
Extensions of Constraint Solving
for Proof Planning

Erica Melis1 Jürgen Zimmer1 Tobias Müller2

Abstract. The integration of constraint solvers into proof
planning has pushed the problem solving horizon. Proof plan-
ning benefits from the general functionalities of a constraint
solver such as consistency check, constraint inference, as well
as the search for instantiations. However, off-the-shelf con-
straint solvers need to be extended in order to be be integrated
appropriately: In particular, for correctness, the context of
constraints and Eigenvariable-conditions have to be taken into
account. Moreover, symbolic and numeric constraint inference
are combined. This paper discusses the extensions to con-
straint solving for proof planning, namely the combination
of symbolic and numeric inference, first-class constraints, and
context trees. We also describe the implementation of these
extensions in the constraint solver CoSIE .

Keywords: theorem proving, constraint solving.

1 INTRODUCTION

The construction of many mathematical proofs requires a
combination of purely logical inference steps with specialized
reasoning such as computing integrals, solving inequalities,
and constructing mathematical objects with specific proper-
ties.

In particular, difficulties with purely logical proofs can be
caused by the need to construct mathematical objects (wit-
nesses) with theory-specific properties.

In fact, the situation in mathematical proof construction is
contrary to the original aim of logic-oriented automated theo-
rem proving: while logic-based automated theorem provers try
to construct proofs solely by derivation of rules from a specific
calculus without incorporating already known facts, mathe-
maticians try to draw as much as possible on facts that have
already been derived for a particular mathematical domain.
This insight gave rise to the investigation of theory reason-
ing (as for instance, of theory resolution [18] and constrained
resolution [3]) and to knowledge-based proof planning [9].

In knowledge-based proof planning external reasoners can
be integrated. In particular, a domain-specific constraint
solver can help to construct mathematical objects that are
elements of a specific domain. As long as these mathematical
objects are still unknown in the problem solving process, they
are represented by place holders called problem variables.

1 Universität des Saarlandes, Fachbereich Informatik, D-66041
Saarbrücken, Germany

2 Programming Systems Lab, Postfach 15 11 50, Universität des
Saarlandes, D-66041 Saarbrücken, Germany

Proceedings of the 14th European Conference on Artificial Intel-
ligence, pages 229–233, Berlin, August 2000. IOS Press.

The tasks of a constraint solver in proof planning are the
collection and propagation of constraints as long as they are
consistent, the detection of inconsistencies for the restriction
of the search space, the computation of an answer constraint

formula that expresses the collected constraints, and finally
the delivery of witnesses for the problem variables.

As a fundamental extension of our description in [8] this
paper presents the reasons and the realization of the exten-
sions of off-the-shelf constraint solvers that are necessary for
its use in proof planning. We shall explain these extensions
in general terms and with respect to their implementation in
the concurrent constraint language Oz [17].

In what follows, ∆, Φ, and Ψ denote sets of formulas. We
use standard Prolog notation to name variables (in capital
letters) and constants (in lower case letters).

2 CONSTRAINT SOLVING

Constraint solvers are systems that use very efficient (theory-
specific) data structures and algorithms to perform consis-
tency and entailment checks. Many off-the-shelf constraint
solvers are designed to tackle combinatorial problems in which
all problem variables are introduced at the beginning and the
solver submits the problem to a monolithic search engine that
tries to find a solution without any interference from outside.

An established model for (propagation-based) constraint
solving [17] involves numeric constraint inference over a con-

straint store holding so-called basic constraints over a domain
as, for example, the domain of real numbers. A basic con-
straint is of the form X = v (X is bound to a value v of the
domain), X = Y (X is equated to another variable Y), or
X ∈ B (X takes its value in B, where B is an approximation
of a value of the respective domain). Attached to the con-
straint store are non-basic constraints. Non-basic constraints,
as for example X + Y = Z over integers or real numbers, are
more expressive than basic constraints and, hence, require
more computational effort. A non-basic constraint is realized
by a computational agent, a propagator, observing the basic
constraints of its parameters which are variables in the con-
straint store (in the example X, Y, and Z). The purpose of a
propagator is to infer new basic constraints for its parameters
and add them to the store. That happens until no further
basic constraints can be inferred and written to the store,
i.e. until a fix-point is reached. Inference can be resumed by
adding new constraints either basic or non-basic. A propaga-
tor is terminated if it is either inconsistent with the constraint
store or explicitly represented by the basic constraints in the
store, i.e. entailed by the store.

