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This paper presents the integration of an extended standard onstraint solverinto proof planning and desribes several generally neessary extensions of o�-the-shelf onstraint solvers for their orret use in proof planning. As a resultmore theorems from three investigated mathematial areas (onvergene of real-valued funtions, onvergent sequenes, and ontinuous funtions) an be provedby our proof planner.The paper is organized as follows: First we introdue knowledge-based proofplanning as it is realized in the mathematial assistant system 
mega [3℄ andits onrete integration of onstraint solving into proof planning. In setion 2 wesummarize the requirements that the integration into proof planning auses foronstraint solving. In setion 3, we disuss the essential extensions of onstraintsolving for proof planning. Finally, we illustrate the proof planning and parti-ularly CoSIE 's work with a onrete proof planning example. In the following,�, �, and 	 denote sets of formulas.1 Integration of Constraint Solving into Proof PlanningProof planning, introdued by A.Bundy [5℄, di�ers from traditional searh-basedtehniques by searhing for appropriate proof steps at abstrat levels and by aglobal guidane of the proof searh. Knowledge-based proof planning [12℄ extendsthis idea by allowing for domain-spei� operators and heuristis, by extendingthe means of heuristi guidane, and by integrating domain-spei� externalreasoning systems.Proof planning an be desribed as an appliation of lassial AI-planningwhere the initial state onsists of the two proof assumptions represented bysequents1 and of the goal whih is a sequent representing the theorem to beproved. For instane, for proving the theorem LIM+ whih states that the limitof the sum of two real-valued funtions f and g at a point a 2IR (a real numbera) is the sum of their limits the initial planning state onsists of the goal; ` limx!a f(x) + g(x) = L1 + L2and of the proof assumptions; ` limx!a f(x) = L1 and; ` limx!a g(x) = L2 .After the expansion of the de�niton of limx!a the resulting planning goal is; ` 8�(� > 0 ! 9Æ(Æ > 0^ 8x((jx� aj < Æ ^ x 6= a)! j(f(x) + g(x))� (L1 +L2)j < �).Proof planning searhes for a sequene of operators that transfers the initial stateinto a state with no open planning goals. The proof plan operators representomplex inferenes that orrespond to mathematial proof tehniques. These1 A sequent (� ` F ) onsists of a set of formulas � (the hypotheses) and a formulaF and means that F is derivable from �.



operators are usually more abstrat than the rules of the basi logi alulus.Thus, a proof of a theorem is planned at an abstrat level and a plan is an outlineof the proof. This plan an be reursively expanded to the alulus-level whereit an be heked for orretness by a proof heker.2In the following, we briey introdue knowledge-based proof planning as itis realized in the 
mega system.1.1 Proof Planning in 
megaThe operators in 
mega have a frame-like representation. As a �rst examplefor planning operators, we explain TellCS whih plays an important role in theintegration of onstraint solving into proof planning:operator: TellCS(CS)premises L1onlusions 	L2appl-ond is-onstraint(,CS) ANDvar-in() ANDtell(L2, CS)proof shema L1.�1 ` C ()L2.�, C `  (solveCS;L1)TellCS has the onstraint solver CS as a parameter. The appliation ofTellCS works on goals  that are onstraints. When TellCS is mathed withthe urrent planning state,  is bound to this goal. This is indiated by the on-lusion L2. The 	 in 	L2 indiates that the planning goal is removed from theplanning state when TellCS is applied. The operator introdues no new subgoalsbeause there are no �-premises. An operator is applied only if the appliationondition, appl-ond, evaluates to true. The appliation ondition of TellCS saysthat the operator is appliable, if the following onditions are ful�lled. Firstly,the open goal that is mathed with the  in line L2 of TellCS has to be a on-straint, i.e., a formula of the onstraint language of the onstraint solver thatinstantiates CS. Seondly, the goal should ontain at least one problem variablewhose value is restrited by . Last but not least, the onstraint goal must beonsistent with the onstraints aumulated by CS so far. The latter is hekedby tell(L2,CS) whih evaluates to true, if CS does not �nd an inonsisteny ofthe instantiated  with the onstraints aumulated so far. The onstraint solveris aessed via the tell funtion.The proof shema of TellCS ontains a meta-variable C that is a plae holderfor the onjuntion of all onstraints aumulated (also alled answer onstraint).The instantiation of C is relevant for line L2 in the proof shema that suggeststhat the onstraint an be logially derived from the yet unknown answer on-straint.2 The basi alulus of the 
mega system is natural dedution (ND) [17℄.



