer with the REF tag and a pointer to atagged pointer.
class Ref : public Tagged f
public:

Ref(Tagged �vPtr) : Tagged() f set(REF,vPtr); g
Tagged �getRef() f return (Tagged �)getPtr(); gg;

Bool isRef(Tagged v) f return v.tag()==REF; g4.2.2 Representation of TransientsThe LVM supports three levels of representations for transients. At the bot-tom layer a highly optimized representation for storing variables in the �elds ofstrutures is implemented. The medium layer with a seondary tag is used toimplement the built-in transient types, i.e. free variables, futures, and kindedvariables. The medium layer uses a seondary tag to distinguish the di�erenttypes of transients. For experiments new transient types an be added (dynami-ally) using a virtual layer, whih uses late binding of a small number of interfaefuntions.
enum TransType f

FREE,
FUTURE,
KINDED FD,
KINDED FS,
KINDED OR,
...g;

class SuspList f
Thread � thread;
SuspList � next;g;

126 CHAPTER 4. IMPLEMENTATION ASPECTS
class TransBody f

TransType type;
SuspList � suspList;
Space � home;
TransBody(TransType t,Space � s)
: type(t), suspList(0), home(s) fgg;

class Trans : public Tagged f
Trans(TransBody � tb) : Tagged(tb,TRANS) fg
TransBody � getBody() f return (TransBody �) getPtr(); gg;

Bool isTrans(Tagged v) f return v.tag() & 2 == 0; gThe standard representation of transients is a tagged pointer with the tag TRANSand a pointer to a transient node. A transient node (TransBody) is a labelledheap node whih is labelled with the type, e.g. free, future, or kinded variable,a spae and a suspension list. The suspension list ontains threads whih aresuspended until the transient is bound.4.2.3 VariablesA new variable is reated with newVar() . newVar() returns a referene to thevariable.
class FreeBody : public TransBody f

FreeBody(Space � s) : TransBody(FREE,s) fgg;
Tagged newVar(Space � s) f
return Ref(new Trans(new FreeBody(s)));g

Bool isFree(Tagged t) f
return t.tag()==TRANS &&

((Trans)t).getBody() �>type==FREE;gNote that the memory needed for a new variable is the memory for the body andthe memory for the tagged pointer. The referene does not use heap memory,beause the C++ ompiler an store it in registers and �elds.4.2.4 FuturesA future is a read-only view on a transient. Futures are implemented as transientnodes where the assignment operation bloks and suspends its thread until theproteted transient is bound. A future of a transient is reated with futureOf .

4.2. TRANSIENTS 127
class FutureBody : public TransBody f

FutureBody(Space � s) : TransBody(FUTURE,s) fgg;
Tagged futureOf(Tagged v) f

Tagged tmp=deref(v);
if (!isTrans(tmp)) return tmp;
Space � s=((Trans)tmp).getBody().home;
TransBody � tb= new FutureBody(s);
Trans �t = new Trans(tb);
addPropagator(tmp,Ref(t));
return Ref(t);gThis funtion �rst tests if the argument is a transient. If it is not the argumentis diretly returned. If the argument is a transient a new future is reated and apropagator is installed to propagate the binding of the transient to the future.4.2.5 By-need FuturesBy-need futures are a speialization of futures. Additionally to the read-onlyaspet, is has an assoiated funtion. The by-need future is impliitly assigned tothe result of the onurrent exeution of the funtion, when its value is requested.A by-need future is requested when a threads bloks on it.The LVM supports an optimized by-need future for the ase that the funtion isa simple �eld seletion of a reord. When the by-need future is requested this�eld seletion is tried without spawning a onurrent thread. This optimizationis needed for the lazy loading of modules in Oz [22℄.4.2.6 BindingWhen a transient is bound the threads stored in the suspensions must be resumedand then the transient node is destrutively updated to the new value.

void bind(Tagged v1, Tagged v2)f
Tagged � vPtr=derefPtr(v1);
TransBody �tb=((Trans)v1).getBody();
wakeup(tb �>suspList);�vPtr = v2;
free tb;gThe memory used for the transient body an be safely released, beause after thebinding no referene to it exists any more.

128 CHAPTER 4. IMPLEMENTATION ASPECTSIn the LVM binding is more ompliated, beause hooks for handling spaes areneeded, e.g. bind has to deide if a transient is loal or not and eventually trailthe binding (sript model) or store the binding in a loal binding frame (situatedmodel).4.2.7 SuspensionsOperations expeting a determined value suspend if they are applied to tran-sients. Suspending means that the thread exeuting the operation is stopped anda suspension is hooked to the transient. A thread hooked onto a transient isrestarted when this transient is bound. More than one thread an suspend on asingle transient, i.e. a transient an be hooked with many threads. The strutureto store the threads is alled suspension list.The primitive operation to suspend on the determination of a single value is
void wait(Tagged) . It simply tests if its argument is determined, if not itbloks and suspends the urrent thread. When the transient is bound the threadis resumed and the wait operation is restarted and heks again if the new valueis now determined.A thread an suspend on more than one transient. The primitive operationfor this ase is void waitOr(Tagged,Tagged) . It suspends if both argumentsare transients. In this ase the thread is added to the suspension list of bothtransients.In the LVM threads are never removed from a suspension list. This an leadto spurious wakeup and memory leak. If a thread suspends on more than onevariable after a wakeup it potentially remains in the suspensions of the othervariable.A spurious wakeup ours for example in the following ode
spawn fn () = >

(waitOr (x, y);
wait z)The thread starts running and suspends on x and y . When x is bound and y isnot bound waitOr sueeds and the thread suspends on z . If y is now boundthe thread is woken up without need and retries wait z , whih suspends again.An example of a memory leak is shown in the following example

spawn fn () = >
(waitOr (x, y);

wait)When x is bound the thread annot be garbage olleted, beause a referene toit remains in the suspension list of y .

4.2. TRANSIENTS 129Both problems an be solved using a shared suspension struture in the suspen-sion lists. This suspension struture has a referene to the suspended thread andis stored in both suspension lists. After a wakeup it an be marked, suh thatfurther wakeups are inhibited [87℄.4.2.8 Usage patternsThe major design goal for the implementation of transients is that they are grae-fully degrading wrt. to determined values. Every operation has to be preparedto handle transients, but if no transients are used no performane penalty shouldbe payed. This is only possible in the urrent design of the LVM beause alloperations have to test the type of the node dynamially and transients are of adistinguished type.Therefore speial attention has been payed to an optimized implementation ofreferenes (REF) and transients (UVAR, FUT, TRANS). Every operation has to testsits arguments at least for the following ases:referene If the argument is a referene it has to be dereferened.transient If the argument is a transient the operation has to suspend until thetransient is bound.Several variants of the dereferene operation are useful. The simple deref fun-tion follows the referene hain until the end.
Tagged deref(Tagged v) f
while (isRef(v)) f

v = �((Ref)v).getRef();g
return v;gThis funtion is onsidered dangerous. Several hard to trak bugs oured duringthe implementation of Mozart. The problem is that this funtion makes it easy todupliate a transient by mistake. When the node returned by deref is a transientand it is stored into a register or �eld the transient is dupliated (see Figure 4.3).A variant of this funtion is safeDeref whih guarantees that a register nodeis returned, i.e. no transient is ever returned by safeDeref . The result of

safeDeref an be stored safely into registers and �elds.
Tagged safeDeref(Tagged v) f

while (isRef(v)) f
Tagged tmp = �((Ref)v).getRef();
if (!isRef(tmp) && isTrans(tmp)) f

130 CHAPTER 4. IMPLEMENTATION ASPECTS

CONS

INT1

x:

VAR �
�
�

�
�
�

�
�
�

�
�
�

CONS
y:

??????

CONS

INT1

x:

VAR �
�
�
�

CONS
y:

???VAR

y.field[0]=deref(x.field[0]) // BAD

CONS

INT1

x:

VAR ��
��
��
��

CONS
y:

???

y.field[0]=Ref(&x.field[0]) // OK

REFFigure 4.3: A possible dereferene bug.

4.2. TRANSIENTS 131
return v;g

v = tmp;g
return v;gThe last variant is derefPtr , whih returns a pointer to the last tagged pointer, ifthe input is a referene. Furthermore it side-e�ets its all by referene argumentand leaves the dereferened value there.

Tagged �derefPtr(Tagged &v) f
Tagged �ptr=0;
while (isRef(v)) f

ptr = ((Ref)v).getRef();
v = �ptr;g

return ptr;gIn the following we present some implementation patterns for handling dynami-ally typed values and disuss their usage.Optimisti pattern The optimisti pattern �rst tests if value is of the requiredtype. Only if it is not dereferening and the transient ase are handled.
if !is <T>(v)

v=safeDeref(v);
if isRef(v) suspend;
else if !is <T>(v) error;

doit;This pattern is very good if transients and referene hains our infrequently.The LVM is optimized towards this ase, beause in the onurrent funtionalprogramming style transients and referenes our only for the synhronizationof onurrent ativities.Deref pattern The deref pattern ensures that the value is dereferened beforeany type tests are performed.
v=safeDeref(v)
if is <T>(v) doit
else if isRef(v) suspend
else errorThis pattern was used in the LVM before we had the insight that L an be seenas a funtional language with extensions from logi programming rather than the

132 CHAPTER 4. IMPLEMENTATION ASPECTSother way round. In the relational style of logi programming many referenesour only, beause return values are passed as referenes to variables used asontainers for return values.Optimized deref pattern The optimized deref pattern allows to slightly opti-mize the deref pattern suh that the transient ase is more eÆient. An invariantof the LVM is that transients are never aessed diretly but always through theindiretion of a referene. This an be used to test the transient ase only whendereferening is needed.
if (isRef(v))

v=safeDeref(v);
if isRef(v) suspend;

if is <T>(v) doit
else errorCaller responsible pattern The aller responsible pattern only tests if theargument is of required type. No dereferening and transient test is done. Ifthe required type is no supplied an error is signalled to the aller. The aller isresponsible for dereferening and suspending in the ase of a transient. The alleran ensure that dereferening and the transient tests are performed before theappliation or it an do it lazily, i.e. after the operation has signalled an error.Non-monotoni pattern The non-monotoni pattern is used for non-monotonioperations on transients, e.g. binding.

Tagged �vPtr=deref(v)
if isTrans(v) f�vPtr = ...
else errorWhen the dereferened node is a transient the pointer vPtr refers to the transientwhih an be bound to a new value.4.2.9 Uni�ationThe store abstrations allow to implement the WAM-like instrutions for an op-timized uni�ation. As an example we show the ompilation of the followingprogram
let Y=lvar() in

unif (X, fa=Y, b=a g);
unif (Z, fa=Yg);
...

end

4.2. TRANSIENTS 133into the following WAM-like ode
get record [a b], X
unify variable Y
unify constant a
get record [a], Z
unify value YThe implementation of the instrutions an be outlined as follows:
get record(ar,R) f
if (isTrans(R)) f

mode = WRITE;
node n = newRecord(ar);
status = bind(R,n);g else f
mode = READ;
if (arity(R) != ar) status = FAIL;g

sPointer = getArgRef(R);g
unify variable(R) f
if (mode == READ) f

R = �sPointer++;g else f
R = newVar(currentSpace);�sPointer++ = R;gg

unify value(R) f
if (mode == READ) f

status = unify(R, �sPointer++);g else f�sPointer++ = R;gg
unify constant(c) f
if (mode == READ) f

node n = �sPointer++;
if (isTrans(n)) f

status = bind(n,c);g else if (n != c) f
status = FAIL;g

134 CHAPTER 4. IMPLEMENTATION ASPECTSg else f�sPointer++ = c;ggNote, that the ompiler knows the mapping of the arity from the features tothe index and shedules the unify instrutions for reading resp. writing thearguments in the orret order.The get record implementation shows that reord onstraints an be imple-mented as eÆiently as prolog strutures, if the arity is known at ompile time.4.2.10 Extending transientsIn this setion we explain a minimal and onvenient interfae to add new transienttypes to the LVM.The interfae for adding new transient types is de�ned by the lass ExtBody .
class ExtBody : public TransBody f
public:

ExtBody(Space �s) : TransBody(EXTVAR,s) fg
virtual int getIdV();

virtual TransBody � gcV();
virtual void gcRecurseV();
virtual void disposeV();

virtual ReturnCode bindV(Tagged �, Tagged);
virtual ReturnCode unifyV(Tagged �, Tagged �);
virtual ReturnCode addSuspV(Tagged �, Thread �);

virtual Tagged statusV();g;Every transient has a type. The type is enoded as a unique id returned by themethod getIdV . A new unique id may be obtained from a generator.The methods gcV, gcRecurseV , and disposeV are used for memory manage-ment. In the stop and opy garbage olletor gcV is used to opy a variable and
gcRecurseV is used to update the referene after opying. These two methodsare separated to allow the garbage olletor to detet and break yles.The method bindV is alled when the LVM wants to bind a transient to a value.This method sueeds if the binding is possible, fails if it is impossible, or suspendsif the binding is neither possible nor impossible.

