
Integrating Constraint Solving into ProofPlanningEri
a Melis1, J�urgen Zimmer2, and Tobias M�uller31 Fa
hberei
h Informatik, Universit�at des Saarlandes, D-66041 Saarb�u
ken.melis�ags.uni-sb.de2 Fa
hberei
h Informatik, Universit�at des Saarlandes, D-66041 Saarb�u
ken.jzimmer�ags.uni-sb.de3 Programming Systems Lab, Postfa
h 15 11 50, Universit�at des Saarlandes,D-66041 Saarb�u
ken.tmueller�ps.uni-sb.deAbstra
t. In proof planning mathemati
al obje
ts with theory-spe
ifi
properties have to be 
onstru
ted. More often than not, mere uni�
ationo�ers little support for this task. However, the integration of 
onstraintsolvers into proof planning 
an sometimes help solving this problem.We present su
h an integration and dis
over 
ertain requirements to bemet in order to integrate the 
onstraint solver's eÆ
ient a
tivities in away that is 
orre
t and suÆ
ient for proof planning. We explain howthe requirements 
an be met by an extension of the 
onstraint solvingte
hnology and des
ribe their implementation in the 
onstraint solverCoSIE.In automated theorem proving, mathemati
al obje
ts satisfying theory-spe
i-�
 properties have to be 
onstru
ted. More often than not, uni�
ation o�erslittle support for this task and logi
 proofs, say of linear inequalities, 
an bevery long and infeasible for purely logi
al theorem proving. This situation wasa reason to develop theory reasoning approa
hes, e.g., in theory resolution [19℄,
onstrained resolution [6℄, and 
onstraint logi
 programming [8℄ and to integratelinear arithmeti
 de
ision pro
edures into provers su
h as Nqthm [4℄. Boyer andMoore, e.g., report how diÆ
ult su
h as integration may be.In knowledge-based proof planning [12℄ external reasoners 
an be integrated.In parti
ular, a domain-spe
i�
 
onstraint solver 
an help to 
onstru
t mathe-mati
al obje
ts that are elements of a spe
i�
 domain. As long as these mathe-mati
al obje
ts are still unknown during the proof planning pro
ess they arerepresented by pla
e holders, also 
alled problem variables. In [11℄ we des
ribeda �rst hand-tailored 
onstraint solver Lineq that in
rementally restri
ts the pos-sible obje
t values. It 
he
ks for the in
onsisten
y of 
onstraints and therebyin
uen
es the sear
h for a proof plan.In H�el�ene Kir
hner and Christophe Ringeissen, editors, Frontiers of Combining Sys-tems { Third International Workshop, FroCos 2000, LNAI 1794, pages 32{46, Nan
y,Fran
e, Mar
h 2000, Springer-Verlag Berlin Heidelberg 2000.



This paper presents the integration of an extended standard 
onstraint solverinto proof planning and des
ribes several generally ne
essary extensions of o�-the-shelf 
onstraint solvers for their 
orre
t use in proof planning. As a resultmore theorems from three investigated mathemati
al areas (
onvergen
e of real-valued fun
tions, 
onvergent sequen
es, and 
ontinuous fun
tions) 
an be provedby our proof planner.The paper is organized as follows: First we introdu
e knowledge-based proofplanning as it is realized in the mathemati
al assistant system 
mega [3℄ andits 
on
rete integration of 
onstraint solving into proof planning. In se
tion 2 wesummarize the requirements that the integration into proof planning 
auses for
onstraint solving. In se
tion 3, we dis
uss the essential extensions of 
onstraintsolving for proof planning. Finally, we illustrate the proof planning and parti
-ularly CoSIE 's work with a 
on
rete proof planning example. In the following,�, �, and 	 denote sets of formulas.1 Integration of Constraint Solving into Proof PlanningProof planning, introdu
ed by A.Bundy [5℄, di�ers from traditional sear
h-basedte
hniques by sear
hing for appropriate proof steps at abstra
t levels and by aglobal guidan
e of the proof sear
h. Knowledge-based proof planning [12℄ extendsthis idea by allowing for domain-spe
i�
 operators and heuristi
s, by extendingthe means of heuristi
 guidan
e, and by integrating domain-spe
i�
 externalreasoning systems.Proof planning 
an be des
ribed as an appli
ation of 
lassi
al AI-planningwhere the initial state 
onsists of the two proof assumptions represented bysequents1 and of the goal whi
h is a sequent representing the theorem to beproved. For instan
e, for proving the theorem LIM+ whi
h states that the limitof the sum of two real-valued fun
tions f and g at a point a 2IR (a real numbera) is the sum of their limits the initial planning state 
onsists of the goal; ` limx!a f(x) + g(x) = L1 + L2and of the proof assumptions; ` limx!a f(x) = L1 and; ` limx!a g(x) = L2 .After the expansion of the de�niton of limx!a the resulting planning goal is; ` 8�(� > 0 ! 9Æ(Æ > 0^ 8x((jx� aj < Æ ^ x 6= a)! j(f(x) + g(x))� (L1 +L2)j < �).Proof planning sear
hes for a sequen
e of operators that transfers the initial stateinto a state with no open planning goals. The proof plan operators represent
omplex inferen
es that 
orrespond to mathemati
al proof te
hniques. These1 A sequent (� ` F ) 
onsists of a set of formulas � (the hypotheses) and a formulaF and means that F is derivable from �.



