Integrating Constraint Solving into Proof
Planning

Erica Melis!, Jiirgen Zimmer?, and Tobias Miiller?

! Fachbereich Informatik, Universitit des Saarlandes, D-66041 Saarbiicken.
melis@ags.uni-sb.de
2 Fachbereich Informatik, Universitit des Saarlandes, D-66041 Saarbiicken.
jzimmerQ@ags.uni-sb.de
3 Programming Systems Lab, Postfach 15 11 50, Universitiit des Saarlandes,
D-66041 Saarbiicken.

tmueller@ps.uni-sb.de

Abstract. In proof planning mathematical objects with theory-specific
properties have to be constructed. More often than not, mere unification
offers little support for this task. However, the integration of constraint
solvers into proof planning can sometimes help solving this problem.
We present such an integration and discover certain requirements to be
met in order to integrate the constraint solver’s efficient activities in a
way that is correct and sufficient for proof planning. We explain how
the requirements can be met by an extension of the constraint solving
technology and describe their implementation in the constraint solver
CoSZE.

In automated theorem proving, mathematical objects satisfying theory-speci-
fic properties have to be constructed. More often than not, unification offers
little support for this task and logic proofs, say of linear inequalities, can be
very long and infeasible for purely logical theorem proving. This situation was
a reason to develop theory reasoning approaches, e.g., in theory resolution [19],
constrained resolution [6], and constraint logic programming [8] and to integrate
linear arithmetic decision procedures into provers such as Nqthm [4]. Boyer and
Moore, e.g., report how difficult such as integration may be.

In knowledge-based proof planning [12] external reasoners can be integrated.
In particular, a domain-specific constraint solver can help to construct mathe-
matical objects that are elements of a specific domain. As long as these mathe-
matical objects are still unknown during the proof planning process they are
represented by place holders, also called problem variables. In [11] we described
a first hand-tailored constraint solver Lineq that incrementally restricts the pos-
sible object values. It checks for the inconsistency of constraints and thereby
influences the search for a proof plan.

In Héléne Kirchner and Christophe Ringeissen, editors, Frontiers of Combining Sys-
tems — Third International Workshop, FroCos 2000, LNAI 1794, pages 32-46, Nancy,
France, March 2000, Springer-Verlag Berlin Heidelberg 2000.

This paper presents the integration of an extended standard constraint solver
into proof planning and describes several generally necessary extensions of off-
the-shelf constraint solvers for their correct use in proof planning. As a result
more theorems from three investigated mathematical areas (convergence of real-
valued functions, convergent sequences, and continuous functions) can be proved
by our proof planner.

The paper is organized as follows: First we introduce knowledge-based proof
planning as it is realized in the mathematical assistant system 2MEGA [3] and
its concrete integration of constraint solving into proof planning. In section 2 we
summarize the requirements that the integration into proof planning causes for
constraint solving. In section 3, we discuss the essential extensions of constraint
solving for proof planning. Finally, we illustrate the proof planning and partic-
ularly CoSZE’s work with a concrete proof planning example. In the following,
A, &, and ¥ denote sets of formulas.

1 Integration of Constraint Solving into Proof Planning

Proof planning, introduced by A.Bundy [5], differs from traditional search-based
techniques by searching for appropriate proof steps at abstract levels and by a
global guidance of the proof search. Knowledge-based proof planning [12] extends
this idea by allowing for domain-specific operators and heuristics, by extending
the means of heuristic guidance, and by integrating domain-specific external
reasoning systems.

Proof planning can be described as an application of classical Al-planning
where the initial state consists of the two proof assumptions represented by
sequents' and of the goal which is a sequent representing the theorem to be
proved. For instance, for proving the theorem LIM+ which states that the limit
of the sum of two real-valued functions f and g at a point a €IR (a real number
a) is the sum of their limits the initial planning state consists of the goal

rT—a
and of the proof assumptions

0 F lim f(z) = L, and

T—a

¢+ lim g(x) = Lo

T—a

After the expansion of the definiton of lim the resulting planning goal is
T—a

O FVe(e>0—36(0 >0AVz((|Jzr—a| <Az #a) = |(f(z) +9(x)) — (L1 + L2)| < ¢).