The common functionalities of constraint solvers are con-
sistency check, entailment check, reflection, and search for

instantiations. The (In)consistency check includes the prop-
agation of constraints combined with the actual consistency
algorithm, e.g., with arc-consistency AC3 [7].

3 PROOF PLANNING

As opposed to classical theorem proving that is based on
exhaustive search at the calculus-level, proof planning em-
ploys abstract plan operators, called methods that encapsu-
late (mathematical) proof techniques such as diagonalization
and induction.

The idea underlying proof planning is that of classic AI-
planning [4]. A planning state is a set of sequents that is di-
vided into goals and assumptions. A proof planning problem
is defined by an initial state specified by the proof assump-
tions and the goal g given by the theorem to be proved. The
theorem and proof assumptions are represented by sequents.
3 For instance, for proving the theorem LIM+ which states
that the limit of the sum of two real-valued functions f and g
at a point a ∈ IR is the sum of their limits the initial planning
state consists of the goal

∅ ⊢ lim
x→a

f(x) + g(x) = L1 + L2

and of the proof assumptions

∅ ⊢ lim
x→a

f(x) = L1 and

∅ ⊢ lim
x→a

g(x) = L2.

After the expansion of the definition of lim
x→a

the resulting plan-

ning goal is

∅ ⊢ ∀ǫ(ǫ > 0 → ∃δ(δ > 0 ∧ ∀x((|x − a| < δ ∧ x 6= a) →
|(f(x) + g(x)) − (L1 + L2)| < ǫ).

Planning methods represent inference actions and specify
preconditions of the action and its effects on the planning
state. The planner searches for a solution, i.e. a sequence of
actions that transforms the initial state into a state with no
open goals. Roughly, the planner searches backward for an
instantiated method M whose application proves a goal g and
introduces M into the plan. The subgoals needed for the ap-
plication of M replace g in the planning state. The planner
continues to search for methods applicable to a subgoal and
terminates if no open goals are left or if no further method
can be applied. Since methods are usually more abstract than
the rules of the basic logic calculus, a proof of a theorem is
planned at an abstract level and a plan is an outline of the
proof.

Knowledge-based proof planning [9] extends proof planning
by allowing for domain-specific methods and knowledge-based
means to restrict the search. This includes that some domain-
specific methods can call a domain-specific external reasoning
system. For instance, constraint solvers for specific domains,
e.g., for sets or for linear arithmetic in the real numbers IR,
can be used to decide about a method’s applicability.

3.1 Proof Planning in Ωmega

A knowledge-based proof planner forms the core of the
Ωmega system [6]. Once a proof plan has been found in
Ωmega, it can be refined by expanding it to a calculus-level
proof, that is, a proof in Ωmega’s basic natural deduction

3 A sequent (∆ ⊢ F) consists of a set of formulae ∆ (the hypothe-
ses) and a formula F and means that F is derivable from ∆.

(ND) calculus [5]. This ND-proof can be checked for logical
correctness.

In Ωmega the methods have a frame-like representation. An
example is the TellCS method which plays an important role
in the integration of constraint solving into proof planning:

method: TellCS(CS)

premises

conclusions ⊖ L2

appl.cond

is-constraint(c,CS) AND
var-in(c) AND
tell(L2, CS)

proof schema L2. ∆, C ⊢ c (solveCS;L1)

TellCS has the constraint solver CS as a parameter. The
application of TellCS works on a goal c that is a constraints.
When the conclusion of TellCS is matched with the current
planning state, c is bound to this goal. This is indicated by
the ⊖-annotation of the conclusion L2 which indicates that
the planning goal is removed from the planning state when
TellCS is applied. The method introduces no new subgoals
since is has no ⊕-premises. An method is applied only if the
application condition, appl-cond, evaluates to true. The ap-
plication condition of TellCS says that the method is applica-
ble, if the following conditions are fulfilled. Firstly, the open
goal that is matched with the c in line L2 of TellCS has to
be a constraint, i.e. a formula of the constraint language of
the constraint solver that instantiates CS. Secondly, the goal
should contain at least one problem variable whose value is
restricted by c. Last but not least, the constraint goal must
be consistent with the constraints accumulated by CS so far.
The latter is checked by tell(L2,CS). The constraint solver
is accessed via the tell function which evaluates to true if CS
does not find an inconsistency of the instantiated c with the
constraints accumulated so far.

