
Dynamic Programming based RNA

Pseudoknot Alignment

Mathias Möhl

Saarbrücken 2009

Dissertation zur Erlangung des Grades

des Doktors der Ingenieurwissenschaften

der Naturwissenschaftlich-Technischen Fakultät

der Universität des Saarlandes

Berichterstatter:
Prof. Dr. Gert Smolka
Prof. Dr. Rolf Backofen
Prof. Dr. Hans-Peter Lenhof

Dekan:
Professor Dr. Joachim Weickert

Prüfungsausschuss:
Prof. Dr. Raimund Seidel
Prof. Dr. Gert Smolka
Prof. Dr. Rolf Backofen
Prof. Dr. Hans-Peter Lenhof
Dr. Eyad Alkassar

Tag des Kolloquiums:
11. Februar 2010

Abstract

Pseudoknots are certain structural motifs of RNA molecules. In this thesis we con-
sider the problem of RNA pseudoknot alignment. Most current approaches either
discard pseudoknots in order to be efficient or rely on heuristics generating only ap-
proximate solutions. This work focuses on dynamic programming based alignment
methods and proposes two new approaches for an exact solution of the alignment
problem in the presence of pseudoknot structures. The first approach is able to
handle arbitrary pseudoknots, however, does not guarantee a polynomial runtime
for all instances, due to the NP-hardness of the problem. Nevertheless, an analysis
in terms of parameterized complexity shows that the algorithm is fixed parameter
tractable for a parameter that is small in practice. The second approach is a general
scheme for the alignment of restricted classes of pseudoknots in polynomial time.
It is motivated by existing RNA pseudoknot prediction algorithms. We show how
to embed seven of those algorithms in a common scheme and present an analogous
scheme for the alignment problem, which yields for each of the structure prediction
algorithms a corresponding alignment algorithm. The alignment algorithms handle
the same class of pseudoknots as the corresponding prediction algorithms and the
time and space complexity is only increased by a linear factor, compared to the re-
spective prediction algorithm. Both approaches have been implemented to evaluate
their applicability in practice.

iii

Zusammenfassung

In dieser Dissertation beschäftige ich mich mit dem Alignment von bestimmten RNA
Strukturen, die als Pseudoknoten bezeichnet werden. Da dieses Problem NP-hart
ist, berücksichtigen die meisten bisher verfügbaren Alignmentverfahren um effizient
zu sein entweder keine Pseudoknoten oder berechnen nur approximierte Lösungen
mit Hilfe von Heuristiken. In der vorliegenden Arbeit beschreibe ich zwei neue Ver-
fahren, die mit Hilfe von dynamischer Programmierung eine exakte Lösung für das
Alignmentproblem von Pseudoknotenstrukturen berechnen. Das erste Verfahren
kann beliebige Pseudoknoten alignieren und hat, da es sich hierbei um ein NP-
hartes Problem handelt, im allgemeinen keine polynomiell beschränkte Laufzeit.
Eine parametrische Komplexitätsanalyse zeigt allerdings, dass der Algorithmus pa-
rametrisierbar (fixed parameter tractable) in Bezug auf einen in der Praxis kleinen
Parameter ist. Das zweite Verfahren ermöglicht es, unterschiedliche eingeschränkte
Klassen von Pseudoknoten in polynomieller Zeit zu alignieren. In einem ersten
Schritt zeige ich hierzu, wie man existierende Vorhersagealgorithmen für sieben
solcher Klassen in ein gemeinsames Schema einbetten kann. Dann entwickele ich ein
analoges Schema für das Alignment von Pseudoknoten, das zu jedem der Vorher-
sagealgorithmen einen entsprechenden Alignmentalgorithmus mit nur linear erhöhter
Speicher- und Zeitkomplexität liefert. Beide Verfahren wurden auch implementiert
um die Praxistauglichkeit zu evaluieren.

v

Acknowledgments

First of all, I want to thank Gert Smolka and Rolf Backofen for the supervision
of my thesis. Gert granted me the freedom to focus my research on the topics I
am interested in and to work with the people and at places where I could be most
productive. In particular he initiated the collaboration with Rolf’s Bioinformatics
Group in Freiburg and made it possible for me to spend much time there. Rolf ad-
vised me with his expert knowledge in all kinds of questions, ranging from technical
details to the general focus of the work. His enthusiasm for the topic was a constant
source of motivation for me. I am also grateful to Hans-Peter Lenhof for reviewing
the thesis.
Additionally, I would like to take the opportunity to thank my current and for-

mer colleagues both at the Programming Systems Lab in Saarbrücken and at the
Bioinformatics Chair in Freiburg for the pleasant atmosphere, fruitful discussions,
and their support. In Saarbrücken these are Gert, Chad Brown, Ralph Debus-
mann, Mark Kaminski, Marco Kuhlmann, Sandra Neumann, Andreas Rossberg,
Jan Schwinghammer, Guido Tack, and Ann van de Veire. In Freiburg, in particular
I want to mention Sebastian Will who gave essential inspirations leading to ma-
jor contributions of this thesis. The countless discussions with him and Rolf where
always exciting, productive, and moreover very enjoyable. For me, this way of brain-
storming, sharing, and refining ideas is the core of what defines scientific work and
it is priceless to find people that are on the same wavelength so that results emerge
that go far beyond what I could have achieved alone. I in particular enjoyed the
friendly atmosphere among the lab members in Freiburg which are, besides Rolf and
Sebastian, Anke Busch, Monika Degen-Hellmuth, Steffen Heyne, Oliver Krieg, Sita
Lange, Daniel Maticzka, Andreas Richter, Stefan Jankowski, Kousik Kundu, Martin
Mann, and Rileen Sinha. I was surprised by the number of spontaneous coffee and
cake breaks and even more by the fact that they are increasing instead of hindering
the productivity of the team.
I am also grateful to Markus Bauer, Gunnar Klau and Knut Reinert, who provided

me a tailored version of their lara program such that I could compare it to the
approaches developed in this thesis.
During the work on this thesis I was funded by the German Research Foundation

(DFG) as a member of the graduate studies programme “Quality Guarantees for
Computer Systems”. I am grateful for the funding which also included a travel grant
that allowed me to visit conferences and to travel frequently between Saarbrücken
and Freiburg.
Finally, I am grateful to my family, in particular to my parents. Their endless

support ranged from encouraging me to start the thesis to proofreading it.

vii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Overview . 3
1.3 Contributions . 3
1.4 Published Results . 4

2 Background 5
2.1 Biological Background . 5

2.1.1 RNA and its Function in the Cell 5
2.1.2 Chemical Constitution of the RNA Molecule 6
2.1.3 RNA Alignment and Comparative Methods 9

2.2 Formal Preliminaries . 11
2.2.1 Formal Abstraction of RNA Structures 11
2.2.2 Alignment and Scoring Schemes 12

3 A General Approach to Dynamic Programming on RNA struc-
tures 15
3.1 A recursive view on RNA structures 15

3.1.1 Nested RNA Structures as Trees 15
3.1.2 Pseudoknot Structures as Parse Trees 16

3.2 Classification of Pseudoknot Prediction Algorithms 19
3.2.1 The Recursive Structure of RNA Structure Prediction Algo-

rithms . 20
3.2.2 The Relation between Parse Trees, Classes of Pseudoknots and

Algorithmic Complexity . 21
3.2.3 Instances of the Scheme . 25

3.3 A General Framework for DP based Alignment of RNA Structures . 30
3.3.1 From Single Sequences to Sequence Pairs 30
3.3.2 The Basement for Recursive Computation of Alignments . . . 32

4 Fixed Parameter Tractable Alignment of Arbitrary Pseudoknots 35
4.1 Hardness Results for the Alignment of Pseudoknots 35

4.1.1 NP-Hardness Results . 35
4.1.2 There is still Hope: Parameterized Complexity 37

4.2 Relevant Subproblems that are Solvable in Polynomial Time 38
4.2.1 Alignment of Plain Sequences 39
4.2.2 Nested Sequence Structure Alignment 40

ix

Contents

4.3 From Nested Sequences to Arbitrary Pseudoknots 44
4.3.1 A Basic Pseudoknot Algorithm 44
4.3.2 Combining Basic Pseudoknot and Nested Alignment 48
4.3.3 The Final Algorithm with Stem Optimization 55

5 Polynomial Alignment of Restricted Classes of Pseudoknots 65
5.1 Why Restrictions are both Necessary and Acceptable 65
5.2 The General Algorithm Scheme . 69

5.2.1 The Variant for Basic Types 69
5.2.2 An Optimized Variant for Constrained Types 72

5.3 Tailored Instances of the Scheme for all Structure Prediction Algo-
rithms . 77

5.4 Possible Extensions of the Scheme 80
5.4.1 A Scanning Variant . 80
5.4.2 A Variant for Combined Alignment and Structure Prediction 80
5.4.3 A Partition Function Variant 81

6 Practical Applications 83
6.1 Implementations . 83

6.1.1 FPTalign . 83
6.1.2 PKalign . 83
6.1.3 Comparison of both Approaches 84
6.1.4 Further Evaluation of FPTalign 86
6.1.5 Comparison to Heuristic Approaches 87

6.2 A Pipeline to Detect Conserved Pseudoknots 89
6.2.1 Detecting Pseudoknots in Ciona intestinalis 90
6.2.2 An Advanced Pipeline for Drosophilids 91

7 Conclusions 93

x

1 Introduction

1.1 Motivation

The central dogma of molecular biology states that the genetic information of all
living organisms is contained in DNA (Deoxyribonucleic acid) that is transcribed
into RNA (Ribonucleic acid) and finally translated into amino acid sequences that
form proteins. First stated by Francis Crick in 1958 [14] and reformulated by him in
a Nature article from 1970 [15], this insight has built the ground for all subsequent
research in molecular biology. The development and large scale application of DNA
sequencing methods, most prominently the Human Genome Project started in 1990,
made huge amounts of the genetic information available. Today, high-throughput
sequencing technologies are commonly applied and relatively cheap, but determining
the genes in the sequenced DNA and determining the function of the protein that
the genes code for is still a much more involved process. While the Human Genome
Project had sequenced the entire human genome in 2001, the ENCODE project
(ENCyclopedia Of DNA Elements) which started in 2003 with the goal to identify
and catalogue the functional elements encoded in the human genome, had covered
only 1% of the human genome by the end of their pilot phase in 2007 [12].
For those tasks often comparative methods are used. They are based on the

observation that functionally relevant sequences are more conserved during evolution
than others. This is due to the fact that a mutation in a functional relevant DNA
might result in a loss of function which is prevented by selection pressure. The basis
of comparative methods is usually a sequence alignment which compares sequences
and helps to identify conserved parts. Comparative methods are also interesting
because a similarity in structure often coincides with a similarity in function.
Besides their use for DNA sequence analysis, comparative methods have regained

much attention in the last years for RNA analysis. This is due to the discovery of
different classes of so called non-protein-coding RNAs, i.e. RNA molecules that do
not act as an intermediate between DNA and proteins, but instead perform their
own distinctive function. In 2002, the Science Magazine hailed these discoveries as
the “Breakthrough of the Year” [13] which dramatically changed the perspective
on RNA molecules: before, they where assumed to be only necessary to transport
the genetic code from the nucleus to the ribosomes where corresponding proteins
are synthesized, now they turned out to be key players of central regulatory and
catalytic functions [33, 34].
The motivation of my work presented in this thesis is the development of new,

improved algorithms for comparative RNA analysis. I focus on the alignment of RNA
structures which is the central step of usual comparative approaches. Compared to

1

1 Introduction

DNA molecules which form a double helix, RNA molecules are able to form complex
secondary structures. In RNA alignment it is desirable to compare the molecules
not just at their sequence level, but also based on this secondary structure. As
mentioned above, comparative methods rely on the fact that evolutionary pressure
preserves functionally relevant parts. Since the function is more related to the RNA’s
secondary structure than to its pure sequence, an alignment at the level of secondary
structure usually yields better results than a pure sequence alignment. The drawback
of aligning secondary structures is that it is a complex and computationally intensive
process. If no structural restrictions are imposed, the problem is NP-hard for the
usual scoring schemes [20, 27]. In order to be feasible, most existing approaches are
therefore restricted to structures that do not contain so called pseudoknots.

However, already in 1985 Pleij et al. [42] reported that they “have shown that
pseudoknots are present in RNA molecules”. Recent progress in RNA research shows
that pseudoknots are not at all a rare event and, furthermore, are often functionally
relevant. Staple and Butcher state in [53] that “among the most prevalent RNA
structures is a motif known as the pseudoknot” and later on that pseudoknots “play a
variety of diverse roles in biology”. Nevertheless, also in experimental RNA research
only little work has been done on pseudoknot structures. This is also due do a lack
of comparative structure prediction methods. The availability of such methods for
pseudoknot free structures has initiated much experimental work on RNA structures,
but for pseudoknot structures almost no comparative methods are available so far. In
my work I hence address the task to align RNA structures that include pseudoknots.

On the theoretical side the main goal is to thoroughly understand the structure
of this problem and in particular where its complexity comes from. This allows to
identify the circumstances under which the problem can still be solved efficiently.
One option that I explore here is to restrict the class of considered pseudoknots in
several ways. I develop alignment algorithms that have a well-balanced trade-off
between their computational complexity and the class of pseudoknots that they are
able to handle. Besides these algorithms for restricted classes, I also investigate the
full problem to align arbitrary pseudoknots. Due to the NP-hardness of this problem
there is little hope that it can be solved efficiently for all pseudoknots. Instead, the
complexity of the algorithm I develop for arbitrary pseudoknots increases in relation
to the structural complexity of the pseudoknots. I formally analyze this relation by
means of parametrized complexity that allows to precisely identify the properties of
pseudoknots that make them either hard or simple to align for the algorithm.

On the practical side, I focus on efficient implementations of the developed algo-
rithms to make them accessible for biologists to support their research. To evaluate
the usability in practice, I set up a pipeline that identifies conserved pseudoknots
in potential non-coding RNAs and apply them to biological data of two different
organismic species.

2

1.2 Overview

1.2 Overview

The remainder of this thesis is structured as follows. In Chapter 2 the relevant back-
ground is given. This includes both an introduction to biological aspects like RNA
structure and pseudoknots as well as a description of the central formal concepts
like alignments and their associated scoring schemes.
Chapter 3 develops a general perspective on dynamic programming (DP) with

RNA structures with a focus on two tasks. First, it is shown how all existing DP
based pseudoknot prediction algorithms can be explained in terms of a general frame-
work. This is in particular important since an analogous framework for pseudoknot
alignment will be developed later in the thesis. Second, the fundamental concepts
that are common among DP based RNA alignment methods are identified. Those
form the core of all alignment methods developed in the remaining chapters of the
thesis.
Chapters 4 and 5 present two different approaches for the pairwise alignment of

pseudoknots. The method presented in Chapter 4 is fixed parameter tractable and
is able to align arbitrary pseudoknots. Despite the NP-hardness of the problem, this
algorithm makes it tractable for many practical instances.
The second alignment method, presented in Chapter 5, is able to align only re-

stricted classes of pseudoknots but with a polynomial time and space guarantee. The
method is not restricted to one class of pseudoknots. Instead, a general scheme is
developed that yields for each of the structure classes predicable by any of the seven
pseudoknot prediction algorithms discussed in Chapter 3, a corresponding align-
ment algorithm. This scheme is obtained by lifting the general scheme for structure
prediction developed in Chapter 3 to the alignment problem.
Finally, in Chapter 6 implementations of both alignment methods are presented

and applied to real biological data. The time and space consumption of the ap-
proaches is measured and the faster approach is integrated into a pipeline that is
able to detect conserved pseudoknots in potential non-coding RNAs. This pipeline
is then applied to biological data of two different organisms.

1.3 Contributions

The main contributions of this thesis are two new methods for the alignment of RNA
pseudoknot structures:

(a) a fixed-parameter tractable algorithm that is able to align arbitrary pseudo-
knot structures, and

(b) a general algorithm scheme that yield for various restricted classes of pseudo-
knots a polynomial alignment algorithm.

The fixed-parameter tractable alignment algorithm is the first exact alignment
algorithm for arbitrary pseudoknots that is actually implemented and whose com-
plexity makes it applicable in practice. In particular, the fixed parameter that

3

1 Introduction

denotes the exponential factor in the complexity analysis, has a size of 1 for most
practical instances.

The generality of the algorithm scheme for restricted pseudoknot classes is visible
in the fact that it yields alignment algorithms for all classes of pseudoknots for which
dynamic programming based structure prediction algorithms exist. For six of these
seven classes, no alignment algorithms have been known so far. For the seventh,
most general class, the new algorithm has a time and space complexity of O(nm6)
and O(nm4), where n and m denote the length of the two aligned sequences. This
is a significant improvement compared to the best previously known approach that
requires O(n5m5) time and O(n4m4) space.

Merely as a side effect, the alignment algorithm scheme also shows how to embed
all previously mentioned pseudoknot prediction algorithms in a common scheme.
In summary, this results in a clear and new understanding of the available dy-
namic programming based methods for both pseudoknot prediction and alignment,
in particular about their differences and similarities. Furthermore, this leads to new
insights about the aspects of the algorithms that determine the essential trade off
between their expressivity (i.e. class of covered pseudoknots) and their complexity.

1.4 Published Results

Both alignment approaches developed in this thesis have already been published in
joint work with my coauthors Rolf Backofen and Sebastian Will. The presentation
in this thesis differs significantly from the original papers. In particular, the current
presentation highlights the similarities and differences of the two approaches by
explaining them both in terms of the same syntax and based on the same core
lemmata. Furthermore, the correctness proofs that are contained in the papers only
in a condensed form, are given in full detail in this thesis.

Mathias Möhl, Sebastian Will, and Rolf Backofen. Fixed parameter tractable
alignment of RNA structures including arbitrary pseudoknots. InProceedings of the
19th Annual Symposium on Combinatorial Pattern Matching (CPM 2008), LNCS,
pages 69-81. Springer, 2008

Mathias Möhl, Sebastian Will, and Rolf Backofen. Lifting prediction to alignment
of RNA pseudoknots. In Proceedings of the 13th Annual International Conference
on Computational Molecular Biology (RECOMB 2009), volume 5541 of LNBI, pages
285-301. Springer, 2009

4

2 Background

2.1 Biological Background

2.1.1 RNA and its Function in the Cell

RNA molecules that essentially occur in any living cell can be divided into two big
classes: messenger RNA (mRNA) and non-protein-coding RNA (ncRNA). The bio-
logical function of messenger RNA is to convey the genetic information from DNA
molecules located in the nucleus to the ribosomes where the mRNA is transcribed
into proteins. The DNA in the nucleus is organized in chromosomes and each chro-
mosome contains many genes. When a certain protein is expressed in the cell, the
corresponding gene is first transcribed into a complementary nucleotide RNA strand.
The resulting mRNA molecule is exported from the nucleus to the cytoplasm where
by interaction with a ribosome its sequence is translated into a corresponding se-
quence of amino acids building a new protein. In eukaryotic organisms the mRNA
also undergoes a certain processing before it is translated. Splicing mechanisms re-
move certain parts of the mRNA called introns and enable a single gene to encode
several proteins.

For a long time is has been assumed that acting as mRNA is the predominant
function of RNA. But there are also many kinds of non-protein-coding RNAs. Cer-
tain RNA molecules are, for example, involved in splicing and translation of mRNA.
Furthermore some ncRNAs fulfill housekeeping functions, as telomerase RNA which
is involved in DNA replication. Newer findings also revealed the existence of several
riboregulators, i.e. ncRNAs that are involved in the regulation of gene expres-
sion [33, 34]. Another class of ncRNAs are ribozymes which are able to catalyze
chemical reactions. The function of ribozymes is analogous to the function of en-
zymes with the only difference that the latter are proteins and not RNAs.

Apart from naturally occurring ncRNAs, also artificially designed RNA molecules
are useful for both biological research and medical applications. RNA interference
(RNAi) experiments, for example, allow a specific knock down of a gene with the
help of artificially designed RNAs that bind to the respective mRNA and avoid it
being translated into a protein.

Especially in complex organisms ncRNA seems to play an important role. This
coincides with the fact that the amount of DNA that does not code for proteins
(often considered as “junk”) increases with the complexity of the organism: while in
simple unicellular organisms 10-40% of the DNA is non-coding, in mammals this is
the case for 98% of the DNA, as stated in [55]. In this article published in 2005, it is
said that “it is now widely accepted that a significant fraction of the transcriptional

5

2 Background

sugar

phosphate

...

guanine

adenine

uracil

cytosine

1

2

3
4

5

Figure 2.1: Chemical constitution of an RNA molecule.

output from the genome consists of untranslated or non-coding RNAs (ncRNA)”. In
2007, also the first phase of the ENCODE project, a large scale project to identify
functional elements in the genome, revealed that “the genome is pervasively tran-
scribed, such that the majority of its bases can be found in primary transcripts,
including non-protein-coding transcripts” [12]. These findings have renewed the in-
terest in RNA analysis which has become a highly active field of research in both
biology and bioinformatics.

2.1.2 Chemical Constitution of the RNA Molecule

The chemical constitution of an RNA molecule is visualized in Figure 2.1. It consists
of a chain of nucleotides whose backbone is built out of ribose sugar such that each
nucleotide contains five carbon atoms denoted as C 1’ to C 5’. A phosphate connects
the C 5’ of each nucleotide to the C 3’ of the next nucleotide in the chain. The chains
are hence asymmetric and usually considered in 5’ to 3’ direction. At each C 1’,
one out of the following four bases is attached: adenine (A), cytosine (C), guanine
(G) and uracil (U). These bases are able to form so called Watson Crick base pairs
[57], where A is able to pair with U and C is able to pair with G. In addition to
the Watson Crick base pairs, sometimes also other pairs like the wobble base pair
G-U occur. In contrast to DNA where base pairings lead to the formation of stable
double helices, RNA is usually single stranded and pairings within this single strand
lead to the formation of complex structures.

The RNA structure can be considered at different levels of abstraction that are
visualized in Figure 2.2. The so called primary structure just considers the sequence
of the bases in the chain and can be formally described as a string over the alphabet
{A,C,G,U}. The primary structure of an RNAmolecule is analogous to the primary
structure of the DNA that it is transcribed from with the only difference that the

6

2.1 Biological Background

GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGA
UCUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCACCA

(a) Primary structure.

G C
G C
G C
G C
G C

C
C
A

A

U A
U A
A U
G U
G C
C G
G C

G

C

A

U

C

G

A

U

C

G
C

G

U

A

C

G

G

C

U
A

G

C
UG
GA

C U A
G
CUU

AGU
U
G
GGA

C
U
G
A
A
G
A

5‘

3‘

multiloop

stem

hairpin

(b) Secondary structure. (c) tertiary structure (Reproduced with
the kind permission of N.R. Voss).

Figure 2.2: Yeast phenylalanin tRNA ([28],PDB structure 1EHZ) visualized at dif-
ferent levels of abstraction.

DNA contains thymine (T) instead of uracil (U).

The secondary structure includes in addition to the pure sequence also the pairings
among the bases. A secondary structure decomposes into different loops and stem
structures. The stems are the regions of paired bases while the loops are formed
by the unpaired parts. A loop that is adjacent to only one stem is called a hairpin
loop and a loop that is adjacent to two stems is called an internal loop (or bulge, if
it contains only one chain of unpaired bases). Loops with more that two adjacent
stems are denoted as multi loops. Unpaired regions at the beginning or the end of
the chain are called dangling ends.

The tertiary structure comprises the full 3D structure of the molecule. Since the
tertiary structure is both difficult to determine experimentally and hard to predict,
the amount of tertiary structure data available is far less than the amount of available
primary and secondary structure information.