operators are usually more abstra
t than the rules of the basi
 logi
 
al
ulus.Thus, a proof of a theorem is planned at an abstra
t level and a plan is an outlineof the proof. This plan 
an be re
ursively expanded to the 
al
ulus-level whereit 
an be 
he
ked for 
orre
tness by a proof 
he
ker.2In the following, we brie
y introdu
e knowledge-based proof planning as itis realized in the 
mega system.1.1 Proof Planning in 
megaThe operators in 
mega have a frame-like representation. As a �rst examplefor planning operators, we explain TellCS whi
h plays an important role in theintegration of 
onstraint solving into proof planning:operator: TellCS(CS)premises L1
on
lusions 	L2appl-
ond is-
onstraint(
,CS) ANDvar-in(
) ANDtell(L2, CS)proof s
hema L1.�1 ` C ()L2.�, C ` 
 (solveCS;L1)TellCS has the 
onstraint solver CS as a parameter. The appli
ation ofTellCS works on goals 
 that are 
onstraints. When TellCS is mat
hed withthe 
urrent planning state, 
 is bound to this goal. This is indi
ated by the 
on-
lusion L2. The 	 in 	L2 indi
ates that the planning goal is removed from theplanning state when TellCS is applied. The operator introdu
es no new subgoalsbe
ause there are no �-premises. An operator is applied only if the appli
ation
ondition, appl-
ond, evaluates to true. The appli
ation 
ondition of TellCS saysthat the operator is appli
able, if the following 
onditions are ful�lled. Firstly,the open goal that is mat
hed with the 
 in line L2 of TellCS has to be a 
on-straint, i.e., a formula of the 
onstraint language of the 
onstraint solver thatinstantiates CS. Se
ondly, the goal should 
ontain at least one problem variablewhose value is restri
ted by 
. Last but not least, the 
onstraint goal must be
onsistent with the 
onstraints a

umulated by CS so far. The latter is 
he
kedby tell(L2,CS) whi
h evaluates to true, if CS does not �nd an in
onsisten
y ofthe instantiated 
 with the 
onstraints a

umulated so far. The 
onstraint solveris a

essed via the tell fun
tion.The proof s
hema of TellCS 
ontains a meta-variable C that is a pla
e holderfor the 
onjun
tion of all 
onstraints a

umulated (also 
alled answer 
onstraint).The instantiation of C is relevant for line L2 in the proof s
hema that suggeststhat the 
onstraint 
an be logi
ally derived from the yet unknown answer 
on-straint.2 The basi
 
al
ulus of the 
mega system is natural dedu
tion (ND) [17℄.



The 
ontrol me
hanism of our proof planner prefers the operator TellCS, if the
urrent planning goal is an inequality or an equation.Another planning operator is ExistsIntro 3 whi
h eliminates an existentialquanti�
ation in a planning goal:operator: ExistsIntropremises �L1
on
lusions 	L2appl-
ond Mx :=new-meta-var(x)proof s
hema L1.� ` '[Mx=x℄ (OPEN)L2.� ` 9x:' (ExistsI;L1)ExistsIntro 
loses an existentially quanti�ed planning goal that mat
hes L2by removing the quanti�er and repla
ing the variable x by a new problem vari-ableMx. The formula '[Mx=x℄ is introdu
ed as a new subgoal whi
h is indi
atedby the �-premise �L1. The fun
tion new-meta-var in the appli
ation 
ondition
omputes a new problem variable with the type of x. The proof s
hema is intro-du
ed into the partial proof plan when the operator is expanded. ExistsIntrois often applied iteratively for a number of quanti�ers when normalizing a goal.Even if only one operator is appli
able, there may be in�nitely many bran
hesat a 
hoi
e point in proof planning. This problem o

urs, for example, whenexistentially quanti�ed variables have to be instantiated. In a 
omplete proofx in 9x:' has to be repla
ed by a term t, a witness for x. Sin
e usually t isstill unknown when ExistsIntro is applied, one solution would be to guess awitness for x and to ba
ktra
k in sear
h, if no proof 
an be found with the 
hosenwitness. This approa
h yields unmanageable sear
h spa
es. We have 
hosen theapproa
h to introdu
e Mx as a pla
e-holder for the term t and to sear
h for theinstantiation of Mx when all 
onstraints on t are known only.Melis [10℄ motivates the use of domain-spe
i�
 
onstraint solvers to �nd wit-nesses for existentially quanti�ed variables. The key idea is to delay the instan-tiations as long as possible and let the 
onstraint solver in
rementally restri
tthe admissible obje
t values.1.2 The IntegrationConstraint solvers employ domain-spe
i�
 data stru
tures and algorithms. The
onstraint solver CoSIE , des
ribed later, is a propagation-based real-intervalsolver. It is integrated as a mathemati
al servi
e into the distributed ar
hite
tureof the 
mega system.Fig. 1 s
hemati
ally depi
ts the interfa
e between the proof planner of
megaand our 
onstraint solver. The 
onstraint solver 
an be a

essed dire
tly by the3 ExistsIntro en
apsulates the ND-
al
ulus rule ExistsI whi
h is the rule �`F [t=x℄�`9x:F ,where t is an arbitrary term.