The proof schema of TellCS is introduced into the partial
proof plan when TellCS is expanded. Further expansion con-
structs a logical derivation of the constraint c.

In order to restrict the search space, in proof planning the
instantiation of existentially quantified variables by a term t is
delayed as long as possible. A problem variable is introduced
as a place holder instead and a constraint solver incrementally
restricts the admissible values of t.

4 NEW REQUIREMENTS

For a safe and appropriate integration of constraint solving
into proof planning several requirements have to be satisfied.
We shall describe below the extensions that are caused by the
following peculiarities in proof planning:

Synchronization with proof planning When back-
tracking takes place in proof planning, constraints might have
to be withdrawn from the collection of constraints, i.e. the set
of constraints is reduced again. Therefore, a synchronization
between the proof planner and constraint solver is needed.

Since in the planning process not every variable occurs in
the sequents of the initial state, the set of problem variables
may be growing. In particular, proof planning methods may
introduce new auxiliary variables that are not contained in
the original problem. Typically, the set of constraints is incre-
mentally growing and reaches a stable state at the end of the

planning process only. Therefore, dynamic constraint solving
[12] is needed.

Logical correctness Several proof planning methods re-
move quantifiers from goals or assumptions. When these
methods are (recursively) expanded to the ND-level, the then
introduced ND-rules ∀I and ∃E 4 must obey the Eigenvari-
able condition of the ND-calculus in order be a correct proof
steps. This condition requires that the new (Eigen)variable
introduced by the rule occurs neither in any of the hypothe-
ses of the sequent nor in the formula itself. Since proof plan-
ning uses place holders for terms that are not yet known, the
Eigenvariable condition has to be extended to the occurrence
in the eventual instantiations of the problem variables. Conse-
quently, the search has to take into account the Eigenvariable
constraints.

Moreover, logical correctness requires to take into consid-
eration the hypotheses H of a constraint. In proof planning
a constraint occurs in a sequent (∆ ⊢ c) that consists of a
set ∆ of hypotheses and a constraint formula c. The hypothe-
ses provide the context of a constraint and must be taken into
account in the accumulation of constraints. We refer to a con-
straint together with its context as a constraint sequent. An
important peculiarity of proof planning is the fact that cer-
tain problem variables might occur in different contexts. For
instance, the contexts ∆ ∪ {X = a} and ∆ ∪ {X 6= a} result

from introducing a case split on (X = a
.
∨ X 6= a) into a

proof plan, where ∆ is the set of hypotheses in the preceding
plan step. When a new constraint sequent ∆ ∪ {X = a} ⊢ c
is processed, the consistency of c has to be checked with re-
spect to all constraints with a context Φ which is a subset of
∆ ∪ {X = a}.

Symbolic rewriting Proof planning has to process con-
straints such as E1 ≤ ǫ/(2.0 · M). Their terms may contain
names of elements of a certain domain (e.g., 2.0) as well as
variables (e.g., M and E1), and symbolic constants (e.g., ǫ).
This means, as opposed to systems that handle purely “nu-
meric” constraints, the constraint representation and infer-
ence needs to include numeric and non-numeric (“symbolic”)
terms to be appropriate for proof planning. In the following,
“numeric” indicates that an element of a particular domain
is involved in a term, inference, or value even if the elements
of the domain are not numbers.

For the constraint representation this means, e.g., that a
unique lower or upper bound for a problem variable cannot
always be determined, e.g., the problem variable D in a plan
for LIM+ has the upper bounds δ1 and δ2 which cannot be
replaced by a unique bound unless the function min is em-
ployed. The search algorithm has to be extended to find sym-
bolic witnesses too.

5 CONSTRAINT SOLVING FOR PROOF
PLANNING

No off-the-shelf constraint solver satisfies all of the above men-
tioned requirements and therefore we had to develop an ex-
tended constraint solver that can be safely integrated into
proof planning.