Proof planning searches for a sequence of operators that transfers the initial state
into a state with no open planning goals. The proof plan operators represent
complex inferences that correspond to mathematical proof techniques. These

L' A sequent (A F F) consists of a set of formulas A (the hypotheses) and a formula
F and means that F' is derivable from A.

operators are usually more abstract than the rules of the basic logic calculus.
Thus, a proof of a theorem is planned at an abstract level and a plan is an outline
of the proof. This plan can be recursively expanded to the calculus-level where
it can be checked for correctness by a proof checker.?

In the following, we briefly introduce knowledge-based proof planning as it
is realized in the 2MEGA system.

1.1 Proof Planning in £2MEGA

The operators in 2MEGA have a frame-like representation. As a first example
for planning operators, we explain Tel1CS which plays an important role in the
integration of constraint solving into proof planning:

operator: TellCS(CS)

premises L1

conclusions |©L2
is-constraint(c¢,CS) AND
appl-cond |var-in(c) AND

tell(L2, CS)

Ll.A, F C 0
proof schemall.2. A, C + ¢ (solveCS;L1)

TellCS has the constraint solver CS as a parameter. The application of
TellCS works on goals ¢ that are constraints. When TellCS is matched with
the current planning state, ¢ is bound to this goal. This is indicated by the con-
clusion L2. The € in €L2 indicates that the planning goal is removed from the
planning state when TellCS is applied. The operator introduces no new subgoals
because there are no ®-premises. An operator is applied only if the application
condition, appl-cond, evaluates to true. The application condition of Tel1CS says
that the operator is applicable, if the following conditions are fulfilled. Firstly,
the open goal that is matched with the ¢ in line L2 of Tel1CS has to be a con-
straint, i.e., a formula of the constraint language of the constraint solver that
instantiates CS. Secondly, the goal should contain at least one problem variable
whose value is restricted by c. Last but not least, the constraint goal must be
consistent with the constraints accumulated by CS so far. The latter is checked
by tell(L2,CS) which evaluates to true, if CS does not find an inconsistency of
the instantiated ¢ with the constraints accumulated so far. The constraint solver
is accessed via the tell function.

The proof schema of TellCS contains a meta-variable C that is a place holder
for the conjunction of all constraints accumulated (also called answer constraint).
The instantiation of C is relevant for line L2 in the proof schema that suggests
that the constraint can be logically derived from the yet unknown answer con-
straint.

2 The basic calculus of the 2MEGA system is natural deduction (ND) [17].

The control mechanism of our proof planner prefers the operator TellCS, if the
current planning goal is an inequality or an equation.

Another planning operator is ExistsIntro ? which eliminates an existential
quantification in a planning goal:

operator: ExistsIntro

premises dL1

conclusions |6L2

appl-cond |M, :=new-meta-var(z)
L1.A F ¢[M./z] (OPEN)
proof schema|lL2. A + 3z.p (Exists[;L1)

ExistsIntro closes an existentially quantified planning goal that matches L2
by removing the quantifier and replacing the variable z by a new problem vari-
able M. The formula ¢[M, /z] is introduced as a new subgoal which is indicated
by the ®-premise $L1. The function new-meta-var in the application condition
computes a new problem variable with the type of . The proof schema is intro-
duced into the partial proof plan when the operator is expanded. ExistsIntro
is often applied iteratively for a number of quantifiers when normalizing a goal.

Even if only one operator is applicable, there may be infinitely many branches
at a choice point in proof planning. This problem occurs, for example, when
existentially quantified variables have to be instantiated. In a complete proof
z in Jz.p has to be replaced by a term ¢, a witness for x. Since usually ¢ is
still unknown when ExistsIntro is applied, one solution would be to guess a
witness for z and to backtrack in search, if no proof can be found with the chosen
witness. This approach yields unmanageable search spaces. We have chosen the
approach to introduce M, as a place-holder for the term ¢ and to search for the
instantiation of M, when all constraints on ¢ are known only.

Melis [10] motivates the use of domain-specific constraint solvers to find wit-
nesses for existentially quantified variables. The key idea is to delay the instan-
tiations as long as possible and let the constraint solver incrementally restrict
the admissible object values.

1.2 The Integration

Constraint solvers employ domain-specific data structures and algorithms. The
constraint solver CoSZE, described later, is a propagation-based real-interval
solver. It is integrated as a mathematical service into the distributed architecture
of the {ZMEGA system.