7

2 Background

U U G G U C
C

C A

U

AUCCU
A

CGACC

U

U

U
G G A U

C

(a) pseudoknot drawn in the plane

U U G G U C C C A U A U C C U A C G A C C U U U G G A U C

(b) pseudoknot drawn linearly

..[[[[....((((...]]]]...)))).

UUGGUCCCAUAUCCUACGACCUUUGGAUC
(c) pseudoknot in dot bracket representation

Figure 2.3: Three different visualizations of a simple H-type pseudoknot. The red
line indicates the backbone, black dots represent bases and the blue and
green arcs represent pairings among bases.

Pseudoknots

Pseudoknots are motifs in the RNA secondary structure that do not simply decom-
pose into loops and stems. The term pseudoknot was first introduced in 1978 by
Studnicka et al. [54]. If we imagine the base pairs as arcs written on top of the se-
quence (Figure 2.3b), the characteristic feature of pseudoknots is that they contain
crossing base pairs. Another convenient representation for secondary structures that
we are going to use from time to time is the so called dot bracket representation
shown in Figure 2.3c. Here, the sequence is augmented with a string that contains
one dot for each unpaired base and one pair of brackets for each base pair. In this
representation, the characteristic property of pseudoknots is that more than one
type of bracket symbols is required to represent the structure.

Pseudoknots can be grouped into different classes according to their shape. Al-
though no systematic scheme for this classification has been presented so far, some
classes of interest have names that are well-established in the literature.

The simplest and most frequent form are so called H-type pseudoknots as shown
in Figure 2.3 that just consist of two crossing stems. Another frequent type of
pseudoknots are kissing hairpins. They occur if bases of two different hairpin loops
pair to form an additional stem. An example for kissing hairpins is the Varkud
Satelite (VS) RNA shown in Figure 2.4 that is found in certain natural isolates of
Neurospora[43, 6].

8

2.1 Biological Background

5‘

3‘

C G

AA UCG AU C

G

U

C

GA

A

U C G
A

A

U

C

GA

A

U

C

GA

A

U

C

A

A

U

C

U

C

U

G G G

C
G

C

G

C

G

C

G

C

G

C

G

C

G

C

G

A

C

G

A

C

G
A

C

G

A

U
C

G

A

U
CG

A

U

CG

A

U

C G

A

U

C

G

A

U

C

G

A

A

U

C

GA

A

U

C

G
A

A

U

C

G

A A

U

C

G

A

A

U

C

G

A
A

U

C

G

A

A

U

C

G

A

A

U

C

G

A

A

U

C

G

A

A

U

CG AA

U

U

U

U U

U
U

U

U U

U
UU

U

U
G

G
G

G

G

G
GG

G

G

G

G

G

G

G

G

A

Figure 2.4: Varkud Satelite (VS) RNA with kissing hairpins. The bonds between
the kissing hairpins are shown in red.

Pseudoknots are of interest because they occur frequently and, furthermore, be-
cause their presence is often required for the respective function of the RNAmolecule.
Hence, it is usually not adequate to ignore pseudoknot structures where they are
present, although this is frequently done for simplification. The functional relevance
of pseudoknots can be experimentally verified with mutagenesis experiments. Those
experiments modify the RNA such that the pseudoknot cannot form anymore and
check whether the function is still maintained. With these methods, for example,
the pseudoknot of VS RNA in Figure 2.4 has been shown to be essential for the
tertiary folding and self cleavage activity of the molecule [43, 6].

Besides the functional relevant pseudoknots that naturally occur in living cells,
pseudoknots also occur in artificially designed RNAs. Such artificial sequences are of
interest for both scientific and medical applications. They are obtained by in vitro
evolution, a method that is used to artificially generate RNA molecules with some
desired function. The method starts with a huge pool of random RNA sequences and
applies a series of interleaved mutagenesis and filtering steps to obtain the sequences
that bind to the desired target or perform another desired function. Using this tech-
nique, for example a self-alkylating ribozyme was found that contains a pseudoknot
structure. Further experiments showed that this pseudoknot is responsible for the
ability of the molecule to specifically bind to biotin [61, 60].

2.1.3 RNA Alignment and Comparative Methods

An alignment represents a comparison of structures and is used to identify similar
as well as different parts among them. Alignments are a central part of the meth-
ods used in comparative genomics. Comparative genomics relies on the fact that
functionally relevant parts are usually more conserved during evolution than others.
This is due to evolutionary pressure that extinguishes mutations that lead to a loss

9

2 Background

of function. Comparative methods are, for example, applied to DNA sequences to
identify genes or regulatory regions that control gene expression. Typical applica-
tions combine alignments with other methods into a pipeline. Such a pipeline takes
entire genomes or large candidate sets of sequence fragments as input and outputs a
small set of candidates that satisfy certain properties (e.g. high evolutionary conser-
vation or high similarity to some given pattern). The potential candidates identified
with these methods are then usually further investigated in biological experiments.

While for DNA analysis simple sequence alignments are usually sufficient, in the
case of RNA it is often desired to include the secondary structure in the comparison.
Since the secondary structure of ncRNAs is usually related to their function, a
comparison at this level yields more accurate results. Often the secondary structure
is evolutionary much more conserved than the sequence that folds into that structure.
This is possible because of so called compensatory base pair mutations, where bases
of a base pair change but the structure is preserved. If, for example, a structure
contains a G-C base pair and the G mutates into a U, then the base pair cannot form
anymore since U cannot pair with C. But if the C simultaneously mutates into some
A, then the base pair can form again as U-A and hence the structure is maintained
although the underlying sequence has changed. The change of a U-A base pair to the
wobble base pair U-G or vice versa is the most likely structure preserving mutation,
since it only requires the mutation of one base of the pair.

The presence of compensatory mutations is relevant in two aspects: first, it indi-
cates that the structure might be functionally relevant and second, that the hypoth-
esized structure is correct. The latter aspect is in particular important, since the
available methods to predict the structure have a low accuracy. Mathewet al. [32]
compared 16 known RNA structures to the structures computed by state of the art
MFE structure prediction and report an average accuracy of 76.4%. In the presence
of pseudoknots, the prediction accuracy get even lower as the four RNase P variants
show that where included in this study. These four RNAs had the largest percentage
of pseudoknot base pairs (between 7.1% and 10.5%) among the considered RNAs
and the accuracy of the prediction was only between 53.5% and 64.5%. Hence, in
particular for pseudoknot structures comparative methods are required to get more
precise predictions.

Variants of Alignment

There exist a lot of different alignment methods that vary with respect to several
different aspects. The first aspect is the number of considered structures. While a
pairwise alignment just compares two of them, a multiple alignment compares three
or more structures. Since computing an entire multiple alignment in one step is
usually prohibitively expensive, multiple alignments are often built in a progressive
way, by combining pairwise alignments step by step. Commonly used program based
on this idea are ClustalW [10] and T-Coffee [40].

A second aspect in which alignment methods differ is whether they compute a
global or a local alignment. While global alignments compare the entire structures,

10

2.2 Formal Preliminaries

local alignment methods aim at identifying highly similar local parts. For the align-
ment of sequences, the classical algorithms for global and local alignments are the
Needleman-Wunsch algorithm [39] and the Smith-Waterman algorithm [52], respec-
tively. For RNA structures the LocARNA approach [41] is based on a more advanced
notion of locality. Here, local motifs are not simple subsequences but local motifs
with respect to the secondary structure.

Another criterion with respect to which existent alignment approaches differ is
the level of structure which they consider. While for DNA usually plain sequence
alignments are used, for RNA often the secondary structure level is considered in
the comparison. Most approaches of secondary structure alignment are limited to
pseudoknot-free inputs in order to guarantee a polynomial runtime [49, 59, 51, 27].
Since the presence of pseudoknots makes the problem quite complex, the only avail-
able approaches to align pseudoknots either have a high time and space complex-
ity [20, 21] or do not guarantee to find an optimal solution [5].

Besides the approaches that work with given secondary structures there are also
approaches that perform simultaneous alignment and folding [49, 25, 59, 41]. Those
approaches get pure sequence data as input, but perform the comparison at the
secondary structure level by predicting appropriate structures on the fly.

A last, more technical difference among alignment approaches is the choice of the
scoring scheme according to which the optimal alignment is computed. The scoring
schemes are usually based on some kind of edit distance measure that resembles
evolutionary distance. The choice of the scoring scheme has important influence on
both the quality of the resulting alignment (judged with respect to whether it is
biologically meaningful or not) and the complexity of the alignment task.

In this thesis the focus is on pairwise, global alignments with given secondary
structures that may contain pseudoknots. A general scoring scheme is employed
throughout that subsumes many simpler schemes, but remains computationally
tractable.

2.2 Formal Preliminaries

2.2.1 Formal Abstraction of RNA Structures

We formally represent RNA structures at the secondary structure level as arc-
annotated sequences. The notion of arc-annotated sequences was first introduced
by Evans [19]. Her PhD thesis gives a comprehensive overview over their properties,
variants and related problems.

Definition 1 (arc-annotated sequence) An arc-annotated sequence is a pair
(S, P), where S is a string over the set of bases {A,U,C,G} and P is a set of arcs
(l, r) with 1 ≤ l < r ≤ |S| representing bonds between bases, such that each base
is adjacent to at most one arc. We denote the i-th symbol of S by S[i]. For an arc
p = (l, r), we denote its left end l and right end r by pL and pR, respectively. An
arc p ∈ P is crossing if there is an arc p′ ∈ P such that pL < p′L < pR < p′R or

11

2 Background

p′L < pL < p′R < pR. An arc-annotated sequence is crossing if it contains crossing
arcs, otherwise it is nested or non-crossing. 2

Pseudoknots correspond to crossing arc-annotated sequences. From now on, we
consider two fixed arc-annotated sequences (Sa, Pa) and (Sb, Pb). Following [27], we
define the functions ψk, k ∈ {a, b} to denote whether position i of sequence k is
adjacent to an arc and the function χ that checks whether the two sequences are
equal at certain positions:

ψk(i) := if ∃j : (i, j) ∈ Pk or (j, i) ∈ Pk then 1 else 0 (for k = a, b)

χ(i, j) := if Sa[i] 6= Sb[j] then 1 else 0

2.2.2 Alignment and Scoring Schemes

An alignment can be considered as an order-preserving, partial mapping from the
positions of one arc-annotated sequence to a second one. For technical reasons we
extend the partial mapping to a total one by introducing so called gap edges.

Definition 2 (alignment) An alignment A of two arc-annotated sequences
(Sa, Pa) and (Sb, Pb) is a set A = AM ∪ AG, where AM ⊆ [1..|Sa|] × [1..|Sb|] is
a set of match edges such that for all (i, j), (i′, j′) ∈ AM holds 1.) i > i′ im-
plies j > j′ and 2.) i = i′ if and only if j = j′ and AG is the set of gap edges
{ (x,−) |x ∈ [1..|Sa|] ∧ ∄y.(x, y) ∈ AM } ∪ { (−, y) |y ∈ [1..|Sb|] ∧ ∄x.(x, y) ∈ AM }
where − is a dedicated gap symbol. A base that is adjacent to a gap edge is called
aligned to a gap. Two bases Sa[i], Sb[j] are matched by A if (i, j) ∈ A and two arcs
pa ∈ Pa, pb ∈ Pb are matched if (pLa , p

L
b) ∈ A and (pRa , p

R
b) ∈ A.1 2

An alignment is usually visualized as shown in Figure 2.5 by putting the two se-
quences with inserted gaps on top of each other such that matched bases are located
on top of each other. The optimal alignment is usually formalized as the alignment
of minimum cost with respect to some given cost function. The complexity of the
task to find the minimum cost alignment heavily depends on this cost function as
we will see in Section 4.1. Cost functions are typically formulated as the sum of the
costs of certain local fragments. Since the costs of these fragments are independent,
dynamic programming algorithms are able to split the problem to find the optimal
alignment, into independent sub problems. In turn, the problem to find the optimal
alignment is the more simple the smaller and less complex these local fragments are.

In our scoring scheme, we consider three kinds of local fragments. We consider
a cost for each base Sa[i] or Sb[j] that is aligned to a gap. This cost is denoted as
gapa(i) or gapb(j), respectively. Then we consider a cost arcmatch(pa, pb) for each
pair (pa, pb) of matched arcs and also a cost basematch(i, j) that represents the cost
to align a base Sa[i] to a base Sb[j] given that this base match is not part of an
arc match (i.e. given that for all arc matches (pa, pb) holds (i, j) 6= (pLa , p

L
b) and

(i, j) 6= (pRa , p
R
b)).

1Note that by this definition base matches and arc matches do not exclude each other, i.e. if two
arcs are matched, their respective left and right ends also form base matches.

12

2.2 Formal Preliminaries

Definition 3 (cost of an alignment) The cost of an alignment A is defined re-
cursively as cost(A) with

cost({(i,−)} ⊎A′) = gapa(i) + cost(A′),

cost({(−, j)} ⊎A′) = gapb(j) + cost(A′)

cost({(la, lb), (ra, rb)} ⊎A
′) = arcmatch((la, ra), (lb, rb)) + cost(A′)

if (la, ra) ∈ Pa, (lb, rb) ∈ Pb

cost({(i, j)} ⊎A′) = basematch(i, j) + cost(A′)

if third case is not applicable. 2

This scoring scheme is chosen such that it is as general as possible while still being
valid for the alignment algorithms developed in this thesis. Its central property is
that all costs except the cost for an arc match depend only on a single position of each
sequence. In that sense an arc match is the only non-locality that the algorithms
have to cope with. Note in particular, that if an arc is matched to something else
that an arc (i.e. if the arc is broken), the costs of the alignment at the two ends of
the arc are mutually independent.

General Edit Distance The scoring scheme presented above subsumes the gen-
eral edit distance proposed by Jiang et al. [27] for what they call reasonable scoring
schemes. Since the general edit distance is biologically motivated, it is an interesting
instance for practical applications.
The general edit distance is based on the operations illustrated in Figure 2.5.

Base operations (mismatch and insertion/deletion) work solely on positions that are
not incident to an arc. Base mismatch replaces a base with another base and has
associated cost wm. A base insertion/deletion removes or adds one base and costs
wd. The second class consists of operations that involve at least one position that is
incident to an arc. An arc mismatch replaces one or both of the bases incident to an
arc. It costs wam

2 if one base is replaced or wam if both are replaced. An arc breaking
removes one arc and leaves the incident bases unchanged. The associated cost is
wb. Arc removing deletes one arc and both incident bases and costs wr. Finally, arc
altering removes one of the two bases that are incident to an arc and costs wa.
For what Jiang et al. call reasonable scoring schemes, the cost of arc altering

is restricted to wa = wr

2 + wb

2 . This constraint is required to satisfy the locality
properties of our scoring scheme and without the constraint the problem becomes
NP-hard (see Section 4.1). To represent the edit distance in our general scoring
scheme, we instantiate our cost functions as follows.

gapk(i) := wd + ψa(i)(
wr

2
− wd) (for k = a, b)

basematch(i, j) := +χ(i, j)wm + (ψa(i) + ψb(j))
wb

2

arcmatch(pa, pb) := (χ(pLa , p
L
b) + χ(pRa , p

R
b))

wam

2

13

2 Background

AAAGAAUAAU−UUACGGGACCCUAUAAA
CGAGA−UAACAUU−CGGG−CCC−AUAAA

arc match

arc breaking

arc altering

arc removing

base deletion

arc mismatch

base mismatch

Figure 2.5: Edit operations of the general edit distance according to Jiang et al. [27]

A gap corresponds to a base deletion operation if the respective base is not adja-
cent to an arc. Otherwise it is caused by an arc removing or an arc altering operation
with cost wr

2 in both cases due to the constraint wa = wr

2 + wb

2 . Similarly, in a base
match possibly adjacent arcs need to be broken which causes cost wb

2 for each arc,
no matter whether this is done in an arc breaking or an arc altering operation.

Other Scoring Schemes Besides the general edit distance also tree edit distance
and tree alignment are frequently considered. Both require to interpret the arc-
annotated sequences as trees which is straight forward for nested structures. Since
it is unclear how to generalize this concept to pseudoknots they are not considered
in the following.

Other scoring schemes, in particular studied by Evans, are the longest arc-preser-
ving common sub sequence (Lapcs) [19, 20] and the maximum common ordered
substructure [21]. The alignment problem for Lapcs is NP-complete even for nested
structures which makes it intractable for most practical purposes. On the other
hand, the maximum common ordered substructure just maximizes the number of
arc matches (including matched arcs where the adjacent bases do not match) and
hence corresponds to the instance of the general edit distance where wm = 0, wd = 0,
wam = 0, wb = 1, wr = 1, and wa = wr

2 + wb

2 .
Blin et al. [7] compare various scoring schemes in the so called alignment hierarchy.

As will be described in Sect. 4.1, among all edit problems considered in this study, the
general edit distance with the constraint on arc altering is the most general scheme
for which at least the alignment problem for pseudoknot-free input structures is
solvable in polynomial time. All edit problems with independent arc-altering and
arc-removing operations considered there where shown to be NP-hard.

14

3 A General Approach to Dynamic

Programming on RNA structures

Dynamic programming algorithms make use of the recursive structure of the objects
they are working on. This chapter analyzes the recursive structure of RNA and
makes three important contributions.

First, we show how RNA structures can be recursively described with the help of
parse trees (Section 3.1). While the correspondence between pseudoknot-free RNA
structures and trees is well known and used in many applications, for pseudoknotted
structures no such concept existed so far.

As a second contribution we confirm the usefulness of the parse tree concept by
analyzing various algorithms for RNA pseudoknot prediction (Section 3.2). It turns
out that all these algorithms can be understood as (implicitly) constructing parse
trees and that both the complexity of the algorithms and the class of pseudoknots
that they are able to predict are a direct consequence of the class of parse trees that
the respective algorithm considers.

After having described all known dynamic programming based structure predic-
tion algorithms in terms of a general framework based on parse trees, the last im-
portant contribution of this chapter is the development of the core of a similar
framework for RNA alignment (Section 3.3). This framework forms the basement
for all algorithms developed in the later chapters of this thesis.

3.1 A recursive view on RNA structures

3.1.1 Nested RNA Structures as Trees

Nested RNA structures have a quite natural correspondence to trees. Several dif-
ferent variants of how to associate an RNA structure with a tree have been pro-
posed [50, 2] and employed to use tree alignment and tree edit distance algorithms
for RNAs. The different encodings all rely on a tree structure induced by the set
of arcs P of an arc annotated sequence and only differ in the ways how this tree
structure is generalized to incorporate the sequence information.

If an arc-annotated sequence (S, P) contains no pseudoknots, then for each pair
of distinct arcs p, p′ either one arc precedes the other one (pL < pR < p′L < p′R or
p′L < p′R < pL < pR) or one of the two subsumes the other one. We define that
an arc p subsumes and arc p′, short p ≻ p′, if pL < p′L < p′R < pR. Obviously the
relation ≻ is acyclic and further more if p′ ≻ p and p′′ ≻ p then either p′ ≻ p′′ or
p′′ ≻ p′. Hence, the transitive reduction of ≻ is unique and forms a tree. In order to

15

3 A General Approach to Dynamic Programming on RNA structures

A

C

G

G
G

C

C

GC

C G

A
C

C

U
G

GC

G

A

G

U
A

A
U

(a) RNA drawn in the plane

U A

G C

G C

C G

G C

G C

C G

C G

GGUAAUA

CA

(b) corresponding tree

A A AU C A U G GCC G GACCU G GC C CG G G

(c) RNA drawn linearly

Figure 3.1: A nested RNA structure and its correspondence to a tree. The stems
are highlighted in different colors to show the correspondence.

also represent positions of the sequence that are not adjacent to an arc, this basic
tree can be extended with a set of leaves where each leave corresponds to one of these
unpaired positions. Technically this corresponds to adding one dummy arc (i, i) to
P for each unpaired position i. An example for such a tree and the corresponding
RNA structure is given in Figure 3.1.

Since such a tree is recursively composed out of subtrees, it represents a way to
recursively compose the corresponding RNA structure. Each subtree with some arc p
as root node corresponds to the subsequence containing the positions [pL, pR]. Hence
the entire structure is recursively composed by concatenating contiguous fragments.

3.1.2 Pseudoknot Structures as Parse Trees

Pseudoknotted RNA structures have no direct correspondence to trees as nested
structures have. The reason for this is that if two arcs p and p′ are crossing, neither
of them subsumes the other, but any arc p′′ within the region in which p and p′

overlap, is subsumed by both p and p′. Hence p′′ would need to contained in both
the subtrees rooted at p and p′ although those must be disjoint.

In order to find a useful generalization for pseudoknot structures it is important to
identify the relevant properties that the correspondence between the arc annotated
sequences and the trees has. The correspondence for nested structures has two
important properties. First, each subtree corresponds to a contiguous fragment
of the sequence and second, each of these fragments is arc complete in the sense

16

3.1 A recursive view on RNA structures

that no arc has one end within the fragment and one end outside. The latter
property is important since it ensures a kind of independence that is necessary for
the dynamic programming algorithms. Compared to that, the restriction to consider
only contiguous fragments helps to reduce complexity but is not as vital. Since
both properties cannot be maintained simultaneously for pseudoknot structures, the
framework presented now shows how to recursively decompose pseudoknot structures
into arc complete fragments that are not necessarily contiguous but may contain
gaps.
The decision to allow gaps in the fragments in order to maintain arc completeness

is also supported by existing RNA structure prediction algorithms. As will be shown
in the next section, all dynamic programming based algorithms for RNA structure
prediction recursively construct their structures out of gapped, arc complete frag-
ments. We now give formal definitions for the relevant concepts.

Definition 4 (fragment) A fragment F of an arc annotated sequence (S, P) is a
k-tuple of intervals ([l1, r1], . . . , [lk, rk]) with 1 ≤ l1 ≤ r1+1 ≤ · · · ≤ lk ≤ rk+1 ≤ |S|.
The ranges between the intervals, i.e [r1 + 1, l2 − 1], . . . , [rk−1 + 1, lk − 1], are called
gaps of F . We call k the degree of F and l1, r1, . . . , lk, rk its boundaries. The set
of positions covered by F (denoted with F̂), is defined as the union of the intervals
contained in F (where we technically understand an interval [i, j] as a representation
of the set {i, . . . , j}). The i-th interval [li, ri] of F is denoted with F [i] and with
F [i]L and F [i]R we denote its left and right boundary li and ri, respectively. 2

Note that this definition allows empty intervals [i, i − 1]. For better readability,
we abbreviate intervals of the form [i, i] as [i]. As mentioned before, the RNA
structure should be recursively decomposed into fragments that are arc complete.
Furthermore, the smallest fragments that are not decomposed any further should be
atomic.

Definition 5 (properties of fragments) Let F be some fragment of an arc an-
notated sequence (S, P). An arc p = (l, r) is called open in F , if and only if
l ∈ F̂ 6⇔ r ∈ F̂ . The fragment F is called arc-complete with respect to a sub-
set P ′ ⊆ P if and only if there does not exist an arc p ∈ P that is open in F . If F is
arc complete with respect to P we just say it is arc complete. F is called atomic if
F covers either exactly the two ends of an arc of P or a single position not adjacent
to an arc. 2

The notion of decomposing a fragment into smaller fragments is captured in the
concept of a split.

Definition 6 (split) Let F , F 1 and F 2 be fragments of the same sequence. The

pair (F 1, F 2) is a split of F iff F̂ = F̂ 1 ⊎ F̂ 2.1 We call F 1 and F 2 the children and
F the parent of the split. The split is called arc-preserving, if F , F 1, and F 2 are arc
complete. 2

1For simplicity, we introduce only binary splits. However, the introduced concepts can be simply
extended to n-ary splits.