The ontrol mehanism of our proof planner prefers the operator TellCS, if theurrent planning goal is an inequality or an equation.Another planning operator is ExistsIntro 3 whih eliminates an existentialquanti�ation in a planning goal:operator: ExistsIntropremises �L1onlusions 	L2appl-ond Mx :=new-meta-var(x)proof shema L1.� ` '[Mx=x℄ (OPEN)L2.� ` 9x:' (ExistsI;L1)ExistsIntro loses an existentially quanti�ed planning goal that mathes L2by removing the quanti�er and replaing the variable x by a new problem vari-ableMx. The formula '[Mx=x℄ is introdued as a new subgoal whih is indiatedby the �-premise �L1. The funtion new-meta-var in the appliation onditionomputes a new problem variable with the type of x. The proof shema is intro-dued into the partial proof plan when the operator is expanded. ExistsIntrois often applied iteratively for a number of quanti�ers when normalizing a goal.Even if only one operator is appliable, there may be in�nitely many branhesat a hoie point in proof planning. This problem ours, for example, whenexistentially quanti�ed variables have to be instantiated. In a omplete proofx in 9x:' has to be replaed by a term t, a witness for x. Sine usually t isstill unknown when ExistsIntro is applied, one solution would be to guess awitness for x and to baktrak in searh, if no proof an be found with the hosenwitness. This approah yields unmanageable searh spaes. We have hosen theapproah to introdue Mx as a plae-holder for the term t and to searh for theinstantiation of Mx when all onstraints on t are known only.Melis [10℄ motivates the use of domain-spei� onstraint solvers to �nd wit-nesses for existentially quanti�ed variables. The key idea is to delay the instan-tiations as long as possible and let the onstraint solver inrementally restritthe admissible objet values.1.2 The IntegrationConstraint solvers employ domain-spei� data strutures and algorithms. Theonstraint solver CoSIE , desribed later, is a propagation-based real-intervalsolver. It is integrated as a mathematial servie into the distributed arhitetureof the 
mega system.Fig. 1 shematially depits the interfae between the proof planner of
megaand our onstraint solver. The onstraint solver an be aessed diretly by the3 ExistsIntro enapsulates the ND-alulus rule ExistsI whih is the rule �`F [t=x℄�`9x:F ,where t is an arbitrary term.
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witnessesFig. 1. Interfae between onstraint solving and proof planning.proof planner and by interfae funtions that are alled in the appliation on-ditions of ertain planning operators. The proof planner's appliation of theoperator InitializeCS initializes the onstraint solver at the beginning of eahplanning proess. During proof planning the main interfae is provided via theplanning operators TellCS and AskCS. TellCS sends new onstraints to thesolver by alling the tell funtion and AskCS tests entailment of onstraintsfrom the onstraints olleted so far by alling the ask funtion. At the end ofthe planning proess, the proof planner diretly alls the onstraint solver toompute an answer onstraint formula and to searh for witnesses for problemvariables.A onstraint solver an help to redue the searh during planning beause itheks the validity of the appliation onditions of ertain operators by hekingfor the inonsisteny of onstraints. When suh an inonsisteny is deteted, theproof planner baktraks rather than ontinuing the searh at that point in thesearh spae.2 Requirements of Constraint Solving in Proof PlanningFor an appropriate integration of onstraint solving into proof planning, severalrequirements have to be satis�ed. The most relevant ones are disussed in thefollowing.1. Proof planning needs to proess onstraints ontaining terms, e.g., E1 ��=(2:0 �M). These terms may ontain names of elements of a ertain