4 these are the rules ∀I
∆⊢F [a/x]
∆⊢∀x.F

and ∃E
∆⊢∃x.F ∆,F [a/x]⊢G

∆⊢G
,

where a must not occur in any formula in ∆ ∪ {F, G}.

5.1 Extensions of Constraint Solving

Constraint Inference The extended solver needs to in-
tegrate both, numeric and symbolic inference mechanisms.
One algorithm efficiently tests a set of constraints for incon-
sistencies by inspecting and handling the numeric bounds of
variables. We refer to this algorithm as numeric inference. A
second algorithm, for symbolic inference, uses term rewrite
rules to simplify the symbolic representation of constraints
and constraint simplification rules to transform a set of con-
straints into a satisfiability equivalent which is in a normal

form.
For the combination of numeric and symbolic inference

techniques the constraint representation of a purely numeric
constraint solver has to be extended because otherwise unique
bounds of problem variables cannot be determined in some
cases.

Context Trees Context trees consist of nodes, the context

nodes. Each such node NΦ consists of a set Φ of hypotheses
(the context) and a set SΦ = {c | ∆ ⊢ c is constraint and ∆ ⊆
Φ}. A context tree is a conjunctive tree representing the con-
junction of all constraints stored in the nodes. Figure 1 shows

,θ,

Θ

∆ ∆

∆∆

∆

ζ ,ϕ, ζ

, θ ,ϕ

{ }

Figure 1. A Context Tree with node annotations

the structure of such a context tree. The root node is anno-
tated with the empty context { }. A directed edge from a
node N∆ to a child N ′

Φ implies ∆ ⊂ Φ. A subtree TΦ of a
context tree consists of all nodes with a context Ψ for which
Φ ⊆ Ψ holds.

The consistency of a new constraint (∆ ⊢ c) has to be
checked wrt. the constraint sets SΦ with ∆ ⊂ Φ. The con-
straint solver checks consistency with the sets SΦ in the leaf
nodes only because the sets of constraints grow from the root
node to the leaves. In other words ∆ ⊂ Φ implies S∆ ⊂ SΦ.
If an inconsistency occurs in at least one leaf, the constraint
(∆ ⊢ c) is not accepted by the constraint solver. Otherwise, c
is added to all sets SΦ in the subtree T∆.

When a constraint (∆ ⊢ c) has to be withdrawn because of
backtracking in proof planning, c is removed from all nodes in
the subtree T∆. Empty context nodes are removed from the
tree.

Search for Witnesses The constraint solver searches for
a solution, i.e. witnesses for the problem variables that satisfy
all constraints. Since the context tree is a conjunctive tree wit-
nesses of the problem variables have to satisfy all constraints
in the context tree if the respective context is satisfied. The
search for witnesses of shared variables, i.e. those which occur
in different contexts has to take into account all constraints
of these variables. Therefore, the constraint solver creates a
single search space with all constraints from the leaf nodes,
i.e. the set S =

⋃
i
SΦi

, at the beginning of the search process
The search algorithm uses numeric inference and symbolic

inference to transform the constraints into a normal form, to
detect inconsistencies as early as possible, and to compute an

interval constraint max(L) ≤ X ≤ min(U) for every problem
variable X. Here, L(U) is a list whose first element is the nu-
meric lower(upper) bound l(u) and the rest of L(U) consists
of the symbolic lower(upper) bounds. An element is dropped
from a bound list as soon as it is found to be not maximal
(minimal). Eventually, the maximal lower bound max(L) and
the minimal upper bound min(U) are used to compute a wit-
ness for X. The search algorithm must not compute witnesses
which contain Eigenvariables of the respective problem vari-
able.

5.2 Implementation

The constraint solver CoSIE (Constraint Solver for Inequa-
lities and Equations over the field of real numbers) is imple-
mented in the concurrent constraint programming language
Mozart Oz [14]. CoSIE ’s constraint language consists of non-
linear arithmetic (in)equality constraints over the real num-
bers, i.e. constraints with one of the relations <,≤,=,≥, and
>. Terms in formulas of this language are built from real
numbers, symbolic constants and variables, and the function
symbols +,−,·, and /. Terms may also contain ground terms

which contain uninterpreted (alien) function symbols. For in-
stance, |f ′(a)| is a ground term containing the two uninter-
preted function symbols |.| and f ′. CoSIE handles these alien

terms by variable abstraction similar to [13]. Alien terms are
temporarily replaced by constraint variables whose value can-
not be restricted.