Fig. 1 schematically depicts the interface between the proof planner of 2MEGA
and our constraint solver. The constraint solver can be accessed directly by the

AFF[t/z]
Ar3z.F

% ExistsIntro encapsulates the ND-calculus rule ExistsI which is the rule
where ¢ is an arbitrary term.

PLANNER

initialize CONSTRAINT
Operator tell
appl-cond ask SOLVER

answer constraint

witnesses

Fig. 1. Interface between constraint solving and proof planning.

proof planner and by interface functions that are called in the application con-
ditions of certain planning operators. The proof planner’s application of the
operator InitializeCS initializes the constraint solver at the beginning of each
planning process. During proof planning the main interface is provided via the
planning operators TellCS and AskCS. TellCS sends new constraints to the
solver by calling the tell function and AskCS tests entailment of constraints
from the constraints collected so far by calling the ask function. At the end of
the planning process, the proof planner directly calls the constraint solver to
compute an answer constraint formula and to search for witnesses for problem
variables.

A constraint solver can help to reduce the search during planning because it
checks the validity of the application conditions of certain operators by checking
for the inconsistency of constraints. When such an inconsistency is detected, the
proof planner backtracks rather than continuing the search at that point in the
search space.

2 Requirements of Constraint Solving in Proof Planning

For an appropriate integration of constraint solving into proof planning, several
requirements have to be satisfied. The most relevant ones are discussed in the
following.

1. Proof planning needs to process constraints containing terms, e.g., By <
€/(2.0 x M). These terms may contain names of elements of a certain domain
(e.g., 2.0) as well as variables (e.g., M, E;) and symbolic constants (e.g., €). So,
as opposed to systems for variables constrained by purely numeric terms, the
constraint representation and inference needs to include non-numeric (we say
“symbolic”) terms in order to be appropriate for proof planning.

In the following, we always use the notion “numeric” to indicate that a certain
value or inference is related to a certain domain, although this domain does not
necessarily have to contain natural, rational, or real numbers.

2. Since in the planning process not every variable occurs in the sequents of
the initial state, the set of problem variables may be growing. In particular, proof
planning operators may produce new auxiliary variables that are not contained in
the original problem. Moreover, the set of constraints is incrementally growing

and typically reaches a stable state at the end of the planning process only.
Therefore, dynamic constraint solving [14] is needed.

3. Since backtracking is possible in proof planning constraints that have al-
ready been added to the constraint store may be withdrawn again.

4. In proof planning a constraint occurs in a sequent (A F ¢) that consists
of a set A of hypotheses and the actual constraint formula ¢. The hypotheses
provide the context of a constraint and must be taken into account while ac-
cumulating constraints, in computing the answer constraint, and in the search
for instantiations of problem variables. Therefore, we refer to a sequent A F ¢
as a constraint in the rest of this paper. Importantly, certain problem variables,
called shared variables, occur in different - possibly contradicting - contexts. For
instance, the new contexts AU{X = a} and AU{X # a} result from introducing
a case split (X = a V X # a) into a proof plan, where A is the set of hypotheses
in the preceding plan step. When a new constraint AU{X = a} I ¢ is processed
in the X = a branch of the proof plan, its consistency has to be checked with
respect to all constraints with a context @ which is a subset of A U {X = a}.

5. In order to yield a logically correct ND-proof when the operators are
expanded, those constants that are introduced by the ND-rules VI and 3E *
have to satisfy the Eigenvariable condition, i.e., they must not occur in other
formulas beforehand. That is, they must not occur in witnesses that will be
instantiated for place holders in the formulas. This condition must be satisfied
by the search for witnesses of problem variables.

3 Constraint Solving for Proof Planning

Many off-the-shelf constraint solvers are designed to tackle combinatorial (op-
timization) problems. For them all problem variables are introduced at the be-
ginning and the solver submits the problem to a monolithic search engine that
tries to find a solution without any interference from outside.