Operator
appl-cond

PLANNER

answer constraint

ask
tell

CONSTRAINT

SOLVER

initialize

witnessesFig. 1. Interfa
e between 
onstraint solving and proof planning.proof planner and by interfa
e fun
tions that are 
alled in the appli
ation 
on-ditions of 
ertain planning operators. The proof planner's appli
ation of theoperator InitializeCS initializes the 
onstraint solver at the beginning of ea
hplanning pro
ess. During proof planning the main interfa
e is provided via theplanning operators TellCS and AskCS. TellCS sends new 
onstraints to thesolver by 
alling the tell fun
tion and AskCS tests entailment of 
onstraintsfrom the 
onstraints 
olle
ted so far by 
alling the ask fun
tion. At the end ofthe planning pro
ess, the proof planner dire
tly 
alls the 
onstraint solver to
ompute an answer 
onstraint formula and to sear
h for witnesses for problemvariables.A 
onstraint solver 
an help to redu
e the sear
h during planning be
ause it
he
ks the validity of the appli
ation 
onditions of 
ertain operators by 
he
kingfor the in
onsisten
y of 
onstraints. When su
h an in
onsisten
y is dete
ted, theproof planner ba
ktra
ks rather than 
ontinuing the sear
h at that point in thesear
h spa
e.2 Requirements of Constraint Solving in Proof PlanningFor an appropriate integration of 
onstraint solving into proof planning, severalrequirements have to be satis�ed. The most relevant ones are dis
ussed in thefollowing.1. Proof planning needs to pro
ess 
onstraints 
ontaining terms, e.g., E1 ��=(2:0 �M). These terms may 
ontain names of elements of a 
ertain domain(e.g., 2:0) as well as variables (e.g., M;E1) and symboli
 
onstants (e.g., �). So,as opposed to systems for variables 
onstrained by purely numeri
 terms, the
onstraint representation and inferen
e needs to in
lude non-numeri
 (we say\symboli
") terms in order to be appropriate for proof planning.In the following, we always use the notion \numeri
" to indi
ate that a 
ertainvalue or inferen
e is related to a 
ertain domain, although this domain does notne
essarily have to 
ontain natural, rational, or real numbers.2. Sin
e in the planning pro
ess not every variable o

urs in the sequents ofthe initial state, the set of problem variables may be growing. In parti
ular, proofplanning operators may produ
e new auxiliary variables that are not 
ontained inthe original problem. Moreover, the set of 
onstraints is in
rementally growing



and typi
ally rea
hes a stable state at the end of the planning pro
ess only.Therefore, dynami
 
onstraint solving [14℄ is needed.3. Sin
e ba
ktra
king is possible in proof planning 
onstraints that have al-ready been added to the 
onstraint store may be withdrawn again.4. In proof planning a 
onstraint o

urs in a sequent (� ` 
) that 
onsistsof a set � of hypotheses and the a
tual 
onstraint formula 
. The hypothesesprovide the 
ontext of a 
onstraint and must be taken into a

ount while a
-
umulating 
onstraints, in 
omputing the answer 
onstraint, and in the sear
hfor instantiations of problem variables. Therefore, we refer to a sequent � ` 
as a 
onstraint in the rest of this paper. Importantly, 
ertain problem variables,
alled shared variables, o

ur in di�erent - possibly 
ontradi
ting - 
ontexts. Forinstan
e, the new 
ontexts�[fX = ag and �[fX 6= ag result from introdu
inga 
ase split (X = a :_ X 6= a) into a proof plan, where � is the set of hypothesesin the pre
eding plan step. When a new 
onstraint �[fX = ag ` 
 is pro
essedin the X = a bran
h of the proof plan, its 
onsisten
y has to be 
he
ked withrespe
t to all 
onstraints with a 
ontext � whi
h is a subset of � [ fX = ag.5. In order to yield a logi
ally 
orre
t ND-proof when the operators areexpanded, those 
onstants that are introdu
ed by the ND-rules 8I and 9E 4have to satisfy the Eigenvariable 
ondition, i.e., they must not o

ur in otherformulas beforehand. That is, they must not o

ur in witnesses that will beinstantiated for pla
e holders in the formulas. This 
ondition must be satis�edby the sear
h for witnesses of problem variables.3 Constraint Solving for Proof PlanningMany o�-the-shelf 
onstraint solvers are designed to ta
kle 
ombinatorial (op-timization) problems. For them all problem variables are introdu
ed at the be-ginning and the solver submits the problem to a monolithi
 sear
h engine thattries to �nd a solution without any interferen
e from outside.An established model for (propagation-based) 
onstraint solving [18℄ involvesnumeri
 
onstraint inferen
e over a 
onstraint store holding so-
alled basi
 
on-straints over a domain as, for example, the domain of integers, sets of integers,or real numbers. A basi
 
onstraint is of the form X = v (X is bound to a valuev of the domain), X = Y (X is equated to another variable Y ), or X 2 B (Xtakes its value in B, where B is an approximation of a value of the respe
tivedomain). Atta
hed to the 
onstraint store are non-basi
 
onstraints. Non-basi

onstraints, as for example \X + Y = Z" over integers or real numbers, aremore expressive than basi
 
onstraints and, hen
e, require more 
omputationale�ort. A non-basi
 
onstraint is realized by a 
omputational agent, a propaga-tor, observing the basi
 
onstraints of its parameters whi
h are variables in the
onstraint store (in the example X , Y , and Z). The purpose of a propagatoris to infer new basi
 
onstraints for its parameters and add them to the store.4 these are the rules 8I�`F [a=x℄�`8x:F and 9E�`9x:F �;F [a=x℄`G�`G , where a must not o

urin any formula in � [ fF;Gg.