CoSIE builds a context tree whose nodes are computation

spaces [16] annotated with contexts. A computation space is
an abstract data type in Mozart Oz that encapsulates data,
e.g., constraints and any kind of computation including con-
straint inference. After constraint inference has reached a fix-
point, a computation space may have various states: the space
is failed (i.e. the constraints are inconsistent), all propagators
vanished since they are represented by the basic constraints
in the constraint store, or the space contains disjunctions, i.e.
constraint inference will proceed in different directions.

When a new constraint (∆ ⊢ c) is sent to the solver by
TellCS, it has to be added to certain computation spaces in
the context tree. Therefore, a new computation space sc con-
taining c only is created and merged with all computation
spaces in the leaf nodes of the subtree T∆. In each of these
computation spaces, the symbolic inference procedure tries to
simplify constraints and to detect non-trivial inconsistencies.
Propagation, i.e. numeric inference, is triggered by the sym-
bolic inference procedure as described in the next paragraph.
When a fix-point is reached in numeric and symbolic infer-
ence, the resulting computation space is asked for its state.
If no inconsistency is detected c is inserted into every com-
putation space of the subtree T∆ by merging with the space
sc.

Symbolic and Numeric Constraint Inference In
CoSIE, numeric inference is based on real-interval constraints
supported by the RI-module with Mozart. Variables (for short
RI-variables) are constrained with intervals of real numbers.
As an extension, now the RI-module provides first-class prop-
agators [15] for all relations and functions from CoSIE’s con-
straint language. A first-class propagator is an abstract data
type. Because of being first-class such a propagator can be
inspected and discarded, e.g., by the symbolic inference pro-
cedure, and at the same time work on the constraint store in
the usual way.

{1<=X, X<Y, X+Y=Z}

X
Z

[1.1; inf]

[2.1; inf]

Y

<

[1 ; inf]

+

numeric inference

symbolic inference

constraint store

first-class propagators

Figure 2. Combining symbolic and numeric inference

The concurrent combination of symbolic and numeric infer-
ence is based on a shared representation of constraints and by
the first-class propagators. Every variable and every symbolic
constant occurring in a constraint processed by CoSIE is con-
nected to a corresponding RI-variable. The relation and each
non-alien function of a constraint is connected to its first-class
propagator in the RI-module.

Figure 2 illustrates the combination of symbolic and nu-
meric inference. It shows CoSIE’s connections of the con-
straint 1 ≤ X ∧ X < Y ∧ X + Y = Z to the first-class
propagators and the RI-variables for X, Y , and Z.

The symbolic inference procedure applies (conditional)
term rewrite rules and constraint simplification rules from
the theory of real numbers to (symbolic) constraints in or-
der to transform these constraints into an equivalent normal
form. Since the symbolic inference changes the term structure
of constraints, it directly influences the corresponding first-
class propagators. It starts or terminates first-class propaga-
tors connected to the relations and non-alien functions of the
terms changed by the application of rewrite and constraint
simplification rules. One of the rewrite rules used by CoSIE
is the following:

(t1 · t2)/(t1 · t3) [t1 > 0] ⇒ t2/t3 (1)

When the symbolic inference procedure receives, for instance,
the constraint a > 0 ∧ E ≤ (a · ǫ)/(a · M), it creates new
RI-variables for E, M , ǫ, and a (in case they do not exist yet)
and computes new first-class propagators for the relation ≤
and for all occurrences of the functions / and ·. The rule (1)
is applied, to the term (a · ǫ)/(a ·M), which is transformed to
the normal form ǫ/M . Thus, the first-class propagators for ·
in (a · ǫ) and (a · M) are terminated.