An established model for (propagation-based) constraint solving [18] involves
numeric constraint inference over a constraint store holding so-called basic con-
straints over a domain as, for example, the domain of integers, sets of integers,
or real numbers. A basic constraint is of the form X = v (X is bound to a value
v of the domain), X =Y (X is equated to another variable Y), or X € B (X
takes its value in B, where B is an approximation of a value of the respective
domain). Attached to the constraint store are non-basic constraints. Non-basic
constraints, as for example “X + Y = Z” over integers or real numbers, are
more expressive than basic constraints and, hence, require more computational
effort. A non-basic constraint is realized by a computational agent, a propaga-
tor, observing the basic constraints of its parameters which are variables in the
constraint store (in the example X, Y, and Z). The purpose of a propagator
is to infer new basic constraints for its parameters and add them to the store.

4 these are the rules VI%W and JEAF3z.F Afép[a/m]’_c

in any formula in AU {F,G}.

, where a must not occur

That happens until no further basic constraints can be inferred and written to
the store, i.e., until a fix-point is reached. Inference can be resumed by adding
new constraints either basic or non-basic. A propagator terminates if it is ei-
ther inconsistent with the constraint store or explicitly represented by the basic
constraints in the store, i.e., entailed by the store.

The common functionalities of these constraint solvers are consistency check,
entailment check, reflection, and search for instantiations. (In)consistency check
includes the propagation of constraints combined with the actual consistency
algorithm, e.g., with arc-consistency AC3 [9].

No previous solver satisfies all the above mentioned requirements and there-
fore we developed an extended constraint solver that can be safely integrated
into proof planning. In the following, we describe the extensions of this solver
and the implementation of these extensions.

3.1 Extensions of Constraint Solving

In order to meet requirement 1, a symbiosis of numeric inference techniques as
well as domain specific term rewriting rules are needed. To meet the requirements
2,3, and 4, we introduce so called context trees which store constraints wrt. their
context and enable an efficient test for subset relations between contexts. The
context tree is also used to compute a logically correct answer constraint formula
and to build the initial constraint store for the search for witnesses.

Constraint Inference. We employ two different kinds of constraint inference in
order to detect inconsistencies as fast as possible and to symbolically solve and
simplify symbolic constraints. One algorithm efficiently tests a set of constraints
for inconsistencies by inspecting and handling the numeric bounds of variables.
We refer to this algorithm as numeric inference. Another algorithm for symbolic
inference uses term rewrite rules to simplify the symbolic representation of con-
straints and constraint simplification rules to transform a set of constraints into
a satisfiability equivalent one which is in a unique solved form.

A typical constraint solver for (in)equalities in in real numbers IR that rep-
resents constraints by numerical lower and upper bounds has to be extended
because otherwise in some cases unique bounds cannot be determined. For exam-
ple, if a problem variable D has two upper bounds, §; and > which are symbolic
constants. These bounds cannot be replaced by a unique upper bound unless a
functions min is employed. Constraint simplification rules help to determine and
to reduce the sets of upper (lower) bounds of a problem variable and to detect
inconsistencies which cannot be found efficiently by purely numeric inference.
For instance, the constraint X <Y +Z7Z A Y+ Z<W A W < X is obviously
inconsistent, but numeric inference cannot detect this inconsistency efficiently.
This requires a constraint representation that can be handled by numeric and
symbolic inference. The extension of a constraint solver needs to integrate both
inference mechanisms into a single solver and benefit from the results of the
respective other inference.

Context Trees. Context trees consist of nodes, the context nodes. Each such
node Ng consists of a set @ of hypotheses (the context) and a set S¢ = {c | A F
¢ is constraint and A C &}.

A context tree is a conjunctive tree representing the conjunction of all con-
straints stored in the nodes. Fig. 2 shows the structure of such a context tree.

e

A (lD\Oe
ot
A,8,C O A C

Fig. 2. A Context Tree with node annotations. A and © are sets of formulas. ¢,0, and
¢ are formulas. A, ¢ stands for AU {¢}.

The root node is annotated with the empty context { }. A directed edge from a
node Na to a child N} implies A C &. A subtree Tg of a context tree consists
of all nodes with a context ¥ for which ¢ C ¥ holds.

A new constraint (A F ¢) must be consistent with the constraint sets Sg with
A C @. The constraint solver has to check for consistency with the sets Sg in
the leaf nodes only because the sets of constraints grow from the root node to
the leaves. In other words A C @ implies Sp C Sg. If an inconsistency occurs in
at least one leaf, the constraint (A F ¢) is not accepted by the constraint solver.
Otherwise, ¢ is added to all sets Sg in the subtree T'a. If the subtree T4 is the
empty tree, i.e., the context A is new to the constraint solver, new nodes N
are created and inserted into the context tree as shown in Fig. 2. This operation
preserves the subset relations in the context tree.