That happens until no further basi
 
onstraints 
an be inferred and written tothe store, i.e., until a �x-point is rea
hed. Inferen
e 
an be resumed by addingnew 
onstraints either basi
 or non-basi
. A propagator terminates if it is ei-ther in
onsistent with the 
onstraint store or expli
itly represented by the basi

onstraints in the store, i.e., entailed by the store.The 
ommon fun
tionalities of these 
onstraint solvers are 
onsisten
y 
he
k,entailment 
he
k, re
e
tion, and sear
h for instantiations. (In)
onsisten
y 
he
kin
ludes the propagation of 
onstraints 
ombined with the a
tual 
onsisten
yalgorithm, e.g., with ar
-
onsisten
y AC3 [9℄.No previous solver satis�es all the above mentioned requirements and there-fore we developed an extended 
onstraint solver that 
an be safely integratedinto proof planning. In the following, we des
ribe the extensions of this solverand the implementation of these extensions.3.1 Extensions of Constraint SolvingIn order to meet requirement 1, a symbiosis of numeri
 inferen
e te
hniques aswell as domain spe
i�
 term rewriting rules are needed. To meet the requirements2,3, and 4, we introdu
e so 
alled 
ontext trees whi
h store 
onstraints wrt. their
ontext and enable an eÆ
ient test for subset relations between 
ontexts. The
ontext tree is also used to 
ompute a logi
ally 
orre
t answer 
onstraint formulaand to build the initial 
onstraint store for the sear
h for witnesses.Constraint Inferen
e. We employ two di�erent kinds of 
onstraint inferen
e inorder to dete
t in
onsisten
ies as fast as possible and to symboli
ally solve andsimplify symboli
 
onstraints. One algorithm eÆ
iently tests a set of 
onstraintsfor in
onsisten
ies by inspe
ting and handling the numeri
 bounds of variables.We refer to this algorithm as numeri
 inferen
e. Another algorithm for symboli
inferen
e uses term rewrite rules to simplify the symboli
 representation of 
on-straints and 
onstraint simpli�
ation rules to transform a set of 
onstraints intoa satis�ability equivalent one whi
h is in a unique solved form.A typi
al 
onstraint solver for (in)equalities in in real numbers IR that rep-resents 
onstraints by numeri
al lower and upper bounds has to be extendedbe
ause otherwise in some 
ases unique bounds 
annot be determined. For exam-ple, if a problem variable D has two upper bounds, Æ1 and Æ2 whi
h are symboli

onstants. These bounds 
annot be repla
ed by a unique upper bound unless afun
tions min is employed. Constraint simpli�
ation rules help to determine andto redu
e the sets of upper (lower) bounds of a problem variable and to dete
tin
onsisten
ies whi
h 
annot be found eÆ
iently by purely numeri
 inferen
e.For instan
e, the 
onstraint X < Y +Z ^ Y +Z < W ^ W < X is obviouslyin
onsistent, but numeri
 inferen
e 
annot dete
t this in
onsisten
y eÆ
iently.This requires a 
onstraint representation that 
an be handled by numeri
 andsymboli
 inferen
e. The extension of a 
onstraint solver needs to integrate bothinferen
e me
hanisms into a single solver and bene�t from the results of therespe
tive other inferen
e.



Context Trees. Context trees 
onsist of nodes, the 
ontext nodes. Ea
h su
hnode N� 
onsists of a set � of hypotheses (the 
ontext) and a set S� = f
 j � `
 is 
onstraint and � � �g.A 
ontext tree is a 
onjun
tive tree representing the 
onjun
tion of all 
on-straints stored in the nodes. Fig. 2 shows the stru
ture of su
h a 
ontext tree.
,θ,

Θ

∆ ∆

∆∆

∆

ζ ,ϕ, ζ

, θ ,ϕ

{ }

Fig. 2. A Context Tree with node annotations. � and � are sets of formulas. ',�, and� are formulas. �;' stands for � [ f'g.The root node is annotated with the empty 
ontext f g. A dire
ted edge from anode N� to a 
hild N 0� implies � � �. A subtree T� of a 
ontext tree 
onsistsof all nodes with a 
ontext 	 for whi
h � � 	 holds.A new 
onstraint (� ` 
) must be 
onsistent with the 
onstraint sets S� with� � �. The 
onstraint solver has to 
he
k for 
onsisten
y with the sets S� inthe leaf nodes only be
ause the sets of 
onstraints grow from the root node tothe leaves. In other words � � � implies S� � S�. If an in
onsisten
y o