4.2. TRANSIENTS 135The LVM alls the method unifyV if the value is a transient. The method
unifyV alls its own bindV method or the bindV method of the argument.With this tehnique it is possible to inrementally add new types, where only thenewer types need to know how to unify themselves with the transients of oldertypes. The uni�ation of two variables unifyV(x, y) alls bindV(x, y) if x\knows" how to unify with y else it alls bindV(x, y) .When a thread needs to suspend until a transient is bound the method addSuspVis alled to hook the thread to the funtion. For experimental purposes thisfuntion an fail, e.g. to enfore a programming style where only suspensions onfutures are allowed.The last funtion statusV() allows to distinguish the status of a transient. Thestatus distinguishes variables, onstraint variables, and futures.As an example we show the by-need future implemented with the extension in-terfae.
class ByNeed: public ExtBody f
private:

Tagged fun;
public:

ByNeed(Space � s,Tagged fun) : ExtBody(s), fun(fun) fg
virtual int getIdV() f return TRANSBY NEED; g
// memory management
ExtBody � gcV() f return new ByNeed(�this); g
void gcRecurseV() f if (fun) collect(fun,fun); g
void disposeV(void) f delete this; g
// always suspend binding
ReturnCode bindV(Tagged � vPtr,Tagged t) f

return SUSPENDg;

// allow unification with variables, otherwise suspend
ReturnCode unifyV(Tagged � vPtr,Tagged � tPtr) f
if (isFree(�tPtr))
return ((Trans) �tPtr).getBody() �>bindV(Ref(vPtr));

return bindV(Ref(tPtr));g
// kick the by need computation once
ReturnCode addSuspV(Tagged �, Thread t) f
if (fun) kick(fun);
fun=0;

136 CHAPTER 4. IMPLEMENTATION ASPECTS
suspList= new SuspList(t,suspList);
return SUSPEND;g

// a by need transient is a future
Tagged statusV() f return atom("future"); gg;

Tagged byNeed(Tagged fun) f
return Ref(new Trans(new ByNeed(current space,fun)));g

Bool isByNeed(Tagged t) f
return t.tag()==TRANS &&

((Trans)t).getBody() �>type==EXTVAR &&
((ExtBody �)((Trans)t).getBody())�>getIdV==TRANS BY NEED;g4.3 ReordsIn this setion we explain the implementation of literals, reords, and arities.4.3.1 LiteralsLiterals are tagged pointers using the LIT tag. The pointer refers to a node witha seondary tag of an atom ATOMor a name NAME.Atoms are alloated and stored in the atom table. The atom table2 is anothermemory area beside registers and the heap. Atoms have �elds for the ATOMtag, a print name, and the length of the print name.New strings are internalized to atoms using hashing. The funtion newAtom(char�)�nds or alloates an entry in the atom table, by alulating a hash value over allharaters in the argument string. For every atom in a L soure program this isdone at ompile or load time.The hash value of atoms for seleting �elds in reords (see setion 4.3.2) is doneby the funtion hashAtom(Tagged) . It uses the �xed memory address of theatom in the atom table to eÆiently generate a hash value.Names are represented in the LVM either as named names or as free names.Named names an be reated statially. The ompiler an optimize the usage ofnamed names similar to atoms.2In other systems the atom table is also alled symbol table.

4.3. RECORDS 137Named name are further lassi�ed into unique names, opyable names, and opti-mized names. Unique names are true, false and () whih are unique in everyVM3. Optimized names are all other statially reated names.Named names are alloated and stored in the name table. The name table issimilar to the atom table. Named name are labelled with a hash value, a printname, and their type, i.e. unique, opyable, or optimized.Free names are dynamially reated heap nodes whih are labelled with a hashvalue and a spae. The hash value is needed for the eÆient representationof reord arities (see Setion 4.3.2) and an be extrated with the funtion
int hashName(Tagged) .Names are situated in spaes to be onsistent with proedures and objets whihmust be situated4. The representation of a name thus ontains a pointer to itsspae.The implementation of free names needs two words. The �rst word representsthe kind of literal, and the hash value. The seond word ontains the spae.The funtion Tagged newName() reates a new free name. It hooses a newhash value by inrementing a global ounter, alloates an objet of class Nameon the heap, initializes it, and reates a tagged pointer to this objet with thetag LIT .A basi property distinguishing atoms and names is salability. The number ofatoms is �xed at ompile time5. In ontrast free names are reated at run timeand the number of names is unlimited. Therefore names are alloated from theheap and they are subjet to garbage olletion.HashingFor implementing reord arities (see below) a hash funtion mapping a featureto a positive integer must be implemented for all types of features. For hashingon small integers their absolute value is used. Big integers are not hashed in theurrent implementation: all big integers are mapped to the same value.The hash value of atoms is the unique address of their entry in the atom table.It is very eÆient to use the address beause it avoids the alulation of a hashvalue depending on the haraters in the string.A random hash value for names is omputed when a name is reated and it isstored in the data struture representing the name.3Unique names are needed for serialization and pikling.4Situated names are required to simplify the deision if proedures and objets must beopied when a spae is loned.5Creating atoms dynamially is possible in full Oz, but it is depreiated. Strings or virtualstrings an be used instead of dynamially reated atoms.

138 CHAPTER 4. IMPLEMENTATION ASPECTSAnother implementation tehniques for getting a hash value for names is thealloation of names in a separate memory area, where their address is �xed.Using this �xed address as hash value redues the memory onsumption of namesdramatially: for a name generated in the top level spae only one bit is needed.The garbage olletor has to be adapted to use a non-opying, e.g. mark andsweep, olletor for the new memory area instead of the implemented opyingolletor for the heap.To eÆiently implement the arity table it should be possible to order names.Using the �xed memory address a total order on names is trivially indued. Oth-erwise the random hash values must be all distint. In the urrent implementationthe distintness is guaranteed by using a ounter instead of a random numbergenerator6.4.3.2 Reord representationsThe LVM uses four di�erent representations for reords with varying eÆieny:list elements, tuples, simple reords, and open reords. The representation of areord is always normalized to its anonial representation. A reord with thefeatures Head and Tail is represented as list element. Reords with onseutivenumeri features from 1 to n are represented as tuples. Other determined reordsare represented as standard reords. We use the name reord also for the standardrepresentation if it is lear from the ontext what we mean.Tuples and (standard) reords The representation of tuples and (standard)reords are tagged pointers with tag RECwhere the pointer refers to a labelledheap node. The label of the heap nodes ontains a seondary tag for distinguish-ing tuples and reords. Furthermore the heap node is labelled with the tuplewidth resp. the reord arity (see below). The heap node has a �eld for everyfeature.
class Structure f

ArityOrWidth arity;
Tagged field[n];gThe �eld ArityOrWidth is a tagged pointer with an RECORDresp. TUPLE tagand the arity of the reord resp. the width of the tuple.The only reason to support an optimized representation for tuples in the LVMis that the dynami reation of tuples is signi�antly (approximately a fator of�ve) faster than the dynami reation of reords, beause no lookup in the aritytable is needed.6The implementation uses a 32 bit ounter and e�ets related to ounter overow are nothandled.

4.3. RECORDS 139List elements List elements are represented as tagged pointers (CONS) wherethe pointer refers to an unlabelled heap node with one �eld for the head and onefor the tail of the list.The operations on list elements are the reation of new lists and the �eld seletion.The lass Cons implementing list elements was already shown in Setion 4.1.This representation saves a word, i.e. �fty perent, per list element, beause thearity required for reords is represented in the tag. The test for a non-empty list ismore eÆient then the test for a reord with a ertain label and arity, beause onlythe tag bits must be heked and additionally the CONStag is hosen suh thatthe test for CONSneeds only two native mahine instrutions (see Setion 4.1.3).A small issue with the list optimization is that the forwarding pointer has tobe stored in the �eld of the head or the tail, whih are also subjet to garbageolletion (see Setion 4.6).4.3.3 ArityEÆient lookup The representation of an arity ontains the hash table andthe hash mask.
class KeyAndIndex f

Tagged key;
int index;g

class Arity f
Tagged featureList;
int width;
int hashMask;
KeyAndIndex table[hashMask+1];gFor an eÆient aess to the reord width and the list of features both are storedin the arity. An alternate design would be to ompute them from the ontent ofthe hash table on demand.The size of the hash table is the next power of two whih is greater than 1:5 timesthe width of the arity. The hash mask is the size of the table minus one. Thesize and hash mask are hosen suh that the alulation of an index modulo thetable size is a bitwise AND with the hash mask.The table is reated as hash table with the open addressing sheme from Knuth [52℄.The table ontains pairs of features and indies (KeyAndIndex). The featuresare stored as tagged pointer (Tagged key) and the indies (int index) are uniqueindies of the �eld at the orresponding feature. The lookup funtion returns a�eld index or �1 if the feature is not in the arity.

140 CHAPTER 4. IMPLEMENTATION ASPECTS
int Arity::lookup(Tagged feature)f
int i = featureHash(feature) & hashMask;
int step = (i%7) �2+1;
while (1) f
if (table[i].key == feature)

return table[i].index;
if (!table[i].key)

return �1;
i = (i + step) & hashMask;ggThe size of the table is at least 1:5 times the width to have enough empty entriesto make the member test also eÆient for the ase that a feature is not found.The funtion featureHash omputes a hash value for a literal or an integer.An implementation of arities using buket lists instead of the open addressingsheme would have fewer ollisions, but the size required per arity would be larger.For bukets 3+3�width+size words are needed in a linked list implementation.This is larger than 3+2�size words for the open addressing sheme if we assumethat the size is between 1:5 � width and 2 � width.Furthermore the aess of the key resp. value of an entry requires one morememory aess if the buket list is represented as a linked list.The arity table The arity table is a hash table using hashing with buket liststo store all arities. The key used to aess the arity table is the list of featuresof an arity. The hash value of a feature list is the sum of the hash values of itselements.To ompare a feature list with an entry of the arity table in linear time thelist of features should be sorted. A problem when sorting a list of features arenames, beause they are not ordered in the Oz programming model. In the LVMnames are ordered using the hash value. The order of names is not a total order,beause the hash value is derived from a ounter modulo the C++ word size. Ifonseutive names in the feature list have the same ounter value it is thereforeneessary to ompare all there permutations7.A better heuristis to ompute a hash value for a list of features ould ompute ahash value based only on the �rst k features. This optimization has no pratialrelevane, beause dynami reord and hene arity reation ours too infre-quently. Furthermore dynamially reated arities are in many ase new, i.e. not7With the tehnique of alloating names in a separate memory area the ordering problemof names disappears.