domain(e.g., 2:0) as well as variables (e.g., M;E1) and symboli onstants (e.g., �). So,as opposed to systems for variables onstrained by purely numeri terms, theonstraint representation and inferene needs to inlude non-numeri (we say\symboli") terms in order to be appropriate for proof planning.In the following, we always use the notion \numeri" to indiate that a ertainvalue or inferene is related to a ertain domain, although this domain does notneessarily have to ontain natural, rational, or real numbers.2. Sine in the planning proess not every variable ours in the sequents ofthe initial state, the set of problem variables may be growing. In partiular, proofplanning operators may produe new auxiliary variables that are not ontained inthe original problem. Moreover, the set of onstraints is inrementally growing



and typially reahes a stable state at the end of the planning proess only.Therefore, dynami onstraint solving [14℄ is needed.3. Sine baktraking is possible in proof planning onstraints that have al-ready been added to the onstraint store may be withdrawn again.4. In proof planning a onstraint ours in a sequent (� ` ) that onsistsof a set � of hypotheses and the atual onstraint formula . The hypothesesprovide the ontext of a onstraint and must be taken into aount while a-umulating onstraints, in omputing the answer onstraint, and in the searhfor instantiations of problem variables. Therefore, we refer to a sequent � ` as a onstraint in the rest of this paper. Importantly, ertain problem variables,alled shared variables, our in di�erent - possibly ontraditing - ontexts. Forinstane, the new ontexts�[fX = ag and �[fX 6= ag result from introduinga ase split (X = a :_ X 6= a) into a proof plan, where � is the set of hypothesesin the preeding plan step. When a new onstraint �[fX = ag `  is proessedin the X = a branh of the proof plan, its onsisteny has to be heked withrespet to all onstraints with a ontext � whih is a subset of � [ fX = ag.5. In order to yield a logially orret ND-proof when the operators areexpanded, those onstants that are introdued by the ND-rules 8I and 9E 4have to satisfy the Eigenvariable ondition, i.e., they must not our in otherformulas beforehand. That is, they must not our in witnesses that will beinstantiated for plae holders in the formulas. This ondition must be satis�edby the searh for witnesses of problem variables.3 Constraint Solving for Proof PlanningMany o�-the-shelf onstraint solvers are designed to takle ombinatorial (op-timization) problems. For them all problem variables are introdued at the be-ginning and the solver submits the problem to a monolithi searh engine thattries to �nd a solution without any interferene from outside.An established model for (propagation-based) onstraint solving [18℄ involvesnumeri onstraint inferene over a onstraint store holding so-alled basi on-straints over a domain as, for example, the domain of integers, sets of integers,or real numbers. A basi onstraint is of the form X = v (X is bound to a valuev of the domain), X = Y (X is equated to another variable Y ), or X 2 B (Xtakes its value in B, where B is an approximation of a value of the respetivedomain). Attahed to the onstraint store are non-basi onstraints. Non-basionstraints, as for example \X + Y = Z" over integers or real numbers, aremore expressive than basi onstraints and, hene, require more omputationale�ort. A non-basi onstraint is realized by a omputational agent, a propaga-tor, observing the basi onstraints of its parameters whih are variables in theonstraint store (in the example X , Y , and Z). The purpose of a propagatoris to infer new basi onstraints for its parameters and add them to the store.4 these are the rules 8I�`F [a=x℄�`8x:F and 9E�`9x:F �;F [a=x℄`G�`G , where a must not ourin any formula in � [ fF;Gg.