urs inat least one leaf, the 
onstraint (� ` 
) is not a

epted by the 
onstraint solver.Otherwise, 
 is added to all sets S� in the subtree T�. If the subtree T� is theempty tree, i.e., the 
ontext � is new to the 
onstraint solver, new nodes N�are 
reated and inserted into the 
ontext tree as shown in Fig. 2. This operationpreserves the subset relations in the 
ontext tree.When a 
onstraint (� ` 
) has to be withdrawn be
ause of ba
ktra
king inthe proof planning, 
 is simply removed from all nodes in the subtree T�. Empty
ontext nodes are removed from the tree.The Answer Constraint. At the end of the planning pro
ess, the 
onstraint solveruses the stru
ture of the 
ontext tree to 
ompute the answer 
onstraint formula.Let �1; : : : ; �n be the 
ontexts of all nodes in the 
ontext tree and C1; : : : ; Cn bethe 
onjun
tions of all formulas whi
h are new in S�1 ; : : : ; S�n respe
tively, i.e.,Ci := S�i �f
 j 
 2 S�j with �j � �ig. Then the answer 
onstraint formula isVi(�i ! Ci).



Sear
h for Witnesses. Sin
e the 
ontext tree is a 
onjun
tive tree witnesses ofthe problem variables have to satisfy all 
onstraints in the 
ontext tree if therespe
tive 
ontext is satis�ed. The 
onstraint solver sear
hes for a solution forea
h problem variable whi
h satis�es all 
onstraints. In parti
ular, the sear
hfor witnesses of shared variables whi
h o

ur in di�erent 
ontexts has to takeinto a

ount all 
onstraints of these variables. Therefore, the 
onstraint solver
reates a single set with all 
onstraints from the leaf nodes at the beginning ofthe sear
h pro
essThe sear
h algorithm uses numeri
 inferen
e and term rewriting to 
omputean interval 
onstraint max(L) � X � min(U) for every problem variable X ,where L(U) is a list whose �rst element is the numeri
 lower(upper) boundl(u) and the rest of L(U) 
onsists of the symboli
 lower(upper) bounds. Anelement is dropped from a bound list as soon as it is found to be not maximal(minimal). Eventually, the maximal lower boundmax(L) and the minimal upperbound min(U) are used to 
ompute a witness for X . The sear
h algorithm mustnot 
ompute witnesses whi
h 
ontain Eigenvariables of the respe
tive problemvariable.3.2 ImplementationThis se
tion des
ribes the 
onstraint solver CoSIE (Constraint Solver for Inequa-lities and Equations over the �eld of real numbers). The 
onstraint language ofCoSIE 
onsists of arithmeti
 (in)equality 
onstraints over the real numbers, i.e.,
onstraints with one of the relations <,�,=,�, and >. Terms in formulas of thislanguage are built from real numbers, symboli
 
onstants and variables, and thefun
tion symbols +,�,�, =, min, and max. Terms may also 
ontain ground alienterms, i.e. ground terms whi
h 
ontain fun
tion symbols unknown to CoSIE ,i.e., alien. For instan
e, jf 0(a)j is a ground alien term 
ontaining the two fun
-tion symbols j:j and f 0. CoSIE handles these alien terms by variable abstra
tion,i.e., for 
onstraint inferen
e these terms are repla
ed by variables and later oninstantiated again.CoSIE is implemented in the 
on
urrent 
onstraint logi
 programming lan-guage Mozart Oz [16℄. CoSIE builds a 
ontext tree whose nodes are 
omputa-tion spa
es annotated with 
ontexts. A 
omputation spa
e is a Mozart Oz datastru
ture that en
apsulates data, e.g., 
onstraints, and any kind of 
omputationin
luding 
onstraint inferen
e. After 
onstraint inferen
e has rea
hed a �x-point,a 
omputation spa
e may have various states: the 
onstraints are in
onsistent,all propagators vanished sin
e they are represented by the basi
 
onstraints inthe 
onstraint store, or the spa
e 
ontains disjun
tions, i.e., 
onstraint inferen
ewill pro
eed in di�erent dire
tions.When a new 
onstraint (� ` 
) is sent to the solver by TellCS, it has tobe added to 
ertain 
omputation spa
es in the 
ontext tree. Therefore, a new
omputation spa
e s
 
ontaining 
 only is 
reated and merged with all 
ompu-tation spa
es in the leaf nodes of the subtree T�. In ea
h of these 
omputationspa
es, the symboli
 inferen
e pro
edure tries to simplify 
onstraints and dete
tnon-trivial in
onsisten
ies. Propagation, i.e. numeri
 inferen
e, is triggered by



the symboli
 inferen
e pro
edure as des
ribed in the next paragraph. When a�x-point is rea
hed in numeri
 and symboli
 inferen
e, the resulting 
omputationspa
es are asked for their state to dete
t in
onsisten
ies. If no in
onsisten
y isdete
ted 
 is inserted into every 
omputation spa
e of the subtree T� by mergingwith the spa
e s
.
{1<=X, X<Y, X+Y=Z}

X
Z

[1.1; inf]

[2.1; inf]

Y

<

[1 ; inf]