When a constraint (A F ¢) has to be withdrawn because of backtracking in
the proof planning, ¢ is simply removed from all nodes in the subtree TA. Empty
context nodes are removed from the tree.

The Answer Constraint. At the end of the planning process, the constraint solver
uses the structure of the context tree to compute the answer constraint formula.
Let Ay, ..., A, be the contexts of all nodes in the context tree and C1,...,C, be
the conjunctions of all formulas which are new in Sa,,...,Sa, respectively, i.e.,
Ci:=8a, —{c| c€ Sa; with A; C A;}. Then the answer constraint formula is

Search for Witnesses. Since the context tree is a conjunctive tree witnesses of
the problem variables have to satisfy all constraints in the context tree if the
respective context is satisfied. The constraint solver searches for a solution for
each problem variable which satisfies all constraints. In particular, the search
for witnesses of shared wvariables which occur in different contexts has to take
into account all constraints of these variables. Therefore, the constraint solver
creates a single set with all constraints from the leaf nodes at the beginning of
the search process

The search algorithm uses numeric inference and term rewriting to compute
an interval constraint maxz(L) < X < min(U) for every problem variable X,
where L(U) is a list whose first element is the numeric lower(upper) bound
I(u) and the rest of L(U) consists of the symbolic lower(upper) bounds. An
element is dropped from a bound list as soon as it is found to be not maximal
(minimal). Eventually, the maximal lower bound maz (L) and the minimal upper
bound min(U) are used to compute a witness for X. The search algorithm must
not compute witnesses which contain Eigenvariables of the respective problem
variable.

3.2 Implementation

This section describes the constraint solver CoSZE (Constraint Solver for Znequa-
lities and £quations over the field of real numbers). The constraint language of
CoSZE consists of arithmetic (in)equality constraints over the real numbers, i.e.,
constraints with one of the relations <,<,=,>, and >. Terms in formulas of this
language are built from real numbers, symbolic constants and variables, and the
function symbols +,— %, /, min, and maz. Terms may also contain ground alien
terms, i.e. ground terms which contain function symbols unknown to CoSZE,
i.e., alien. For instance, |f'(a)| is a ground alien term containing the two func-
tion symbols |.| and f'. CoSZE handles these alien terms by variable abstraction,
i.e., for constraint inference these terms are replaced by variables and later on
instantiated again.

CoSZE is implemented in the concurrent constraint logic programming lan-
guage Mozart Oz [16]. CoSZE builds a context tree whose nodes are computa-
tion spaces annotated with contexts. A computation space is a Mozart Oz data
structure that encapsulates data, e.g., constraints, and any kind of computation
including constraint inference. After constraint inference has reached a fix-point,
a computation space may have various states: the constraints are inconsistent,
all propagators vanished since they are represented by the basic constraints in
the constraint store, or the space contains disjunctions, i.e., constraint inference
will proceed in different directions.

When a new constraint (A F ¢) is sent to the solver by TellCS, it has to
be added to certain computation spaces in the context tree. Therefore, a new
computation space s, containing c¢ only is created and merged with all compu-
tation spaces in the leaf nodes of the subtree TA. In each of these computation
spaces, the symbolic inference procedure tries to simplify constraints and detect
non-trivial inconsistencies. Propagation, i.e. numeric inference, is triggered by

the symbolic inference procedure as described in the next paragraph. When a
fix-point is reached in numeric and symbolic inference, the resulting computation
spaces are asked for their state to detect inconsistencies. If no inconsistency is
detected ¢ is inserted into every computation space of the subtree Ty by merging
with the space s..

{1<=X, X<Y, X+Y=2}]

symbolic inference

first-class propagators

numeric inference

constraint store

Fig. 3. Combining symbolic and numeric inference.

Symbolic and Numeric Constraint Inference. In CoSZE, numeric inference is
based on the off-the-shelf Real-Interval (RI-) module coming with the Mozart
Oz system. The RI-module provides RI-variables (constraint variables attributed
with intervals of real numbers). As an extension, now the RI-module provides
first-class propagators for all relations and functions from CoSZE’s constraint
language. Because of being a first-class data structure these propagators can be
inspected, started, and terminated, e.g., by the symbolic inference procedure and
at the same time work on the constraint store in the usual way.