Search The search procedure starts with an initial com-
putation space S and checks recursively for S and every new
computation space whether it is failed or contains a solution.
In each computation space, propagation restricts the domains
of the variables. Additionally, the symbolic inference applies
term rewrite rules and constraint simplification rules. One of
the simplification rules is

(X ≤ t1) ∧ (X ≤ t2) ⇒ X ≤ min{t1, t2},

where the ti are arithmetic terms and X is a problem variable.

6 RESULTS

Ωmega’s proof planner together with the integrated con-
straint solver CoSIE can find proof plans for many theorems,

examples, and exercises from two chapters of the introductory
analysis textbook [2]. The extended constraint solver allows
for a correct proof planning including planning proofs with a
case split.
Example A proof that requires a case split is, e.g., the

proof of the theorem ContIfDeriv. This theorem states that
if a function f : IR → IR has a derivative f ′(a) at a point
a ∈ IR, then it is continuous in a. Its formalization includes
the assumption

∅ ⊢ ∀ǫ1(ǫ1 > 0 → ∃δ1(δ1 > 0 → (∀x1(|x1 − a| < δ1 → ((x1 6= a) →

(|
f(x1)−f(a)

x1−a
− f ′(a)| < ǫ1))))))

and the planning goal5

∅ ⊢ ∀ǫ(ǫ > 0 → ∃δ(δ > 0 → (∀x(|x − a| < δ → |f(x) − f(a)| < ǫ))))

The proof planner passes the following constraint sequents
to CoSIE:

∆ ⊢ 0 < E1 ∆ ⊢ 0 < δ1
∆ ⊢ D ≤ δ1 ∆, (X1 6= a) ⊢ 0 < M

∆, (X1 6= a) ⊢ 0 < M ′ ∆, (X1 6= a) ⊢ D ≤ M
∆, (X1 6= a) ⊢ |f ′(a)| ≤ M ′ ∆, (X1 6= a) ⊢ D ≤ ǫ/(4 · M ′)
∆, (X1 6= a) ⊢ E1 ≤ ǫ/(2 · M) ∆, (X1 = a) ⊢ X1 = x,

where ∆ consists of the proof assumption and the constraints
0 < ǫ and 0 < D. The problem variables D, X1, and E1

correspond to δ, x1, and ǫ1 in the formalization of the problem.
M and M ′ are auxiliary variables introduced by a planning
method for complex estimations. The two branches of the
context tree correspond to the branches of the proof plan that
originate from a case split on (X1 = a

.
∨ X1 6= a).

At the end of the planning process, CoSIE computes the
following answer constraint:

0 < E1 ∧ 0 < δ1 ∧ D ≤ δ1 ∧

(X1 6= a → 0 < M ∧ D ≤ M ∧

0 < M ′ ∧ |f ′(a)| ≤ M ′ ∧

E1 ≤ ǫ/(2 · M) ∧

D ≤ ǫ/(4 · M ′))) ∧

(X1 = a → X1 = x)).

The search procedure of CoSIE computes the following wit-
nesses for the problem variables of ContIfDeriv:

X1 = x, M ′ = (|f ′(a)| + 1), D = min{δ1,
ǫ

4·M′ }, M = D,
E1 = ǫ

2·M
.

These witnesses satisfy the Eigenvariable conditions.

7 CONCLUSION AND RELATED
WORK

The integration of constraint solving into proof planning
causes new requirements for constraint solving that are not
typically fulfilled by standard constraint solvers. Therefore,
we have addressed generic extensions of a standard constraint
solver. The programming language Mozart Oz is well-suited
for these extensions.
Related Work SoleX [13] provides means for combining

numerical and symbolic inference in a sequential manner. It
supports the extension of the constraint language of an exist-
ing constraint solver whose soundness and completeness prop-
erties are preserved. We have adopted the SoleX approach to
handle alien terms in the constraint language of CoSIE. Few
systems systems, for instance [19], tightly integrate constraint
solving into theorem proving rather than integrating an ex-
ternal, stand-alone constraint solver. And, of course, none of
them does proof planning.

5 In this formalization the definitions of limit and derivative have
already been expanded.

Recently the ELF-group started to integrate constraint ma-
nipulation into logical frameworks based on the results in [20]

The constraint logic programming language CAL [1] uses
constraint contexts to handle guarded clauses.