4.3. RECORDS 141yet in the arity table, and the ost of their reation dominates the omputationof the hash value.4.3.4 The reord interfaeThe basi operations on reords are the reation of new reords, the seletion of�elds, and pattern mathing. The funtions for reating and aessing tuples andreords are summarized in the following table
Structure � newTuple(int) alloate a new tuple
Structure � newRecord(Arity �) alloate a new reord
Tagged Structure::setArg(int,Tagged) initialize a �eld
Tagged Structure::makeRecord() reate a tagged pointer
Arity �Structure::getArity() aess the arity
int width(Tagged) aess the width
Arity � arity(Tagged) aess the arity
Tagged arg(Tagged, int) selet a �eld by index
Tagged field(Tagged,Tagged) selet a �eld by feature
Bool isTuple(Tagged) test if is tuple or reordReord reation Two kinds of reord reations are distinguished stati anddynami reation.Stati reord reation is used when the arity is known at ompile time. In thisase the arity is looked up and added to the arity table when the mahine odeis loaded. This is similar to internalizing string into the atom table.Stati reord reation alloates the memory for the reord struture on the heap,writes the label and arity into the reord struture. The �eld values are writteninto the �eld array without hashing. This an be done beause the arity is knownat ompile time and hene the index is also known at ompile time. Of oursethe ompiler and LVM must agree on mapping of feature to index.We present one example of a dynami reord reation whih allows to adjoin onefeature and its �eld value to an existing reord. This adjoin operation reatesa new reord, whih has the same �elds and �eld values as the original reord,exept that the new feature is added or that is value replaes an existing �eld.� The new reord has the same arity if the adjoined feature is already in itsarity.� If the adjoined feature is not yet in the reord arity then a lookup in thearity table is performed with the new feature inserted into the feature list.

142 CHAPTER 4. IMPLEMENTATION ASPECTS
Tagged adjoinAt(Tagged rec, Tagged fea, Tagged val)f
// find arity
Arity �newArity;
Arity �oldArity = arity(rec);
if (oldArity �>lookup(fea)) f

newArity = oldArity;g else f
Tagged newList = insert(fea, oldArity �>featureList);
newArity = arityTable.find(newList);g

// create record
Structure �newRecord = newRecord(newArity);

// copy fields
Tagged l=oldArity �>featureList;
while (isCons(l)) f

f = head(l);
newRecord �>setArg(newArity �>lookup(f),field(rec,f));
l = tail(l);g

// new field
newRecord �>setArg(newArity �>lookup(fea),val);
return newRecord �>normalize();gThe ost of this adjoin operation has two parts: the test if the feature is alreadyin the arity and eventually the dynami lookup of the new arity. The �rst part isvery eÆient, beause it uses the arity lookup funtion. The seond parts requireshashing a feature list in the arity table and eventually reation of a new arity.Additional optimized adjoin funtions are provided by the implementation toadjoin more than one new feature at one and to reate a new reord from a listof features.Field seletion Seleting the �eld at feature of a reord �rst alls the lookupfuntion of the arity and if this is suessful reads the orresponding entry of the�eld array.

Tagged arg(Tagged rec, int i) f
Structure �str = getStructure(rec);
Tagged val = str �>field[i];
return isDirectVariable(val) ? makeRef(&str �>field[i]) : val;g

4.3. RECORDS 143
Tagged field(Tagged rec, TaggedRef fea) f
int i = arity(record) �>lookup(fea);
if (i <0) return 0; // not found
return arg(rec,i);gThe value stored in the �eld array annot be used unonditionally. The problemis the memory eÆient representation of variables (see hapter Setion 4.2). If avariable is alloated diretly in the array and not on the heap a referene to thisvariable has to be returned by the �eld seletion funtion. This means that anadditional test is required for every �eld aess.To optimize the �eld seletion inline ahing [20, 108, 87℄ is used. The instrution

fieldCached ahes the triple of last feature, arity, and index. If the samefeature is seleted using the same arity then the index is diretly taken from theahe.
Tagged fieldCached(Tagged rec, Tagged fea,

Arity �&cachedArity, Tagged &cachedFea,
int &cachedIndex)f

int i;
if (arity(rec) == cachedArity && fea == cachedFeature) f

i = cachedIndex;g else f
i = arity(rec) �>lookup(feature);
cachedArity = arity(rec);
cachedFeature = fea;
cachedIndex = i;g

if (i <0) return 0; // not found
return arg(rec,i);gPattern mathing: tests and indexing Pattern mathing deals with eÆ-iently deomposing reords. The main tehniques used to implement patternmathing are tests and indexing. A test ompares a reord with one pattern andindexing selets a mathing pattern from a set of patterns.The eÆient ompilation is based on the fat that the arity of the patterns areknown at ompile time. When the test resp. indexing ode disovers that apattern mathes then the �elds an be seleted without hashing, beause theompiler an preompute the lookup of the index.The funtion testRecord heks if a node is a reord with a given arity. Besidethe type test the testRecord funtion redues to exatly one omparison for the

144 CHAPTER 4. IMPLEMENTATION ASPECTSarity. This is exatly the same number of omparisons as required for tuples. Fortuples only the width is ompared instead of the arity.
ReturnCode testRecord(Tagged rec, Arity �ar)f

Assert(ar != ArityEmpty);

loop:
if (isRecord(rec)) f
return arity(rec) == ar ? PROCEED : FAILED;g

if (isCons(rec)) f
return ArityCons == ar ? PROCEED : FAILED;g

// deref and test for variable
if (isRef(rec)) f

rec = deref(rec);
if (isTrans(rec)) return SUSPEND;
goto loop;g

return FAILED;gIndexing onsists of two parts. The arity is hashed into the indexing table (usingopen addressing). The entries of the buket list are then ompared using thesame omparison tehnique as testRecord .4.3.5 DisussionFlexible �eld seletion Subtrees of reords an be seleted with dereasingeÆieny numerially by an index if the feature and arity are statially known,with a statially known feature, or with a built-in proedure.Seletion by index is supported well on standard hardware and is therefore fast.The virtual mahine has no instrution to support this selet method for reords,beause in an emulator-based approah the performane di�erene to the seletionby a statially known feature with inlining ahing is negligible. The seletion byindex is useful in optimized built-in proedures, e.g. for seleting �elds of reordswith known arities like tuples.Arity The arity abstration allows to separate the issues of �eld seletion andof mapping of features to the �elds. This provides a uniform model of the graphand an eÆient mapping of the graph to standard hardware.

4.4. FEATURE CONSTRAINTS 145To support the equality test of arities an arity table is maintained in the runtimesystem whih guarantees that every arity is represented exatly one.Features The feature abstration enapsulates two eÆieny problems: theequality test of two features and the mapping of features to indies througharities.Equality of features is implemented by the identity of nodes. Strings of haratersare made unique with an atom table, whih guarantees that two equal strings aremapped to the same atom. For names the runtime system maintains the invariantthat they are never dupliated, whih makes the equality test trivial.The eÆient mapping of features to indies is done through hashing. Useful hashfuntions are disussed in Setion 4.3.2.Representations Supporting three representations for determined reords re-quires in the implementation additional ode, beause ode dealing with reordsmust be written suh that all the representations are orretly handled. In aseswhere eÆieny is not the major onern it is possible irumvent this problem byonverting any reord into the standard reord representation and operate onlyon this representation.Furthermore the dynami reation of reords has the overhead that the repre-sentation must be normalized. This basially means that list elements must bedeteted and turned into their optimized representation.4.4 Feature onstraintsRepresentation Feature onstraints are implemented as transients with a �eldfor the width attribute and a hash table for the �elds attribute, whih ontainspairs of features and �eld values.
class OFVar : public TransBody f
private:
int width;
DT �dt;

public:
OFVar(Space �s, int n)
: TransBody(OFVAR,s) f

width= �1;
dt = DT::allocate(n);g

...g;

146 CHAPTER 4. IMPLEMENTATION ASPECTS
Tagged newOF(int n) f

TransBody � tb= new OFVar(space);
Trans �t = new Trans(tb);
return Ref(t);gThe hash table class DT, alled dynami table, ontains an array of pairs

DTE table[] , the size of this array int size , and the number of elementsin the array int num. The size of the array is a power of two to simplify openhashing. When the array is �lled up to 75 perent the array size is doubled.
// dynamic table entry
class DTE f

Tagged ident;
Tagged value;g;

// dynamic table
class DT f
static:

DT �allocate(int n);
private:

int num;
int size;
DTE table[N];g;Feature onstraints The feature onstraint is implemented suh that �rst atest if the feature is already in the hash table is performed. If this is the ase theold and new feature are uni�ed.

ReturnCode OFVar::featureC
(Tagged �vPtr, Tagged fea, Tagged val)f
Tagged oldVal=dt �>get(fea);
if (oldVal) return unify(oldVal,val);

if (dt �>isFull()) dt=DT::resize(dt);
dt �>add(fea,val);
if (width==dt �>num) return this�>toRecord(vPtr);
return PROCEED;gIf a new feature is added then a test is performed if the table is up to 75 perent�lled and must be resized. Then the feature with the orresponding value isadded to the hash table.

4.4. FEATURE CONSTRAINTS 147Finally a test has to be performed if the number of elements is equal to thewidth attribute. In this ase the open reord is losed as shown in the method
toRecord .
Return OFVar::toRecord(Tagged �vPtr)f

Tagged alist=dt �>getArityList();
Arity �arity=aritytable.find(alist);
Structure �newrec = newRecord(arity);
newrec �>initArgs();
return this�>bindRecord(vPtr,newrec);gClosing an open reord means to dynamially lookup resp. reate an arity inthe arity table. To simplify the implementation the �elds of the new reord areinitialized with variables and the generi funtion to bind an open reord to alosed reord is alled.

Return OFVar::bindRecord(Tagged �vPtr, Structure �str)f
PairList � pairs = dt �>check(str);
if (!pairs) return FAILED;

Tagged saved= �vPtr;�vPtr = str �>normalize());

Return ret = unifyPairs(pairs);

if (ret == PROCEED) f
this�>checkSuspension();g else f�vPtr = saved;g

return ret;gBinding an open reord to a losed reord �rst heks if every feature of the openreord is in the losed reord. The check method returns the mathing pairs of�eld values in the open and losed reord.
Pairs �DT::check(Structure �str)f

Pairs �pairs= new PairList();

for (int i=size; i ��;) f
if (table[i].value) f

Tagged val=str �>field(table[i].ident);

148 CHAPTER 4. IMPLEMENTATION ASPECTS
if (!val) f

pairs �>free();
return 0;g

pairs �>addpair(val, table[i].value);gg
return pairs;gIf check was suessful the seond step in bindRecord is to bind the open reordtransient to the new reord. This is neessary at this point to break a possibleyle when unifying the �elds. Then orresponding �elds in the pair list areuni�ed. If all pairs are uni�ed suessful the suspensions are woken up.Uni�ation The merge method is the main part of the uni�ation of two openreords. It merges the features of one dynami table into the other table.