That happens until no further basi onstraints an be inferred and written tothe store, i.e., until a �x-point is reahed. Inferene an be resumed by addingnew onstraints either basi or non-basi. A propagator terminates if it is ei-ther inonsistent with the onstraint store or expliitly represented by the basionstraints in the store, i.e., entailed by the store.The ommon funtionalities of these onstraint solvers are onsisteny hek,entailment hek, reetion, and searh for instantiations. (In)onsisteny hekinludes the propagation of onstraints ombined with the atual onsistenyalgorithm, e.g., with ar-onsisteny AC3 [9℄.No previous solver satis�es all the above mentioned requirements and there-fore we developed an extended onstraint solver that an be safely integratedinto proof planning. In the following, we desribe the extensions of this solverand the implementation of these extensions.3.1 Extensions of Constraint SolvingIn order to meet requirement 1, a symbiosis of numeri inferene tehniques aswell as domain spei� term rewriting rules are needed. To meet the requirements2,3, and 4, we introdue so alled ontext trees whih store onstraints wrt. theirontext and enable an eÆient test for subset relations between ontexts. Theontext tree is also used to ompute a logially orret answer onstraint formulaand to build the initial onstraint store for the searh for witnesses.Constraint Inferene. We employ two di�erent kinds of onstraint inferene inorder to detet inonsistenies as fast as possible and to symbolially solve andsimplify symboli onstraints. One algorithm eÆiently tests a set of onstraintsfor inonsistenies by inspeting and handling the numeri bounds of variables.We refer to this algorithm as numeri inferene. Another algorithm for symboliinferene uses term rewrite rules to simplify the symboli representation of on-straints and onstraint simpli�ation rules to transform a set of onstraints intoa satis�ability equivalent one whih is in a unique solved form.A typial onstraint solver for (in)equalities in in real numbers IR that rep-resents onstraints by numerial lower and upper bounds has to be extendedbeause otherwise in some ases unique bounds annot be determined. For exam-ple, if a problem variable D has two upper bounds, Æ1 and Æ2 whih are symbolionstants. These bounds annot be replaed by a unique upper bound unless afuntions min is employed. Constraint simpli�ation rules help to determine andto redue the sets of upper (lower) bounds of a problem variable and to detetinonsistenies whih annot be found eÆiently by purely numeri inferene.For instane, the onstraint X < Y +Z ^ Y +Z < W ^ W < X is obviouslyinonsistent, but numeri inferene annot detet this inonsisteny eÆiently.This requires a onstraint representation that an be handled by numeri andsymboli inferene. The extension of a onstraint solver needs to integrate bothinferene mehanisms into a single solver and bene�t from the results of therespetive other inferene.



Context Trees. Context trees onsist of nodes, the ontext nodes. Eah suhnode N� onsists of a set � of hypotheses (the ontext) and a set S� = f j � ` is onstraint and � � �g.A ontext tree is a onjuntive tree representing the onjuntion of all on-straints stored in the nodes. Fig. 2 shows the struture of suh a ontext tree.
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Fig. 2. A Context Tree with node annotations. � and � are sets of formulas. ',�, and� are formulas. �;' stands for � [ f'g.The root node is annotated with the empty ontext f g. A direted edge from anode N� to a hild N 0� implies � � �. A subtree T� of a ontext tree onsistsof all nodes with a ontext 	 for whih � � 	 holds.A new onstraint (� ` ) must be onsistent with the onstraint sets S� with� � �. The onstraint solver has to hek for onsisteny with the sets S� inthe leaf nodes only beause the sets of onstraints grow from the root node tothe leaves. In other words � � � implies S� � S�. If an inonsisteny ours inat least one leaf, the onstraint (� ` ) is not aepted by the onstraint solver.Otherwise,  is added to all sets S� in the subtree T�. If the subtree T� is theempty tree, i.e., the ontext � is new to the onstraint solver, new nodes N�are reated and inserted into the ontext tree as shown in Fig. 2. This operationpreserves the subset relations in the ontext tree.When a onstraint (� ` ) has to be withdrawn beause of baktraking inthe proof planning,  is simply removed from all nodes in the subtree T�. Emptyontext nodes are removed from the tree.The Answer Constraint. At the end of the planning proess, the onstraint solveruses the struture of the ontext tree to ompute the answer onstraint formula.Let �1; : : : ; �n be the ontexts of all nodes in the ontext tree and C1; : : : ; Cn bethe onjuntions of all formulas whih are new in S�1 ; : : : ; S�n respetively, i.e.,Ci := S�i �f j  2 S�j with �j � �ig. Then the answer onstraint formula isVi(�i ! Ci).