Our previous work [11] mainly dealt with the interface and
the actual integration of a constraint solver into proof plan-
ning. We also investigated the simplification and guidance
such an integration can provide for proof planning [10]. We
knew that additional features of the constraint solver would
have to guarantee, e.g., the correctness of the expansion but
did not elaborate on this nor implemented any extensions pre-
viously. A more detailed description of the work presented in
this paper can be found in [21].

REFERENCES

[1] A. Aiba and R. Hasegawa, ‘Constraint Logic Programming
Systems - CAL, GDCC and Their Constraint Solvers.’, in
Proc. of the Conference on 5th Generation Computer Sys-
tems., pp. 113–131. ICOT, (1992).

[2] R.G. Bartle and D.R. Sherbert, Introduction to Real Analysis,
John Wiley& Sons, New York, 1982.

[3] H.-J. Bürckert, ‘A resolution principle for constrained logics’,
Artificial Intelligence, 66(2), (1994).

[4] R.R. Fikes and N.J. Nilsson, ‘Strips: A new approach to the
application of theorem proving to problem solving’, Logic and
Computer Science, 2, 189–208, (1971).

[5] G. Gentzen, ‘Untersuchungen über das Logische Schließen I
und II’, Mathematische Zeitschrift, 39, (1935).

[6] The Ωmega Group, ‘OMEGA: Towards a Mathematical As-
sistant’, in Proc. of CADE-14, ed., W. McCune. Springer,
(1997).

[7] A. K. Mackworth, ‘Consistency in Networks of Relations’,
Artificial Intelligence, 8, 99–118, (1977).

[8] E. Melis, ‘AI-techniques in proof planning’, in European Con-
ference on Artificial Intelligence, pp. 494–498, (1998).

[9] E. Melis and J.H. Siekmann, ‘Knowledge-based proof plan-
ning’, Artificial Intelligence, 115(1), 65–105, (1999).

[10] E. Melis and V. Sorge, ‘Employing external reasoners in proof
planning’, in Calculemus’99, eds., A. Armando and T. Jebe-
lean, (1999).

[11] E. Melis, J. Zimmer, and T. Müller, ‘Integrating constraint
solving into proof planning’, in Frontiers of Combining Sys-
tems, 3rd International Workshop, FroCoS’2000, ed., Ch.
Ringeissen, LNAI 1794, pp. 32–46. Springer, (2000).

[12] S. Mittal and B. Falkenhainer, ‘Dynamic Constraint Satisfac-
tion Problems’, in Proc. of the 10th National Conference on
Artificial Intelligence, AAAI-90, (1990).

[13] E. Monfroy and Ch. Ringeissen, ‘SoleX: a domain-
independent scheme for constraint solver extension’, in
AISC’98, eds., J. Calmet and J. Plaza, LNAI 1476. Springer,
(1998).

[14] The Mozart Consortium, The Mozart Programming System.
http://www.mozart-oz.org/.

[15] T. Müller, ‘Promoting constraints to first-class status’, in
Proc. of the 1st International Conference on Computational
Logic, London, (2000). to appear.

[16] C. Schulte, ‘Programming constraint inference engines’, in
Proc. of the 3rd International Conference on Principles and
Practice of Constraint Programming, ed., G. Smolka, LNCS
1330. Springer, (1997).

[17] G. Smolka, ‘The Oz programming model’, in Current Trends
in Computer Science, ed., Jan van Leeuwen, Springer, (1995).

[18] M.K. Stickel, ‘Automated deduction by theory resolution’, in
Proc. of the 9th International Joint Conference on Artificial
Intelligence, (1985).

[19] F. Stolzenburg, ‘Membership constraints and complexity
in logic programming with sets’, in Frontiers of Combin-
ing Systems, 1st International Workshop, FroCoS’96, eds.,
F. Baader and U. Schulz, (1996).

[20] R. Virga, ‘Higher-order superposition for dependent types’, in
Proc. of the 7th Conference on Rewriting Techniques and Ap-
plications, ed., H. Ganzinger, LNCS 1103, New Jersey, (1996).
Springer.

[21] J. Zimmer, Constraintlösen für Beweisplanung, Master’s the-
sis, Fachbereich Informatik, Universität des Saarlandes, May
2000. In German.