The symbiosis of symbolic and numeric inference is based on a shared rep-
resentation of constraints and by the first-class propagators. Every variable and
every symbolic constant occurring in a constraint processed by CoSZE is con-
nected to a corresponding RI-variable. The relations and non-alien functions of
a constraint are connected to the first-class propagator of those relations and
functions of the RI-module.

Fig. 3 illustrates the combination of symbolic and numeric inference. It shows
CoSIE’s connections of the constraint 1 < X AX < YAX +Y = Z to the first-
class propagators for < and + and to the Rl-variables for X, Y, and Z in the
constraint store.

The symbolic inference procedure applies (conditional) rewrite rules and con-
straint simplification rules from the theory of real numbers to (symbolic) con-
straints in order to transform these constraints into an equivalent normal form.
Since the symbolic inference changes the term structure of constraints, it directly
influences the corresponding first-class propagators. It starts or terminates first-
class propagators connected to the relations and non-alien functions of the terms

changed by the application of rewrite and constraint simplification rules. One of
the rewrite rules used by CoSZE is the following.

(tl 'tg)/(tl 't3) [tl > 0] = t2/t3 (1)

If the condition #; > 0 holds, then the rule cancels out a common factor t;
in a fraction. When the symbolic inference procedure receives, for instance, the
constraint a > OAE < (a-€)/(a-M), it creates new Rl-variables for E, M, €, and
a (in case they do not exist yet) and computes new first-class propagators for the
relations > and < and for all occurrences of the functions / and -. The rule (1)
is applied, to the term (a - €)/(a - M), which is transformed to the normal form
€/M . Thus, the first-class propagators for - in (a -€) and (a- M) are terminated.

The symbolic inference applies constraint simplification rules to detect in-
consistencies as early as possible, e.g.,

(tl <t2)/\(t2 <t3)/\(t3 <t1) = 1 (2)

For instance, the constraint X <Y +Z A Y +Z < W A W < X, already
mentioned above, is instantly simplified to L by the application of rule (2). With
pure numeric inference it would take several minutes to detect this inconsistency.

Search. The search procedure of CoSZE collects all constraints of the leaf nodes
of the context tree in a single computation space, the root space of the search
tree. As described below, the search may create new computation spaces. The
search procedure checks recursively for each space whether it is inconsistent or
contains a solution. For each computation space, propagation reduces the do-
mains of the variables. Additionally, the symbolic inference applies term rewrite
rules and constraint simplification rules to transform the constraint store into
a solved form, to compute a unique symbolic smallest(greatest) upper(lower)
bound for each variable, and to detect inconsistencies as early as possible. A set
of constraints in solved form does not contain any redundant or trivially valid
constraints, e.g., 0 < 1. One of the simplification rules is

(X < tl) A (X < tg) = X< min{tl,t2},

where the ¢; are arithmetic terms and X is a problem variable. When propaga-
tion has reached a fix-point and no rewrite and constraint simplification rules
are applicable, the space whose state is not failed is said to be stable. For a
stable space with undetermined variables a distribution algorithm computes al-
ternatives for the values of a carefully chosen variable X. The search algorithm
uses these alternatives to create new disjunctive branches in the search tree, i.e.,
new computation spaces for every alternative for the domain of X. The new
computation spaces contain exactly one of the alternatives and are submitted
to recursive exploration again. The entire process is aborted as soon as a solu-
tion is found. For instance, if a variable X is constrained by 0 < X A X < ¢,
three alternatives for X are computed, expressed by the new constraints X = £,
X <5,and X > 5.

4 Worked Example

2MEGA’s proof planner and the integrated constraint solver CoSZE could find
proof plans for many theorems, examples, and exercises from two chapters of the
introductory analysis textbook [2]. The now extended constraint solver allows
for correctly handling proofs plans that involve a case split. A case split produces
alternative contexts of constraints.