Searh for Witnesses. Sine the ontext tree is a onjuntive tree witnesses ofthe problem variables have to satisfy all onstraints in the ontext tree if therespetive ontext is satis�ed. The onstraint solver searhes for a solution foreah problem variable whih satis�es all onstraints. In partiular, the searhfor witnesses of shared variables whih our in di�erent ontexts has to takeinto aount all onstraints of these variables. Therefore, the onstraint solverreates a single set with all onstraints from the leaf nodes at the beginning ofthe searh proessThe searh algorithm uses numeri inferene and term rewriting to omputean interval onstraint max(L) � X � min(U) for every problem variable X ,where L(U) is a list whose �rst element is the numeri lower(upper) boundl(u) and the rest of L(U) onsists of the symboli lower(upper) bounds. Anelement is dropped from a bound list as soon as it is found to be not maximal(minimal). Eventually, the maximal lower boundmax(L) and the minimal upperbound min(U) are used to ompute a witness for X . The searh algorithm mustnot ompute witnesses whih ontain Eigenvariables of the respetive problemvariable.3.2 ImplementationThis setion desribes the onstraint solver CoSIE (Constraint Solver for Inequa-lities and Equations over the �eld of real numbers). The onstraint language ofCoSIE onsists of arithmeti (in)equality onstraints over the real numbers, i.e.,onstraints with one of the relations <,�,=,�, and >. Terms in formulas of thislanguage are built from real numbers, symboli onstants and variables, and thefuntion symbols +,�,�, =, min, and max. Terms may also ontain ground alienterms, i.e. ground terms whih ontain funtion symbols unknown to CoSIE ,i.e., alien. For instane, jf 0(a)j is a ground alien term ontaining the two fun-tion symbols j:j and f 0. CoSIE handles these alien terms by variable abstration,i.e., for onstraint inferene these terms are replaed by variables and later oninstantiated again.CoSIE is implemented in the onurrent onstraint logi programming lan-guage Mozart Oz [16℄. CoSIE builds a ontext tree whose nodes are omputa-tion spaes annotated with ontexts. A omputation spae is a Mozart Oz datastruture that enapsulates data, e.g., onstraints, and any kind of omputationinluding onstraint inferene. After onstraint inferene has reahed a �x-point,a omputation spae may have various states: the onstraints are inonsistent,all propagators vanished sine they are represented by the basi onstraints inthe onstraint store, or the spae ontains disjuntions, i.e., onstraint inferenewill proeed in di�erent diretions.When a new onstraint (� ` ) is sent to the solver by TellCS, it has tobe added to ertain omputation spaes in the ontext tree. Therefore, a newomputation spae s ontaining  only is reated and merged with all ompu-tation spaes in the leaf nodes of the subtree T�. In eah of these omputationspaes, the symboli inferene proedure tries to simplify onstraints and detetnon-trivial inonsistenies. Propagation, i.e. numeri inferene, is triggered by



the symboli inferene proedure as desribed in the next paragraph. When a�x-point is reahed in numeri and symboli inferene, the resulting omputationspaes are asked for their state to detet inonsistenies. If no inonsisteny isdeteted  is inserted into every omputation spae of the subtree T� by mergingwith the spae s.
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Fig. 3. Combining symboli and numeri inferene.Symboli and Numeri Constraint Inferene. In CoSIE , numeri inferene isbased on the o�-the-shelf Real-Interval (RI-) module oming with the MozartOz system. The RI-module provides RI-variables (onstraint variables attributedwith intervals of real numbers). As an extension, now the RI-module provides�rst-lass propagators for all relations and funtions from CoSIE 's onstraintlanguage. Beause of being a �rst-lass data struture these propagators an beinspeted, started, and terminated, e.g., by the symboli inferene proedure andat the same time work on the onstraint store in the usual way.The symbiosis of symboli and numeri inferene is based on a shared rep-resentation of onstraints and by the �rst-lass propagators. Every variable andevery symboli onstant ourring in a onstraint proessed by CoSIE is on-neted to a orresponding RI-variable. The relations and non-alien funtions ofa onstraint are onneted to the �rst-lass propagator of those relations andfuntions of the RI-module.Fig. 3 illustrates the ombination of symboli and numeri inferene. It showsCoSIE 's onnetions of the onstraint 1 � X ^X < Y ^X +Y = Z to the �rst-lass propagators for < and + and to the RI-variables for X , Y , and Z in theonstraint store.The symboli inferene proedure applies (onditional) rewrite rules and on-straint simpli�ation rules from the theory of real numbers to (symboli) on-straints in order to transform these onstraints into an equivalent normal form.Sine the symboli inferene hanges the term struture of onstraints, it diretlyinuenes the orresponding �rst-lass propagators. It starts or terminates �rst-lass propagators onneted to the relations and non-alien funtions of the terms