17

3 A General Approach to Dynamic Programming on RNA structures

F
1

F
2

F
1 2 3 4 5 6 7

(a) arc preserving split

1 2 3 4 5 6 7

F
1

F
2

F

(b) split that is not arc preserving

Figure 3.2: Two examples for splits of fragments. The intervals of the fragments
are drawn in dark and the gaps in light gray. The split in (a) is arc
preserving and has basic split type 121 and constrained types 1′21′, 1′21,
and 121′. The split in (b) has basic type 12G12, strongest constrained
type ↓1′2G1′2′↓, and is not arc preserving, since the arc (3, 6) is open in
both F 1 and F 2.

With splits we associate two kinds of types: basic types and constrained types.
The basic type of a split captures the general form of the split and a constraint type
represents in addition several constraints that the split satisfies.

Definition 7 (basic split type) The basic type of a split (F 1, F 2) of a fragment F
is defined by the following construction. The interval [min(F̂),max(F̂)] decomposes
into the intervals of F 1, the intervals of F 2 and gaps of F . If we order these from left
to right and replace the intervals of F 1 by 1, the ones of F 2 by 2 and the remaining
ones by G (for gap), we obtain a string T over {1, 2, G} that we call the basic type
of the split. 2

Definition 8 (constrained split type) A constrained type of a split (F 1, F 2) of
a fragment F is its basic type together with some annotated constraints of the
following form.

• A length constraint on some interval is marked with a ′ on the respective
symbol 1 or 2 and indicates that the length of the interval is at most one.

• A maximality constraint is marked with a ↓ at the beginning and the end of
the type and requires that the first and last boundary of F coincide with the
beginning and the end of the sequence. 2

Figure 3.2 gives two examples for splits and their associated basic and constrained
types. While each split has exactly one basic type, it may have several constrained
types. Constraint types will later be relevant to describe important optimizations
of the considered algorithms that reduce their complexity significantly. With the
general notion of a split, there are many possibilities to recursively decompose a
pseudoknot structure into arc complete fragments. Each of them can be described
as a parse tree.

18

3.2 Classification of Pseudoknot Prediction Algorithms

1 2 3 4 5 6 7 8 9 10 11

(a) arc annotated sequence

111

102

93

111

102

3 8 9

3 4 6 7 5 8

3 7 4 6

(b) parse tree

Figure 3.3: A parse tree for some arc annotated sequence.

Definition 9 (parse tree) A parse tree of a sequence (S, P) is a binary tree where
each node is an arc-complete fragment of (S, P) such that (a) the root is ([1, |S|]),
(b) each inner node is a fragment F and has two children F1 and F2, such that
(F1, F2) is an arc-preserving split of F , (c) each leaf is an atomic fragment. 2

A visualization of a parse tree is given in Figure 3.3. Each pseudoknot structure
can be associated with a parse tree in a similar way as nested structures are usually
associated with trees. The following important differences remain however.

• The correspondence between pseudoknot structures and parse trees is not
unique, i.e. usually there exist many possible parse trees for a structure.

• The fragments associated with a parse tree contain gaps if the structure con-
tains pseudoknots.

3.2 Classification of Pseudoknot Prediction Algorithms

In this section the notions of parse trees and splits introduced in the previous section
are used to classify various existing pseudoknot prediction algorithms. It turns out
that they all fit into a general scheme that is able to relate the class of structures that
the respective algorithm is able to predict to the resulting time and space complexity.

19

3 A General Approach to Dynamic Programming on RNA structures

Apart from the fact that this is an interesting result on its own, the gained insights
are later used in Chapter 5 to develop an analogous scheme for pseudoknot alignment
that yields one tailored alignment algorithm for each of the prediction algorithms.

3.2.1 The Recursive Structure of RNA Structure Prediction

Algorithms

In contrast to pseudoknot alignment, for pseudoknot structure prediction there exist
already various approaches that are based on dynamic programming [31, 46, 56, 1,
16, 17, 9, 44]. All those algorithms are dynamic programming based and compose
the optimal structure for some given sequence recursively out of optimal structures of
fragments. We analyze these algorithms now at a coarse grained level of abstraction
that discards aspects like the scoring scheme and only focuses on the kinds of splits
that are used to compose the optimal structure out of substructures.

At this level, a structure prediction algorithm can be characterized by a set of split
types T that may contain both basic and constrained types. When computing the
optimal structure for some fragment F , the algorithm iterates over all the instances
of all split types in T for which F is the parent fragment and chooses among all
those splits the optimum.

If we denote the optimal score for a structure of a fragment F with OPT(F)
and assume that this score is minimized, the recursion of all considered algorithms
follows the following scheme.

OPT(F) = min
T∈T

{

min
T -split (F 1,F 2) of F

{

OPT(F 1) + OPT(F 2)
}

}

. (3.1)

Due to their scoring scheme most algorithms actually consider optimal scores for
different kinds of structures, as for example the optimum among all loop structures or
among all pseudoknot structures. However, this does not affect the general structure
of the recursion. The only difference is that those algorithms do not compute one
value OPT(F) for a fragment F , but a constant number of values OPT1(F), . . . ,
OPTk(F), where each of them represents the optimum among only a certain kind
of structures.

We illustrate the scheme with a simple example. The well-known Zuker algo-
rithm [63] predicts pseudoknot-free structures and computes two matrices W and V
where W represents the optimum among all structures and V the optimum among
only the structures where the first and last position are paired. The recursion for
W is

W [i, j] = min

W [i+ 1, j] (3.2a)

W [i, j − 1] (3.2b)

min
i<k<j−1

{W [i, k] +W [k + 1, j]} (3.2c)

V [i, j] (3.2d)

At our coarse grained level of abstraction, the recursion corresponds to the instance
of Equation (3.1) with T = {1′2, 12′, 12, 1}. The type 1′2, for example, corresponds

20

3.2 Classification of Pseudoknot Prediction Algorithms

to case (3.2a), since this case splits the structure into the single position i (in this
case with a contribution of 0 to the score) and the remaining fragment [i + 1, j].
Note that for fixed F = ([i, j]), only the third type, 12 has more than one instance.
Therefore case (3.2c) is the only one that has to minimize over a set of values. The
final set of split types for the Zuker algorithm would be the union of the sets of split
types for both matrices W and V .

For pseudoknot structure prediction algorithms the set of split types contains split
types with gaps. This is necessary to construct a pseudoknot out of two crossing
stems. A simple pseudoknot can be constructed, for example, with the split type
1212 to compose the two stems and the type 1′2G21′ which can recursively construct
a stem by adding an additional outermost arc. Note that a single arc is represented
in the split type by two intervals with a length constraint.

3.2.2 The Relation between Parse Trees, Classes of Pseudoknots

and Algorithmic Complexity

The abstraction of a structure prediction algorithm via recursion 3.1 and an asso-
ciated set of split types T suffices to analyze both the complexity of the algorithm
and the class of structures that it is able to predict. A structure can be predicted
by some algorithm if the structure can be recursively composed out of fragments
according to the recursive structure of the algorithm. In other words, the class of
structures that an algorithm is able to predict equals the class of structures for
which parse trees exist that contain only splits of types contained in T . This insight
allows to easily compare the classes of structures predicted by different structure
prediction algorithms. The more and the more complex split types are contained in
T , the larger is the class of predicted structures. In particular, if for two algorithms
the respective sets T are in a subset relation, this subset relation also holds for the
respective classes of structures. A comparison of the known pseudoknot prediction
algorithms with respect to such inclusion relations has already been done by Condon
et al. [11]. The characterization of the algorithms in terms of the split types confirms
those results and explains them in a new, intuitive way.

From that perspective, designing a good structure prediction algorithm consists
to some extend of finding a set of split types with which one can on the one hand
parse as many pseudoknots as possible and that is on the other hand as small and
simple as possible. The latter is important since it influences the complexity of the
algorithm.

A time and space complexity analysis of the prediction algorithms can be done
based directly on Equation (3.1). If the equation is applied recursively, values
OPT(F) need to be computed for all fragments F that are a parent instance of
some split T of a split type contained in T . We denote the number of parent in-
stances and child instances of a split T for a structure of length n with #n

P (T), and

21

3 A General Approach to Dynamic Programming on RNA structures

#n
C(T), respectively:

#n
P (T) =

∣

∣

∣

{

F
∣

∣

∣
∃(F 1, F 2) that is a T-split of F and F̂ ⊆ [1, n]

}
∣

∣

∣

#n
C(T) =

∣

∣

∣

{

(F 1, F 2)
∣

∣

∣
(F 1, F 2) is a T-split of some F and F̂ ⊆ [1, n]

}∣

∣

∣

If |T | is assumed to be constant the number of values F that need to be computed
is

(

∑

T∈T

#n
P (T)

)

∈ O(max
T∈T

#n
P (T))

and the total time required for the computation of all these values is

(

∑

T∈T

#n
C(T)

)

∈ O(max
T∈T

#n
C(T))

since the computation of each parent of a split minimizes over all possible children.
In other words, the time and space complexity of a structure prediction algorithm
is directly implied by the number of parent and children instances, respectively, of
its most complex split type.We now derive further bounds for #n

C(T) and #n
P (T)

for simple and constrained types.

Lemma 1 (number of instances of basic types) For a sequence with length n
and a basic split type T , let the degree of the parent and the two children be kp, k1,
and k2, respectively. Then #n

C(T) ∈ O(nkp+k1+k2) and #n
P (T) ∈ O(n2kp). 2

Proof Each instance of a fragment of degree k is uniquely determined by its 2k
boundaries and each boundary has one of the values 1 . . . n. Hence #n

P (T) ∈ O(n2kp).
Each split is determined by the 2(kp + k1 + k2) boundaries of the parent and

the two children. Every two of them depend on each other: each parent boundary
must coincide with some child boundary and from the remaining boundaries of the
children, always two are directly adjacent. Hence, kp + k1 + k2 values can be chosen
to determine each instance. Hence #n

C(T) ∈ O(nkp+k1+k2). �

A maximality constraint reduces the number of instances of a type by a quadratic
factor since it fixes the first and last boundary. A length constraint reduces the
number of instances by a linear factor since it creates a dependency among the two
boundaries of the fragment. Hence the bounds on #n

C(T) and #n
P (T) can be refined

for constraint types.

Lemma 2 (number of instances for constrained types) For a sequence with
length n and some constraint type T , let the degree of the parent and the two children
be kp, k1 and k2, respectively and let cl be the number of length constraints on T
and cm = 2 if T has a maximality constraint and 0 otherwise. Then #n

C(T) ∈
O(nkp+k1+k2−cl−cm) and #n

P (T) ∈ O(n2kp−cm). 2

22

3.2 Classification of Pseudoknot Prediction Algorithms

Proof The argumentation is the same as for Lemma 1. In addition note that a
maximality constraint fixes the first and last boundary of the fragment. Since the
first and last boundary are always also boundaries of the parent, this reduces both
#n

C(T) and #n
P (T) by a quadratic factor. For each length constraint, if the left

boundary of the interval is at position i, the right one can only be instantiated
with one of the two values i − 1 and i since the interval must have length 0 or 1.
Hence #n

C(T) ∈ O(nkp+k1+k2−cl−cm2cl) = O(nkp+k1+k2−cl−cm) if we assume cl to be
a constant. �

As suggested by Lemma 2 the time and space requirements of an algorithm are
lower if the types in T contain constraints. Most pseudoknot prediction algorithms
take advantage of this fact. A further possibility used by many of the algorithms
to reduce the space complexity is based on certain invariants among the types T
contained in T .

Improving Space Complexity with Invariants The recursion scheme in Equa-
tion (3.1) does not say anything about the order in which the values are computed.
Obviously the order must be such that the values for smaller fragments must be
computed before the values for larger ones that contain them, but there is still a lot
of freedom in the choice of an evaluation order. In particular, if the types contained
in T satisfy certain invariants, the evaluation order can be chosen such that not all
entries must be kept in memory at the same time. To make this possible, the frag-
ments must be grouped into subsets that do not depend on each other recursively.

Definition 10 (grouped fragments) A grouping of a set of fragments F into k
groups is a collection of sets S1,...,Sk, G1,...,Gk such that F = (S1 ⊎ · · · ⊎ Sk) ⊎
(G1 ∪ · · · ∪ Gk). We call the elements in any Si simple fragments and the ones in any
Gi grouped fragments. Note that the groups Gi may overlap, which corresponds to
recomputing a value several times in order to save space. Let F now be the set of
fragments that occur as child and parent fragments in the instances of a set of split
types T . Then we call T invariant with respect to the grouping if for all T ∈ T , all
T -splits (F 1, F 2) of some F and all i holds

F ∈ Gi ∪ Si ⇒ F 1 ∈ Gi ∪ S1 ∪ · · · ∪ Si ∧ F
2 ∈ Gi ∪ S1 ∪ · · · ∪ Si (3.3)

| { Gi |F ∈ Gi } | is bounded by some constant (3.4)

2

The intuition of a grouping is that first the elements of S1 ∪ G1 are computed,
then the elements of S2 ∪ G2 and so on. Furthermore, the elements of any Si are
maintained in memory forever once they are computed while the memory for a group
Gi is freed as soon as the values of Gi+1 are computed such that only one Gi is kept
in memory at the same time. This is possible, since Requirement (3.3) ensures that
elements of any group may only rely on grouped fragments of the same group and
on any previously computed simple fragments. If the groups are not disjoint, the
respective values are recomputed for each of the groups, but by Requirement (3.4)

23

3 A General Approach to Dynamic Programming on RNA structures

each value is recomputed only a constant number of times and hence does not affect
the asymptotic time complexity.

As an example, consider T = {121, 1G21, 21G1}. For all split types in T the
second child is always simple and the first child has always its last boundary in
common with the parent fragment. In other words, during the recursive computation
of a fragment, among the gapped fragments that are involved, the last boundary
remains invariant. Therefore a grouping according to this last boundary satisfies
the Requirement (3.3):

Si :=
{

F
∣

∣F has degree 1 and F [1]R = i
}

(3.5)

Gi :=
{

F
∣

∣F has degree 2 and F [2]R = i
}

(3.6)

In this example the groups are disjoint and hence no value is computed more than
once. There exist only O(n2) simple fragments and of the in total O(n4) fragments
that contain at most one gap, each group only contains O(n3) entries. Hence an
evaluation order according to the grouping would reduce the space requirements by
a linear factor. The following lemma makes this optimization idea more precise.

Lemma 3 (space complexity for grouped fragments) Let T be invariant for
some grouping S1 · · · Sk ∪ G1 · · · Gk. Furthermore, let f be a function such that

∣

∣

∣

{

F ∈ S1 ∪ · · · ∪ Sk

∣

∣

∣
F̂ ⊆ [1, n]

}∣

∣

∣
∈ O(f(n)) (3.7)

and for all i
∣

∣

∣

{

F ∈ Gi

∣

∣

∣
F̂ ⊆ [1, n]

}
∣

∣

∣
∈ O(f(n)) (3.8)

Then the value OPT(F) for some fragment F of size n can be computed according
to Recursion (3.1) in O(f(n)) space without the need to compute any value more
than a constant number of times. 2

Proof The computation is done in k stages. In each stage i the values for the
elements of Si ∪ Gi are computed and then the memory for Gi is freed before stage
i+ 1 is entered. By that, each element of each group is computed exactly once and
hence by Requirement (3.4) each value is only computed a constant number of times.
Since at each point in time at most values for one group Gi are kept in memory, the
space requirement of O(f(n)) follows directly from (3.7) and (3.8).

It remains to show that for each stage i there exists an evaluation order such
that for each value that is computed the values that it depends on are already
computed and not yet erased again from memory. First note that by the nature of
a split, each fragment F only depends on fragments F ′ for which |F̂ ′| < |F̂ |. Hence
there are no cyclic dependencies which implies that there exists an evaluation order
that at least satisfies all dependencies among fragments computed within the same
stage. By Requirement (3.3) the only dependencies on values that are computed in
another stage are dependencies on simple values computed in an earlier stage. Since
the simple values are maintained forever in memory once they are computed, those
dependencies also do not conflict with the evaluation order. �

24

3.2 Classification of Pseudoknot Prediction Algorithms

Table 3.1: Pseudoknot classes and complexity of their associated prediction algo-
rithms. For A&U the first value is for simple and the second for simple
recursive structures.

class R&E A&U L&P D&P CCJ R&G

prediction
time O(m6) O(m4)/O(m5) O(m5) O(m5) O(m5) O(m4)
space O(m4) O(m3)/O(m3) O(m3) O(m4) O(m4) O(m2)

We have seen now that for a structure prediction algorithm following our scheme
both the algorithmic complexity and the class of structures that it is able to predict
directly depend on the associated set of split types T . Now we identify those split
types for the various existing pseudoknot prediction algorithms.

3.2.3 Instances of the Scheme

In contrast to pseudoknot alignment, for pseudoknot structure prediction various
algorithms have been developed [31, 46, 56, 1, 16, 17, 9, 44]. The complexities of
the different algorithms are shown in Table 3.1. Each algorithm has a corresponding
class of pseudoknots that it is able to predict. Following Condon et al. [11], we
name the classes of structures according to the authors of the respective prediction
algorithms: R&E (Rivas and Eddy [46]), A&U (Akutsu [1] and Uemura [56]), L&P
(Lyngsø¸ and Pedersen [31]), D&P (Dirks and Pierce [17]), CCJ (Chen, Condon,
and Jabbari [9]), and R&G (Reeder and Giegerich [44]). For each of them, we
now show how to interpret the respective algorithm as an instance of our algorithm
scheme. Furthermore, we show for each of them how to explain the time and space
complexity with the help of the results given in the previous section. For the class
of simple recursive pseudoknots we even show how to improve the space complexity
from O(n4) to O(n3) compared to the original algorithm of Akutsu [1].

R&E structures

The algorithm by Rivas and Eddy [46] recursively considers all possible fragments
with a degree of at most two. The fragments are recursively computed according
to the recursion scheme given in (3.1) with all split types for which the parent and
both children have a degree of at most two. By Lemma 1 this results in a time
and space complexity of O(n6) and O(n4) which is exactly the complexity of the
R&E algorithm. This is the highest complexity among all algorithms we are going
to consider and the class of generated structures is also the largest in this algorithm.
All other algorithms can be considered as attempts to restrict the set of considered
split types of the R&E algorithm to obtain a better complexity at the cost of a
smaller set of covered structures.

25

3 A General Approach to Dynamic Programming on RNA structures

A&U structures (simple and simple recursive pseudoknots)

The algorithms of Akutsu [1] and Uemura [56] are just two representations of the
same algorithm. The algorithm of Deogun et al. [16] also just differs from those in
its scoring scheme but not in its recursive nature. We consider the representation
given by Akutsu. This algorithm is described in two variants: one for simple pseudo-
knots and one for simple recursive pseudoknots. Both compute matrices SL(i, j, k),
SR(i, j, k) and SM (i, j, k) for all possible starting points i0.

2 In our notation this
corresponds to computing values for fragments of the form ([i0, i], [j, k]). The in-
spection of the recursions for SL, SR, and SM shows that they employ the following
split types:

12′G2′1 1G2′12′ 12′G1 1G2′1 1G12′ 12′G2′

(12G1) (1G21) (1G12)

The split types in brackets are only used for simple recursive pseudoknots. The A&U
algorithm for simple pseudoknots constructs the structures by recursively adding
single, unpaired bases and single arcs. The second child in the split types represents
a base, if it consists of a single, length constrained interval and an arc, if it consists of
two length constrained intervals. The gapped fragments are combined to fragments
without gaps (represented by the recursions for Spseudo(i0, k0) and S(i, j) in the
original presentation in [1]) with the split types

121 12

By Lemma 2 this yields a time complexity of O(n4) for simple and O(n5) for simple
recursive pseudoknots which is exactly the complexity reported in [1]. For exam-
ple, we have #n

C(12
′G1) ∈ O(n4) and #n

C(12G1) ∈ O(n5). Without any further
optimization, also by Lemma 2 the space complexity is O(n4), but for simple pseu-
doknots Akutsu describes an evaluation order that reduces the space requirement
to O(n3). This evaluation order does not work for simple recursive pseudoknots
since it requires to compute all fragments of degree 2 before all fragments of degree
1 which is not possible with the additional split types required for simple recursive
pseudoknots. We present now another evaluation order that also reduces the space
complexity to O(n3) and works for both simple and simple recursive pseudoknots.
This effectively leads to an improved algorithm for simple recursive pseudoknots
with a better space complexity than known so far.

For a sequence of length n, we define the grouping on its fragments F as

Si :=
{

F
∣

∣F has degree 1 and F [1]L = n+ 1− i
}

(3.9)

Gi :=
{

F
∣

∣F has degree 2 and F [1]L = n+ 1− i
}

(3.10)

By this grouping, all fragments are computed according to their leftmost boundary
from right to left. Since all split types used by the algorithm, including the ones for
simple recursive structures, are invariant with respect to this grouping, by Lemma 3
the computation requires O(n3) space.

2Actually the algorithm is presented as computing these values for all possible i0 and k0 and later
it is shown that the values are independent of k0.

26

3.2 Classification of Pseudoknot Prediction Algorithms

L&P structures

Lyngsø¸ and Pedersen [31] predict certain pseudoknots in O(n5) time and O(n3)
space. With respect to our algorithm scheme their approach is in particular inter-
esting since it uses a sophisticated grouping to reduce the space complexity. The
algorithm constructs the final structure out of two gapped fragments according to
the split type

↓12121↓ .

These two fragments are computed recursively based on the following split types.

↓12′G2′1G1↓ ↓1G21G1↓ ↓12G1G1↓ ↓2G1G12↓ (with 2 gaps)
2’1G12’ 21G1 1G12 1G2 (with 1 gaps)
2’12’ 12 (without gaps)

As in the A&U algorithm, split types where the second child has length constraints
correspond to the addition of single arc. By Lemma 2 the set of split types yields
a time and space complexity of O(n5) and O(n4), respectively. Note that due to
the maximality constraint only O(n4) fragments with two gaps are considered. The
space complexity is reduced to O(n3) with the following grouping of the fragments
F of the sequence:

Si :=

{

{F |F has degree 1 and F 6= {[1, n]} } if i = 1

∅ if i > 1
(3.11)

Gi :=

{

F

∣

∣

∣

∣

∣

F has degree 2 and F [1]R = i− 1 or F [2]L = i

or F has degree 3 and F [2]R = i− 1

}

(3.12)

This grouping computes at the beginning (in S1) all simple fragments which are
exactly the ones of degree 1 except the final one covering the entire sequence. This
is possible since fragments of degree 1 are only computed by the splits 2′12′ and
12 and hence only recursively rely on atomic fragments and other simple fragments
with degree 1.
Then all grouped fragments are computed, where in this case the groups overlap.

Any group Gi contains the fragments with two gaps where the last gap starts at
i+ 1 and the fragments with one gap where this gap starts at i+ 1 or ends at i. In
all the split types the start and end point of the last gap remains invariant among
the parent and the first child. This can be seen in the pattern 1G1 that is part of
all the gapped split types used by the algorithm. Hence the Requirement (3.3) is
satisfied for the first child. The second child is always atomic, except for the type
↓2G1G12↓ . For ↓2G1G12↓ due to the maximality constraint the second child
has only O(n2) possible instances and those are computed in a preprocessing step
analogous to the recursion of fragments with degree one. Lyngsø¸ and Pedersen
motivate this with the idea that the sequence is cyclic. In the cyclic sequence, the
second child in ↓2G1G12↓ has no gap but just consists of one contiguous area
due to the maximality constraint. Each fragment of degree 1 or 3 is contained in

27

3 A General Approach to Dynamic Programming on RNA structures

exactly one group and each fragment of degree 2 is contained in two groups. Hence
Requirement (3.4) is also satisfied.