PairList �DT::merge(DT � &dt)f
PairList �pairs= new PairList();

for (int i=0; i <size; i++) f
if (table[i].value) f

Tagged val = dt �>get(table[i].ident);
if (val) f

pairs �>addpair(val, table[i].value);g else f
if (dt �>isFull()) dt=DT::resize(dt);
dt �>add(table[i].ident, table[i].value);ggg

return pairs;gThe merge method merges the features of the urrent table into its argument.Merging means that a feature is added if it is not yet in the table. The �eldvalues of features whih are already in both tables are olleted in a pair list forlater uni�ation with the unifyPairs funtion.
Return unifyPairs(PairList �pairs)f

PairList � p = pairs;
TaggedRef t1, t2;
Return ret = PROCEED;
while (p �>getpair(t1, t2)) f

4.5. EXTENSIONS 149
Assert(!p �>isempty());
ret = oz unify(t1, t2);
if (ret != PROCEED) break;
p�>nextpair();g

pairs �>free();
return ret;gDuring the uni�ation of two open reords the following ases must be distin-guished� If both are loal the largest dynami table is used to merge in the smallerone.� If one is loal and the other is global, then the loal variable is bound tothe global one and the table of the global one is merged into the table ofthe loal variable.� If both are global then a opy of the largest table is reated and the othertable is merged into the opy.4.5 ExtensionsIn this setion we desribe two methods to add new datatypes to the LVM. Bothtehniques use more memory for representing the type information and are slowerfor type tests. They are used for datatypes whih need more memory anyway,e.g. arrays or for datatypes whih are not frequently used.4.5.1 Standard extensionsStandard extension nodes, have the head tag EXTand a seondary tag. Figure 4.4lists the seondary tags.The additional osts for these extension types are moderate. The type test hasto test the primary tag, unbox the extension and then test the seondary tag. Inthe ase of a suessful test the already unboxed extension an be simply astedto the proper type for applying an operation. The osts of suessful type testsis therefore amortized by the following operation on the datatype.To reate a new node a small overhead ours only for storing the seondary tag.The LVM knows all these types and an do some optimizations, e.g. inlining themethods of the orresponding implementation lasses. For gaining eÆieny this

150 CHAPTER 4. IMPLEMENTATION ASPECTSBigInt big integersUserPro user-de�ned proeduresBuiltin built-in proeduresCell ellsSpae �rst lass referene to a spaesObjet user-de�ned objetsPort portsArray multiple ellsDitionary hash table of ellsLok lokClass user-de�ned lassChunk non-mutable objetFigure 4.4: Seondary tags.is needed, but from a design point it would be nier to have a small interfae,as provided by the virtual extension explained below. For every data-type aperformane analysis an be made and a design deision an be made on whihlevel to support it.Proedures and objets are further optimized in the LVM. In the byteode toplevel proedures are represented diretly. During a method appliation the un-boxed representation of the urrent objet, alled self, is stored in a expliitmahine registers the LVM for immediate aess.In the following we desribe some of the extensions.Big integers The tag BigInt allows to represent integers, whih do not �tinto the small integer representation desribe in Setion 4.1.2. In the LVM theGNU Multiple Preision Arithmeti Library (GMP) is used. The representationand the operations are taken from the library. Only the memory managementis hooked to alloate big integers on the heap of the LVM using the free listtehnique (see Setion 4.6).Proedures Proedures are represented as built-in proedures or user de�nedproedures. Built-in proedures are native proedures typially written in C orC++. User de�ned proedures are written in L and ompiled into LVM byteode.Objets and lasses Objets and lasses allow for an eÆient representationof the objet-oriented extension of Oz.

4.5. EXTENSIONS 151Spaes Spaes allow for �rst lass referenes to omputation spaes. Firstlass spae nodes are labelled with a referene to the internal representation of aomputation spae.Cells Cells have a modi�able �eld for the ontent of the ell. To allow for themodi�ation of the �eld only register nodes an be stored in it. The register noderestrition guarantees that there are no referene from other nodes diretly to the�eld. Cells are heap nodes whih are labelled with their spae.A ell needs in addition to the seondary tag two words on heap. They are notoptimized, beause they are rarely used. Their primary usage is to serve as atheoretial foundation for objets. Objets are built into the LVM as optimizeddatatypes. The representation of objets is onverted to a ell based representa-tion to simplify the distribution protools.Ports Ports are represented in the same way as ells. The only di�erene is thatthe ell is not diretly aessible. The update of the ontent is restrited to theport send operation, whih reates puts another element on a stream assoiatedwith the port [49℄.Loks Loks are another variant of ells, with a protool to implement mutualexlusion.Arrays Arrays are a straightforward extension of ells to multiple ells indexedby integers.Ditionaries Ditionaries are more elaborate extension of multiple ells usinga hash table mapping features (integers and literals) to ells. The hash tableimplementation of ditionaries is shared with the dynami tables of the openreords implementation.4.5.2 Virtual extensionsThe major di�erene between the standard extensions desribed before and vir-tual extensions is the usage of late binding for virtual extensions.A virtual funtion interfae de�nes all the hooks needed in the LVM to add newdata-types. It allows to add arbitrary many new built-in data types in a modularway. It de�nes a small and simple interfae for adding new types.

152 CHAPTER 4. IMPLEMENTATION ASPECTSA drawbak of virtual extensions is that a performane penalty has to be payed.Late binding implies that no inlining optimizations an be performed, i.e. allinga virtual method always needs a table aess and a funtion all, whih annotbe inlined.
class VExtension f
public:
virtual ˜VExtension();
VExtension() fg
virtual int getIdV();
virtual VExtension � gcV();
virtual void gcRecurseV() fg
virtual Tagged printV(int = 10);
virtual Tagged typeV();
virtual Bool isChunkV()
virtual Tagged accessV(Tagged);
virtual ReturnCode eqV(Tagged);
virtual Bool marshalV(void �);
Bool isLocal();g;The virtual extension has virtual methods for typing (getIdV), garbage olletion(gcV and gcRecurseV), inspeting (printV, typeV), �eld seletion (accessV),equality test (eqV), and marshaling (marshalV). The minimal e�ort to add anextension is to implement the garbage olletion and the getIdV() method.The virtual methods are alled by hooks in the memory management, printing,uni�ation resp. equality test, the select operator, and the marshaling andunmarshaling routines of the LVM.Two kinds of virtual extension are possible: situated and non-situated. Situatedextensions are labelled with a spae. They are handled orretly when spaesare loned, by alling the garbage olletion methods if needed. Non-situatedextensions are never opied when spaes are loned. New extensions need onlyto speify if they are situated or not.To di�erentiate extensions a unique id is used. Every type of extension hoosesa di�erent id. New ids an be generated using a built-in id generator or ids anbe pre-registered in LVM.The type test for a virtual extension involves the following steps: test the pri-mary tag, unbox the virtual extension, all the virtual funtion to get the id andompare it with the required id.For operations on virtual extension the same argument as above holds: after typetest the unboxed value an be asted to the required type without additional osts.To reate a new node the storage must be alloated, the method table must beinitialized, if needed additional �elds and labels must be initialized and �nally

4.6. MEMORY MANAGEMENT 153the extension must be boxed. The only di�erene between virtual extensions andstandard extensions is the initialization of the method table instead of storingthe seondary tag.4.6 Memory ManagementAs usual for high-level languages L requires automati memory management.The mapping of the language graph to the memory is done transparently, withno expliit requests to free or alloate memory at the language level.4.6.1 PriniplesThe design goals of the memory management are similar to the design goals formost other parts of LVM: simpliity, exibility, extensibility, and eÆieny.Simpliity Simpliity is required beause the resoures for our researh projetare limited and disovering elaborated memory management tehniques wasnot in the fous of our researh. The system should be stable and pratiallyuseful without too muh e�ort for maintenane.Flexibility For an explorative development, where new tehniques and oneptsare tried out and often replaed by new and better ideas the primitives haveto be designed suh that its easy to adapt them.Extensibility The integration of new data-types must be simple.EÆieny The performane of the system should, of ourse, not be degradingbeause of a bad memory management.Generi priniples of automati memory management are� Find garbage as soon as possible and make it available for reuse. The LVMsupports free lists for data-strutures whih an be reused, e.g. the body oftransients an be reused when transients are bound.� Follow the priniple of loality of memory aess. The memory hierarhiesof modern proessors really pay o� if the working set of the memory is notsattered all over the available memory. In the LVM we use therefor stakdisiplines wherever possible.� If none of the previous priniples apply the graph representing the store hasto be sanned and partitioned into the used and unused nodes. The unusednodes must then be made available.

154 CHAPTER 4. IMPLEMENTATION ASPECTSIn the LVM a stop and opy olletor is used. All onurrent ativities are �rststopped, suh that the memory management has exlusive aess to the memory.The living parts of the graph are traversed and opied into new segments of thememory. Finally the old segments are released for future use.A stop and opy olletor has the advantage that it is simple beause it has exlu-sive aess to the memory. It behaves very well if the amount of living memory issmall ompared to the garbage. The memory is ompated automatially, whihprovides better loality. The node representation in the store an be very irreg-ular, beause their struture must be only known when a link is followed, e.g. norun-time type information is needed if a link is statially typed.A stop and opy olletor has the disadvantage that it is not onurrent andarbitrary delays of onurrent ativities an our during the exeution of theolletor. The olletor needs (temporary) muh more memory as required forthe representation of the living graph.4.6.2 PrimitivesIn this setion we desribe the primitives supplied in the LVM for maintainingmemory. C++ supports to overwrite the memory management funtions perlass. In the LVM we use this to replae the operators new and delete withimplementation to use heap resp. free list memory.Heap memoryThe heap memory is alloated from the operating system in hunks of memoryalled segments. The LVM maintains a hain of alloated segments. When a seg-ment is full a new segment is alloated. The size of the segments is on�gurable.When the garbage olletion starts a new hain of segments is alloated andthe living nodes are opied into the new hain. When the garbage olletion is�nished the old hain is released to the operating system.The memory in a segment is alloated in a stak fashion starting from the top-most address down to the bottom. The LVM has two pointers for maintainingthe available memory in a segment: the segments urrent top and the segmentbottom. When new memory is requested the segments urrent top is dere-mented until the segment bottom is reahed. When it is reahed a new segmentis alloated from the operating system.Free list memoryA frequent ase is that memory alloated for a struture an be released aftera ertain operation was performed, but that some of these strutures an be

4.6. MEMORY MANAGEMENT 155released too beause they are not longer reahable in the graph. For this ase theLVM supports free lists on top of the heap memory.A typial ase where a free list is useful are the body of transient values. Whena transient is bound the body an be safely released. Using only this onditionto release this memory is not suÆient: in the ase of an unreahable transientin the graph its body should be released too. Therefore it is essential to ombinethe free lists with garbage olletion.Whenever a struture whih was alloated from the heap an be safely releasedit is put into a free list. A request for a new struture then heks if memoryis available from the free list. New memory is alloated from the heap when nomemory is available from the free list.Tehnially it is a useful optimization to have di�erent free lists for di�erentsizes of memory. This avoid problems with fragmentation and the release andalloation an be done eÆiently in onstant time.Stak memoryStak memory is used for maintaining the tasks on threads. The problem whiharises here is that multiple onurrent threads exists and therefore multiple staksmust be maintained. Another ompliation is that the size of these staks shouldbe dynamially adaptable. Furthermore the onditions for dealloating the stakdepends on the reahability of transient nodes in the graph.All these problems are solved by alloating the staks of threads on the heap.When a stak overows a new stak is alloated and the old one it is opied tothe new one and released to the free list.4.6.3 The implementation of the garbage olletorThe garbage olletor of the LVM starts traversing the graph of the store from theroots. The roots for garbage olletion are the threads in the runnable queue andsome global data-strutures, e.g. global properties, the default exeption handler,et.For every living referene to a node the garbage olletor performs the followingstepsopy The node is opied to the new hain and the referene to the node isupdated.mark The original node is marked and a forward pointer is stored there. Whenthe node is visited again this is deteted and the forward pointer is used toupdate the referene to the new loation.

156 CHAPTER 4. IMPLEMENTATION ASPECTSollet The additional entry points reahable from the just olleted node areolleted after opying and marking. The order of the mark and olletsteps is essential to avoid in�nite reursion in the ase of yli strutures.To avoid deep reursion on the runtime stak an expliit stak, the update stak,is used to maintain the not yet olleted entry points. The update stak ontainsthe type of the node and a pointer to the node. The LVM use the tagged pointertehnique for the entries on the update stak.The LVM does not use pointer reversal [25℄ and Cheney's breadth-�rst [17℄ teh-niques to make the update stak obsolete. These tehniques an be adapted easilyfor the LVM.Beause many strutures and nodes on the heap are implemented as C++ lassesit is straight-forward to implement the olletion algorithm with the followingmethods
class Node f

Bool gcTestMark() test if node is marked
Node� gcGetForward() get the forward pointer if node is marked
void gcPutMark() mark the node
void gcPutForward() put the forward pointer
Node� gcCopy() opy an unmarked node
void gcCollect() ollet the entry points

... g;The implementation of the methods maintaining the mark and the forward pointeris trivial. E.g. for tagged nodes one tag is reserved as garbage olletion markand the data part is used as forward pointer.The gcCopy method an simply use the C++ opy onstrutor, beause thememory management onstrutor new is overwritten to use the heap of the LVM:
Node� Node::gcCopy() f return new Node(�this); gFor nodes with an expliit tag the opy onstrutor depends on the tag:
TransBody � TransBody::gcCopy() f
switch (this.type) f
case FREE: return new FreeBody(�(FreeBody �) this);
case FUTURE: return new FutureBody(�(FutureBody �) this);
...ggThe mark, forward, and opy methods are usually ombined into one method

Node �gc() , whih returns the forward pointer if the node is already olleted,else the node is opied and the new node is pushed onto the update stak for thefurther olletion of entry points.The gcCollect method then simply updates its �elds using the gc method.