+

numeric inference

symbolic inference

constraint store

first-class propagators

Fig. 3. Combining symboli
 and numeri
 inferen
e.Symboli
 and Numeri
 Constraint Inferen
e. In CoSIE , numeri
 inferen
e isbased on the o�-the-shelf Real-Interval (RI-) module 
oming with the MozartOz system. The RI-module provides RI-variables (
onstraint variables attributedwith intervals of real numbers). As an extension, now the RI-module provides�rst-
lass propagators for all relations and fun
tions from CoSIE 's 
onstraintlanguage. Be
ause of being a �rst-
lass data stru
ture these propagators 
an beinspe
ted, started, and terminated, e.g., by the symboli
 inferen
e pro
edure andat the same time work on the 
onstraint store in the usual way.The symbiosis of symboli
 and numeri
 inferen
e is based on a shared rep-resentation of 
onstraints and by the �rst-
lass propagators. Every variable andevery symboli
 
onstant o

urring in a 
onstraint pro
essed by CoSIE is 
on-ne
ted to a 
orresponding RI-variable. The relations and non-alien fun
tions ofa 
onstraint are 
onne
ted to the �rst-
lass propagator of those relations andfun
tions of the RI-module.Fig. 3 illustrates the 
ombination of symboli
 and numeri
 inferen
e. It showsCoSIE 's 
onne
tions of the 
onstraint 1 � X ^X < Y ^X +Y = Z to the �rst-
lass propagators for < and + and to the RI-variables for X , Y , and Z in the
onstraint store.The symboli
 inferen
e pro
edure applies (
onditional) rewrite rules and 
on-straint simpli�
ation rules from the theory of real numbers to (symboli
) 
on-straints in order to transform these 
onstraints into an equivalent normal form.Sin
e the symboli
 inferen
e 
hanges the term stru
ture of 
onstraints, it dire
tlyin
uen
es the 
orresponding �rst-
lass propagators. It starts or terminates �rst-
lass propagators 
onne
ted to the relations and non-alien fun
tions of the terms




hanged by the appli
ation of rewrite and 
onstraint simpli�
ation rules. One ofthe rewrite rules used by CoSIE is the following.(t1 � t2)=(t1 � t3) [t1 > 0℄) t2=t3 (1)If the 
ondition t1 > 0 holds, then the rule 
an
els out a 
ommon fa
tor t1in a fra
tion. When the symboli
 inferen
e pro
edure re
eives, for instan
e, the
onstraint a > 0^E � (a ��)=(a �M), it 
reates new RI-variables for E,M , �, anda (in 
ase they do not exist yet) and 
omputes new �rst-
lass propagators for therelations > and � and for all o

urren
es of the fun
tions = and �. The rule (1)is applied, to the term (a � �)=(a �M), whi
h is transformed to the normal form�=M . Thus, the �rst-
lass propagators for � in (a � �) and (a �M) are terminated.The symboli
 inferen
e applies 
onstraint simpli�
ation rules to dete
t in-
onsisten
ies as early as possible, e.g.,(t1 < t2) ^ (t2 < t3) ^ (t3 < t1) ) ? (2)For instan
e, the 
onstraint X < Y + Z ^ Y + Z < W ^ W < X , alreadymentioned above, is instantly simpli�ed to ? by the appli
ation of rule (2). Withpure numeri
 inferen
e it would take several minutes to dete
t this in
onsisten
y.Sear
h. The sear
h pro
edure of CoSIE 
olle
ts all 
onstraints of the leaf nodesof the 
ontext tree in a single 
omputation spa
e, the root spa
e of the sear
htree. As des
ribed below, the sear
h may 
reate new 
omputation spa
es. Thesear
h pro
edure 
he
ks re
ursively for ea
h spa
e whether it is in
onsistent or
ontains a solution. For ea
h 
omputation spa
e, propagation redu
es the do-mains of the variables. Additionally, the symboli
 inferen
e applies term rewriterules and 
onstraint simpli�
ation rules to transform the 
onstraint store intoa solved form, to 
ompute a unique symboli
 smallest(greatest) upper(lower)bound for ea
h variable, and to dete
t in
onsisten
ies as early as possible. A setof 
onstraints in solved form does not 
ontain any redundant or trivially valid
onstraints, e.g., 0 < 1. One of the simpli�
ation rules is(X � t1) ^ (X � t2) ) X � minft1; t2g,where the ti are arithmeti
 terms and X is a problem variable. When propaga-tion has rea
hed a �x-point and no rewrite and 
onstraint simpli�
ation rulesare appli
able, the spa
e whose state is not failed is said to be stable. For astable spa
e with undetermined variables a distribution algorithm 
omputes al-ternatives for the values of a 
arefully 
hosen variable X . The sear
h algorithmuses these alternatives to 
reate new disjun
tive bran
hes in the sear
h tree, i.e.,new 
omputation spa
es for every alternative for the domain of X . The new
omputation spa
es 
ontain exa
tly one of the alternatives and are submittedto re
ursive exploration again. The entire pro
ess is aborted as soon as a solu-tion is found. For instan
e, if a variable X is 
onstrained by 0 < X ^ X < �,three alternatives for X are 
omputed, expressed by the new 
onstraints X = �2 ,X < �2 , and X > �2 .