A proof that requires a case split is, e.g., the proof of the theorem ContIf-
Deriv. This theorem states that if a function f: R — IR has a derivative f'(a)
at a point a € R, then it is continuous in a. In the following, we briefly describe
those parts of the planning process for ContlfDeriv that are relevant for the
integrated constraint solving. Let’s assume a formalization of the problem that
implies an initial planning state with the assumption
0+ Ver(er >0 — 361 (861 > 0 — (Vau(lon — a] < 61 — ((w1 # a) - (| L2225 _ p1(a)] < 1))

-
and the planning goal®

D+ Ve(e >0—36(6 >0 — (Ve(Jz—al <6 = [f(z) — f(a)] <€)

B Omega User Interface (Proof Plan: LIM- CONTINUOUS-DERY-1) Main Window H=

Fle Edit View Problems Rules Tactics Methods Theories Planner Blackiiox Proverh Misc Help Options

D= & A +|+ 4] & 90 @9

mE

Q
5ol :

KT

‘ e oms0x) @0 Mo O Oo @®o As Ao A1 1w Tt e Dt 10 Omega Mode

Fig. 4. The proof plan of ContIfDeriv.

The proof planner finds a proof plan for ContIfDeriv as depicted in the screen
shot in Fig. 4. During proof planning, the following constraints are passed to the
constraint solver CoSZE:

® In this formalization the definitions of limit and derivative have already been ex-
panded but this is not crucial for the purpose of this paper.

AFE;1 >0 AkFd61 >0
AFD< A(X1#£a)F0O< M
A(X1 #a)F0< M A(X1#£a)F D<M
A (X1 #£a)F|f'(a)] < M A, (X1 #a)FD<e/(4% M)
A (X1 #a)FE1<¢/2xM) A(Xi=a)F X1 =2,
{1 root
A
SN
A, X=a

N

=

Fig. 5. The context tree for ContIfDeriv.

where A consists of the proof assumption (1) and the constraints ¢ > 0 and
D > 0. The problem variables D, X;, and F; correspond to §, 1, and €; in the
formalization of the problem. M and M’ are auxiliary variables introduced by a
planning operator.

The context tree for ContlfDeriv is shown in Fig. 5. Note that the two
branches correspond to the branches of the proof plan that originate from a
case split on (X; = a V X; # a). The shaded nodes correspond to the shaded

plan nodes in Fig. 4.
At the end of the planning process, CoSZE computes the following answer
constraint:

Ei>0A 61 >0A D<é& A
(X1#a—=0<M A D<M A
0< M A |fi(a)| <M A
Ei <e/(2-M) A
D<e/(4-M))) A
(X1 =a— X1 =2)).

The search procedure of CoSZE computes the following witnesses for the
problem variables of ContIfDeriv:
D=min{61,m} ,Xi=z,E =2 (f(a)]+1), M =D,
M = ([f'(a)] +1).
These witnesses satisfy the Eigenvariable conditions forbidden(E,) = {4} and

forbidden(D) = {z}.
5 Conclusion

The main theme of this paper is the integration of constraint solvers into proof
planning and the nonstandard requirements caused by proof planning. Since off-

the-shelf constraint solvers are typically geared towards other applications, we
address generic extensions of a standard constraint solver that may also extend
the potential application areas of constraint solving.

The reasons for the extensions are manifold: the constraint solver’s service
has to be integrated into the proof planner in a logically correct way, the con-
straints are usually not purely numeric, and the control of proof planning, e.g.,
backtracking, has to be matched on the constraint solver’s side.

The programming language Oz is well-suited for the extensions reported in
this paper because it provides concurrent propagation-based constraint inference
encapsulated in computation spaces. The development of first-class propagators
in Oz has been initiated, among others, by our need to combine numeric and
symbolic constraint inference. Additionally, Oz provides the means for building
new constraint systems from scratch that are as efficient as the built-in ones.

Related Work. A few theorem proving systems directly include specially designed
decision procedures for constraint domains, e.g., [4], or a constraint solver [20].
All these systems tightly integrate the constraint solving into theorem proving
rather than integrating an external, stand-alone constraint solver. And, of course,
none of them does proof planning.

Our previous work [11] mainly dealt with interfacing and integrating the spe-
cially designed external constraint solver Lineq into proof planning by designing
(Tell and Ask) operators, interface functions, and instantiation procedures. We
also investigated with the merits/benefits such an integration can have for proof
planning if applied appropriately and correctly [13]. We knew that additional
features of the constraint solver are needed but did not elaborate on this. Now
CoSTE has been developed based on our previous experiences with symbolic
constraint solving and based on the RI-module constraint solver of Mozart.