4.6. MEMORY MANAGEMENT 157
void Node::gcCollect() f
this.n1 = this.n1 �>gc();
this.n2 = this.n2 �>gc();
...gThe main g proedure �rst opies the roots, and pushes additional entry pointsto the update stak. Then it loops until the update stak is empty to ollet allentries.

void gcMain() f
runnable=runnable �>gc();
...

while (!updateStack.isEmpty()) f
GcNode n = updateStack.pop();
switch (n.tag()) f
case GCTRANS: ((Trans �)n.getPtr()) �>gcCollect();
case GCTHREAD: ((Thread �)n.getPtr()) �>gcCollect();
...ggg4.6.4 Optimized transientsTo avoid that optimized transients alloated in �elds of reords are opied intothe heap, the olletion of referenes to optimized transients is delayed untilthe end of the garbage olletion. When an optimized transient is found duringthe olletion of a reord it is diretly opied with this reord. The olletionof transients found through a referene node is delayed beause it may be thatthis transient is alloated in a �eld of some reord reahed later in the garbageolletion.The delayed updates are pushed onto an additional stak, alled the var �x stak.When the regular update stak is empty the var �x stak is proessed. If thereferene is found to be marked as already olleted, then the variable was ina �eld and the forward pointer is used for the update. If the referene is notmarked the variable is opied to the new hain.4.6.5 Liveness analysisThe X registers are alloated per thread, but in the implementation only oneshared register array is used. When a thread is preempted or suspended the living

158 CHAPTER 4. IMPLEMENTATION ASPECTSX registers are saved in the thread and when the thread is sheduled again they arerestored. The number of X registers saved and restored is only an approximationof the exat number of living X registers, i.e. the ompiler alulates the maximalnumber of registers used per proedure.During the garbage olletion an exat analysis of the liveness of the X registersis performed to avoid that unreahable data in X registers is olleted.The base of the liveness analysis is the ontrol ow graph of the byteode. Theontrol ow graph of a ode segment has a node for every instrution in the odesegment. The graph has a direted link from node A to node B if it is possiblethat the instrution B is exeuted diretly after the instrution A. The ontrolow graph has no yles.The liveness analysis sans the ontrol ow graph starting from the instrutionwhih is exeuted when the thread is resheduled. It �nds out whih X registersare never used. The algorithm works suh that all possible paths in the ontrolow graph are examined.For every path in the data ow graph the liveness maintains a map of the urrentregister usage. The status of a register an bewritten The �rst usage of the register in the path was an assignment operation.In this ase the register an be assumed to be dead.read The �rst usage of the register was an aess operation. In this ase theregister must be saved.unknown The register is neither assigned nor aessed. This is the initial statusof every register.When two paths join at an instrution the maps of these paths have to be joined.For every register the state of the two maps are ompared and the result statusis omputed as follows� If both stati are the same the result status is also the same.� If one status is unknown the other status is the result status.� If one status is written and the other status is read the result status is read.Two invariants of the LVM byteode allow for an eÆient implementation ofliveness:� Branhes are always forward branhes to higher addresses. No bakwardbranhes are allowed. This makes it easy to ensure that no instrution issanned more than one.

4.6. MEMORY MANAGEMENT 159� For two paths starting at the same instrution no register is marked aswritten on one path and marked as read on the other path. This allows tomaintain one status map for the whole liveness analysis, beause two pathsnever disagree on the status of a register.Besides a register usage map the algorithm maintains an ordered list of addresses,the todo list, and the address of the urrently sanned instrution. The todo listontains a list of inreasing addresses.For the urrent instrution one or more of the following ations are performed:write If the instrution writes into a register and its status is unknown, thestatus is hanged to written.read If the instrution reads a register and its status is unknown, the status ishanged to read.branh If the instrution an branh the target address of the branh is insertedinto the todo list.The main proedure for the liveness analysis has two loops: the outer loop it-erates over the ordered todo list and the inner loop iterates over a sequene ofinstrutions until a break point is reahed. Break points are instrutions afterwhih no assumption about the liveness of X registers an be made, e.g. the
return instrution at end of a proedure or a non-inlined appliation.Addresses on the todo list are skipped if they are less or equal than the urrentaddress, beause its guaranteed that the instrution at this address was alreadysanned.
RegMap liveness(ByteCode �startAddr)f

RegMap regMap[] = UNKNOWN;
Todo todo = nil;
ByteCode � PC = 0;

todo.add(startAddr);

outerloop:
while (!todo.isEmpty()) f

ByteCode �newPC = todo.pop();
// already scanned?
if (newPC <= PC) goto outerloop;
PC=newPC;

innerloop:

160 CHAPTER 4. IMPLEMENTATION ASPECTS
while (true) f
switch (getOP(PC)) f
case MOVEXX(i,j):
if (regMap[i] == UNKNOWN)

regMap[i] = READ;
if (regMap[j] == UNKNOWN)

regMap[i] = WRITE;
break;

case TEST�(...,addr1,addr2):
...
todo.add(addr1);
todo.add(addr2);
break;

case RETURN:
goto outerloop;

...g
PC=PC+1;
goto innerloop;gg

return regMap;gY registers The liveness analysis is only performed for X registers, beauseone array of X registers is saved per thread. This means for every thread foundduring a garbage olletion the liveness analysis has to be performed one.No liveness analysis is performed for Y registers, beause Y registers are usuallyalloated per proedure appliation, i.e. per task. A liveness analysis for Y regis-ters would be too expensive, beause the number of tasks is under the assumptionthat in the average ten tasks per thread are ative an order of magnitude largerthan the number of threads. Furthermore non-inlined proedure appliations areno longer break-points for stopping the liveness analysis of Y registers.4.6.6 ListsLists are frequently used data strutures. With the generi olletion algorithmoutlined above an entry is pushed onto the update stak and popped immediatelyafterwards for every list element.The solution is to use an iterative algorithm for olleting list elements. Duringthe olletion phase the head is opied and eventually pushed onto the update

4.6. MEMORY MANAGEMENT 161stak as usual, but the olletion diretly ontinues with the opying and olle-tion of the tail while it is a list element.The memory eÆient representation of list elements has the onsequene that theforward pointer for the list element and its �rst element are shared. Coiniden-tially this does no harm, beause both forward pointers are equal.

162 CHAPTER 4. IMPLEMENTATION ASPECTS

Chapter 5Conlusion
5.1 SummaryWe have presented an eÆient mapping of a onurrent funtional programminglanguage L with logi variables, futures, reord onstraints, and deep guards toan imperative virtual mahine LVM.The virtual mahine is onstruted using a modular and open design. The mod-ules orrespond losely to the language primitives and an be to a large extenddeveloped and explained independently. The open design allows for simpli�edmodi�ations and for an easy integration of extensions into the LVM.The implementation of data strutures uses a layered arhiteture with a highlyoptimized tagged pointer sheme at the bottom, a medium level tagged objetsheme for many datatypes, and an extensible and open layer based on latebinding for experiments and easy integration of new data types.We have shown that many well known ideas from di�erent researh ommunitiesan be integrated into a single system. For example �rst-lass proedures, logivariables, deep guards, onurreny, reords and feature onstraints, and state-full programming ould be smoothly ombined in the LVM.Personal remarks Many parts of the implementation have an extremely minorimpat on the performane of the systems. If these parts an be integrated inan orthogonal manner, then the lesson learned is: don't invest too muh time inlever algorithms and design, but simply do it in the naive way quikly.A lot of time during the work on the LVM went into the engineering of a stableand useful system for users. Typially bugs found by users were orreted in lessthan a day. New features ould often be implemented before their spei�ationwas �nished due to the exible design.163

164 CHAPTER 5. CONCLUSIONThe development of the LVM was highly explorative. New ideas for languageprimitives ame up frequently. As implementors we are eager to inorporatethem quikly to �nd out if they an be eÆiently implemented and what aretheir osts.After some time of programming experiene these ideas were typially re�ned andsometimes replaed by more powerful onepts. One example of suh a devel-opment are threads. At the beginning we started with �ne-grained onurrenyand we tuned and optimized the LVM to support them very well. Then we sawthat this �ne-grained onurreny is not really wanted and needed. After an in-termezzo based on jobs, whih allowed for a semi-grained onurreny, we arrivedat the thread model.Performing all these frequent hanges throughout the LVM was a hallengingtask. A major e�ort was to identify orthogonal piees and to design interfaesbetween them, suh that further hanges only e�et small parts of the wholesystem.5.2 Engineering onsiderationsIn this setion we summarize some of our engineering experienes with respetto the implementation language and hardware platforms.5.2.1 C++ vs. C as implementation languageAt the beginning of the projet C++ was hosen as implementation language.The main reason was that C++ has a lot of features whih simpli�ed the �rstimplementation and it allowed us to make many experiments.Enapsulation of data strutures using lasses and methods was useful beausethe implementation ould be hanged frequently, without too muh inuene onthe rest of the system.During the development performane beame an issue and it turned out thatbeause of the number of features supported by C++ it was diÆult to preditthe performane diretly from the soure ode.One useful feature for high-performane implementations are inlined funtions.The ompiler usually replaes the all of suh a funtion during ompile timeby its de�nition. This optimization avoids a funtion all and typially reateslarger basi bloks for other optimizations. The drawbak of inlining is that it isnot a language requirement of C++ and the ompiler an also deide not to doit. This means that as an implementor one has to hek what the ompiler hasdone.

5.2. ENGINEERING CONSIDERATIONS 165C does not support inline funtions and the basi onept for ahieving a similarresult is to use maros. Maros are not as safe as inline funtions, e.g. the om-piler does not hek the types of arguments, but there expansion is preditableand does not depend on the ompiler. A major trap of maros is that the pro-grammer must be areful to that arguments are not evaluated twie.Another soure of optimization are virtual funtions: in our implementation weavoid virtual funtions in many lasses and implemented the dispath to di�erentimplementation in sublasses using expliit tags. Together with inlining this wasfaster and less memory was needed per objet. Only a small number of bits arerequired for the tag bits to distinguish di�erent subtypes and the memory for thepointer to a virtual funtion table is saved.In the urrent implementation we only use a small amount of features whih arenot available in C. For optimizing the emulator it would be helpful to rewrite itin C, beause the optimizations done by the C ompiler are better preditable.The shear amount of features in C++ makes it extremely diÆult to preditif the ompiler an optimize them. An example to illustrate this: reently wefound out that GCC 2.7.2 annot optimize onditions if the seond ondition ofa onjuntion (&&) ontains a all to an inline funtion.Another problem whih ours with C++ is that the size of header �les is hugeand the dependeny among them beomes quite omplex for suh a large projetas the LVM.5.2.2 The role of the target platformImplementing the emulator in C++ makes it easy to port it to di�erent platforms,beause ompilers for C++ are available on every platform and ompilers arealmost ompatible. The main e�ort when porting the Mozart system to a newplatform are the operating system dependent funtions.Porting the OS spei� parts is not the only problem. A seond problem is thatdi�erent hardware arhitetures require di�erent kinds of optimizations at thelevel of the C++ soure ode to gain maximal eÆieny. This problem is notspei� to the implementation of virtual mahines, but the performane of theLVM depends to a large extended on the exat understanding of the mapping toreal hardware.Dispath One performane bottlenek is the threaded-ode interpretation, whihneeds to dispath to the next instrution. RISC arhitetures have one or moredelay slots whih an be exeuted in parallel with a jump. To use this slot theinrement of the program ounter must be deoupled from the jump:

166 CHAPTER 5. CONCLUSION#define DISPATCH_OPT(n)void *lbl = *(PC+n);PC += n;goto *lbl;This ode allows the ompiler to inrement the PC in parallel to the jump, byusing the delay slot for the inrement.The following naive dispath#define DISPATCH_NAIVE(n)PC += n;goto *PC;will stall the jump until the PC is inremented and if no other instrutions ouldbe sheduled the delay slot remains empty.When the emulator was ported to the INTEL x86 arhitetures we notied thatthe DISPATCH OPT did not generate optimal ode. For this arhiteture thenaive DISPATCH was better, beause x86 proessors have fewer registers and ithas an indiret jump instrution whih an read an address diretly from memory.Mahine registers A typial di�erene between CISC and RISC arhiteturesis the number of available assembler registers and the addressing modes. RISChave many general purpose registers and CISC have few and some speial purposeregisters. RISC only supports a limited number of addressing modes whih aretypially based on registers. CISC supports a rih number of addressing modes.As an example we analyzed the usage of the X registers in the LVM. The LVMhas a single set of the global X registers at a �xed address in memory.For RISC arhitetures it is good to load this address into a loal mahine registerof the workers main proedure, beause this address is frequently used and RISCproessors need two instrutions to load an address.CISC arhitetures support the diret addressing of every memory loation andit is better to use this diret addressing mode instead of storing the address inone of the few available registers.As an example aessing X[i℄ needs two RISC instrutions if X is not in a registerompared to one if it is. On CISC proessors the situation is swapped. CISCneeds two instrutions if X is in a temporary variable and only one if the �xedaddress is used.