The grouping does not yet include the final fragment {[1, n]}. The reason is that
this is calculated with the split type 12121 step by step in-between the different
stages applied by the grouping and hence does not fit exactly in the scheme. Once
the values for some group Gi are computed, the instances of 12121 for which the two
children are contained in Gi are considered. Due to the construction of the grouping,
both children are always contained in the same group: if the gap of the second child
ends at i the last gap of the first child starts at i+1 since those are directly adjacent
in 12121.

D&P structures

Dirks and Pierce [17] developed an algorithm to compute the partition function for
RNA pseudoknots that can also be modified to predict the MFE structure. The
main restriction compared to the general R&E algorithm is that the D&P algorithm
does not consider splits where both children and the parent are unconstrained and
have a degree of two. This is reasonable since those are the only ones that have
O(n6) instances for the children. In detail the considered split types are

12 1212 21G1 12G1 1G21 1G12 1′2G21′.

The complexity of O(n5) time and O(n4) space follows directly from Lemma 2
without any further grouping or other optimizations.

CCJ structures

The algorithm of Chen et al. [9] is able to predict the class of CCJ structures, which is
a class containing for example kissing hairpins and 4-chains (i.e. four stems arranged
from left to right such that each stem overlaps with the neighboring stems). CCJ
structures are recursively composed out of TGB fragments (three groups of bands).
A TGB fragment is a structure with one gap as visualized in Figure 3.4. It can be
parsed with the following split types:

2′12′G1 2′1G12′ 12′G2′1 1G2′12′ (add a single arc)
21G1 12G1 1G21 1G12 (add a recursive CCJ structure)

A CCJ structure is composed from TGB fragments by the following split types

1212 (combine two TGB structures)
1′21′ 12 (add arc or concatenate two structures)

For all those split types T for TGB and CCJ structures, by Lemma 2 #m
C (T) ∈

O(m5) and #m
P (T) ∈ O(n4). Hence the algorithm runs in O(n5) time and O(n4)

space.
The recursions for TGB fragments can be considered as an extension of the A&U

recursions. The three types 2′12′G1, 2′1G12′, and 21G1 are added which at the one

28

3.2 Classification of Pseudoknot Prediction Algorithms

Figure 3.4: a) Schematic representation of a TGB fragment. It consists of three
groups of bands of which the middle one spans the gap. b) TGB struc-
tures may contain CCJ structures recursively (Figures taken from Chen
et al. [9]).

hand allows to generate more complex structures (with three instead of two groups
of bands) but on the other hand destroys the invariant that is necessary to optimize
the space complexity to O(n3).

R&G structures

The efficiency of the Reeder and Giegerich [44, 45] structure prediction algorithm
(O(n4) time, O(n2) space) is due to the restriction to canonical pseudoknots. A
stem of base pairs is called canonical if it cannot be extended by another valid base
pair. The canonical stem containing a given base pair is thus uniquely determined.
In R&G structures, pseudoknots are formed only by two crossing canonical stems.
An example for such a canonical pseudoknot is given in Figure 3.5.

The Reeder and Giegerich recursion uses the following split types

2′1 12′ 12 1′21′ 1c23c41c53c

where the c’s in the last type indicate a new kind of constraint, namely that the
respective stem is canonical. Also note that this last type contains five instead of
two children. In order to simplify the presentation, so far we have restricted splits to
have only two children but the problem generalizes to k children without problems.

Figure 3.5: An example for a canonical pseudoknot. Both stems are maximal in the
sense that they cannot be extended with additional arcs. An extension
with an inner arc is not possible for any of the two stems, since the red
G’s cannot pair, the left stem cannot be extended to the outside, since
it already starts at the beginning of the sequence and the second stem
cannot be extended to the outside since the blue U and C cannot pair.

29

3 A General Approach to Dynamic Programming on RNA structures

The types of the R&G algorithm directly correspond to the grammar rules given
in [44] to describe the algorithm in terms of the ADP framework [23]:

S → . | . S | S. | SS | (S) | [kS{lS]kS}l

In this grammar, [k]k and {l }l denote the two canonical stems of length k and l,
respectively, i.e. k and l denote that the respective symbol in the grammar should
be repeated k and l times, respectively. Note that #n

C(1
c23c41c53c) ∈ O(n4) and

#n
P (1

c23c41c53c) ∈ O(n2): the parent has no gap and the two children are uniquely
determined by choosing two canonical (i.e. maximally extended stems) of which
there are only O(n2) many for each of them. To see that there are O(n2) canonical
stems, just note that you can choose arbitrarily the start and end point of some arc
and then extend it to a maximal stem.

For all split types T other than 1c23c41c53c, #m
C (T) ∈ O(m3) and #m

P (T) ∈ O(n2)
follows from Lemma 2. Hence, the overall time and space complexity of the R&G
algorithm is O(n4) and O(n2), respectively.

3.3 A General Framework for DP based Alignment of

RNA Structures

In the last section we have seen that the concepts of parse trees and gapped frag-
ments allow to explain all known DP based pseudoknot prediction algorithms in a
common framework. We now develop a similar framework for DP based pseudoknot
alignment. All pseudoknot prediction algorithms presented later in this thesis will
be explained in terms of this framework. As a consequence the similarities and differ-
ences of the various algorithms are clearly visible. Furthermore, the design decisions
taken for each of the algorithms become very explicit which leads to a thorough
understanding of how these decisions affect the complexity of the respective algo-
rithm and lead to certain restrictions on the input structures. The fact that also
already existing alignment algorithms can be explained in terms of the framework
both shows the generality of the approach and allows for a precise comparison with
previous work.

Throughout this section we assume the presence of two arc-annotated sequences
that should be aligned to each other and denote them as (Sa, Pa) and (Sb, Pb),
respectively.

3.3.1 From Single Sequences to Sequence Pairs

While a parse tree represents a recursive decomposition of a single RNA structure, for
pairwise alignments we are always concerned with two structures. The central idea
for DP based alignment methods is to compose the final alignment out of optimal
alignments of certain fragments. Hence, both structures have to be decomposed
simultaneously in the same way. This is formalized with the notion of fragment
pairs and split pairs.

30

3.3 A General Framework for DP based Alignment of RNA Structures

Fb
²´Fb

¹´
Fb
²Fb

¹
Fb

Fa
²Fa

¹
Fa

G CAA

A A G G C

A
S

a

S
b

Figure 3.6: An alignment A that aligns the fragment pair (Fa, Fb). The figure shows
one split (F 1

a , F
2
a) of F a and two different possible splits (F 1

b , F
2
b) and

(F 1′

b , F
2′

b) of Fb. Note that the split of Fa is aligned to both splits of Fb.

Definition 11 (fragment pair and split pair) A fragment pair of degree k is a
pair F = (Fa, Fb), where Fa is a fragment of the first sequence (Sa, Pa) and Fb is a
fragment of the second sequence (Sb, Pb) and both fragments have the same degree
k. A split pair (F1,F2) of F with basic split type T is a pair where F1 = (F 1

a , F
1
b)

and F2 = (F 2
a , F

2
b) such that (F 1

a , F
2
a) is a split of Fa and (F 1

b , F
2
b) is a split of Fb

and both splits have basic type T . 2

Definition 12 (alignment of fragments and splits) An alignment A aligns a
fragment pair F = (Fa, Fb) of degree k, short alignA(F), if and only if for all
(a1, a2) ∈ A and for all i ∈ 1 . . . k it holds that a1 = − or a2 = − or a1 ∈ Fa[i] ⇔
a2 ∈ Fb[i]. Furthermore, A aligns a split pair (F1,F2), if and only if alignA(F

1)
and alignA(F

2). The restriction of A to F is defined as A|F = A ∩ ((F̂a ∪ {−}) ×
(F̂b ∪ {−})). 2

Note that for a given alignment A, a fragment (or a split) of one sequence can
be aligned to several fragments (or splits) of the other. As an example consider
Figure 3.6.

In general DP algorithms find a solution by recursively solving subproblems. In
the case of alignment a subproblem can be restricted in the following two ways.
Either a subproblem consists of finding the optimum only among a restricted set A
of alignments and not among all possible alignments, or it consists of finding the
optimal alignment only for certain fragments (Fa, Fb) of the sequences and not for
the entire sequences. Both restrictions can be combined. The solution of such a
restricted subproblem is represented by CA(Fa, Fb) which is defined as follows.

Definition 13 (CA(F)) For any pair of fragments F = (Fa, Fb) and any set A of
alignments such that for each A ∈ A is holds alignA(F), we define

CA(F) := min
A∈A

cost(A|F)

31

3 A General Approach to Dynamic Programming on RNA structures

and furthermore

C(F) := CA(F) for A = {A |alignA(F) }
2

Intuitively, CA(F) represents the optimal cost to align the fragment pair F under
the assumption that the optimal alignment is contained in the set of alignments A
and under the assumption that this optimal alignment contains no open arc matches
for F .

Definition 14 (open arc matches) Let A be an alignment that matches some
fragment pair F = (Fa, Fb). A pair of arcs (pa, pb) ∈ Pa × Pb is called an open arc
match for (Fa, Fb), if and only if (pa, pb) is matched by A and pa is open in Fa, i.e.
pLa ∈ F̂a 6⇔ pRa ∈ F̂a. 2

Since A matches the two arcs as well as the two fragments, the fact that pa is open in
Fa is equivalent to the fact that pb is open in Fb. If both Fa and Fb are arc complete
the fragment pair (Fa, Fb) has no open arc matches. Note that the converse does
not hold, since Fa and Fb might have open arcs that are not matched to any arcs in
the other sequence.

3.3.2 The Basement for Recursive Computation of Alignments

In the previous section we have defined the general notion of CA(F) that corresponds
to the optimal alignment of a fragment pair F provided that the optimal alignment
is contained in the set of alignments A. A DP based alignment algorithm can now
be described as recursively computing such entries CA(F).

While this is common to all alignment algorithms we consider, the main difference
is which instances of CA(F) are considered and in what way they are recursively
computed. For those aspects there is a wide range of choices but nevertheless, all
of them have to obey certain rules to guarantee the correctness of the algorithm.
In this section we present some basic lemmata that capture those general rules and
show how CA(F) can be computed recursively.

The lemmata build the basement for all alignment algorithms presented later and
probably also for most other DP based RNA alignment algorithms. They capture
simple properties that should not be regarded as surprising new facts but rather
as the central properties of the problem domain. Making these properties explicit
allows to base the correctness proofs of the algorithms presented later on a proper
core. It also simplifies the process to adapt the algorithms to other related problems
(as alignments for different kinds of structures or for different scoring schemes), since
many properties directly follow once it is shown that the core lemmata are satisfied.

Lemma 4 (case distinction) Let F be a fragment pair, A a set of alignments that
align F and A1, . . . ,Ak subsets of A such that

⋃

i∈[1,k]Ai = A. Then

CA(F) = min
i∈[1,k]

CAi

2

32

3.3 A General Framework for DP based Alignment of RNA Structures

Proof

CA(F) = min
A∈A

cost(A|F) = min
i∈[1,k]

min
A∈Ai

cost(A|F) = min
i∈[1,k]

CAi

�

This simple lemma shows in the most general way what choices are available to tra-
verse the search space of all possible alignments to find the optimal one. The lemma
alone is sufficient for a naive generate and test algorithm (by choosing A1, . . . ,Ak

to be all possible singleton sets). To obtain more efficient algorithms, the case dis-
tinction must be combined with a decomposition into alignments of independent
fragments. Since in our scoring scheme the only cost that is not local to a single
position is the match of two arcs, the notion of independence is captured in the
absence of open arc matches. If the absence of open arc matches can be guaranteed,
an alignment problem can be decomposed into independent subproblems according
to the following lemma.

Lemma 5 (independence) Let A be a set of alignments and (Fa, Fb) be a frag-
ment pair such that for all A ∈ A the fragment pair (Fa, Fb) is aligned by A and
contains no open arc matches. Furthermore, let ((F 1

a , F
2
a), (F

1
b , F

2
b)) be a split pair

of (Fa, Fb) such that both both (F 1
a , F

1
b) and (F 2

a , F
2
b) also satisfy those properties

(i.e. are aligned by all A and contain no open arc matches). Then

CA(Fa, Fb) ≥ CA(F
1
a , F

1
b) + CA(F

2
a , F

2
b) ≥ C(Fa, Fb)

Furthermore, if A contains the optimal alignment then

CA(Fa, Fb) = CA(F
1
a , F

1
b) + CA(F

2
a , F

2
b) 2

Proof

CA(Fa, Fb)
Def.13
= min

A∈A
cost(A|Fa×Fb

) (3.13)

= min
A∈A

(

cost(A|F 1
a×F 1

b
) + cost(A|F 2

a×F 2
b
)
)

(3.14)

≥ min
A∈A

cost(A|F 1
a×F 1

b
) + min

A∈A
cost(A|F 2

a×F 2
b
) (3.15)

Def.13
= CA(F

1
a , F

1
b) + CA(F

2
a , F

2
b) (3.16)

Line 3.14 holds due to the definition of cost (Definition 3) and the absence of open arc
matches in (F 1

a , F
1
b) and (F 2

a , F
2
b). To show Line 3.15 consider alignments A1, A2 ∈ A

for which cost(A1|F 1
a×F 1

b
) = CA(F

1
a , F

1
b) and cost(A2|F 2

a×F 2
b
) = CA(F

2
a , F

2
b). Then

for A′ := A1 −A1|F 2
a×F 2

b
∪A2|F 2

a×F 2
b
, it holds that cost(A′|Fa,Fb

) = cost(A1|F 1
a ,F

1
b
) +

cost(A2|F 2
a ,F

2
b
) and hence CA(F

1
a , F

1
b) +CA(F

2
a , F

2
b) = C{A′}(Fa, Fb) ≥ C(Fa, Fb). If

A contains the optimal alignment, CA(Fa, Fb) = CA(F
1
a , F

1
b) + CA(F

2
a , F

2
b) follows

directly from CA(Fa, Fb) = C(Fa, Fb). �

33

3 A General Approach to Dynamic Programming on RNA structures

In the case that CA(Fa, Fb) > CA(F
1
a , F

1
b) + CA(F

2
a , F

2
b), an alignment A′ that sat-

isfies C{A′}(Fa, Fb) = CA(F
1
a , F

1
b)+CA(F

2
a , F

2
b) is not contained in A but can easily

be constructed as described in the proof of Lemma 5. To simplify the presentation,
we hence assume from now on that CA(Fa, Fb) = CA(F

1
a , F

1
b) + CA(F

2
a , F

2
b). For-

mally this can be justified by implicitly replacing CA(Fa, Fb) by CA∪{A′}(Fa, Fb) in
cases where A′ 6∈ A. Since in all algorithms we are finally interested in the optimum
among all possible alignments, adding A′ is always safe. The next lemma captures
the fact that CA(F) depends only on the part of the alignments in A that is covered
by F .

Lemma 6 (cost locality) Let F be a fragment pair and A1 and A2 be sets of
alignments such that for each A ∈ A1 ∪A2 is holds that alignA(F) and furthermore

{ A|F |A ∈ A1 } = { A|F |A ∈ A2 } (3.17)

Then
CA1(F) = CA2(F)

2

Proof

CA1(F)
Def.13
= min

A∈A1

cost(A|F)
Eq.3.17
= min

A∈A2

cost(A|F)
Def.13
= CA2(F) (3.18)

�

As a corollary, it suffices to consider only alignments that contain no open arc
matches for the considered fragment.

Definition 15 (arc complete cost) Let CAC(F) := CA(F) for
A = {A |A aligns F and contains no open arc matches for F }. 2

Corollary 1 (arc complete costs) For all F it holds that C(F) = CAC(F). 2

Proof The set of all alignments and the set of all arc complete alignments satisfy
the properties required for A1 and A2 in Lemma 6. �

34

4 Fixed Parameter Tractable

Alignment of Arbitrary Pseudoknots

In this section several alignment algorithms for the alignment of two arc annotated
sequences are considered. We start with a well known algorithm for plain sequence
alignment and extend it step by step to an algorithm that can handle arbitrary
pseudoknots. Each of the intermediate steps forms an algorithm that either improves
the time and space complexity compared to the previous one or is able to align
more complex structures. In that way we go from an algorithm for plain sequences
without structure to an algorithm for pseudoknot free structures and finally several
algorithms for the alignment of arbitrary pseudoknots.

Since each algorithm is presented as an extension of the previous ones, the similar-
ities of the algorithms become apparent. This is also supported by the fact that all
the algorithms are presented in terms of the general alignment framework developed
in Section 3.3. As a further benefit, the framework also allows to give correctness
proofs that are both precise and simple.

Throughout the chapter we will denote the two arc annotated sequences that are
aligned by the algorithms with (Sa, Pa) and (Sb, Pb). Furthermore, n and m denote
the length of the two sequences, respectively. Most algorithms presented in this
chapter only consider fragments of degree 1. To simplify notation, we will therefore
represent a fragment ([i, i′]) as [i, i′]. Before we look at the algorithms we take a
look at the theoretical complexity of the problem that the algorithms solve.

4.1 Hardness Results for the Alignment of Pseudoknots

In this section first some complexity results for sequence structure alignment are
reviewed. In particular the NP-completeness of the alignment of pseudoknots is
shown for various scoring schemes. Then the concept of parameterized complexity
is explained. This concept allows a more fine grained analysis of the complexity of
NP-hard problems and will be used to show that the algorithms presented later in
this chapter are fixed parameter tractable.

4.1.1 NP-Hardness Results

The complexity of an alignment problem mainly depends on two aspects: the class
of considered structures and the scoring scheme. These two aspects are captured in
the alignment hierarchy of Blin et al. [7]. This hierarchy considers three different
models for the scoring scheme that are all based on some edit distance:

35

4 Fixed Parameter Tractable Alignment of Arbitrary Pseudoknots

A C - U C U C G C G G G

A C C U C U C G - - G G

(a) alignment

A C C U C U C G C G G G

(b) common superstructure

Figure 4.1: An alignment of two nested structures with a crossing superstructure.

• model I allows arbitrary substitutions, base-deletions and arc-removings,

• model II allows arc-altering and all operations of model I, and

• model III allows arc-breakings and all operations of model II.

Concerning the structures, the alignment hierarchy distinguished between nested
structures (nest), crossing structures (cross) and unlimited structures (unlim).
The latter also allow many arcs to be adjacent to the same base. Besides the struc-
ture of the two input sequences, the alignment hierarchy also considers the common
superstructure. This structure is obtained by overlaying the two input structures
according to the alignment; an example is given in Figure 4.1. A restriction on the
class of superstructures can be thought of as a constraint on the optimal alignment
that is computed. If the superstructure is for example required to be nested, the
algorithm computes the optimal alignment only among all alignments that do not
lead to a crossing superstructure.

An instance of the alignment hierarchy is described by a scoring scheme model
M ∈ I, II, III and three structure classes A, B, C ∈ {nest,cross,unlim}. A and B
denote the structure classes for the two input structures and C denotes the structure
class for the common superstructure, as we indicate with the notation A×B → C.

The known complexity results for the instances of the alignment hierarchy are
summarized in Table 4.1. One of the most striking aspects of those results is that
polynomial complexities have only been identified for problems where at least one
of the input structures is nested. As soon as both structures are crossing the prob-
lem becomes NP-complete or even Max SNP-hard. The latter means that unless
P=NP their does neither exist a polynomial time algorithm nor a polynomial time
approximation scheme for the problem.

Concerning the different scoring models Table 4.1 shows that the arc-altering and
arc-breaking operations of models II and III make the problem harder. While model
I is solvable in polynomial time as long as at least one structure is nested, models
II and III can only be solved in polynomial time if both input structures and the
common super structure are nested.

36

4.1 Hardness Results for the Alignment of Pseudoknots

Table 4.1: Complexity results for the alignment hierarchy according to Blin et al. [7].

structures
scoring schemes

I II III

nest×nest→nest O(n4) O(n4) O(n4)
nest×nest→cross O(n3 log(n)) NP-complete
nest×nest→unlim O(n3 log(n)) NP-complete NP-complete

cross×nest→cross O(n3 log(n)) NP-complete
cross×nest→unlim O(n3 log(n)) NP-complete Max SNP-hard
cross×cross→cross NP-complete NP-complete
cross×cross→unlim NP-complete NP-complete Max SNP-hard

unlim×nest→unlim O(n3 log(n)) NP-complete Max SNP-hard
unlim×cross→unlim NP-complete NP-complete Max SNP-hard
unlim×unlim→unlim NP-complete NP-complete Max SNP-hard

An interesting special case for a scoring scheme is the general edit distance of
Jiang et al. [27] (described in Section 2.2.2). It corresponds to model III but with
the additional restriction that an arc-altering must always have the cost of half
an arc-breaking and half an arc-deletion. This additional restriction turns out
to be crucial for the complexity of the problem and allows, for example, to solve
cross×nest→cross in O(n4) time and O(n2) space. Since the general edit dis-
tance subsumes the scoring model I, in the case of two crossing input structures the
problem becomes NP-hard.

Among the considered scoring schemes the general edit distance is the most expres-
sive one that is solvable in polynomial time at least for non-crossing input structures.
Therefore we focus on it in this thesis. Since for arbitrary pseudoknots a polynomial
time bound is not achievable we will analyze the algorithms by means of parame-
terized complexity.

4.1.2 There is still Hope: Parameterized Complexity

As described in the previous section, in the presence of arbitrary pseudoknots the
alignment problem is NP-hard. Hence, unless P=NP there is no hope to find a poly-
nomial runtime guarantee. Therefore we analyze the time and space requirements of
the algorithms for arbitrary pseudoknots not in terms of classical complexity theory
but in terms of parameterized complexity [18].

In contrast to classical complexity theory, parameterized complexity measures the
complexity as a function that does not only depend on the size of the input but also
on some additional parameter. One can think of this parameter as an additional
aspect or property of the input besides its size. More formally, the introduction
of such a parameter partitions the set of problem instances into k-slices such that
each k-slice contains the instances for which the parameter equals k. Whereas in
classical complexity theory the complexity is measured by a function f(n) that is an
upper bound for the runtime of all instances of size n, in parameterized complexity

37

4 Fixed Parameter Tractable Alignment of Arbitrary Pseudoknots

a function f(n, k) gives an upper bound for the runtime of only the instances of size
n that are contained in the respective k-slice.

If this parameter is appropriately chosen, many problems turn out to be only
exponential in the parameter k but polynomial in n. In that sense a parameterized
complexity analysis is able to identify that the worst case exponential runtime of
some algorithm is not directly related to the size of the input but only to some
other aspect that might grow arbitrarily with the input but not necessarily does in
practice.

The main goal when giving a runtime guarantee in terms of parameterized com-
plexity is to identify a parameter that it small on practical instances. If for the
instances of interest the parameter is bounded by some constant, for those instances
the algorithm has a polynomial runtime (according to the classical measure in terms
of input size). An algorithm for which this is the case is called fixed parameter
tractable.

Concerning the alignment of pseudoknots there exists already an encouraging ex-
ample for a fixed parameter tractable algorithm. This algorithm by Evans [20] com-
putes the longest arc-preserving common subsequence (Lapcs) of two pseudoknot
structures. The Lapcs problem corresponds to an instance of the scoring model II
of the alignment hierarchy [7] and hence is NP-complete (see Table 4.1). However, in
terms of parameterized complexity the algorithm by Evans runs in O(9knm) time,
where n and m represent the length of the two input structures, respectively, and
k is the maximum arc cutwith among all sequence positions. The arc cutwith of a
sequence position i is defined as the number of arcs (j, k) for which j < i ≤ k. This
number is usually much smaller that the sequence length.