4 Worked Example
mega's proof planner and the integrated 
onstraint solver CoSIE 
ould �ndproof plans for many theorems, examples, and exer
ises from two 
hapters of theintrodu
tory analysis textbook [2℄. The now extended 
onstraint solver allowsfor 
orre
tly handling proofs plans that involve a 
ase split. A 
ase split produ
esalternative 
ontexts of 
onstraints.A proof that requires a 
ase split is, e.g., the proof of the theorem ContIf-Deriv. This theorem states that if a fun
tion f : IR ! IR has a derivative f 0(a)at a point a 2 IR, then it is 
ontinuous in a. In the following, we brie
y des
ribethose parts of the planning pro
ess for ContIfDeriv that are relevant for theintegrated 
onstraint solving. Let's assume a formalization of the problem thatimplies an initial planning state with the assumption; ` 8�1(�1 > 0 ! 9Æ1(Æ1 > 0 ! (8x1(jx1 � aj < Æ1 ! ((x1 6= a) ! (j f(x1)�f(a)x1�a � f 0(a)j < �1))))))(1) and the planning goal5; ` 8�(� > 0 ! 9Æ(Æ > 0 ! (8x(jx� aj < Æ ! jf(x)� f(a)j < �))))

Fig. 4. The proof plan of ContIfDeriv.The proof planner �nds a proof plan for ContIfDeriv as depi
ted in the s
reenshot in Fig. 4. During proof planning, the following 
onstraints are passed to the
onstraint solver CoSIE :5 In this formalization the de�nitions of limit and derivative have already been ex-panded but this is not 
ru
ial for the purpose of this paper.



� ` E1 > 0 � ` Æ1 > 0� ` D � Æ1 �; (X1 6= a) ` 0 < M�; (X1 6= a) ` 0 < M 0 �; (X1 6= a) ` D �M�; (X1 6= a) ` jf 0(a)j �M 0 �; (X1 6= a) ` D � �=(4 �M 0)�; (X1 6= a) ` E1 � �=(2 �M) �; (X1 = a) ` X1 = x ;
 1

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����

����
����
����
����

 1
{X =x,

...}
∆

1
, X = a

{ } root

∆

∆ 1, X = a

1
...}

{0<E ,

{0<M,
...}Fig. 5. The 
ontext tree for ContIfDeriv.where � 
onsists of the proof assumption (1) and the 
onstraints � > 0 andD > 0. The problem variables D, X1, and E1 
orrespond to Æ; x1, and �1 in theformalization of the problem. M and M 0 are auxiliary variables introdu
ed by aplanning operator.The 
ontext tree for ContIfDeriv is shown in Fig. 5. Note that the twobran
hes 
orrespond to the bran
hes of the proof plan that originate from a
ase split on (X1 = a :_ X1 6= a). The shaded nodes 
orrespond to the shadedplan nodes in Fig. 4.At the end of the planning pro
ess, CoSIE 
omputes the following answer
onstraint: E1 > 0 ^ Æ1 > 0 ^ D � Æ1 ^(X1 6= a ! 0 < M ^ D � M ^0 < M 0 ^ jf 0(a)j � M 0 ^E1 � �=(2 �M) ^D � �=(4 �M 0)) ) ^(X1 = a ! X1 = x )):The sear
h pro
edure of CoSIE 
omputes the following witnesses for theproblem variables of ContIfDeriv:D = minfÆ1; �4�(jf 0(a)j+1)g , X1 = x , E1 = 2 � (jf 0(a)j+ 1) , M = D ,M 0 = (jf 0(a)j+ 1).These witnesses satisfy the Eigenvariable 
onditions forbidden(E1) = fÆ1g andforbidden(D) = fxg.5 Con
lusionThe main theme of this paper is the integration of 
onstraint solvers into proofplanning and the nonstandard requirements 
aused by proof planning. Sin
e o�-



the-shelf 
onstraint solvers are typi
ally geared towards other appli
ations, weaddress generi
 extensions of a standard 
onstraint solver that may also extendthe potential appli
ation areas of 
onstraint solving.The reasons for the extensions are manifold: the 
onstraint solver's servi
ehas to be integrated into the proof planner in a logi
ally 
orre
t way, the 
on-straints are usually not purely numeri
, and the 
ontrol of proof planning, e.g.,ba
ktra
king, has to be mat
hed on the 
onstraint solver's side.The programming language Oz is well-suited for the extensions reported inthis paper be
ause it provides 
on
urrent propagation-based 
onstraint inferen
een
apsulated in 
omputation spa
es. The development of �rst-
lass propagatorsin Oz has been initiated, among others, by our need to 
ombine numeri
 andsymboli
 
onstraint inferen
e. Additionally, Oz provides the means for buildingnew 
onstraint systems from s
rat
h that are as eÆ
ient as the built-in ones.Related Work. A few theorem proving systems dire
tly in
lude spe
ially designedde
ision pro
edures for 
onstraint domains, e.g., [4℄, or a 
onstraint solver [20℄.All these systems tightly integrate the 
onstraint solving into theorem provingrather than integrating an external, stand-alone 
onstraint solver. And, of 
ourse,none of them does proof planning.Our previous work [11℄ mainly dealt with interfa
ing and integrating the spe-
ially designed external 
onstraint solver Lineq into proof planning by designing(Tell and Ask) operators, interfa
e fun
tions, and instantiation pro
edures. Wealso investigated with the merits/bene�ts su
h an integration 
an have for proofplanning if applied appropriately and 
orre
tly [13℄. We knew that additionalfeatures of the 
onstraint solver are needed but did not elaborate on this. NowCoSIE has been developed based on our previous experien
es with symboli