5.3. FUTURE WORK 1675.3 Future work5.3.1 Improve ompilationA disadvantage wrt. a high-performane implementation is that every data stru-ture is dynamially typed and type tests, unbox, and box operations have to beperformed frequently at runtime. If more type information would be availableat ompile-time a better interfae between the ompiler and the LVM allows touse unboxed representations for values, e.g. storing oating point values in oatregisters for numeri alulations.Another aspet of this problem are referenes and transients. It would be useful ifthe ompiler ould derive information about referene hains and determinationof values. Impliit dereferene operations and synhronization ode all over theLVM ould then be replaed by expliit byteode instrutions.5.3.2 Reuse existing tehnologyThe Mozart system is self ontained, whih means that it has only few depen-denies on third-party tools and software. The development model was exible,beause only few people had to oordinate their hanges and no legay problemsour. A disadvantage of suh a model is that new tehniques, libraries, and toolsdeveloped in other projets ould not be easily reused.Often it is possible to design and implement interfaes to third-party software,e.g. for GUI programming we use an interfae to Tl/Tk. Typially suh aninterfae is not trivial and requires a lot of e�ort. Sometimes the wheel has tobe invented again for designing useful libraries, e.g. for OS servies like sokets,pipes, and �les, database interfaes, et.For the future of Oz/Mozart I think it would be useful to investigate the pos-sibility to add our ideas to existing systems and to reuse their tehnology andinfrastruture.One promising andidate is Java and the Java Virtual Mahine as a platform forompiling Oz programs. The JVM is nowadays available on virtually all plat-forms, inluding o�ee mahines and libraries and API for all kinds of appliationsexist. It would be neessary to analyze the limitations of the JVM and how resp.if it an be a target language for Oz.Another option is to inorporate the Oz ideas into funtional languages, likeObjetive Caml, Standard ML, and Sheme. These languages are loser to thelanguage model of Oz than the imperative language Java. These languages havenot the ommerial impat and the library base of Java, but they are well-knownin the aademi ommunity. Another advantage of this diretion is that software

168 CHAPTER 5. CONCLUSIONdeveloped in aademi institutions is typially available freely and an thus beadapted to the spei� needs.5.3.3 Funtional oreThe original design of the LVM was based on the relational model inherited fromlogi programming. In many parts the urrent design desribed in this thesisis based on the funtional programming model. In the design some parts areleft over from the relational model. The LVM has only proedures and returnparameters are passed using logi variables as all-by-referene parameters. Inthis design logi variables are at the ore of the system.An alternate design ould be a VM based on funtions, where logi variables andother transient types an be introdued as fully orthogonal primitives.5.3.4 DistributionThe LVM is implemented as a single-threaded operating system proess with asingle worker for the exeution of threads. It is useful to investigate how to takeadvantage of the emerging multi-proessor tehnology.The diretions urrently investigated are parallelism and distribution. Paral-lelism [80℄ starts with the idea of a single LVM and investigates whih synhro-nization is needed to allow for multiple workers in a single address spae. Distri-bution [39℄ starts with multiple LVMs and analyzes how to give the illusion of atransparent distributed store, based on distributed aess strutures to nodes inthe store and protools to implement graph rewriting steps.It seems that the distributed approah dominates parallelism. Distribution allowsalso to take advantage of multiple proessors by starting two LVM on one om-puter and it allows also to explore the omputation power of omputer lusters.It seems that the amount of ommuniation neessary for interesting parallel ap-pliations is small ompared to the amount of omputation. In this ase a parallelimplementation has no advantage over a distributed implementation.

Bibliography[1℄ Hassan A��t-Kai. Warren's Abstrat Mahine - A Tutorial Reonstrution.The MIT Press, 1991.[2℄ Hassan A��t-Kai and Roger Nasr. Integrating logi and funtional program-ming. Lisp and Symboli Computation, 2:51{89, 1989.[3℄ Hassan A��t-Kai and Andreas Podelski. Towards a meaning of LIFE. Jour-nal of Logi Programming, 16(3 and 4):195{234, August 1993.[4℄ Hassan A��t-Kai, Andreas Podelski, and Gert Smolka. A feature-based on-straint system for logi programming with entailment. Theoretial Com-puter Siene, 122(1{2):263{283, January 1994.[5℄ Andrew W. Appel. A runtime system. Tehnial Report CS-TR-220-89,Prineton University, May 1989.[6℄ Andrew W. Appel. Runtime tags aren't neessary. Lisp and SymboliComputation, 19(7):703{705, July 1989.[7℄ Andrew W. Appel. Compiling with Continuations. Cambridge UniversityPress, 1992.[8℄ Joe L. Armstrong, Bjarne O. D�aker, Robert Virding, and Mike C.Williams. Implementing a funtional language for highly parallel real timeappliations. In Software Engineering for Teleommuniation Systems andServies, Marh 1992.[9℄ Joe L. Armstrong, Robert Virding, Claes Wikstr�om, and Mike Williams.Conurrent Progamming in ERLANG (2nd Edition). Prentie Hall, 1996.[10℄ Rolf Bakofen and Ralf Treinen. How to win a game with features. Infor-mation and Computation, 142(1):76{101, April 1998.[11℄ James R. Bell. Threaded ode. Communiations of the ACM, 16(6):370{372, 1973. 169

170 BIBLIOGRAPHY[12℄ Peter A. Bigot and Saumya K. Debray. A simple approah to supportinguntagged objets in dynamially typed languages. The Journal of LogiProgramming, 32(1):25{47, July 1997.[13℄ Peter A. Bigot and Saumya K. Debray. Return value plaement and tail alloptimization in high level languages. The Journal of Logi Programming,38(1):1{29, January 1999.[14℄ Per Brand. A deision graph algorithm for p languages. In Logi Pro-gramming, Proeedings of the Twelfth International Conferene on LogiProgramming, pages 433{447, Tokyo, Japan, June 1995. The MIT Press.[15℄ David R. Butenhof. Programming with POSIX Threads. Addison-Wesley,1997.[16℄ International Standard ISO/IEC 14882:1998, Programming Language -C++, 1998.[17℄ C. J. Cheney. A non-reursive list ompating algorithm. Communiationsof the ACM, 13(11):677{678, November 1970.[18℄ Alain Colmerauer. Prolog and in�nite trees. In K. Clark and S. Tarnlund,editors, Logi Programming, pages 231{251. Aademi Press, New York,1982.[19℄ Alain Colmerauer. An Introdution to Prolog III. Communiations of theACM, pages 70{90, July 1990.[20℄ L. Peter Deutsh and Alan M. Shi�man. EÆient implementation of theSmalltalk-80 system. In 11thACM SIGPLAN-SIGACT Symposium on Prin-iples of Programming Languages, pages 297{302. ACM Press, January1984.[21℄ Robert B. K. Dewar. Indiret threaded ode. Communiations of the ACM,18(6):330{331, June 1975.[22℄ Denys Duhier, Leif Kornstaedt, Christian Shulte, and Gert Smolka. Ahigher-order module disipline with separate ompilation, dynami linking,and pikling. Tehnial report, Programming Systems Lab, DFKI andUniversit�at des Saarlandes, 1998. DRAFT.[23℄ M. Anton Ertl. Stak ahing for interpreters. In SIGPLAN '95 Confer-ene on Programming Language Design and Implementation, pages 315{327, 1995.[24℄ M. Anton Ertl. Implementation of Stak-Based Languages on Register Ma-hines. PhD thesis, Tehnishe Universit�at Wien, Austria, 1996.

BIBLIOGRAPHY 171[25℄ Robert R. Fenihel and Jerome C. Yohelson. A Lisp garbage olletor forvirtual memory omputer systems. CACM, 12:611{612, 1969.[26℄ Alessandro Forin. Futures. In Lee [58℄, hapter 9.[27℄ Torkel Franz�en, Seif Haridi, and Sverker Janson. An overview of the An-dorra Kernel Language. In Proeedings of the 2nd Workshop on Extensionsto Logi Programming. Springer-Verlag, 1992.[28℄ John B. Goodenough. Exeption handling: Issues and a proposed notation.Communiations of the ACM, 18(12):683{696, Deember 1975.[29℄ John B. Goodenough. Strutured exeption handling. In 2nd ACMSIGPLAN-SIGACT Symposium on Priniples of Programming Languages,pages 204{224, Palo Alto, California, January 1975.[30℄ James Gosling, Bill Joy, and Guy Steele. The Java language spei�ation.Addison-Wesley, 1997.[31℄ Paul Graham. ANSI Common Lisp. Prentie Hall, 1997.[32℄ David Gudeman. Representing type information in dynamially typed lan-guages. Tehnial Report TR 93-27, Department of Computer Siene,University of Arizona, Tuson, AZ 85721, USA, Otober 1993.[33℄ Gopal Gupta and Bharat Jayaraman. Analysis of Or-parallel exeutionmodels. ACM Transations on Programming Languages and Systems,15(4):659{680, 1993.[34℄ Robert H. Halstaed. Multilisp: A language for onurrent symboli om-putation. ACM Transations on Programming Languages and Systems,7(4):501{538, Otober 1985.[35℄ Seif Haridi. A tutorial of Oz 2.0, 1997. Available from the web athttp://www.sis.se/~seif/oz.html.[36℄ Seif Haridi. Tutorial of Oz, 1999. http://www.mozart-oz.org/.[37℄ Seif Haridi and Sverker Janson. Kernel Andorra Prolog and its Compu-tation Model. In David H. D. Warren and Peter Szeredi, editors, LogiProgramming, Proeedings of the 7th International Conferene, pages 31{48, Cambridge, MA, June 1990. The MIT Press.[38℄ Seif Haridi and Dan Sahlin. EÆient implementation of uni�ation of ylistrutures. In J. A. Campbell, editor, Implementations of Prolog, pages234{249. John Wiley & Sons, Ltd., 1984.