4.2 Relevant Subproblems that are Solvable in

Polynomial Time

Before looking at the alignment of arbitrary pseudoknot structures we take a look at
alignment problems for more restricted structure classes that are solvable in polyno-
mial time. More precisely, we look at two well known algorithms for the alignment
of plain sequences and nested structures and show how they fit into the general
alignment framework presented in the previous chapter. The algorithm for nested
structures is presented as an extension of the algorithm for plain sequences. This is
in particular interesting since later in this chapter the algorithm for nested structures
is extended similarly to handle pseudoknots.

In each extension, the main goal is to use the recursions of the simpler algorithms
as much as possible and only to switch to a more complex, slower recursion for parts
in the structure, where it is really necessary. Therefore, a thorough understanding
of the alignment methods presented in this section is necessary to understand the
pseudoknot alignment methods following later.

38

4.2 Relevant Subproblems that are Solvable in Polynomial Time

4.2.1 Alignment of Plain Sequences

In the absence of secondary structure in at least one of the two sequences (i.e. if P1 =
∅ or P2 = ∅) the alignment can be computed according to the well known Needleman
Wunsch algorithm [39]. This algorithm recursively computes the alignment of all
possible prefixes of the two sequences. Since the same recursion will later be required
also to compute other fragments of the sequences, the following lemma describes the
recursion in a more general form for fragments [i, i′], although it suffices to consider
fragments of the form [1, i′] for plain sequence alignment.

Lemma 7 (plain sequence alignment) Let P1 = ∅ or P2 = ∅ and i, i′, j, i′ such
that 1 ≤ i < i′ ≤ |Sa| and 1 ≤ j < j′ ≤ |Sb|. Then

C([i, i′], [j, j′]) = min

C([i, i′ − 1], [j, j′]) + gap1(i
′) (4.1a)

C([i, i′], [j, j′ − 1]) + gap2(j
′) (4.1b)

C([i, i′ − 1], [j, j′ − 1]) + basematch(i′, j′) (4.1c)

2

Based on the lemmata developed in Section 3.3 we can easily prove this recursion
now. Although the recursion is well known and not very complex, the proof is given
in detail, since it forms the basis of the proofs following later in the chapter.

Proof Consider the following partition of the set of alignments that align [i, i′] to
[j, j′], i.e. of A = {A |alignA([i, i

′], [j, j′]) } into

A1 :=
{

A ∈ A
∣

∣(i′,−) ∈ A
}

A2 :=
{

A ∈ A
∣

∣(−, j′) ∈ A
}

A3 :=
{

A ∈ A
∣

∣(i′, j′) ∈ A
}

Then

C([i, i′], [j, j′])
Lem.4
= min

CA1([i, i
′], [j, j′])

CA2([i, i
′], [j, j′])

CA3([i, i
′], [j, j′])

(4.2)

Lem.5
= min

CA1([i, i
′ − 1], [j, j′]) + CA1([i

′], [j′ + 1, j′])

CA2([i, i
′], [j, j′ − 1]) + CA2([i

′ + 1, i′], [j′])

CA3([i, i
′ − 1], [j, j′ − 1]) + CA2([i

′], [j′])

(4.3)

Lem.6
= min

C([i, i′ − 1], [j, j′]) + CA1([i
′], [j′ + 1, j′])

C([i, i′], [j, j′ − 1]) + CA2([i
′ + 1, i′], [j′])

C([i, i′ − 1], [j, j′ − 1]) + CA2([i
′], [j′])

(4.4)

Def.13
= min

C([i, i′ − 1], [j, j′]) + gap1(i
′)

C([i, i′], [j, j′ − 1]) + gap2(j
′)

C([i, i′ − 1], [j, j′ − 1]) + basematch(i′, j′)

(4.5)

Since P1 = ∅ or P2 = ∅ the absence of open arc matches required for Lemma 5 in
Line 4.3 is trivially satisfied. �

39

4 Fixed Parameter Tractable Alignment of Arbitrary Pseudoknots

i

j j‘

i‘

j‘-1

i‘-1

p
a

p
b

(a)

p
a

p
b

i

j j‘

i‘i
1

j
1

(b)

Figure 4.2: The recursion for plain sequence alignment is not correct in the pres-
ence of secondary structure, since it may cause open arc matches in
the fragments that are recursively considered as shown in (a). Part (b)
shows a solution for that for nested structures. Here the alignment can
be decomposed according to case 4.6(d) into the arc match itself, the
part before the arc match ([i, i1 − 1], [j, j1 − 1]) and the part below it
([i1 + 1, i′ − 1], [j1 + 1, j′ − 1]). These two parts are only independent
for nested structures. In the presence of pseudoknots they may again
contain open arc matches as indicated by the gray, dashed arcs.

A dynamic programming algorithm based on the recursion of Lemma 7 computes
a matrix with values C([1, i′], [1, j′]) for all 0 ≤ i ≤ n and 0 ≤ i ≤ m, where n = |Sa|,
m = |Sb|. Note that the two left boundaries can be fixed to 1, since the boundaries i
and j stay invariant during the recursion. Therefore, the computation of the optimal
alignment, C([1, |Sa|], [1, |Sb|]), relies only on the optimal alignments of all prefixes
of the two sequences.

The recursion is applied to all entries with i′ > 0 or j′ > 0. If either i′ = 0 or
j′ = 0 one of the two prefixes is the empty prefix and hence its last position cannot
be aligned to a gap or another base. In the recursion, those respective cases would
rely on fragments [1,−1] that are not well-defined. Therefore those cases of the
recursion are then implicitly skipped. Note that this is correct, since in those cases
the respective sets A1 or A2 and A3 in the proof of Lemma 7 are empty. Finally, the
only base case that is not computed according to the recursion is the cost to align
to empty prefixes which is set to C([1, 0], [1, 0]) = 0. As each entry can be computed
in constant time, the DP algorithm based on this lemma requires O(nm) time and
space.

4.2.2 Nested Sequence Structure Alignment

In the presence of secondary structure, the absence of open arc matches required for
Lemma 5 in Equation 4.3 is not always satisfied. A case where this is not satisfied
is shown in Figure 4.2(a).

40

4.2 Relevant Subproblems that are Solvable in Polynomial Time

The algorithm by Jiang et al. [27] solves this problem for nested structures. This
algorithm handles arc matches by decomposing the alignment into the part before
the arc match and the part below it as shown in Figure 4.2(b). The full recursion is
described in the following lemma.

Lemma 8 (nested structure alignment) Let P1 or P2 be nested and i, i′, j, j′

such that 1 ≤ i < i′ ≤ |Sa| and 1 ≤ j < j′ ≤ |Sb|. Then

C([i, i′], [j, j′]) = min (4.6)

C([i, i′ − 1], [j, j′]) + gap1(i
′) (4.6a)

C([i, i′], [j, j′ − 1]) + gap2(j
′) (4.6b)

C([i, i′ − 1], [j, j′ − 1]) + basematch(i′, j′) (4.6c)

if ∃(pa, pb) = ((i1, i
′), (j1, j

′)) ∈ Pa × Pb for some i1, j1 (4.6d)

C([i, i1 − 1], [j, j1 − 1]) + C([i1 + 1, i′ − 1], [j1 + 1, j′ − 1])

+ arcmatch(pa, pb)

2

Proof If there does not exist an appropriate i1 or j1, the proof is analogous to the
sequence alignment case. Otherwise consider the partition of

A =
{

A
∣

∣A aligns [i, i′] to [j, j′] and contains no open arc matches for those fragments
}

into

A1 :=
{

A ∈ A
∣

∣(i′,−) ∈ A
}

A2 :=
{

A ∈ A
∣

∣(−, j′) ∈ A
}

A3 :=
{

A ∈ A
∣

∣(i′, j′) ∈ A and (i1, j1) 6∈ A
}

A4 :=
{

A ∈ A
∣

∣(i′, j′) ∈ A and (i1, j1) ∈ A
}

Note that due to Corollary 1 it suffices to consider no open arc matches for the
fragment pair ([i, i′], [j, j′]). For the partition we have

C([i, i′], [j, j′])
Cor.1
= CAC([i, i

′], [j, j′]) (4.7)

Lem.4
= min

CA1([i, i
′], [j, j′])

CA2([i, i
′], [j, j′])

CA3([i, i
′], [j, j′])

CA4([i, i
′], [j, j′])

(4.8)

41

4 Fixed Parameter Tractable Alignment of Arbitrary Pseudoknots

Lem.5
= min

CA1([i, i
′ − 1], [j, j′]) + CA1([i

′], [j′ + 1, j′])

CA2([i, i
′], [j, j′ − 1]) + CA2([i

′ + 1, i′], [j′])

CA3([i, i
′ − 1], [j, j′ − 1]) + CA3([i

′], [j′])

CA4({[i, i1 − 1], [i1 + 1, i′ − 1]}, {[j, j1 − 1], [j1 + 1, j′ − 1]})

+CA4([i1], [i
′], [j1], [j

′])

(4.9)

Lem.5
= min

CA1([i, i
′ − 1], [j, j′]) + CA1([i

′], [j′ + 1, j′])

CA2([i, i
′], [j, j′ − 1]) + CA2([i

′ + 1, i′], [j′])

CA3([i, i
′ − 1], [j, j′ − 1]) + CA3([i

′], [j′])

CA4([i, i1 − 1], [j, j1 − 1]) + CA4([i1 + 1, i′ − 1], [j1 + 1, j′ − 1])

+CA4([i1], [i
′], [j1], [j

′])

(4.10)

Lem.6
Def.13= min

C([i, i′ − 1], [j, j′]) + gap1(i
′)

C([i, i′], [j, j′ − 1]) + gap2(j
′)

C([i, i′ − 1], [j, j′ − 1]) + basematch(i′, j′)

C([i, i1 − 1], [j, j1 − 1]) + C([i1 + 1, i′ − 1], [j1 + 1, j′ − 1])

+ arcmatch(pa, pb)

(4.11)

Note that Equation 4.10 relies on the absence of pseudoknots: Lemma 5 requires
both ([i, i1 − 1], [j, j1 − 1]) and ([i1 + 1, i′ − 1], [j1 + 1, j′ − 1]) to contain no open
arc matches, which is ensured since any matched arcs connecting the two fragments
would cross the arcs (i1, i

′) and (j1, j
′), respectively (as the gray dashed arcs in

Figure 4.2(b)). Any other open arc matches would also be open arc matches of
the parent fragments ([i, i′], [j, j′]) which we excluded from the partition due to
Corollary 1. �

The base cases for the recursion are C([i1, i1 − 1][j1, j1 − 1]) := 0 for all i1, j1.
Compared to the Needleman Wunsch algorithm the Jiang algorithm does not only
compute alignment costs for prefixes of the two sequences. As visualized in Figure 4.3
the algorithm computes in addition a quadratic number of square matrices, one for
the region below each possible arc match. More precisely, for each pa ∈ Pa and
pb ∈ Pb the algorithm computes C(pLa + 1, i′], [pLb + 1, j′]) for pLa < i′ < pRa and
pLb < i′ < pRb . The matrices are computed one after the other in an order such
that for pa, pb, p

′
a, p

′
b with pLa < p′La < p′Ra < pRa and pLb < p′Lb < p′Rb < pRb the

matrix of pa, pb is computed after the one for p′a, p
′
b. From each matrix only the

last value, C(pLa + 1, pRa − 1], [pLb + 1, pRb − 1]) is required for the computation of
the other matrices, namely in recursion case (4.6d). Hence all other values can be
discarded once the entire matrix is computed. Therefore the computation of the in
total O(n2m2) matrix entries requires O(n2m2) time but only O(nm) space.

42

4.2 Relevant Subproblems that are Solvable in Polynomial Time

p
a

p
b

G GGGGAC AAAA UUU CCCC G

U
C
G

C
C

A
A
A
A
A

U
U
G

Figure 4.3: The Jiang algorithm computes one square matrix for each pair of arcs.
The matrix marked by the blue rectangle contains the cost to align all
prefixes of the two fragments below the arcs pa and pb. Due to recursion
case 4.6(d) the computation of the blue matrix recursively relies on the
last entries of the green matrices. Hence those are computed before the
blue one.

43

4 Fixed Parameter Tractable Alignment of Arbitrary Pseudoknots

4.3 From Nested Sequences to Arbitrary Pseudoknots

This section describes a new pseudoknot alignment algorithm published in [37].
The presentation in the paper differs significantly from this presentation here which
describes the algorithm in terms of the general framework developed so far. This
allows to highlight the similarities to the other algorithms described in this thesis
and simplifies precise and clear correctness proofs.

The algorithm is described in three stages. First a basic variant is explained in
Section 4.3.1 then, in Section 4.3.2 and 4.3.3, two extensions are presented that
improve the time and space complexity.

4.3.1 A Basic Pseudoknot Algorithm

The algorithms presented so far are all based on the idea to recursively compose the
optimal alignment out of alignments of fragment pairs without open arc matches.
The recursion for plain sequence alignment (Lemma 7) is not suitable for nested
structures since those may cause open arc matches as shown in Figure 4.2(a). Sim-
ilarly the recursion for nested structures (Lemma 8) is not suitable for pseudoknots
since those cause open arc matches as indicated with the gray dashed arc is Fig-
ure 4.2(b).

We now develop a general technique to handle any kind of open arc matches. In
this section we apply the idea to extend the plain sequence alignment algorithm to
cope with arbitrary pseudoknots. In the next section we then extend the algorithm
for nested structures in an analogous way to obtain a more efficient algorithm.

The central idea is to handle each potential open arc match in a separate case
that decomposes into this arc match and the remaining fragments without the arc
match. Those remaining fragments then by construction have no open arc match
anymore but they have gaps at the positions where the arc match is located. To
describe fragment pairs containing such gaps the following notation is introduced.

Definition 16 (subtracting arc pairs from fragment pairs) Let (Fa, Fb) be a
fragment pair and M ⊆ P1 × P2 a set of (matched) arc pairs such that

I ∀(pa, pb) ∈M. pLa ∈ F̂a ⇔ pLb ∈ F̂b ⇔ pRa 6∈ F̂a ⇔ pRb 6∈ F̂b

II ∃A. ∀(pa, pb) ∈M. (pLa , p
L
b) ∈ A ∧ (pRa , p

R
b) ∈ A

(for some A, (pa, pb) is an arc match)

Then we denote with (Fa, Fb)−M the fragment pair (F ′
a, F

′
b) where F

′
a and F ′

b are
the fragments of minimal degree satisfying

F̂ ′
a =

{

x ∈ F̂a

∣

∣∀(pa, pb) ∈M. pLa 6= x 6= pRa

}

(4.12)

F̂ ′
b =

{

y ∈ F̂b

∣

∣∀(pa, pb) ∈M. pLb 6= y 6= pRb

}

(4.13)

∀(pa, pb) ∈M. ∀(x, y) ∈ {(pLa , p
L
b), (p

R
a , p

R
b)}. ∀i. (4.14)

F ′
a[i]

R < x < F ′
a[i+ 1]L ⇔ F ′

b[i]
R < y < F ′

b[i+ 1]L

44

4.3 From Nested Sequences to Arbitrary Pseudoknots

C

C

C C C

C C C

G G G

GG GG

G U

UU

U

AA

AA

A

A

A
S

a

S
b

P
b

P
a

Fa
´

Fa

Fb
´

Fb

pa¹ pa³

pa²

pb¹
pb³

pb²

Figure 4.4: The fragments pair (Fa, Fb) −M for M = {(p1a, p
1
b), (p

2
a, p

2
b), (p

3
a, p

3
b)} is

visualized as (F ′
a, F

′
b). Note that F ′

a contains an interval of length 0
between the two left ends of p2a and p3a.

If (Fa, Fb)−M does not satisfy restriction I or II we call it invalid otherwise valid.2

An example for a fragment pair (Fa, Fb) − M is given in Figure 4.4. Intuitively,
(Fa, Fb) −M denotes the fragment pair obtained by removing all positions of arc
pairs in M from the fragment pair (Fa, Fb). Hence, if M is the set of open arc
matches of (Fa, Fb) for some alignment A, then (Fa, Fb)−M is a fragment pair that
contains no open arc matches for A. A fragment pair (Fa, Fb)−M is valid, if M is
a potential set of open arc matches for (Fa, Fb). More precisely, each arc pair of M
must have exactly one end contained in (Fa, Fb) (condition I) in order to be open
for the fragment pair and furthermore it must be possible to match all arc pairs of
M simultaneously (condition II).

The requirement 4.14 is a technical detail to ensure that the resulting fragments
in both sequences have the same number of intervals. It states that if some end
of an arc in the first sequence is located between the i-th and i plus first interval,
the corresponding end of the arc in the second sequence must also be located there.
This may cause empty intervals, if two arcs are directly adjacent in one of the two
sequences. An example for this is given in Figure 4.4.

Now, we extend the recursion of the plain sequence alignment algorithm with
special cases for open arc matches to obtain a recursion that is correct for arbitrary
pseudoknots. Wherever the plain sequence alignment algorithm computes some cost
C([i, i′], [j, j′]), the extended recursion computes values C(([i, i′], [j, j′])−M) for all
possible sets of open arc matches M .

Lemma 9 (basic pseudoknot alignment) Let i, i′, j, j′ be such that 1 ≤ i < i′ ≤

45

4 Fixed Parameter Tractable Alignment of Arbitrary Pseudoknots

|Sa| and 1 ≤ j < j′ ≤ |Sb| and let M be such that ([i, i′], [j, j′])−M is valid. Then

C(([i, i′], [j, j′])−M) = min (4.15)

C(([i, i′ − 1], [j, j′])−M) + gap1(i
′) (4.15a)

C(([i, i′], [j, j′ − 1])−M) + gap2(j
′) (4.15b)

C(([i, i′ − 1], [j, j′ − 1])−M) + basematch(i′, j′) (4.15c)

if ∃(pa, pb) = ((i1, i
′), (j1, j

′)) ∈ Pa × Pb for some i1 ≥ i, j1 ≥ j (4.15d)

C(([i, i′ − 1], [j, j′ − 1])− (M ∪ {(pa, pb)}) + arcmatch(pa, pb)

if ∃(pa, pb) ∈M with pLa = i′, pLb = j′ or pRa = i′, pRb = j′ (4.15e)

C(([i, i′ − 1], [j, j′ − 1])− (M − {(pa, pb)}))

In this recursion, cases referring to invalid items are implicitly skipped. 2

The general idea of this algorithm is that the case where the optimal alignment has
some setM of open arc matches for the fragment pair ([i, i′], [j, j′]), is captured by an
entry C(([i, i′], [j, j′])−M) that by construction then has no open arc matches. The
new last two cases of the recursion cover cases in which the set of open arc matches
differs between the fragment pair ([i, i′], [j, j′]) and its prefix ([i, i′ − 1], [j, j′ − 1]).
In case (4.15d) the arc match (pa, pb) is open in the prefix but not in ([i, i′][j, j′])
and in case (4.15e) it is the other way around. The two situations are visualized
in Figure 4.5. Another intuition is the following. The algorithm constructs the
alignment from left to right and whenever a left end of an arc match is encountered,
it is first introduced as a gap in the fragment pair via case (4.15e) . Later, when the
right end is encountered, the gap is closed again by case (4.15d) which then adds
the cost for the arc match.

Proof The proof follows the same scheme as the previous ones. This time consider
the following partition of the set of alignments A that align ([i, i′], [j, j′]) −M and
contain no open arc matches for this fragment pair:

A1 :=
{

A ∈ A
∣

∣(i′,−) ∈ A
}

A2 :=
{

A ∈ A
∣

∣(−, j′) ∈ A
}

A3 :=

{

A ∈ A

∣

∣

∣

∣

∣

(i′, j′) ∈ A ∧ ∄(i1, j1) ∈ A.

((i1, i
′), (j1, j

′)) ∈ Pa × Pb ∨ ((i′, i1), (j
′, j1)) ∈ Pa × Pb

}

A4 :=

{

A ∈ A

∣

∣

∣

∣

∣

(i′, j′) ∈ A ∧ ∃(i1, j1) ∈ A.

((i1, i
′), (j1, j

′)) ∈ Pa × Pb ∧ i1 ≥ i ∧ j1 ≥ j

}

A5 :=

A ∈ A

∣

∣

∣

∣

∣

∣

∣

(i′, j′) ∈ A ∧ ∃(i1, j1) ∈ A.

((i1, i
′), (j1, j

′)) ∈ Pa × Pb ∧ i1 < i ∧ j1 < j ∨

((i′, i1), (j
′, j1)) ∈ Pa × Pb

46

4.3 From Nested Sequences to Arbitrary Pseudoknots

F
a
‘

F
a

F
b

F
b
‘

p
a
‘p

a

p
b
‘p

b

i

i

j

j j‘

j‘-1

i‘-1

i‘i1

j1

case (d)

F
a
‘

F
a

F
b

F
b
‘

p
a
‘

p
a

p
b
‘

p
b

i

i

j

j j‘

j‘-1

i‘-1

i‘

case (e)

Figure 4.5: Example for cases d) and e) of the Recursion 4.15. The fragment pair
([i, i′], [j, j′]) −M is visualized as (Fa, Fb) and (F ′

a, F
′
b) is the fragment

pair that the recursion descents to. In case (d), the arc pair (pa, pb) is
not open in ([i, i′], [j, j′]) but it is open in its prefix ([i, i′ − 1], [j, j′ − 1]).
In case (e) it is the other way around: (pa, pb) is open in (Fa, Fb), but
no more open in (F ′

a, F
′
b). The arc pair (p′a, p

′
b) is just some example for

other open arc matches andM can contain an arbitrary number of them.

Again we apply the case distinction lemma as follows.

C([i, i′], [j, j′]−M)
Cor.1
= CAC([i, i

′], [j, j′]−M)
Lem.4
= min

CA1([i, i
′], [j, j′]−M)

CA2([i, i
′], [j, j′]−M)

CA3([i, i
′], [j, j′]−M)

CA4([i, i
′], [j, j′]−M)

CA5([i, i
′], [j, j′]−M)

The cases for A1, A2 and A3 are proved exactly as in Lemma 7. Note that the sets
A4 and A5 are empty if and only if the conditions of their respective cases 4.15d and
4.15e are not satisfied. If any of the two sets is not empty, there exists exactly one
(i1, j1) that satisfies the respective property, since i′ and j′ are adjacent to at most
one arc. In case that A4 is non empty, for i1 and j1 we have

CA4([i, i
′], [j, j′]−M)

Lem.5
= CA4([i, i

′], [j, j′]− (M ∪ {(pa, pb)})) + arcmatch(pa, pb)

Lem.6
= C([i, i′], [j, j′]− (M ∪ {(pa, pb)})) + arcmatch(pa, pb)

If A5 is non empty, CA5([i, i
′], [j, j′]−M) = C(([i, i′−1], [j, j′−1])−(M−{(pa, pb)}))

follows directly from (pa, pb) ∈M which implies [i, i′], [j, j′]−M = ([i, i′ − 1], [j, j′ −
1])− (M − {(pa, pb)}). �

47

4 Fixed Parameter Tractable Alignment of Arbitrary Pseudoknots

As in the previous algorithms the base case for the recursion is

C([i, i− 1][j, j − 1]) := 0 for all i, j

The optimal cost to align the entire structures (Sa, Pa) and (Sb, Pb) is obtained as the
entry C([1, |Sa|], [1, |Sb|] − ∅) since the fragment pair covering the entire sequences
never has any open arc matches.

Complexity The runtime of a DP algorithm based on the recursion of Lemma 9
is dominated by the number of instances of M that need to be considered. Since M
contains sets of arc pairs, the number of instances of M grows exponentially with
the number of arc pairs and hence also with the sequence length. More precisely, if
k denotes the number of arc matches that can be open for a fragment pair simul-
taneously, the time and space complexity of the algorithm is O(nm2k). Hence, the
algorithm is fixed-parameter tractable for the parameter k.