hanged by the appliation of rewrite and onstraint simpli�ation rules. One ofthe rewrite rules used by CoSIE is the following.(t1 � t2)=(t1 � t3) [t1 > 0℄) t2=t3 (1)If the ondition t1 > 0 holds, then the rule anels out a ommon fator t1in a fration. When the symboli inferene proedure reeives, for instane, theonstraint a > 0^E � (a ��)=(a �M), it reates new RI-variables for E,M , �, anda (in ase they do not exist yet) and omputes new �rst-lass propagators for therelations > and � and for all ourrenes of the funtions = and �. The rule (1)is applied, to the term (a � �)=(a �M), whih is transformed to the normal form�=M . Thus, the �rst-lass propagators for � in (a � �) and (a �M) are terminated.The symboli inferene applies onstraint simpli�ation rules to detet in-onsistenies as early as possible, e.g.,(t1 < t2) ^ (t2 < t3) ^ (t3 < t1) ) ? (2)For instane, the onstraint X < Y + Z ^ Y + Z < W ^ W < X , alreadymentioned above, is instantly simpli�ed to ? by the appliation of rule (2). Withpure numeri inferene it would take several minutes to detet this inonsisteny.Searh. The searh proedure of CoSIE ollets all onstraints of the leaf nodesof the ontext tree in a single omputation spae, the root spae of the searhtree. As desribed below, the searh may reate new omputation spaes. Thesearh proedure heks reursively for eah spae whether it is inonsistent orontains a solution. For eah omputation spae, propagation redues the do-mains of the variables. Additionally, the symboli inferene applies term rewriterules and onstraint simpli�ation rules to transform the onstraint store intoa solved form, to ompute a unique symboli smallest(greatest) upper(lower)bound for eah variable, and to detet inonsistenies as early as possible. A setof onstraints in solved form does not ontain any redundant or trivially validonstraints, e.g., 0 < 1. One of the simpli�ation rules is(X � t1) ^ (X � t2) ) X � minft1; t2g,where the ti are arithmeti terms and X is a problem variable. When propaga-tion has reahed a �x-point and no rewrite and onstraint simpli�ation rulesare appliable, the spae whose state is not failed is said to be stable. For astable spae with undetermined variables a distribution algorithm omputes al-ternatives for the values of a arefully hosen variable X . The searh algorithmuses these alternatives to reate new disjuntive branhes in the searh tree, i.e.,new omputation spaes for every alternative for the domain of X . The newomputation spaes ontain exatly one of the alternatives and are submittedto reursive exploration again. The entire proess is aborted as soon as a solu-tion is found. For instane, if a variable X is onstrained by 0 < X ^ X < �,three alternatives for X are omputed, expressed by the new onstraints X = �2 ,X < �2 , and X > �2 .



4 Worked Example
mega's proof planner and the integrated onstraint solver CoSIE ould �ndproof plans for many theorems, examples, and exerises from two hapters of theintrodutory analysis textbook [2℄. The now extended onstraint solver allowsfor orretly handling proofs plans that involve a ase split. A ase split produesalternative ontexts of onstraints.A proof that requires a ase split is, e.g., the proof of the theorem ContIf-Deriv. This theorem states that if a funtion f : IR ! IR has a derivative f 0(a)at a point a 2 IR, then it is ontinuous in a. In the following, we briey desribethose parts of the planning proess for ContIfDeriv that are relevant for theintegrated onstraint solving. Let's assume a formalization of the problem thatimplies an initial planning state with the assumption; ` 8�1(�1 > 0 ! 9Æ1(Æ1 > 0 ! (8x1(jx1 � aj < Æ1 ! ((x1 6= a) ! (j f(x1)�f(a)x1�a � f 0(a)j < �1))))))(1) and the planning goal5; ` 8�(� > 0 ! 9Æ(Æ > 0 ! (8x(jx� aj < Æ ! jf(x)� f(a)j < �))))

Fig. 4. The proof plan of ContIfDeriv.The proof planner �nds a proof plan for ContIfDeriv as depited in the sreenshot in Fig. 4. During proof planning, the following onstraints are passed to theonstraint solver CoSIE :5 In this formalization the de�nitions of limit and derivative have already been ex-panded but this is not ruial for the purpose of this paper.