172 BIBLIOGRAPHY[39℄ Seif Haridi, Peter Van Roy, Per Brand, and Christian Shulte. Program-ming languages for distributed appliations. New Generation Computing,1998.[40℄ Seif Haridi, Peter Van Roy, and Gert Smolka. An overview of the designof Distributed Oz. In Proeedings of the Seond International Symposiumon Parallel Symboli Computation (PASCO '97), pages 176{187, Maui,Hawaii, USA, July 1997. ACM Press.[41℄ Bogumil Hausman. Turbo Erlang: Approahing the speed of C. In EvanTik and Gianarlo Sui, editors, Implementations of Logi ProgrammingSystems, pages 119{135. Kluwer Aademi Publishers, 1994.[42℄ Martin Henz. Objets for Conurrent Constraint Programming, volume 426of the Kluwer international series in engineering and omputer siene.Kluwer Aademi Press, Otober 1997.[43℄ IEEE. 9945-1:1996 (ISO/IEC) [IEEE/ANSI Std 1003.1 1996 Edition℄ In-formation Tehnology - Portable Operating System Interfae (POSIX) -Part 1: System Appliation: Program Interfae (API), 1996.[44℄ Joxan Ja�ar and Jean-Louis Lassez. Constraint logi programming. Tehni-al report, Department of Computer Siene, Monash University, Australia,June 1986.[45℄ Joxan Ja�ar and Jean-Louis Lassez. Constraint logi programming. In14thACM SIGPLAN-SIGACT Symposium on Priniples of ProgrammingLanguages, pages 111{119. ACM Press, 1987.[46℄ Joxan Ja�ar and Mihael J. Maher. Constraint logi programming: Asurvey. Journal of Logi Programming, 19/20:503{582, May-July 1994.[47℄ Sverker Janson. AKL | A Multiparadigm Programming Language. PhDthesis, Computer Siene Department, Uppsala University, Sweden, 1994.[48℄ Sverker Janson and Seif Haridi. Programming paradigms of the AndorraKernel Language. In Saraswat and Ueda, editors, Logi Programming: Pro-eedings of the 1991 International Symposium. The MIT Press, 1991. Avail-able as SICS RR R91:08.[49℄ Sverker Janson, Johan Montelius, and Seif Haridi. Ports for objets inonurrent logi programming. In Gul Agha, Peter Wegner, and AkinoriYonezawa, editors, Researh Diretions in Conurrent Objet-Oriented Pro-gramming. The MIT Press, 1993.[50℄ Guy L. Steele Jr. Common Lisp: the language (2nd ed). Digital Press,1990.

BIBLIOGRAPHY 173[51℄ Rihard Kelsey, William Clinger, and Jonathan Rees. Revised5 Report onthe Algorithmi Language Sheme, 1998.[52℄ Donald Knuth. The Art of Computer Programming: Sorting and Searhing(Vol 3, 2nd Ed). Addison-Wesley, 1998.[53℄ Andrew R. Koenig and Bjarne Stroustrup. Exeption handling for C++(revised). In Pro USENIX C++ Conferene, April 1990. Also in TheEvolution of C++: Language Design in the Marketplae of Ideas, Journalof Objet Oriented Programming, 3(2), July/Aug 1990.[54℄ Peter M. Kogge. An arhitetural trail to threaded-ode systems. Com-puter, pages 22{32, Marh 1982.[55℄ Robert A. Kowalski. Prediate logi as a programming language. InIFIP 74, pages 569{574, Otober 1974.[56℄ Robert A. Kowalski. Algorithm = Logi + Control. Communiations ofthe ACM, 22(7):424{436, 1979.[57℄ R. Greg Lavender and Dennis G. Kafum. A polymorphi future and �rst-lass funtion type for onurrent objet-oriented programming. The Uni-versity of Texas at Austin, 1992.[58℄ Peter Lee, editor. Topis in advaned language implementation. The MITPress, 1991.[59℄ Thomas Lindgren, Per Mildner, and Johan Bevemyr. On Taylor's shemefor unbound variables. Tehnial Report UPMAIL TR No. 116, ComputingSiene Department, Uppsala University, Otober 1995.[60℄ Tim Lindholm and Frank Yellin. The Java Virtual Mahine Spei�ation.Addison Wesley, 1996.[61℄ Peter S. Magnusson, Fredrik Dahlgren, Hkan Grahn, Magnus Karlsson,Fredrik Larsson, Fredrik Lundholm, Andreas Moestedt, Jim Nilsson, PerStenstrm, and Bengt Werner. Simis/sun4m: A virtual workstation. InUsenix Annual Tehnial Conferene, New Orleans, Lousiana, June 1998.[62℄ Mihael Mehl, Ralf Sheidhauer, and Christian Shulte. An Abstrat Ma-hine for Oz. Researh Report RR-95-08, Deutshes Forshungszentrum f�urK�unstlihe Intelligenz, Stuhlsatzenhausweg 3, D66123 Saarbr�uken, Ger-many, June 1995. Also in: Proeedings of PLILP'95 , Springer-Verlag,LNCS, Utreht, The Netherlands.[63℄ Robin Milner, Mads Tofte, Robert Harper, and David MaQueen. TheDe�nition of Standard ML (Revised). MIT Press, 1997.

174 BIBLIOGRAPHY[64℄ Johan Montelius. Exploiting Fine-grain Parallism in Conurent ConstraintLanguages. PhD thesis, Computer Siene Department, Uppsala University,Sweden, 1997.[65℄ Johan Montelius and Khayri A. M. Ali. An And/Or-parallel implementa-tion of AKL. New Generation Computing, Speial issue on the Workshopon Parallel Logi Programming, 14(1), 1996.[66℄ The Mozart Programming System. http://www.mozart-oz.org/, 1998.[67℄ Martin M�uller. Set-based Failure Diagnosis for Conurrent Constraint Pro-gramming. Dissertation, Universit�at des Saarlandes, Fahbereih Infor-matik, Saarbr�uken, Germany, January 1998.[68℄ Tobias M�uller. Solving set partitioning problems with onstraint program-ming. In Proeedings of the Sixth International Conferene on the PratialAppliation of Prolog and the Forth International Conferene on the Pra-tial Appliation of Constraint Tehnology, pages 313{332, London, UK,Marh 1998. The Pratial Appliation Company Ltd.[69℄ Tobias M�uller and Martin M�uller. Finite set onstraints in Oz. In 13.Workshop Logishe Programmierung, Tehnishe Universit�at M�unhen, 17{19 September 1997.[70℄ Tobias M�uller and J�org W�urtz. Extending a onurrent onstraint languageby propagators. In Jan Ma luszy�nski, editor, Proeedings of the InternationalLogi Programming Symposium, pages 149{163. The MIT Press, 1997.[71℄ Rihard A. O'Keefe. The Craft of Prolog. The MIT Press, 1990.[72℄ The DFKI Oz Programming System. http://www.ps.uni-sb.de/oz1/,1995.[73℄ The DFKI Oz Programming System (version 2). Available from the webat http://www.ps.uni-sb.de/oz2/, 1997.[74℄ Larry Paulson. ML for the Working Programmer (Seond Edition). Cam-bridge University Press, 1996.[75℄ John Peterson and Kevin Hammond. Report on the Programming LanguageHaskell, Version 1.4, April 1997.[76℄ Simon L. Peyton-Jones. The Implementation of Funtional ProgrammingLanguages. Prentie Hall International, 1987.[77℄ Andreas Podelski and Gert Smolka. Situated simpli�ation. TheoretialComputer Siene, 173:209{233, February 1997.

BIBLIOGRAPHY 175[78℄ Andreas Podelski and Peter Van Roy. The beauty and the beast algorithm:Quasi-linear inremental tests of entailment and disentailment over trees.In Proeedings of the International Logi Programming Symposium, pages359 { 374, Ithaa, New York, November 1994. The MIT Press.[79℄ Andreas Podelski and Peter Van Roy. A detailed algorithm testing guardsover feature trees. In Manfred Meyer, editor, Constraint Proessing, Se-leted Papers, volume 923 of Leture Notes in Computer Siene, pages11{38. Springer, 1995.[80℄ Kostja Popov. A parallel abstrat mahine for the thread-based onur-rent language Oz. In Inês de Castro Dutra, V��tor Santos Costa, FernandoSilva, Enrio Pontelli, and Gopal Gupta, editors, Workshop on Parallismand Implementation Tehnology for (Constraint) Logi Programming Lan-guages, 1997.[81℄ John H. Reppy. Asynhronous signals in Standard ML. Tehnial ReportTR 90-1144, Department of Computer Siene, Cornell University, Ithaa,NY 14853, August 1990.[82℄ John H. Reppy. CML: A higher-order onurrent language. In SIGPLANConferene on Programming Language Design and Implementation, 1991.(revised 1993).[83℄ John H. Reppy. Higher-order Conurreny. PhD thesis, Cornell University,1992.[84℄ John H. Reppy. Conurrent Programming with Events - The ConurrentML Manual. Bell Labs, 1993.[85℄ Clay Roah. Polymorphi futures in Java. The University of Texas atAustin, May 1998.[86℄ Vijay A. Saraswat. Conurrent Constraint Programming. ACM DotoralDissertation Awards: Logi Programming. MIT Press, 1993.[87℄ Ralf Sheidhauer. Design, Implementierung und Evaluierung einervirtuellen Mashine f�ur Oz. Dissertation, Tehnishe Fakult�at der Uni-versit�at des Saarlandes, 1999. Submitted.[88℄ Christian Shulte. Programming onstraint inferene engines. In GertSmolka, editor, Proeedings of the Third International Conferene on Prin-iples and Pratie of Constraint Programming, Leture Notes in ComputerSiene, Shloss Hagenberg, Linz, Austria, Otober 1997. Springer-Verlag.[89℄ Christian Shulte. Constraint Inferene Engines. Dissertation, TehnisheFakult�at der Universit�at des Saarlandes, 1999. To appear, preliminary title.

176 BIBLIOGRAPHY[90℄ Christian Shulte and Gert Smolka. Enapsulated searh in higher-orderonurrent onstraint programming. In Maurie Bruynooghe, editor, LogiProgramming: Proeedings of the 1994 International Symposium, pages505{520, Ithaa, New York, USA, November 1994. The MIT Press.[91℄ Christian Shulte, Gert Smolka, and J�org W�urtz. Enapsulated searh andonstraint programming in Oz. In Alan H. Borning, editor, Seond Work-shop on Priniples and Pratie of Constraint Programming, Leture Notesin Computer Siene, vol. 874, pages 134{150, Oras Island, Washington,USA, May 1994. Springer-Verlag.[92℄ Ehud Shapiro. The family of onurrent logi programming languages.ACM Computing Surveys, 21(3):412{510, September 1989.[93℄ Gert Smolka. A alulus for higher-order onurrent onstraint pro-gramming with deep guards. Researh Report RR-94-03, DeutshesForshungszentrum f�ur K�unstlihe Intelligenz (DFKI), February 1994.[94℄ Gert Smolka. A foundation for higher-order onurrent onstraint program-ming. In Jean-Pierre Jouannaud, editor, 1st International Conferene onConstraints in Computational Logis, Leture Notes in Computer Siene,vol. 845, pages 50{72, M�unhen, Germany, 7{9 September 1994. Springer-Verlag.[95℄ Gert Smolka. The de�nition of Kernel Oz. In Andreas Podelski, editor,Constraints: Basis and Trends, Leture Notes in Computer Siene, vol.910, pages 251{292. Springer-Verlag, 1995.[96℄ Gert Smolka. The Oz programming model. In Jan van Leeuwen, editor,Computer Siene Today, Leture Notes in Computer Siene, vol. 1000,pages 324{343. Springer-Verlag, 1995.[97℄ Gert Smolka. Conurrent onstraint programming based on funtional pro-gramming. In Chris Hankin, editor, Programming Languages and Systems,Leture Notes in Computer Siene, vol. 1381, pages 1{11, Lisbon, Portu-gal, 1998. Springer-Verlag.[98℄ Gert Smolka and Ralf Treinen. Reords for logi programming. Journal ofLogi Programming, 18(3):229{258, April 1994.[99℄ Rihard M. Stallmann. Using and Porting GNU CC. Free Software Foun-dation, Cambridge, MA, 1988{1998.[100℄ Peter A. Steenkiste. The implementation of tags and run-time type hek-ing. In Lee [58℄, hapter 1.