Note that the recursion is linear with respect to n and m and not quadratic
since only for i′ and j′ all possible instances need to be considered while i and j
remain invariant in the recursion. Therefore, to compute the optimal alignment cost
C([1, |Sa|], [1, |Sb|]−∅) only entries of the form C(([1, i′], [1, j′])−M) for 1 ≤ i′ ≤ |Sa|
and 1 ≤ j′ ≤ |Sb| need to be computed.

The extensions of this algorithm described in the following sections all aim at
reducing the exponential factor k in the complexity.

4.3.2 Combining Basic Pseudoknot and Nested Alignment

In the previous section we generalized the plain sequence alignment algorithm to
handle arbitrary pseudoknots. If the original recursion of the plain sequence align-
ment algorithm is applied to sequences with a non empty structure each matched arc
pair becomes an open arc match for some fragments and we presented a way to cope
with these open arc matches. Compared to the plain sequence alignment algorithm
the algorithm for nested structures (Lemma 8) can handle nested arc matches and
only if it is applied to crossing arcs those may cause open arc matches as indicated
by the gray dashed arcs in Figure 4.2(b).

We now present an algorithm that extends the algorithm for nested structures
to arbitrary pseudoknots. Basically, all arc matches that the nested algorithm can
handle are handled as before and only the few open arc matches that can occur
for crossing arcs are handled analogously to the basic pseudoknot algorithm of the
previous section (Lemma 9).

Another perspective on that is that both the algorithm for nested structures and
the basic pseudoknot alignment algorithm presented in the previous section are
extensions of the plain sequence alignment algorithm (Lemma 7). From that per-
spective, this section presents a combination of both extensions that aims at using
a generalized version of the nested recursion for as many arc matches as possible
and uses the expensive recursion for crossing arc matches only where necessary. This

48

4.3 From Nested Sequences to Arbitrary Pseudoknots

results in an improved space and time complexity compared to the basic pseudoknot
algorithm since the setsM of open arc matches that make up the exponential factor
in the runtime only contain the arc matches that cannot be handled by the recursion
for nested structures. In practical examples, it turns out that the number of those
arc matches is comparably small.

Partition into Crossing and Non-crossing Arc Pairs

The choice which potential arc matches are handled with the nested recursion and
for which the method with exponential complexity must be applied is not unique.
Therefore we define the notion of a valid partition of the set of arc pairs Pa×Pb into
a set CR of crossing arc pairs and a set NC of non-crossing arc pairs. The intuition
is that all arc matches in NC can be handled with the cheap recursion for nested
structures.

Definition 17 (valid partition of arc pairs) Two arc pairs (pa, pb) and (p′a, p
′
b)

cross if and only if pLa < p′La < pRa < p′Ra and pLb < p′Lb < pRb < p′Rb or p′La < pLa <
p′Ra < pRa and p′Lb < pLb < p′Rb < pRb . A (bi-)partition of Pa × Pb into CR and NC is
called valid if and only if for all (pa, pb) and (p′a, p

′
b) in NC it holds that they do not

cross. 2

Figure 4.6 visualizes arc pairs as rectangles in the plane. If two arc pairs cross, the
rectangles partially overlap but note that the converse implication does not hold.
In Figure 4.6, for example, the red arc pair (D, I) crosses the dark blue arc pairs
like (E, J), but it does not cross the light blue arc pairs like (E,G). Intuitively it is
not necessary to consider the latter as crossing since they cannot occur in the same
alignment, i.e. there exists no alignment that simultaneously matches D to I and
E to G. Another intuition is that there exists no traceback that visits the start and
end points of both arc pairs (highlighted as black dots), simultaneously.
For the alignment algorithm a valid partition of Pa × Pb must be computed in a

preprocessing step. This preprocessing step should on the one hand take not too
much time and on the other hand result in a partition where CR is as small as possible
since the size of CR has a major impact on the runtime and space consumption of
the later steps1.
One practical approach is to lift a valid partition of Pa × Pb from a partition of

the arcs of Pa and Pb by choosing appropriate sets CRa ⊆ Pa and CRb ⊆ Pb such
that Pa − CRa and Pb − CRb are non-crossing. The partition of Pa × Pb is then
obtained as CR = CRa×CRb and NC = Pa×Pb−CR. However, this does not work
for arbitrary non-crossing sets Pa − CRa and Pb − CRb. For example, in Figure 4.6
choosing CRa = {A,B,E} and CRb = {I} is not valid, since {A,B,E}×{I} contains
none of the two crossing arc pairs (A,G) and (D, I). Valid partitions are obtained,

1Actually not only the number of arc pairs in CR plays a role for the runtime, but also the length
of each arc and the way in which they overlap. In that sense, minimizing just the size of CR is
a heuristic but finding the partition for which the alignment algorithm runs fastest is a complex
optimization problem that might be as complex as solving the alignment problem itself.

49

4 Fixed Parameter Tractable Alignment of Arbitrary Pseudoknots

A

B

C
D

E

F

G H

I

J

Figure 4.6: Visualization of the arc pairs of two sequences as rectangles. The first
sequence is drawn horizontally (left to right) and has arcs A to F , the
second sequence is drawn vertically (top down) and has arcs G to J . To
maintain readability, only some arcs pairs are visualized. Among the
visualized arc pairs, it would be sufficient to place the red one in the
crossing set CR to obtain a valid partition. The red arc pair crosses
with the dark blue arc pairs but not with the light blue ones since their
start and end points (highlighted as black dots) cannot be aligned simul-
taneously.

50

4.3 From Nested Sequences to Arbitrary Pseudoknots

for example, if CRa and CRb both contain all left crossing arcs or both contain all
right crossing arcs.

Definition 18 (left/right crossing) For two crossing arcs p and p′ with pL <
p′L < pR < p′R, we say that p is right crossing and p′ is left crossing. 2

The following lemma gives a sufficient criterion for a valid partition that can easily
be constructed.

Lemma 10 (left/right criterion for a partition) For

CR = { pa ∈ Pa |pa is left crossing } × { pb ∈ Pb |pb is left crossing }

or

CR = { pa ∈ Pa |pa is right crossing } × { pb ∈ Pb |pb is right crossing }

the partition of Pa × Pb into CR and NC = Pa × Pb − CR is valid. 2

Proof Let (pa, pb) and (p′a, p
′
b) be two crossing arc pairs. We show that at least

one of (pa, pb) and (p′a, p
′
b) is contained in CR. Assume w.l.o.g. pLa < p′La < pRa < p′Ra

and pLb < p′Lb < pRb < p′Rb . Then pa and pb are right crossing and p′a and p′b are left
crossing. Hence (pa, pb) is contained in CR if it contains all pairs of right crossing
arcs and (p′a, p

′
b) is contained in CR if it contains all pairs of left crossing arcs. �

A partition according to Lemma 10 is not necessarily minimal in the sense that CR
contains as few elements as possible. For the structures in Figure 4.6, for example,
the right and left crossing criteria would yield CR = {A,B,C,D} × {G,H, I} and
CR = {D,E, F} × {I, J}, respectively. While for those |CR| = 12 and |CR| =
6, respectively, there exists also a partition with |CR| = 3, namely for CR =
{(D, I), (D, J), (E, I)}.
Nevertheless, for sequences with few and small pseudoknots also with the left or

right crossing criterion the set CR is small and it can easily be constructed in linear
time with respect to sequence length. In an implementation it is not even necessary
to explicitly construct the set, but it suffices to store for each arc a flag whether
it is left or right crossing. Then, whenever it needs to be checked whether an arc
match is contained in CR or not, only the respective flags of the two arcs need to
be checked.

From now on, we just assume to have a valid partition where CR is reasonably
small. This partition can be obtained according to Lemma 10 but a more involved
preprocessing step to find even better partitions might speed up the algorithm even
further.

The Algorithm Recursion

The recursion of the algorithm is given in the following lemma.

51

4 Fixed Parameter Tractable Alignment of Arbitrary Pseudoknots

Lemma 11 For a valid partition of Pa × Pb into CR and NC, any M ⊂ CR and
i, i′, j, i′ such that 1 ≤ i < i′ ≤ |Sa|, 1 ≤ j < j′ ≤ |Sb| and such that ([i, i′], [j, j′])−M
is valid.

C(([i, i′][j, j′])−M) = min (4.16)

C(([i, i′ − 1], [j, j′])−M) + gap1(i
′) (4.16a)

C(([i, i′], [j, j′ − 1])−M) + gap2(j
′) (4.16b)

C(([i, i′ − 1], [j, j′ − 1])−M) + basematch(i′, j′) (4.16c)

if ∃(pa, pb) = ((i1, i
′), (j1, j

′)) ∈ NC (4.16d)

min

C(([i, i1 − 1], [j, j1 − 1])−M1)+

C(([i1 + 1, i′ − 1][j1 + 1, j′ − 1])−M2)+
∑

am∈M3∪{(pa,pb)}

arcmatch(am)

∣

∣

∣

∣

∣

∣

∣

∣

∣

M3 =M1 ∩M2

M = (M1 ∪M2)−M3

if ∃(pa, pb) = ((i1, i
′), (j1, j

′)) ∈ CR for some i1 ≥ i, j1 ≥ j (4.16e)

C(([i, i′ − 1], [j, j′ − 1])− (M ∪ {(pa, pb)}) + arcmatch(pa, pb)

if ∃(pa, pb) ∈M with pLa = i′, pLb = j′ or pRa = i′, pRb = j′ (4.16f)

C(([i, i′ − 1], [j, j′ − 1])− (M − {(pa, pb)}))

Again, cases referring to invalid items are implicitly skipped. 2

In case (4.16d) the recursion applies an extended variant of the recursion for nested
structures for arc matches in NC. Arc matches in CR are handled as in the basic
pseudoknot algorithm in cases (4.16e) and (4.16f). The recursion case (4.16d) differs
from the nested recursion case (4.6d) in order to handle arcs pairs from CR that
cross the arc match (pa, pb) ∈ NC. Therefore it minimizes over all possible sets M3

of arc matches in CR that cross the currently considered arc match (pa, pb) ∈ NC.
M3 and M together uniquely determine the sets M1 and M2 of open arc matches
for the two fragment pairs ([i, i1 − 1], [j, j1 − 1]) and ([i1 + 1, i′ − 1], [j1 + 1, j′ − 1])
that the recursion descents to. A visualization of the recursion case (4.16d) is given
in Figure 4.7.

Proof The case distinction corresponds to the following partition of the set of
alignments A that align ([i, i′], [j, j′])−M and contain no open arc matches for this
fragment pair:

A1 :=
{

A ∈ A
∣

∣(i′,−) ∈ A
}

A2 :=
{

A ∈ A
∣

∣(−, j′) ∈ A
}

A3 :=

{

A ∈ A

∣

∣

∣

∣

∣

(i′, j′) ∈ A ∧ ∄(i1, j1) ∈ A.

((i1, i
′), (j1, j

′)) ∈ Pa × Pb ∨ ((i′, i1), (j
′, j1)) ∈ Pa × Pb

}

A4 :=

{

A ∈ A

∣

∣

∣

∣

∣

(i′, j′) ∈ A ∧ ∃(i1, j1) ∈ A.

((i1, i
′), (j1, j

′)) ∈ NC ∧ i1 ≥ i ∧ j1 ≥ j

}

52

4.3 From Nested Sequences to Arbitrary Pseudoknots

p
a

p
b

i

j j‘

i‘i
1

j
1

Figure 4.7: Visualization of recursion case (4.16d). The dashed and dotted arc pairs
represent the sets M , M1, M2, and M3 as follows. Each of those drawn
arcs pairs represents a set of possible arc pairs, i.e. more than one arc
pair of each shown type can occur. M consists of all blue arc pairs and
M3 of the green ones. From both colors M1 contains the dashed arc
pairs and M2 the dotted ones. Effectively the recursion minimizes over
all possible instances of M3; since M is fixed for each matrix entry this
uniquely determines M1 and M2. Since the black arc pair (pa, pb) is
contained in NC, all blue and green arc pairs must be contained in CR.

A5 :=

{

A ∈ A

∣

∣

∣

∣

∣

(i′, j′) ∈ A ∧ ∃(i1, j1) ∈ A.

((i1, i
′), (j1, j

′)) ∈ CR ∧ i1 ≥ i ∧ j1 ≥ j

}

A6 :=

A ∈ A

∣

∣

∣

∣

∣

∣

∣

(i′, j′) ∈ A ∧ ∃(i1, j1) ∈ A.

((i1, i
′), (j1, j

′)) ∈ CR ∧ i1 < i ∧ j1 < j ∨

((i′, i1), (j
′, j1)) ∈ CR

Note that the case distinction is exhaustive: there does not exist any (i1, j1) with
((i′, i1), (j

′, j1)) ∈ NC, or with ((i1, i
′), (j1, j

′)) ∈ NC and i1 < i, j1 < j since the
fragment pair ([i, i′][j, j′]) −M contains no open arc matches and M is a subset of
CR. Note that the invariant that M ⊆ CR is maintained through the recursion,
i.e. if M ⊆ CR then this also holds for the modified values of M that the recursion
descents to. The only non-trivial case for this is case (4.16d). In this case all
elements of M1 and M2 are either contained in M or in M3. M ⊆ CR holds by
induction hypothesis and M3 ⊆ CR follows since all elements of M3 cross the arc
match (pa, pb) which is contained in NC (see the green arc pair of Figure 4.7).

The remainder of the proof is analogous to the proof of the basic pseudoknot
algorithm (Lemma 9), only for the recursive case 4.16d corresponding to A4 some
new arguments are necessary. This case is similar as in Lemma 8, but we have
to make a further case distinction over the possible instances of M3, which cap-
ture the arc matches connecting the part before and the part below the arc match

53

4 Fixed Parameter Tractable Alignment of Arbitrary Pseudoknots

((i1, i
′), (j1, j

′)). While these do not exist in nested structures, they can occur as
elements of CR in this combined algorithm (see the green arc pair of Figure 4.7).

To show the correctness of case (4.16d) we partition A4 into
⋃

M3
AM3

4 , where each

AM3
4 is the set of alignments A ∈ A4 for which M3 is the set of arc matches am of

A which satisfy am ∈ ([i, i1− 1]× [i1+1, i′− 1])× ([j, j1− 1]× [j1+1, j′− 1]). Then

CA4(([i, i
′][j, j′])−M)

Lem.4
= min

A
M3
4

C
A

M3
4

(([i, i′][j, j′])−M) (4.17)

For each M3 the sets M1 and M2 are uniquely determined: M1 contains the arc
pairs from M ∪M3 with one endpoint within [i, i1− 1]×, [j, j1− 1], and M2 contains
the ones with one endpoint within ([i1+1, i′− 1]× [j1+1, j′− 1]. For these M1 and
M2 we have

C
A

M3
4

([i, i′][j, j′]−M)
Lem.5
= C

A
M3
4

(([i, i1 − 1], [j, j1 − 1])−M1)

+ C
A

M3
4

(([i1 + 1, i′ − 1][j1 + 1, j′ − 1])−M2) (4.18)

+
∑

(p′a,p
′

b
)∈M3∪{(pa,pb)}

C
A

M3
4

({[p′La], [p′Ra]}, {[p′Lb], [p′Rb]})

Def.13
= C

A
M3
4

(([i, i1 − 1], [j, j1 − 1])−M1)

+ C
A

M3
4

(([i1 + 1, i′ − 1][j1 + 1, j′ − 1])−M2) (4.19)

+
∑

am∈M3∪{(pa,pb)}

arcmatch(am)

Lem.6
= C(([i, i1 − 1], [j, j1 − 1])−M1)

+ C(([i1 + 1, i′ − 1][j1 + 1, j′ − 1])−M2) (4.20)

+
∑

am∈M3∪{(pa,pb)}

arcmatch(am)

�

Complexity

Items C(([i, i′][j, j′]) −M) are computed for 1 ≤ i ≤ i′ ≤ n, 1 ≤ j ≤ j′ ≤ m for
all possible sets of open arc matches M ⊆ CR. Hence, the total O(n2m22k) items
are computed , where k is the number of arc matches in CR that can be open in a
fragment pair simultaneously. The same method that is used to reduce the space
complexity of the algorithm for nested structures from O(n2m2) to O(nm) [27]
can also be applied in this combined algorithm. Hence the space complexity is in
O(nm2k).

All recursion cases except for (4.16d) need only constant time. This case minimizes
over all possible instances of M3 of which there are at most 2k many. Hence the

54

4.3 From Nested Sequences to Arbitrary Pseudoknots

computation requires O(n2m22k · 2k) = O(n2m222k) time. Effectively, compared to
the basic pseudoknot alignment algorithm of the previous section (Lemma 9) this
algorithm reduces the exponential parameter k from the number of open arc pairs
to the number of crossing open arc pairs.

4.3.3 The Final Algorithm with Stem Optimization

The exponential parameter of the algorithm can be further reduced by considering
entire stems instead of single arcs. This idea takes advantage of the fact that arcs
in naturally occurring structures usually group into stems such that there are much
less crossing stems than crossing arcs.

Lifting Concepts from Arcs to Stems

Definition 19 (stem) For an arc annotated sequence (S, P), a stem Q ⊆ P is a
set of arcs {p1, . . . , pk} ⊆ P with pL1 < · · · < pLk < pRk < · · · < pR1 such that no end
of arcs in P −Q is in one of the intervals [pL1 ..p

L
k] or [p

R
k ..p

R
1]. 2

Intuitively, a stem is a set of arcs that are stacked on top of each other without
any other arcs that interleave this structure. Note that a stem is not required to be
maximal: given a stem {p1, . . . , pk} ⊆ P with pL1 < · · · < pLk < pRk < · · · < pR1 , for
all 1 ≤ i ≤ j ≤ k the set {pi, . . . , pj} is also a stem.

The stem optimization can be best thought of as considering entire stems of arcs
as just one ’big’ arc. The algorithm does not match pairs of arcs but pairs of stems.
Therefore, we now lift the notion of an arc pair to stems. A stem pair is characterized
by its innermost and outermost arc pair.

Definition 20 (stem pair) The stem pair of two stems Qa ⊆ Pa and Qb ⊆ Pb is
characterized by the pair (aO, aI) of arc pairs, where aO = (pOa, pOb) is the pair of
the outermost arcs and aI = (pIa, pIb) is the pair of the innermost arcs of Qa and
Qb, i.e. Qk consists of the arcs Pk ∩ [pLOk..p

L
Ik]× [pRIk..p

R
Ok] for k ∈ {a, b}.

The stem pair is matched by an alignment A, if both aO and aI are matched by
A. For a given partition of P1 × P2 into CR and NC, we denote with SPCR the set
of stem pairs (aO, aI) with {aO, aI} ⊆ CR. 2

An example for a stem pair is given in Figure 4.8. Note that if a stem pair is
matched by an alignment, only the inner- and outermost arc pairs are required
to be matched and nothing is said about whether and how the arcs in between
are matched. Consequently, whereas the algorithm of the previous section has one
separate case for each possibility how to match the other arcs within the two stems,
all of those cases can now be captured in just one case. This is the central point
why the stem optimization leads to a speed-up.

Also note that if any possible arc pair within a stem pair is contained in CR, it is
reasonable to assume that all possible arc pairs within that stem pair are contained
in CR. If CR is constructed according to the left/right crossing criterion (Lemma 10)

55

4 Fixed Parameter Tractable Alignment of Arbitrary Pseudoknots

p
Oa

p
Ob

p
Ia

p
Ib

Figure 4.8: A stem pair characterized by the pair of outermost arcs aO = (pOa, pOb)
shown in green and the pair of innermost arcs aI = (pIa, pIb) shown in
red.

this holds since if any arc within a stem is left/right crossing, all others are left/right
crossing, too. Furthermore, if we instead assume CR to be minimal either in the
sense that it has minimal cardinality or in the weaker sense that removing any
element from CR would result in an invalid partition the assumption would still
hold: as soon as one arc pair is contained in NC, all other arc pairs within the same
stem pair can also safely be added to NC, since all arc pairs within a stem pair cross
the same arc pairs. We now generalize Definition 16 from arc pairs to stem pairs.

Definition 21 (subtracting stem pairs from fragment pairs) Let (Fa, Fb) be
a fragment pair and SP a set of stem pairs such that

I ∀((pOa, pOb), (pIa, pIb)) ∈ SP.
pLOa ∈ F̂a ⇔ pLIa ∈ F̂a ⇔ pLOb ∈ F̂b ⇔ pLIb ∈ F̂b ⇔

pROa 6∈ F̂a ⇔ pRIa 6∈ F̂a ⇔ pROb 6∈ F̂b ⇔ pRIb 6∈ F̂b

II there exists an alignment A such that all stem pairs of SP are matched by A.

III No two stem pairs in SP can be replaced by one larger stem pair, i.e. for all
distinct ((pOa, pOb), (pIa, pIb)) ∈ SP and ((p′Oa, p

′
Ob), (p

′
Ia, p

′
Ib)) ∈ SP it holds

that ((pOa, pOb), (pIa, pIb)) is not a stem pair.

Then we denote with (Fa, Fb)− SP the fragment pair (F ′
a, F

′
b) where F

′
a and F ′

b are

56

4.3 From Nested Sequences to Arbitrary Pseudoknots

the fragments of minimal degree satisfying

F̂ ′
a =

{

x ∈ F̂a

∣

∣∀((pOa, pOb), (pIa, pIb)) ∈ SP. x 6∈ [pLOa, p
L
Ia] ∪ [pRIa, p

R
Oa]

}

(4.21)

F̂ ′
b =

{

y ∈ F̂b

∣

∣∀((pOa, pOb), (pIa, pIb)) ∈ SP. y 6∈ [pLOb, p
L
Ib] ∪ [pRIb, p

R
Ob]
}

(4.22)

∀((pOa, pOb), (pIa, pIb)) ∈ SP. ∀(x, y) ∈ {(pLOa, p
L
Ob), (p

R
Oa, p

R
Ob)}. ∀i. (4.23)

F ′
a[i]

R < x < F ′
a[i+ 1]L ⇔ F ′

b[i]
R < y < F ′

b[i+ 1]L

If (Fa, Fb) − SP does not satisfy restriction I, II or III we call it invalid otherwise
valid. 2

The only aspect of the definition that is not directly lifted from Definition 16 is the
additional restriction III. This restriction is necessary to ensure that the set SP is
always as small as possible and that no redundant possibilities for SP are considered.

Precomputing the Alignment of Stem Pairs

Whereas the cost to match an arc pair (pa, pb) is directly given as arcmatch(pa, pb),
the cost to match two stems cannot be determined in constant time. Therefore, the
alignment costs for all possible stem pairs are determined by dynamic programming
in a preprocessing step. The computation is similar to a basic sequence structure
alignment without branching.
The optimal cost to align a stem pair sp = ((pOa, pOb), (pIa, pIb)) is defined as

stemmatch(sp) := C({[pLOa, p
L
Ia], [, p

R
Ia, p

R
Oa]}, {[p

L
Ob, p

L
Ib], [, p

R
Ib, p

R
Ob]})

and can be computed according to the following lemma.