onstraint solving and based on the RI-module 
onstraint solver of Mozart.SoleX [15℄ is a general s
heme for the extension of the 
onstraint language ofan existing 
onstraint solvers preserving soundness and 
ompleteness properties.It 
ombines symboli
 and numeri
 inferen
e in a sequential way. We used theSoleX approa
h to handle so-
alled alien terms in the 
onstraint language ofCoSIE . Constraint handling rules [7℄ de�ne 
onstraint theories and implement
onstraint solvers at the same time.A 
ontext is used in the 
onstraint logi
 programming language CAL [1℄to handle guarded 
lauses. Running a CAL program results in a 
ontext tree.Therefore, 
ontext tree in CAL are 
on
eptually di�erent to the 
ontext treespresented in this paper.Referen
es1. A. Aiba and R. Hasegawa. Constraint Logi
 Programming System - CAL, GDCCand Their Constraint Solvers. In Pro
. of the Conferen
e on Fifth GenerationComputer Systems., pages 113{131. ICOT, 1992.2. R.G. Bartle and D.R. Sherbert. Introdu
tion to Real Analysis. John Wiley& Sons,New York, 1982.



3. C. Benzmueller, L. Cheikhrouhou, D. Fehrer, A. Fiedler, X. Huang, M. Kerber,M. Kohlhase, K. Konrad, A. Meier, E. Melis, W. S
haars
hmidt, J. Siekmann, andV. Sorge. OMEGA: Towards a Mathemati
al Assistant. In W. M
Cune, editor,Pro
. of CADE-14. Springer, 1997.4. R. S. Boyer and J S. Moore. Integrating De
ision Pro
edures into Heuristi
 Theo-rem Provers: A Case Study of Linear Arithmeti
. Ma
hine Intelligen
e (Logi
 andthe A
quisition of Knowledge), 11, 1988.5. A. Bundy. The Use of Expli
it Plans to Guide Indu
tive Proofs. In E. Lusk andR. Overbeek, editors, Pro
. CADE-9, LNCS 310, Argonne, 1988. Springer.6. H.-J. B�ur
kert. A Resolution Prin
iple for Constrained Logi
s. Arti�
ial Intelli-gen
e, 66(2), 1994.7. T. Fr�uhwirth. Constraint Handling Rules. In A. Podelski, editor, Constraint Pro-gramming: Basi
s and Trends, LNCS 910. Springer, 1995.8. J. Ja�ar and J-L. Lassez. Constraint Logi
 Programming. In Pro
. 14th ACMSymposium on Prin
iples of Programming Languages, 1987.9. A. K. Ma
kworth. Consisten
y in Networks of Relations. Arti�
ial Intelligen
e,8:99{118, 1977.10. E. Melis. AI-Te
hniques in Proof Planning. In European Conferen
e on Arti�
ialIntelligen
e. Kluwer A
ademi
, 1998.11. E. Melis. Combining Proof Planning with Constraint Solving. InPro
eedings of Cal
ulemus and Types'98, 1998. Ele
troni
 Pro
eedingshttp://www.win.tue.nl/math/dw/pp/
al
/pro
eedings.html.12. E. Melis and J.H. Siekmann. Knowledge-based Proof Planning. Arti�
ial Intelli-gen
e, 115(1):65{105, 1999.13. E. Melis and V. Sorge. Employing External Reasoners in Proof Planning. InA. Armando and T. Jebelean, editors, Cal
ulemus'99, 1999.14. S. Mittal and B. Falkenhainer. Dynami
 Constraint Satisfa
tion Problems. InPro
eedings of the 10th National Conferen
e on Arti�
ial Intelligen
e, AAAI-90,pages 25{32, Boston, MA, 1990.15. E. Monfroy and Ch. Ringeissen. SoleX: a Domain-Independent S
heme for Con-straint Solver Extension. In J. Calmet and J. Plaza, editors, Arti�
ial Intelligen
eand Symboli
 Computation AISC'98, LNAI 1476. Springer, 1998.16. The Mozart Consortium. The Mozart Programming System. http://www.mozart-oz.org/.17. D. Prawitz. Natural Dedu
tion - A Proof Theoreti
al Study. Almquist and Wiksell,Sto
kholm, 1965.18. G. Smolka. The Oz programming model. In Jan van Leeuwen, editor, CurrentTrends in Computer S
ien
e. Springer, 1995.19. M.K. Sti
kel. Automated Dedu
tion by Theory Resolution. In Pro
. of the 9thInternational Joint Conferen
e on Arti�
ial Intelligen
e, 1985.20. F. Stolzenburg. Membership Constraints and Complexity in Logi
 Programmingwith Sets. In F. Baader and U. S
hulz, editors, Frontiers in Combining Systems.Kluwer A
ademi
, 1996.