BIBLIOGRAPHY 177[101℄ Andrew Taylor. High Performane Prolog Implementation. PhD thesis,Basser Department of Computer Siene, University of Sydney, June 1991.[102℄ Ralf Treinen. Feature onstraints with �rst-lass features. In Andrzej M.Borzyszkowski and Stefan Soko lowski, editors, Mathematial Foundationsof Computer Siene, Leture Notes in Arti�ial Intelligene, vol. 711, pages734{743, Gda�nsk, Poland, 30 August{3 September 1993. Springer-Verlag.[103℄ Ralf Treinen. Feature trees over arbitrary strutures. In Patrik Blakburnand Maarten de Rijke, editors, Speifying Syntati Strutures, hapter 7,pages 185{211. CSLI Publiations and FoLLI, 1997.[104℄ Peter Van Roy. An Intermediate Language to Support Prolog's Uni�ation.In Ewing L. Lusk and Ross A. Overbeek, editors, Proeedings of the NorthAmerian Conferene on Logi Programming, pages 1148{1164, Cleveland,Ohio, USA, 1989.[105℄ Peter Van Roy. Can Logi Programming Exeute as Fast as ImperativeProgramming. PhD thesis, Computer Siene Division (EECS), Universityof California, Berkeley, Deember 1990.[106℄ Peter Van Roy and Alvin M. Despain. High-performane logi programmingwith the aquarius prolog ompiler. COMPUTER, January 1992.[107℄ Peter Van Roy, Seif Haridi, Per Brand, Gert Smolka, Mihael Mehl, andRalf Sheidhauer. Mobile objets in Distributed Oz. ACM Transations onProgramming Languages and Systems, 19(5):804{851, September 1997.[108℄ Peter Van Roy, Mihael Mehl, and Ralf Sheidhauer. Integrating eÆientreords into onurrent onstraint programming. In International Sympo-sium on Programming Languages, Implementations, Logis, and Programs,Aahen, Germany, September 1996. Springer-Verlag.[109℄ Philip Wadler. Deforestation: transforming programs to eliminate trees.Theoretial Computer Siene, 73:231 { 248, 1990.[110℄ David H. D. Warren. Applied Logi { Its Use and Implementation as asProgramming Tool. PhD thesis, University of Edinburgh, 1977. Availableas Tehnial Note 290, SRI International.[111℄ David H. D. Warren. An abstrat Prolog instrution set. Tehnial Report309, Arti�al Intelligene Center, SRI International, 1983.[112℄ David H. D. Warren. The SRI model for Or-parallel exeution of Prolog:Abstrat design and implementation issues. In Proeedings of the 1987International Symposium on Logi Programming, pages 92{102, 1987.

178 BIBLIOGRAPHY[113℄ David S. Warren. EÆient prolog memory management for exible ontrolstrategies. New Generation Computing, 2(4):361{369, 1984.[114℄ Paul R. Wilson. Uniproessor garbage olletion tehniques. In Interna-tional Workshop on Memory Management, St. Malo, Frane, September1992.[115℄ Paul R. Wilson, Mark S. Johnstone, Mihael Neely, and David Boles. Dy-nami storage alloation: A survey and ritial review. In In InternationalWorkshop on Memory Management, Kinros, Sotland, UKs, September1995.[116℄ J�org W�urtz. Oz Sheduler: A workbenh for sheduling problems. In Pro-eedings of the 8th IEEE International Conferene on Tools with Arti�ialIntelligene, pages 132{139, Toulouse, Frane, November 1996. IEEE Com-puter Soiety Press.[117℄ J�org W�urtz. Constraint-based sheduling in Oz. In Symposium on Opera-tions Researh, Braunshweig, Germany, 1997. Springer-Verlag.[118℄ J�org W�urtz. L�osen von kombinatorishen Problemen durh Constraintpro-grammierung in Oz. Dissertation, Universit�at des Saarlandes, FahbereihInformatik, Postfah 1150, D-66041 Saarbr�uken, Germany, 1998.

Indexaess,! �eld, aess
access , 34ativation reord, 80addressing, 56mode, 65Agents, 108AKL, 5, 108
allocate , 86
allocateL , 62
allocateL1 , 62appliation, 12, 84
applMethX , 63arity, 18, 72table, 54assign, 19atom, 11, 18, 71, 136table, 54atom table, 136attribute,! variable, attributeBEAM, 111binding, 14, 19, 26, 73, 127order, 41speulative, 41, 100binding window, 97blok,! thread, blokboxing, 117
branch , 62built-in proedure,! proedure, built-inby-need future,! future, by-needby-need synhronization,

! synhronization, by-need
byNeed , 32, 45byteode, 54
call , 66, 88
callBI , 62, 88
callX , 62, 84, 85ath,! exeption, ath
catch , 24ell, 4, 14, 33, 45
clearY , 63lone,! spae, lonelose,! reord, loselosure, 14ommuniation, 16omputation model, 14omputation spae,! spaeonurreny, 30, 53�ne-grained, 96
cond , 44, 45, 62onditionaldeep guard, 4, 44, 97ons, 71onstraint,! equality onstraint,! feature onstraint,! width onstraintontinuation,! task, ontinuationontrol, 53, 82opyable name,! name, opyable179

180 INDEXore language, 11
createVariableMove , 62
createVariableX , 62yle, 16, 28
deallocate , 86
deallocateL , 62
deallocateL1 , 62
debugEntry , 63
debugExit , 63delaration, 12name, 12value, 12deep guard,! onditional, deep guardde�nition, 12, 83
definition , 62, 83, 84
definitionCopy , 62deinstall, 100deref, 129dereferene, 73, 129derefPtr, 131determination, 30diret node,! node, diretdiret transient,! transient, diret
directCall , 62, 85
directTailCall , 62disentailment, 42, 97emulator, 54
endDefinition , 62
endOfFile , 63engine, 53state, 54entailment, 42, 97, 103environment, 14loal, 54, 56, 79, 86proedure, 54equality onstraint, 36equivalene,! node, equivalene

Erlang, 111exeption, 3, 23, 42, 80, 91ath, 23failure, 42�nally, 25handler, 23raise, 23, 54value, 23
exchange , 33, 34, 45exeutionstep, 16expression, 12failure, 103fairness, 16, 31, 54, 93, 94, 100feature, 14, 18feature onstraint, 4, 36, 45
featureC , 38, 39, 46�eld, 18, 70aess, 18name, 18selet, 12, 18value, 18
fieldCached , 143�nally,! exeption, �nally�ne-grained onurreny,! onurreny, �ne-grained�rst-lass funtion, 3frame,! stak, framefree identi�er, 14free name,! name, freefuntion appliation,! appliationfuntion de�nition,! de�nitionfuture, 3, 29, 45, 126by-need, 32, 127
future , 29
getConstantX , 63

INDEX 181
getListValVar , 63
getListX , 63
getRecordX , 63
getSelf , 63
getVariableX , 62, 83
getVarVar , 83
getVarVarXX , 62
getVoid , 62global node,! node, globalglobal register,! register, global
globalVarname , 63graph, 54, 67,! language graphgraph rewriting, 16, 19handler,! exeption, handlerhandler task,! task, handlerHaskell, 3, 4, 33heap node,! node, heaphome spae,! spae, homeidenti�er, 12name, 12idle loop, 54independene, 31injet,! spae, injet
inlineAssign , 63
inlineAt , 63
inlineMinus , 62
inlineMinus1 , 62
inlinePlus , 62
inlinePlus1 , 62install, 100instrution, 54integer, 18interleaving, 16

JAM, 111Java, 3, 35, 109job, 97JVM, 109language graph, 16lazy, 4, 32, 48leak,! memory leaklight-weight thread,! thread, light-weightLisp, 3list, 71literal, 71, 136load, 57, 60loal environment,! environment, loalloal node,! node, loal
localVarname , 63lok, 33
lock , 62logi variable,! variable
lvar , 25mahine program, 56
match , 82, 83mathing,! pattern mathing
matchX , 62, 83memory leak, 128merging, 44, 103ML,! Standard MLmodulesof the VM, 52
moveMoveXYXY, 62
moveXX, 62Mozart, 1, 53Multilisp, 3, 30, 32name, 11, 18, 71, 136,! �eld, name

182 INDEXopyable, 136free, 137named, 136optimized, 136unique, 136name delaration,! delaration, namename identi�er,! identi�er, namenamed name,! name, namednodelassi�ation, 67diret, 64, 68equivalene, 26, 29global, 41heap, 68loal, 41pointer, 68register, 71situated, 40tagged, 67numeri value,! value, numeriopen reord,! reord, openoperator, 14ore, 12optimized name,! name, optimizedparallel, 36pattern mathing, 12, 31, 46PC register,! register, PCpersistent, 57pikle, 57pointer node,! node, pointer
popEx , 62, 91, 92port, 30POSIX thread,

! thread, POSIXpreemption, 54, 93primary tag,! tag, primaryprimitive value,! value, primitiveproedureativation, 54built-in, 54, 87invoation, 80proedure appliation,! appliationproedure de�nition,! de�nitionproedure environment,! environment, proedure
profileProc , 63program ounter,! register, PCprogram store,! store, programProlog, 3, 4, 25, 73, 78, 79, 107propagation, 41, 102
putConstant , 62
putListX , 62
putRecordX , 62raise, 24,! exeption, raise
raise , 91
raiseError , 63rational tree,! tree, rationalreativity, 100reord, 4, 14, 18, 71, 71lose, 38onstrution, 12open, 37
record , 14, 22reord arity,! arityreord width,! width

INDEX 183referene, 14, 72, 125write, 77referene hain, 73register, 56global, 56PC, 56SP, 56, 81spae, 99status, 90task, 79X, 56register node,! node, registerrepliation, 57, 71request, 32, 127resume exeption,! exeption, resume
return , 62, 85, 91, 92, 159return ode, 88rewriting,! graph rewritingroot spae,! spae, rootroot variable, 40round-robin, 93runnable thread,! thread, runnablerunning thread,! thread, runningsafeDeref, 129save task,! task, savesheduling, 54, 93sope, 14sript, 97, 100seondary tag,! tag, seondaryselet,! �eld, selet
select , 14, 22, 62, 152
sendMsgX, 63
setConstant , 62

setSelf , 63
setValueX , 62
setVariableX , 62
setVoid , 62situated node,! node, situatedsituated thread,! thread, situated
skip , 63SP register,! register, SPspae, 4, 14, 39, 97lone, 46home, 41injet, 46root, 40stable, 46toplevel, 40transparent, 103
space , 99, 100spae register,! register, spae
spawn , 30, 31, 93speulative binding,! binding, speulativespurious,! wakeup, spuriousstable,! spae, stablestak frame, 56Standard ML, 3, 11state, 4, 33,! engine, statestatus register,! register, statusstore, 14, 54, 67invariant, 41program, 56struture pointer,! register, SPsubordinated, 39suspension, 31, 93, 95, 102, 128list, 102

184 INDEXwakeup, 95symboli value,! value, symbolisynhronization, 16, 31, 94, 97by-need, 3, 32syntati sugar, 11tag, 67primary, 68seondary, 68tag sheme, 122taggedobjet, 117, 118pointer, 117, 119tagged node,! node, tagged
tailApplMethX , 63
tailCallX , 62, 85
tailSendMsgX , 63task, 54, 79ontinuation, 79handler, 80id, 56pop, 54push, 54save, 80task register,! register, taskTEAM, 111terminate exeption,! exeption, terminatetermination, 93,! thread, terminationtermination status, 26, 29
testBI , 62
testBoolX , 62
testConstantX , 62, 83
testLE , 62
testListX , 62
testLT , 62
testRecordX , 62thread, 3, 14, 30, 53, 54, 92blok, 31, 54, 92

id, 56in spae, 99light-weight, 3light-weigth, 94POSIX, 3queue, 100runnable, 92running, 92situated, 99termination, 54
throw , 24toplevel spae,! spae, topleveltrail, 100
trail , 99transient, 3, 30, 72, 125diret, 75transparent, 26,! spae, transparenttreerational, 4
try , 62, 91tuple, 71type, 14type test, 117unboxing, 117
unif , 28, 42uni�ation, 26algorithm, 26, 29, 39
unifyConstant , 63
unifyValueX , 63
unifyValVarX , 63
unifyVariableX , 63
unifyVoid , 63
unifyXX , 63unique name,! name, uniqueunit, 16value, 18,! �eld, valuenumeri, 18

INDEX 185primitive, 18symboli, 18value delaration,! delaration, valuevariable, 25, 126attribute, 37logi, 3virtual mahine, 51
waitOr , 31, 95wake up, 93wakeup,! suspension, wakeupspurious, 128thread, 102WAM, 107width, 18width onstraint, 36
widthC , 38, 39, 46worker, 54, 79write referene,! referene, writeX register,! register, X

186 INDEX

This doument was typeset with LATEX at 12 point using the times font. The Land C++ listings where proessed with the listings pakage from Carsten Heinz.