Lemma 12 For any stem pair sp = ((pOa, pOb), (pIa, pIb)) and i, i′, j, j′ such that
pLOa ≤ i ≤ pLIa, p

R
Ia ≤ i′ ≤ pROa, p

L
Ob ≤ j ≤ pLIb, p

R
Ib ≤ j′ ≤ pROb, is holds

C({[i, pLIa], [p
R
Ia
, i′]}, {[j, pIb

L], [pRIb , j
′]}) = min (4.24)

C({[i+1, pLIa], [p
R
Ia
, i′]}, {[j , pLIb], [p

R
Ib
, j′]}) + gapa(i) (4.24a)

C({[i , pLIa], [p
R
Ia
, i′−1]}, {[j , pLIb], [p

R
Ib
, j′]}) + gapa(i

′) (4.24b)

C({[i , pLIa], [p
R
Ia
, i′]}, {[j+1, pLIb], [p

R
Ib
, j′]}) + gapb(j) (4.24c)

C({[i , pLIa], [p
R
Ia
, i′]}, {[j , pLIb], [p

R
Ib
, j′−1]}) + gapb(j

′) (4.24d)

C({[i+1, pLIa], [p
R
Ia
, i′]}, {[j+1, pLIb], [p

R
Ib
, j′]}) + basematch(i, j) (4.24e)

C({[i , pLIa], [p
R
Ia
, i′−1]}, {[j , pLIb], [pIb

R, j′−1]}) + basematch(i′, j′) (4.24f)

if (i, i′) ∈ Pa and (j, j′) ∈ Pb (4.24g)

C({[i+1, pLIa], [p
R
Ia
, i′−1]}, {[j+1, pLIb], [p

R
Ib
, j′−1]}) + arcmatch((i, i′), (j, j′))

In the recursion the cases where any of i, i′, j, j′ lies outside the specified range are
implicitly skipped. 2

57

4 Fixed Parameter Tractable Alignment of Arbitrary Pseudoknots

i‘i

j‘j

p
Ia

p
Ib

i‘i

j‘j

p
Ia

p
Ib

i+1 i´-1 i‘i

j‘j

p
Ia

p
Ib

j´-1

i‘i

j‘j

p
Ia

p
Ib

i‘i

j‘j

p
Ia

p
Ib

j+1

i‘i

j‘j

p
Ia

p
Ib

i+1

j+1 j´-1

i‘i

j‘j

p
Ia

p
Ib

i´-1

i‘i

j‘j

p
Ia

p
Ib

i+1

j+1

i´-1

j´-1

=min

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4.9: Visualization of the recursion given in Lemma 12.

58

4.3 From Nested Sequences to Arbitrary Pseudoknots

Proof As usual, the correctness can by shown by first applying the case distinction
lemma (Lemma 4) and then applying for each case the independence and cost locality
lemmata (Lemma 5 and Lemma 6) to separate the fixed part of the alignment (i.e.
the gap, base match, or arc match of the respective case) from the remaining part.
Since the proof is completely analogous to the previous ones details are omitted
here. Just note that the case distinction into cases 4.24a to 4.24g is exhaustive.
Intuitively, each alignment of two stems can be constructed by starting with the
innermost two arcs and then extending this step by step with gaps, base matches
and arc matches. �

The recursion of Lemma 12 is visualized in Figure 4.9. The recursion is combined
with the base case

C({[pLa], [p
R
a]}, {[p

L
b], [p

R
b]}) = arcmatch(pa, pb)

for all (pa, pb) ∈ Pa × Pb. Formally this is not correct since by the definition of C
the arcs pa and pb are not matched necessarily. However in the main recursion of
the algorithm we use the computed values only in a context where this can safely
be assumed since situations where they are not matched are covered by other cases.
In principle the algorithm can also be implemented with the base cases

C({[pLa + 1, pLa], [p
R
a , p

R
a − 1]}, {[pLb + 1, pLb], [p

R
b , p

R
b − 1]}) = 0

which lets the recursion terminate one step later but includes the cases where pa
and pb are not matched.

The Main Recursion

In order to present the main recursion of the algorithm the following additional
syntax is introduced.

Definition 22 (start and end point of arc matches) For any arc pair we de-
note its start and endpoint as տ (pa, pb) := (pLa , p

L
b) and ց (pa, pb) := (pRa , p

R
b),

respectively. 2

The recursion is an extension of the recursion of the previous algorithm (Lemma 11).
The main change is that instead of considering each arc pair in CR separately, entire
stems of arcs are considered in one step simultaneously. The set of open arc matches
M of the previous algorithm is therefore replaced by a set of open stem pairs SP .
The recursion is given in the following lemma and visualized in Figure 4.10.

Lemma 13 For a valid partition of Pa×Pb into CR and NC, any SP ⊆ SPCR and
i, i′, j, i′ such that 1 ≤ i < i′ ≤ |Sa|, 1 ≤ j < j′ ≤ |Sb| and such that ([i, i′], [j, j′])−SP

59

4 Fixed Parameter Tractable Alignment of Arbitrary Pseudoknots

is valid

C(([i, i′][j, j′])− SP) = min (4.25)

C(([i, i′ − 1], [j, j′])− SP) + gap1(i
′) (4.25a)

C(([i, i′], [j, j′ − 1])− SP) + gap2(j
′) (4.25b)

C(([i, i′ − 1], [j, j′ − 1])− SP) + basematch(i′, j′) (4.25c)

if ∃(pa, pb) = ((i1, i
′), (j1, j

′)) ∈ NC (4.25d)

min

C(([i, i1 − 1], [j, j1 − 1])− SP1)+

C(([i1 + 1, i′ − 1][j1 + 1, j′ − 1])− SP2)

+
∑

(ao,aI)∈SP3

stemmatch(aO, aI)

+ arcmatch(pa, pb)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

SP3 = SP1 ∩ SP2

SP = (SP1 ∪ SP2)− SP3

if ∃(aO, aI) ∈ SPCR − SP with ց(aO) = (i′, j′) (4.25e)

min

C(([i, i1 − 1], [j, j1 − 1])− (SP ∪ {(ao, aI)}))

+ stemmatch(ao, aI)

∣

∣

∣

∣

∣

∣

∣

(aO, aI) ∈ SPCR, where

ցaO = (i′, j′) and

ցaI = (i1, j1)

if ∃(aO, aI) ∈ SP and some (i1, j1) with (4.25f)

տaO = (i1, j1) ∧ տaI = (i′, j′) or ցaI = (i1, j1) ∧ ցaO = (i′, j′)

C(([i, i1 − 1], [j, j1 − 1])− (SP − {(aO, aI)}))

Again, cases referring to invalid items are implicitly skipped. 2

Proof The proof is analogous to the proof of Lemma 11 and the case distinction
over the set of possible alignments A that align ([i, i′], [j, j′]) − SP is exactly the
same:

A1 :=
{

A ∈ A
∣

∣(i′,−) ∈ A
}

A2 :=
{

A ∈ A
∣

∣(−, j′) ∈ A
}

A3 :=

{

A ∈ A

∣

∣

∣

∣

∣

(i′, j′) ∈ A ∧ ∄(i1, j1) ∈ A.

((i1, i
′), (j1, j

′)) ∈ Pa × Pb ∨ ((i′, i1), (j
′, j1)) ∈ Pa × Pb

}

A4 :=
{

A ∈ A
∣

∣(i′, j′) ∈ A ∧ ∃(i1, j1) ∈ A. ((i1, i
′), (j1, j

′)) ∈ NC ∧ i1 ≥ i ∧ j1 ≥ j
}

A5 :=
{

A ∈ A
∣

∣(i′, j′) ∈ A ∧ ∃(i0, j0) ∈ A. ((i0, i
′), (j0, j

′)) ∈ CR ∧ i0 ≥ i ∧ j0 ≥ j
}

A6 :=

{

A ∈ A

∣

∣

∣

∣

∣

(i′, j′) ∈ A ∧ ∃(i0, j0) ∈ A.

((i0, i
′), (j0, j

′)) ∈ CR ∧ i0 < i ∧ j0 < j ∨ ((i′, i0), (j
′, j0)) ∈ CR

}

After applying the case distinction lemma (Lemma 4) as usual, the cases for A1,
A2 and A3 are analogous to the previous algorithms. It remains to show that

60

4.3 From Nested Sequences to Arbitrary Pseudoknots

a
Oa

I

i‘i

j‘j

SP

i
1

j
1

a
O a

Ii‘i

j‘j

SP

i
1

j
1

i‘i

j‘j

SP =min

i‘i

j‘j

i‘-1

SP

i‘i

j‘j j‘-1

SP

i‘i

j‘j

i‘-1

j‘-1

SP

i‘i

j‘j

i
1

j
1

SP
1

SP
2

i‘i

j‘j

SP

i
1

j
1

a
Oa

I

(a) (b)

(c)

(d)

(e)

(f)

or

Figure 4.10: Visualization of the recursion given in Lemma 13. The dashed blue
boxes mark the parts to which the algorithm recursively descents. The
open stem pairs shown in light gray are visualized as one big gap but
may also cause several gaps that are distributed over the fragment pair.
Furthermore the open stem pairs can exist to the left, to the right, to
both directions simultaneously (as visualized), or, for SP = ∅, not at
all.

61

4 Fixed Parameter Tractable Alignment of Arbitrary Pseudoknots

CA4(([i, i
′], [j, j′])−SP), CA5(([i, i

′], [j, j′])−SP), and CA6(([i, i
′], [j, j′])−SP) equal

the values computed in cases (4.25d), (4.25e) and (4.25f), respectively. For all of
them we assume that the respective sets A4, A5, and A6 are not empty; if they are
empty the conditions of the respective cases are not satisfied and hence they do not
occur in the recursion. If the sets are not empty, the values i0, j0, i1, and j0 within
the definition of A4, A5, and A6 are equal for all alignments A, since the sets of
arcs NC and CR are fixed and there can be at most one arc adjacent to i′ and j′,
respectively. Therefore, we assume some fixed the values for i0, j0, i1, and j1 when
we look at each of the cases now separately.

We start with case (4.25d). Similar to the proof of Lemma 11 we partition A4 into
⋃

SP3
ASP3

4 where each ASP3
4 is the set of alignments A ∈ A4 for which SP3 is the

set of stem pairs that are matched by A, are not contained in any larger stem pair
matched by A and have one end in the fragment pair ([i, i1 − 1], [j, j1 − 1]) and the
other end in the fragment pair ([i1+1, i′−1], [j1+1, j′−1]). The restriction to such
maximal stem pairs is valid, since by restriction III of Definition 21 the algorithm
only considers those. On the partition the case distinction lemma is applied as usual:

CA4(([i, i
′][j, j′])− SP)

Lem.4
= min

A
SP3
4

C
A

SP3
4

(([i, i′][j, j′])− SP) (4.26)

Consider now a some fixed SP3. Together with SP this also fixes some uniquely
determined SP1 and SP2 that satisfy the restrictions stated in (4.25d). For these
we have

C
A

SP3
4

([i, i′][j, j′]− SP)
Lem.5
= C

A
SP3
4

(([i, i1 − 1], [j, j1 − 1])− SP1)

+ C
A

SP3
4

(([i1 + 1, i′ − 1][j1 + 1, j′ − 1])− SP2) (4.27)

+
∑

(a′
O
,a′

I
)∈SP3∪{(aO,aI)}

stemmatch(a′O, a
′
I)

Lem.6
= C(([i, i1 − 1], [j, j1 − 1])− SP1)

+ C(([i1 + 1, i′ − 1][j1 + 1, j′ − 1])− SP2) (4.28)

+
∑

(a′
O
,a′

I
)∈SP3∪{(aO,aI)}

stemmatch(a′O, a
′
I)

Note that Lemma 5 is applicable since stem pairs by construction have no open
arc matches. Now consider case (4.25e). We consider subsets AaI

5 of A5 where for
each aI the set AaI

5 denotes the subset of alignments A contained in A5 where aI
is the innermost arc pair of the largest stem pair that is matched by A and whose
outermost arc pair ends at (i′, j′). Such a stem pair always exists since it must at
least contain the arc match aO = ((i0, i

′), (j0, j
′)). Furthermore, it is unique since it

must be maximal. Consequently the sets AaI
5 form a partition of A5 and hence

CA5(([i, i
′][j, j′])− SP)

Lem.4
= min

A
aI
5

CA
aI
5
(([i, i′][j, j′])− SP) (4.29)

62

4.3 From Nested Sequences to Arbitrary Pseudoknots

We fix some aI and denote ցaI with (i1, j1). Then

CA
aI
5
(([i, i′][j, j′])− SP)

Lem.5
= CA

aI
5
(([i, i1 − 1][j, j1 − 1])− (SP ∪ {(aO, aI)}))

(4.30)

+ stemmatch(aO, aI)

Again Lemma 5 is applicable since (aO, aI) is a stem pair and hence has no open
arc matches.
Finally consider case (4.25f). Let (aI , aO) be the stem pair in SP for which

• aO = ((i1, i
′), (j1, j

′)) if ((i1, i
′), (j1, j

′)) ∈ CR

• aI = ((i′, i1), (j
′, j1)) if ((i

′, i1), (j
′, j1)) ∈ CR

There exists at least one such stem pair, since the arc match with end points (i1, j1)
and (i′, j′) must be contained in some stem pair of SP because otherwise this arc
match would be open in ([i, i′], [j, j′]) − SP . On the other hand there exists at
most one such stem pair (aI , aO) since due to restriction III of Definition 21 the
stem pairs in SP do not overlap. For the uniquely determined (aI , aO) the claim
CA6(([i, i

′], [j, j′])−SP) = C(([i, i1−1], [j, j1−1])−(SP−{(aO, aI)})) follows directly
from ([i, i′], [j, j′])− SP = ([i, i1 − 1], [j, j1 − 1])− (SP − {(aO, aI)}) which holds by
Definition 21. �

Complexity

Let s be the size of a stem pair ((pOa, pOb), (pIa, pIb)), more precisely

s := max{pLIa − pLOa, p
R
Oa − pRIa, p

L
Ib − pLOb, p

R
Ob − pRIb}.

We first consider the number of items that are required for the precomputation of
the stems. Those items have the form C({[i, pLIa], [p

R
Ia
, i′]}, {[j, pLIb], [p

R
Ib
, j′]}) where

pIa and pIb have n and m possible instances, respectively. For each of them i, i′, j
and j′ can take at most s different values, since they must belong to the same stem
pair. Hence, as each item can be computed in constant time, the preprocessing step
to align all possible stem pairs can be done in O(nms4) time and space.
In the main recursion items of the form C(([i, i′][j, j′])−SP) are considered. For i,

i′, j, and j′ as in the previous algorithms we have in total O(n2m2) possible instances
and with the same trick as before only O(nm) of them need to be maintained in
memory at the same time. The number of instances for SP is intuitively related to
the number of stem pairs that can be open for a fragment pair at the same time.
To make this a little bit more precise we define the notion of crossing number.

Definition 23 (crossing number) For two arc annotated sequence (Sa, Pa) and
(Sb, Pb) and some valid partition of Pa × Pb into CR and NC, the crossing number
of some point (x, y) ∈ [1, |Sa|]× [1, |Sb|] is defined as

cross(x, y) = |
{

(a0, aI) ∈ SPMAX
CR

∣

∣i < x < i′ and j < y < j′ for ((i, i′)(j, j′)) = aI
}

|

63

4 Fixed Parameter Tractable Alignment of Arbitrary Pseudoknots

where SPMAX
CR denotes the subset of SPCR that contains only pairs of maximal

stems (with respect to set inclusion). 2

Let k now denote the maximum crossing number among all points of the given two
structures. For each open stem pair (aI , aO) of a fragment pair ([i, i′], [j, j′]) either
the start points or the end points of both aI and aO are contained in the fragment
pair. In the first case (aI , aO) contributes to the crossing number of the point (i, j)
and in the second case it contributes to the crossing number of the point (i′, j′).
Hence, the total number of maximal open stem pairs for ([i, i′], [j, j′]) is bounded by
cross(i, j) + cross(i′, j′) ≤ 2k. Each of those maximal stem pairs has O(s4) smaller
stem pairs that it contains and from all of them at most one can be contained in SP
simultaneously (due to restriction III of Definition 21). Hence, for SP there exist
at most O((s4)2k) = O(s8k) instances for each combination of i, i′, j, and j′ which
results in a space complexity of O(nms8k).

Within the recursion each case except (4.25d) and (4.25e) requires only constant
time. Case (4.25e) only minimizes over all O(s2) possible values of aI since aO
is already determined by (i′, j′). Case (4.25d) minimizes over all instances of SP3

which uniquely determines SP1 and SP2 for a fixed SP . SinceM3 has at most O(s8k)
instances the computation of the in total O(n2m2s8k) values required O(n2m2s8k ·
s8k) = O(n2m2s16k) time.

While at the first sight this complexity does not look like an improvement com-
pared to the algorithm in the previous sections, the size of the parameter k is much
smaller for this algorithm than for the previous ones. For simple pseudoknots, for
example, and also for many other practical applications (as we will see in the eval-
uation in Chapter 6) k equals one.

64

5 Polynomial Alignment of Restricted

Classes of Pseudoknots

While the previous chapter presented alignment methods for arbitrary pseudoknots
this chapter explores the possibilities to obtain more efficient algorithms for re-
stricted classes of pseudoknots. The presented algorithm scheme that forms the
core of this chapter has been published in [38].

5.1 Why Restrictions are both Necessary and

Acceptable

The complexity of a DP algorithm depends on the number of items that need to
be computed recursively. For RNA structures this is related to the number of frag-
ments that need to be considered. Since each subset of positions of the sequence
has a corresponding fragment, the number of possible fragments of a sequence is
exponential in its length. Therefore efficient algorithms aim at considering only cer-
tain restricted kinds of fragments. An algorithm could for example only consider
fragments up to a certain degree (e.g. fragments that contain no or only one gap).
Since a fragment of degree k is characterized by 2k boundaries, there exist O(n2k)
fragments with degree at most k for a sequence of length n. Hence a restriction
of the degree to some constant k would allow to consider only polynomially many
fragments.
The algorithms in the previous chapter have shown that it is important to consider

arc-preserving fragments. The difficulty arising from restrictions, for example on the
degree, is that one has to guarantee that the pseudoknots can be decomposed into
arc preserving fragments that satisfy the respective restriction. For the gap degree
restriction this is not possible for arbitrarily complex pseudoknots. To give an
intuition for that, the next lemma shows that for arbitrary pseudoknots one cannot
guarantee to always find parse trees whose fragments have a degree that is bounded
by some constant k.1

Lemma 14 (unbounded degree) For each k > 0 there exists an arc annotated
sequence (S, P) such that each parse tree for (S, P) contains a fragment with a degree
of at least k. 2

1Later in this chapter a polynomial alignment algorithm for pseudoknots with parse trees of a
bounded degree is presented. Under the assumption that P 6=NP this algorithm also implies the
claim of this lemma since the alignment task solved by this algorithm is NP-hard for arbitrary
pseudoknots. However the constructive proof given here gives a much better intuition.

65

5 Polynomial Alignment of Restricted Classes of Pseudoknots

Proof Consider the following infinite family of pseudoknot structures (S(i,j), P (i,j))
for i, j ≥ 2. The element (i, j) of the family consists of a sequence of length 2i·j with

ij arcs that can be grouped into j different components P
(i,j)
1 , . . . , P

(i,j)
j . Intuitively,

each component forms a stem consisting of i arcs, whose endpoints interleave with
the two neighboring components. Two examples of the family are visualized in

Figure 5.1(a) and (d). Formally, the components P
(i,j)
k of (S(i,j), P (i,j)) are defined

as

P
(i,j)
1 :=

⋃

l∈[0,i−1]

{(l + 1, 3i− 2l)}

P
(i,j)
k :=

⋃

l∈[0,i−1]

{(1 + 2l + 2i(k − 1)− i, 3i− 2l + 2i(k − 1))} for 1 < k < j

P
(i,j)
j :=

⋃

l∈[0,i−1]

{(1 + 2l + 2i(j − 1)− i, 3i− 2l + 2i(j − 1)− (i− l))}

For this family we now show that for i >> j, each parse tree of (S(i,j), P (i,j)) contains
a fragment with a degree of at least j − 1.

First note, that a fragment of a parse tree of this family can be characterized
by the set of arcs P ′ ⊆ P (i,j) that it contains, since each position is adjacent to
an arc. We count the number of boundaries b of such a fragment to determine its
degree b/2. In order to do this, consider the adjacency graph of P (i,j) which is the
graph with node set P (i,j) and an edge between any p1, p2 ∈ P (i,j), if any two ends
of the two arcs are directly adjacent in the sequence, i.e. |x − y| = 1 for some
x ∈ {pL1 , p

R
1 }, y ∈ {pL2 , p

R
2 }. We add one more arc that connects the arc adjacent to

the first position with the arc adjacent to the last position. Two examples for such
adjacency graphs are given in Figure 5.1(b) and (c). Due to the correspondence
between fragments of a parse tree and subsets of P (i,j), each fragment corresponds
to a subset P ′ of nodes in the adjacency graph. Each edge in the adjacency graph
that connects a node in P ′ with a node that is not contained in P ′, corresponds to
a boundary of the fragment represented by P ′. Hence the number of boundaries of
the fragment represented by P ′ corresponds to the size of the cut that separates P ′

from the remaining graph.
We now first show that each parse tree contains a fragment that contains at least

1
4 ij and at most 1

2 ij arcs and then that a cut that separates a fragment of that
size from the remaining nodes always has a size of at least 2j − 2. Hence, the
corresponding fragment has 2j − 2 boundaries and consequently a degree of j − 1.

A parse tree always contains a fragment that contains at least 1
4 ij and at most

1
2 ij arcs, since the fragment of each inner node in the parse tree contains the union
of the arcs of its children and hence in each step the number of contained arcs is
at most doubled. More precisely, on each path through the tree from some leaf to
the root, the number of arcs contained in the respective fragment at most doubles
for each visited node. Since the leaf contains only one arc and the root contains all
arcs, there must be some node in between that contains between a quarter and half
of all nodes.

66

5.1 Why Restrictions are both Necessary and Acceptable

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

P
4
(4,4)P

³
(4,4)P

²
(4,4)P

¹
(4,4)

(a) The structure (S(4,4), P (4,4)).

1

2

3

4

2

3

4

1

1

2

3

4

1

2

3

4

(b) The adjacency graph of the structure
(S(4,4), P (4,4)). It indicates which arcs
have neighboring end points in the se-
quence.

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

CU
T

P‘

(c) The adjacency graph of structure
(S(5,3), P (5,3)) with some exam-
ple set P ′ and corresponding cut
marked.

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

P
³
(5,³)P

²
(5,³)P

¹
(5,³)

(d) The structure (S(5,3), P (5,3))

Figure 5.1: Two instances of the family of pseudoknot structures of the proof of
Lemma 14 together with their adjacency graphs. The adjacency graphs
form a grid whose two dimensions correspond to the two parameters i
and j of the family. To obtain the grid like representation, note that the
nodes are distributed on the plane such that for each stem the nodes are
placed in one column and in each second column the nodes are in reverse
order

67

5 Polynomial Alignment of Restricted Classes of Pseudoknots

Consider an instance of the family with i >> j. The adjacency graph of the
structure forms a two dimensional grid (see Figure 5.1) whose size is i in the one
dimension and j in the second. Since i >> j, the grid has a line like shape and
hence a cut that separates between a quarter and half of all nodes is minimal, if it
just cuts one contiguous part from the top or bottom of this line (see Figure 5.1(c)
). Such a cut has always a size of at least 2j − 2. �

This proof shows on the one hand that one cannot guarantee a bounded degree for
arbitrary pseudoknot structures but on the other hand it gives also an intuition that
instances with a high degree are rare and difficult to construct. To obtain a high
degree, the adjacency graph must form some kind of grid whose size is large in both
dimensions, since if the graph has a more linear shape, there exist always small cuts
in the graph for sets of arbitrary size. On the other hand, each part of an adjacency
graph that forms a two dimensional grid corresponds to a structure according to the
motif captured in the family (S(i,j), P (i,j)) in the proof of Lemma 14. In that sense,
this motif of a set of stems where neighboring stems maximally interleave is the only
“difficult” motif that exists and all other complex structures are just variations of
that motif.