SoleX [15] is a general scheme for the extension of the constraint language of
an existing constraint solvers preserving soundness and completeness properties.
It combines symbolic and numeric inference in a sequential way. We used the
SoleX approach to handle so-called alien terms in the constraint language of
CoSZE. Constraint handling rules [7] define constraint theories and implement
constraint solvers at the same time.

A context is used in the constraint logic programming language CAL [1]
to handle guarded clauses. Running a CAL program results in a context tree.
Therefore, context tree in CAL are conceptually different to the context trees
presented in this paper.

References

1. A. Aiba and R. Hasegawa. Constraint Logic Programming System - CAL, GDCC
and Their Constraint Solvers. In Proc. of the Conference on Fifth Generation
Computer Systems., pages 113-131. ICOT, 1992.

2. R.G. Bartle and D.R. Sherbert. Introduction to Real Analysis. John Wiley& Sons,
New York, 1982.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. C. Benzmueller, L. Cheikhrouhou, D. Fehrer, A. Fiedler, X. Huang, M. Kerber,

M. Kohlhase, K. Konrad, A. Meier, E. Melis, W. Schaarschmidt, J. Siekmann, and
V. Sorge. OMEGA: Towards a Mathematical Assistant. In W. McCune, editor,
Proc. of CADE-14. Springer, 1997.

. R. S. Boyer and J S. Moore. Integrating Decision Procedures into Heuristic Theo-

rem Provers: A Case Study of Linear Arithmetic. Machine Intelligence (Logic and
the Acquisition of Knowledge), 11, 1988.

A. Bundy. The Use of Explicit Plans to Guide Inductive Proofs. In E. Lusk and
R. Overbeek, editors, Proc. CADE-9, LNCS 310, Argonne, 1988. Springer.

H.-J. Biirckert. A Resolution Principle for Constrained Logics. Artificial Intelli-
gence, 66(2), 1994.

T. Frithwirth. Constraint Handling Rules. In A. Podelski, editor, Constraint Pro-
gramming: Basics and Trends, LNCS 910. Springer, 1995.

J. Jaffar and J-L. Lassez. Constraint Logic Programming. In Proc. 14th ACM
Symposium on Principles of Programming Languages, 1987.

A. K. Mackworth. Consistency in Networks of Relations. Artificial Intelligence,
8:99-118, 1977.

E. Melis. AI-Techniques in Proof Planning. In European Conference on Artificial
Intelligence. Kluwer Academic, 1998.

E. Melis. Combining Proof Planning with Constraint Solving. In
Proceedings of Calculemus and Types’98, 1998. Electronic Proceedings
http://www.win.tue.nl/math/dw/pp/calc/proceedings.html.

E. Melis and J.H. Siekmann. Knowledge-based Proof Planning. Artificial Intelli-
gence, 115(1):65-105, 1999.

E. Melis and V. Sorge. Employing External Reasoners in Proof Planning. In
A. Armando and T. Jebelean, editors, Calculemus’99, 1999.

S. Mittal and B. Falkenhainer. Dynamic Constraint Satisfaction Problems. In
Proceedings of the 10th National Conference on Artificial Intelligence, AAAI-90,
pages 25—32, Boston, MA, 1990.

E. Monfroy and Ch. Ringeissen. SoleX: a Domain-Independent Scheme for Con-
straint Solver Extension. In J. Calmet and J. Plaza, editors, Artificial Intelligence
and Symbolic Computation AISC’98, LNAI 1476. Springer, 1998.

The Mozart Consortium. The Mozart Programming System. http://www.mozart-
oz.org/.

D. Prawitz. Natural Deduction - A Proof Theoretical Study. Almquist and Wiksell,
Stockholm, 1965.

G. Smolka. The Oz programming model. In Jan van Leeuwen, editor, Current
Trends in Computer Science. Springer, 1995.

M.K. Stickel. Automated Deduction by Theory Resolution. In Proc. of the 9th
International Joint Conference on Artificial Intelligence, 1985.

F. Stolzenburg. Membership Constraints and Complexity in Logic Programming
with Sets. In F. Baader and U. Schulz, editors, Frontiers in Combining Systems.
Kluwer Academic, 1996.