� ` E1 > 0 � ` Æ1 > 0� ` D � Æ1 �; (X1 6= a) ` 0 < M�; (X1 6= a) ` 0 < M 0 �; (X1 6= a) ` D �M�; (X1 6= a) ` jf 0(a)j �M 0 �; (X1 6= a) ` D � �=(4 �M 0)�; (X1 6= a) ` E1 � �=(2 �M) �; (X1 = a) ` X1 = x ;
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...}Fig. 5. The ontext tree for ContIfDeriv.where � onsists of the proof assumption (1) and the onstraints � > 0 andD > 0. The problem variables D, X1, and E1 orrespond to Æ; x1, and �1 in theformalization of the problem. M and M 0 are auxiliary variables introdued by aplanning operator.The ontext tree for ContIfDeriv is shown in Fig. 5. Note that the twobranhes orrespond to the branhes of the proof plan that originate from aase split on (X1 = a :_ X1 6= a). The shaded nodes orrespond to the shadedplan nodes in Fig. 4.At the end of the planning proess, CoSIE omputes the following answeronstraint: E1 > 0 ^ Æ1 > 0 ^ D � Æ1 ^(X1 6= a ! 0 < M ^ D � M ^0 < M 0 ^ jf 0(a)j � M 0 ^E1 � �=(2 �M) ^D � �=(4 �M 0)) ) ^(X1 = a ! X1 = x )):The searh proedure of CoSIE omputes the following witnesses for theproblem variables of ContIfDeriv:D = minfÆ1; �4�(jf 0(a)j+1)g , X1 = x , E1 = 2 � (jf 0(a)j+ 1) , M = D ,M 0 = (jf 0(a)j+ 1).These witnesses satisfy the Eigenvariable onditions forbidden(E1) = fÆ1g andforbidden(D) = fxg.5 ConlusionThe main theme of this paper is the integration of onstraint solvers into proofplanning and the nonstandard requirements aused by proof planning. Sine o�-



the-shelf onstraint solvers are typially geared towards other appliations, weaddress generi extensions of a standard onstraint solver that may also extendthe potential appliation areas of onstraint solving.The reasons for the extensions are manifold: the onstraint solver's serviehas to be integrated into the proof planner in a logially orret way, the on-straints are usually not purely numeri, and the ontrol of proof planning, e.g.,baktraking, has to be mathed on the onstraint solver's side.The programming language Oz is well-suited for the extensions reported inthis paper beause it provides onurrent propagation-based onstraint infereneenapsulated in omputation spaes. The development of �rst-lass propagatorsin Oz has been initiated, among others, by our need to ombine numeri andsymboli onstraint inferene. Additionally, Oz provides the means for buildingnew onstraint systems from srath that are as eÆient as the built-in ones.Related Work. A few theorem proving systems diretly inlude speially designeddeision proedures for onstraint domains, e.g., [4℄, or a onstraint solver [20℄.All these systems tightly integrate the onstraint solving into theorem provingrather than integrating an external, stand-alone onstraint solver. And, of ourse,none of them does proof planning.Our previous work [11℄ mainly dealt with interfaing and integrating the spe-ially designed external onstraint solver Lineq into proof planning by designing(Tell and Ask) operators, interfae funtions, and instantiation proedures. Wealso investigated with the merits/bene�ts suh an integration an have for proofplanning if applied appropriately and orretly [13℄. We knew that additionalfeatures of the onstraint solver are needed but did not elaborate on this. NowCoSIE has been developed based on our previous experienes with symbolionstraint solving and based on the RI-module onstraint solver of Mozart.SoleX [15℄ is a general sheme for the extension of the onstraint language ofan existing onstraint solvers preserving soundness and ompleteness properties.It ombines symboli and numeri inferene in a sequential way. We used theSoleX approah to handle so-alled alien terms in the onstraint language ofCoSIE . Constraint handling rules [7℄ de�ne onstraint theories and implementonstraint solvers at the same time.A ontext is used in the onstraint logi programming language CAL [1℄to handle guarded lauses. Running a CAL program results in a ontext tree.Therefore, ontext tree in CAL are oneptually di�erent to the ontext treespresented in this paper.Referenes1. A. Aiba and R. Hasegawa. Constraint Logi Programming System - CAL, GDCCand Their Constraint Solvers. In Pro. of the Conferene on Fifth GenerationComputer Systems., pages 113{131. ICOT, 1992.2. R.G. Bartle and D.R. Sherbert. Introdution to Real Analysis. John Wiley& Sons,New York, 1982.
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