Since the restriction on the degree is an important factor to guarantee the poly-
nomial runtime of the algorithm, in this chapter we restrict ourselves to classes of
pseudoknots that can be recursively decomposed into fragments with a degree of at
most k, where k is some constant. Starting from this central restriction, we will later
also identify other restrictions to further reduce the complexity. We will in partic-
ular consider several restrictions that various RNA structure prediction algorithms
are based on.

From the algorithmic perspective the restrictions make it possible to obtain a
polynomial algorithm. But also from the biological perspective there is evidence
that such restrictions are reasonable. Rodland [47], for example, states that “allow-
ing arbitrary pseudoknots in secondary structures increases the number of available
structures dramatically, but that the vast majority of these are not realistic struc-
tures: they are far more heavily knotted than secondary structures found in real
life”. In particular, stems with interleaved ends as in Figure 5.1a) and c) are not
observed in real biological structures and hence restrictions that exclude such struc-
tures seem reasonable. Condon et al. [11] have in particular analyzed the restrictions
that we are going to focus on and that have been employed by different structure
prediction algorithms; they state that “current algorithms do in fact handle a wide
range of known biological structures, though not all such structures”.

The next section will present a general alignment algorithm scheme that relies on
a degree restriction and can be refined with further restrictions. After that we will
show how to instantiate this scheme for the various restricted classes of pseudoknots
that are considered by different structure prediction algorithms.

68

5.2 The General Algorithm Scheme

5.2 The General Algorithm Scheme

This section describes a general scheme that, depending on how it is instantiated,
yields alignment algorithms for different restricted classes of pseudoknots. Similar
as in the pseudoknot prediction algorithm scheme in Section 3.2, such a class of
pseudoknots is characterized by a set of split types T . A pseudoknot (S, P) is a
member of the class T , if there exists a parse tree for (S, P) that contains only splits
of types contained in T . Two variants of the algorithm scheme are discussed. First,
one that is based on basic split types and second, one that is based on constrained
types and requires a more involved recursion.

5.2.1 The Variant for Basic Types

Let T be a set of basic split types that characterizes the currently considered class
of pseudoknots. Then the algorithm takes two arc-annotated sequences (Sa, Pa),
(Sb, Pb) and a parse tree for (Sa, Pa) as input2. For this parse tree we require that
for each inner node Fa and children F 1

a , F
2
a the split of Fa into F 1

a and F 2
a is of some

split type T ∈ T .
The algorithm recursively computes alignments of fragments as follows. Each

fragment Fa in the parse tree that is split according to some type T is aligned to all
possible fragments Fb of the second sequence that can be split according to the same
split type. The computation of this alignment recursively relies on the alignments
of the children F 1

a and F 2
a to all possible F 1

b , F
2
b , respectively. Hence, the algorithm

computes alignments bottom up for all fragments in the parse tree and at the root
node arrives at the alignment of the entire structure. Formally, the recursion is
captured in the following lemma.

Lemma 15 (split lemma) Let Fa and Fb be fragments of (Sa, Pa) and (Sb, Pb),
respectively. Let (F 1

a , F
2
a) be an arc-preserving split of Fa of basic type T . Then

C(Fa, Fb) = min
T -split (F 1

b
,F 2

b
) of Fb

{

C(F 1
a , F

1
b) + C(F 2

a , F
2
b)
}

(5.1)

2

Proof To capture different cases, as for the proofs in the previous chapter, we first
split the set of alignments A = {A |alignA(Fa, Fb) }. We split it into

A =
⋃

T -split (F 1
b
,F 2

b
) of Fb

A(F 1
b
,F 2

b
)

where A(F 1
b
,F 2

b
) is defined as

A(F 1
b
,F 2

b
) :=

{

A ∈ A
∣

∣alignA(F
1
a , F

1
b) ∧ alignA(F

2
a , F

2
b)
}

2Such a parse tree can be constructed using standard parsing techniques. Furthermore, also the
various structure prediction algorithms discussed in Section 3.2 implicitly construct parse trees
that can be reused for this purpose. More details about the parsing are given in the description
of the implementation in Chapter 6.

69

5 Polynomial Alignment of Restricted Classes of Pseudoknots

Note that this is no partition, since the different sets A(F 1
b
,F 2

b
) may overlap as shown

in the example in Figure 3.6. Nevertheless, since the case distinction lemma (Lem 4)
does not require the cases to be disjoint, we can apply it as follows:

C(Fa, Fb)
Lem.4
= min

T -split (F 1
b
,F 2

b
) of Fb

CA
(F1

b
,F1

b
)
(Fa, Fb)

The split of Fa into F 1
a and F 2

a is arc preserving, since it is contained in a parse tree.
Hence, even if the split of Fb into F 1

b and F 2
b is not arc preserving, the alignment

of the fragment pair (F 1
a , F

1
b) does not contain open arc matches, but at most some

open arcs in the second sequence that are not matched to an arc in the first sequence.
Hence the two parts are independent and we have

CA
(F1

b
,F1

b
)
(Fa, Fb)

Lem.5
= CA

(F1
b
,F1

b
)
(F 1

a , F
1
b) + CA

(F1
b
,F1

b
)
(F 2

a , F
2
b)

Lem.6
= C(F 1

a , F
1
b) + C(F 2

a , F
2
b) �

The structure of this proof is similar to the proofs for the algorithms shown in the
previous chapter and based on the same lemmata. Nevertheless, there is a central
difference, namely in the choice of the case distinction. While in the previous chapter
each case fixed a certain part of the alignment (for example aligning a certain base
to a gap or matching two arcs), this algorithm considers different cases depending
on what part of the second sequence is aligned to the two parts F 1

a and F 2
a of the

first sequence. While the recursions in the previous chapter are entirely symmetric
with respect to the two sequences, this algorithm considers a fixed decomposition of
the first sequence and the case distinction branches over the different alternatives
how to decompose the second sequence accordingly.

Note that the considered splits of the first sequence are always arc preserving
since they are contained in the parse tree, while this is not the case for the second
sequence. If the split of Fb is not arc-preserving, the respective arcs are broken
or removed, since there is no arc of Fa that they can be matched to. The cost
for breaking or removing the two ends of the arcs is contained in C(F 1

a , F
1
b) and

C(F 2
a , F

2
b), respectively.

The evaluation of the recursion is done by dynamic programming, i.e. all interme-
diate values C(Fa, Fb) are tabulated, such that each instance is computed only once.
The recursive case, shown in Figure 5.2(a), is directly given by Equation (5.1). At
the leafs of the parse tree, the base cases shown in Figure 5.2(b) are applied. The
actual alignment can be constructed using the usual back-trace techniques.

Complexity Let n and m be the length of the two sequences, respectively. First
note that the parse tree has only O(n) nodes, since each split introduces at least one
new boundary, of which there exist only O(n) many. The complexity is dominated
by the computation at the inner nodes.

The following complexity analysis is similar to the analysis that is done in Sec-
tion 3.2.2 for pseudoknot prediction algorithms. At each inner node we align some

70

5.2 The General Algorithm Scheme

(a) Recursive case:

C(Fa, Fb) = min
T -split (F 1

b
,F 2

b
) of Fb

{

C(F 1
a , F

1
b) + C(F 2

a , F
2
b)
}

,

where the parse tree splits Fa into (F 1
a , F

2
a) by a split of basic type T

(b) Base cases:

C([i], [l, r]) = min

C([i], [l + 1, r]) + gap2(l) if l ≤ r

C([i], [l, r − 1]) + gap2(r) if l ≤ r

basematch(i, l) if l = r

gap1(i) if l > r

C(Fa=([pL], [pR]), ([l1, r1], [l2, r2])) =

min

C([pL], [l1, r1]) + C([pR], [l2, r2])

C(Fa, ([l1 + 1, r1], [l2, r2])) + gap2(l1) if l1 ≤ r1

C(Fa, ([l1, r1 − 1], [l2, r2])) + gap2(r1) if l1 ≤ r1

C(Fa, ([l1, r1], [l2 + 1, r2])) + gap2(l2) if l2 ≤ r2

C(Fa, ([l1, r1], [l2, r2 − 1])) + gap2(r2) if l2 ≤ r2

(χ(pL, l1) + χ(pR, l2))
wam

2 if (l1, l2) = (r1, r2) ∈ Pb

Figure 5.2: (a) Recursive case for basic split type and (b) base cases of the algorithm.

71

5 Polynomial Alignment of Restricted Classes of Pseudoknots

fragment Fa with T -split (F 1
a , F

2
a) to all possible Fb that can also be split according

to some split (F 1
b , F

2
b) of type T . Since we store the value C(Fa, Fb) for all those

Fb, the space complexity depends on the number of instances of Fb which is #m
P (T).

Since the computation of C(Fa, Fb) minimizes over all possible T -splits (F 1
b , F

2
b) of

Fb, the time complexity is given by the number of instances for (F 1
b , F

2
b), i.e. #

m
C (T).

Since there exist O(n) nodes in the parse tree, the time and space complexity of
the algorithm can be bounded as O(n#m

C (T ′)) and O(n#m
P (T ′′)), respectively, where

T ′ and T ′′ are the types contained in the parse tree, for which #m
C (T ′) and #m

P (T ′′)
are maximal, respectively.

Given the constants kp, k1 and k2 from Lemma 1 the time complexity of the
algorithm is O(nmkp+k1+k2) and the space complexity is O(nm2kp). This can be
further simplified to O(nm2k) and O(nm3k), respectively, where k is the maximal
degree among all fragments in the parse tree. To get an intuition for this number,
note that for most pseudoknots that have been observed in nature there exist parse
trees for which k = 2. Hence they can be aligned in O(nm6) time and O(nm4)
space.

5.2.2 An Optimized Variant for Constrained Types

By the preceding complexity analysis, the time and space complexity of the algo-
rithm directly depends on the number of parent instances, #m

P (T) and the number of
child instances, #m

C (T) of the basic types T that occur in the parse tree. Constraints
on split types reduce the number of instances, however, the recursion considered in
the previous section (Figure 5.2) is not correct for constrained types.

The problem is that if a fragment in the first sequence satisfies some constraints,
it is not always the case that the constraints are also satisfied for the fragment of the
second sequence which it is aligned to. As an example, consider Figure 5.3 where
both intervals of F 1

a satisfy a length constraint whereas the corresponding intervals
of F 1

b do not. In the example it is visible that the problems occur only if some
boundaries in the second sequence are aligned to gaps. More precisely, the intervals
in the second sequence might have a length of more than one, but if the corresponding
interval in the first sequence consists of only one base, there is at most one match
and all other positions are aligned to gaps. Hence, the recursion is extended with
additional ’shrink’-cases to ’eat away’ the gapped bases. Those ’shrink’-cases can
then be applied until the second sequence also satisfies the constraints.

Definition 24 (shrinking) Let (F 1
b , F

2
b) be a T -split of Fb for some constrained

type T . A boundary b of Fb is called a constrained boundary if it is a boundary of
an interval of F 1

b or F 2
b that is subject to a length constraint. The set of shrinkings

of Fb with respect to T , short shrinkingT (Fb), is the set of fragments F ′
b with the

same degree as Fb for which F̂
′
b = F̂b −{b} for some constrained boundary b of Fb.2

Consider Figure 5.4 as an example for the set of shrinkings of a split. With this
notion, the recursion can be refined for constrained types as follows.

72

5.2 The General Algorithm Scheme

A
S

a

S
b

P
b

P
a Fa

¹

F
b
²

F
a
²

F
b
¹

G A A A C

G A A A CC G

Figure 5.3: The first sequence is split such that both intervals of F 1
a satisfy a length

constraint but there is no appropriate split such that F 1
b also satisfies

those constraints.

split

shrinkings

8 12

12

12

118

8

9

5

5

5

51

1

1

2

Figure 5.4: The fragment {[1, 5], [8, 12]} has three shrinkings with respect to the
constrained split type 1′2G1′21′, namely {[2, 5], [8, 12]}, {[1, 5], [9, 12]}
and {[1, 5], [8, 11]}.

73

5 Polynomial Alignment of Restricted Classes of Pseudoknots

Lemma 16 (split lemma for constrained types) Let Fa and Fb be fragments
of (Sa, Pa) and (Sb, Pb), respectively. Let (F 1

a , F
2
a) be an arc-preserving T -split of

Fa, where T may contain constraints such that

I no two adjacent intervals both contain length constraints

II if T contains a maximality constraint, the first and last interval have no length
constraint.

III T contains only a maximality constraint, if the first and last boundary of Fa

and Fb coincide with the beginning and the end of the respective sequence.

Then

C(Fa, Fb) = min

min
T -split (F 1

b
,F 2

b
) of Fb

C(F 1
a , F

1
b) + C(F 2

a , F
2
b)

min
F ′

b
∈shrinkingT (Fb)

C(Fa, F
′
b) + gapb(j) for the j ∈ F̂b − F̂ ′

b

2

Proof If some constrained boundary of Fb is aligned to a gap then

C(Fa, Fb) = min
F ′

b
∈shrinkingT (Fb)

C(Fa, F
′
b) + gapb(j) for the j ∈ F̂b − F̂ ′

b.

It remains the case where no constrained boundary of Fb is aligned to a gap. In that
case, we construct a T -split (F 1

b , F
2
b) for which

C(Fa, Fb) = C(F 1
a , F

1
b) + C(F 2

a , F
2
b)

as follows. By Lemma 15 such a split exists and we only need to ensure that there
exists also such a split that satisfies all constraints of T . By requirement II and III
maximality constraints are always satisfied. If we assume that the split does not
satisfy some length constraint, we construct another split that satisfies the length
constraint as follows. Since a length constrained interval of the first sequence can be
aligned to at most one position of the second sequence, all but at most one position
in the corresponding interval in the second sequence are aligned to gaps. Different
situations for this are sketched in Figure 5.5. If the interval is not located at a
boundary, as shown in Figure 5.5(a) and (b) a new split can be constructed such
that all positions aligned to gaps are covered by the neighboring fragments since, by
requirement I, those have no length constraints. If, on the other hand, the interval is
adjacent to a gap then it is always aligned to the corresponding border in the second
sequence, as shown in Figure 5.5c, since otherwise the corresponding boundary of Fb

is aligned to a gap, as shown in Figure 5.5d, which is handled by the shrink case. �

The recursion of Lemma 16 is combined with the same base cases as the previous
algorithm (Figure 5.2b) to obtain the final algorithm.

74

5.2 The General Algorithm Scheme

handled by

shrink case

a) b)

c) d)

Figure 5.5: Different situations in the proof of Lemma 16. The interval with the
length constraint in the first sequence is highlighted in blue and the
corresponding interval in the second sequence that does not satisfy the
length constraint is shown in red. The black hatching indicates the part
of the interval that is removed such that it satisfies the length constraint.
In (a) and (b) those parts can be covered by the neighboring intervals,
in (d) the shrink case is applied.

Complexity

The complexity analysis is completely analogous to the variant for basic types since
the additional shrink case minimizes only over a constant number of values, namely
one for each length constraint in T . Consequently the shrink case does not in-
crease the time and space complexity of the algorithm which is hence bounded by
O(n#m

C (T ′)) and O(n#m
P (T ′′)), respectively, where T ′ and T ′′ are again the elements

of T such that #m
C (T ′) and #m

P (T ′′) are maximal. The advantage compared to the
variant for basic types is that for constraint types #m

C (T ′) and #m
P (T ′′) are smaller

and can be estimated with Lemma 2 instead of Lemma 1. We now show how to
improve the space complexity even more for certain instances of the scheme.

Improving Space Complexity with Invariants Analogously to the structure
prediction algorithms (see Section 3.2.2), also for the alignment the space complexity
can be improved with the help of a grouping according to certain invariants. The
grouping idea generalizes from the prediction of one sequence to the alignment of
two sequences without difficulty.

So far the recursion was presented in a way that suggested that the compu-
tation is done bottom up along the parse tree for one node after the other. A
grouping S1 · · · Sk ∪ G1 · · · Gk partitions the set of parent fragments into simple and
grouped fragments such that simple fragments are maintained in memory, whereas
the grouped fragments of one group are deleted as soon as the next group is computed

75

5 Polynomial Alignment of Restricted Classes of Pseudoknots

G
1

S
1

G
2

S
2

G
3

S
3

...

G
1

S
1

G
2

S
2

G
3

S
3

...

G
1

S
1

G
2

S
2

G
3

S
3

...

(a) Grouping of a node and its children.

11

1 6 2 7

12 ...

13 ...

83

...

15 ...

105

14 ...

94

(b) Evaluation order of the groups.

Figure 5.6: Grouping of the values that are computed for each node of the parse
tree. Part (a) shows the grouping of some node and its two children.
The numbers in part (b) show in what order the respective groups are
computed.

(see Definition 10 for details). With such a grouping the computations necessary at
the different nodes of the parse tree have to be interleaved: First for all nodes of
the parse tree (in a bottom up order) only the entries of S1 and G1 are computed
and then on all nodes the entries of G1 are deleted before in the next stage S2 and
G2 are computed for all nodes. This is visualized in Figure 5.6. Note that at each
node of the parse tree only one split type is considered and not several ones, as in
the recursions for structure prediction. Since for one given split type usually either
all instances are grouped or all instances are simple, usually at each node either
all sets Gi or all sets Si are empty. Hence a grouping also groups the nodes of the
parse tree into simple nodes and grouped nodes. However, we describe the evalua-
tion here such that each node has a (possibly empty) simple part and a (possibly
empty) grouped part, to keep it as general as possible and to simplify presentation
by avoiding various case distinctions.

Lemma 17 (space complexity for grouped fragments) Let two arc annotated
sequences (Sa, Pa) and (Sb, Pb) be of length n and m, respectively, let t be a parse tree
for (Sa, Pa) with a set of split types T that is invariant with respect to some grouping
S1 · · · Sk ∪ G1 · · · Gk. Furthermore, let f be some function that satisfies Properties
(3.7) and (3.8) from Section 3.2.

Then the alignment algorithm scheme can compute the alignment in O(nf(m))
space without recomputing each value more than a constant number of times. 2

Proof The proof is completely analogous to the proof of Lemma 3 with the only
difference that each stage is now done for all nodes of the parse tree which results in

76

5.3 Tailored Instances of the Scheme for all Structure Prediction Algorithms

the additional factor n. Since the argumentation why the evaluation order satisfies
all relevant properties is at each node exactly the same as for Lemma 3, we just
describe the evaluation order precisely and skip the arguments about its properties.

The evaluation order is visualized in Figure 5.6; the evaluation consists of k stages.
In each stage i the values for the elements of Si

⋃

Gi are computed for all nodes of
the parse tree (bottom up). Before entering stage i + 1, the space for Gi is freed
on all nodes. In principle each Gi and also each Si can already be deleted for some
node as soon as the respective entries for its parent are computed. While this could
make a difference in practice, it does not affect the asymptotic space complexity
since for arbitrary parse trees nevertheless values of O(n) many nodes have to be
kept in memory at the same time. �

In the next subsection we analyze the complexity of the algorithm for various prac-
tical classes of pseudoknots.

5.3 Tailored Instances of the Scheme for all Structure

Prediction Algorithms

In this section, we focus on the behavior of the general algorithm scheme for the
different classes of pseudoknots predicted by the structure prediction algorithms
analyzed in Section 3.2. We show that the alignment can benefit from the structural
restrictions in exactly the same way as the prediction does. In particular we show
for each of the prediction algorithms how to construct a corresponding alignment
algorithm with only a linear increase in complexity (see Table 5.1).

This yields new alignment algorithms for five classes of pseudoknots for which
no alignment algorithms existed so far. For the only pseudoknot class for which
an alignment algorithm existed before, the new scheme improves the time/space
complexity from O(n5m5)/O(n4m4) to O(nm6)/O(nm4). Assuming that the two
sequences have an equal length (i.e. n = m) this is an improvement by a cubic factor
in both time and space. For the simplest class of pseudoknots that is considered, the
new algorithm scheme yields a complexity of O(nm4) time and O(nm2) space. Also
note that on nested structures the algorithm behaves like an algorithm by Jiang et
al. [27].

R&E structures

The prediction algorithm by Rivas and Eddy [46] requires O(n6) time and O(n4)
space. As described in Section 3.2.3 the algorithm is based on a set of split types
for which #m

C (T ′) ∈ O(m6) and #m
P (T ′′) ∈ O(m4). For each R&E structure trivially

there exists a parse tree that uses only the split types of the R&E algorithm. Hence
from the complexity analysis of the alignment algorithm scheme follows that for this
class the alignment can be done on O(nm6) time and O(nm4) space. Compared to

77

5 Polynomial Alignment of Restricted Classes of Pseudoknots

Table 5.1: Pseudoknot classes and complexity of their prediction and alignment.
For A&U the first value is for simple and the second for simple recursive
structures.

class R&E A&U L&P D&P CCJ R&G

prediction
time O(m6) O(m4)/O(m5) O(m5) O(m5) O(m5) O(m4)
space O(m4) O(m3)/O(m3) O(m3) O(m4) O(m4) O(m2)

alignment time O(n5m5) - - - - -
(literature) space O(n4m4) - - - - -

alignment time O(nm6) O(nm4)/O(nm5)O(nm5)O(nm5)O(nm5)O(nm4)
(new scheme) space O(nm4) O(nm3)/O(nm3)O(nm3)O(nm4)O(nm4)O(nm2)

the algorithm that our scheme yields, the best exact alignment algorithm for this
class known so far (by Evans [21]) requires O(n5m5) time and O(n4m4) space.3

A&U structures

The argumentation about the complexity to align A&U structures differs from R&G
structures only in the fact that the A&U prediction algorithm (for both simple and
simple recursive structures) makes use of an invariant of the considered set of split
types to reduce the space requirement according to Lemma 3 (see Section 3.2.3).
The same optimization can be done for the alignment according to Lemma 17.
Hence, simple A&U structures that are predicted in O(m4) time and O(m3) space,
are aligned in our scheme in O(nm4) time and O(nm3) space. Analogously simple
recursive A&U structures for which the prediction requires O(m5) time and O(m3)
space, can be aligned in O(nm5) time and O(nm3) space.

L&P structures

In the prediction algorithm of Lyngsø¸ and Pedersen [31], the only aspect that was
non standard with respect to our structure prediction scheme was the grouping used
for space optimization. In this grouping the final fragment [1, n] was computed step
by step, by minimizing after each stage i only over the instances of the split type
12121 where the second gap of the first child starts at i−1 and the gap of the second
child ends at i.

For the alignment this computation of the final fragment corresponds to the fact
that the root node of the parse tree always has split type 12121. The values computed
at the root node can also be computed in such an interleaved fashion: as soon as
some stage i for the two children of the root is finished, the root node minimizes over
all alignments that consist of fragments computed in this stage. Hence, the space
improvement obtained by the grouping can also be used for the alignment which

3Evans’ algorithm computes the maximum common ordered substructure which can be considered
as a special case of the general edit distance measure (see Section 2.2.2).

78

5.3 Tailored Instances of the Scheme for all Structure Prediction Algorithms

allows by Lemma 17 to align L&P structures with the alignment scheme in O(nm5)
time and O(nm3) space.

D&P structures

For D&P structures the argumentation is completely analogous to R&E structures.
Without any grouping or other modifications the set of considered split types implies
a complexity of O(nm5) time and O(nm4) space for the alignment task.

CCJ structures

Also for CCJ structures the time and space complexity of O(nm5) and O(nm4),
respectively, follows directly from the set of considered split types.

R&G structures

As described in Section 3.2.3 R&G structures are limited to canonical pseudoknots
which means pseudoknots that are maximal for the respective sequence. This is a
major difference to all previously discussed classes since this criterion is not purely
structural but relative to the respective input sequence. A pseudoknot structure may
be canonical for one sequence and at the same time be not canonical for another
one.

The R&G algorithm computes the optimal structure among all structures that
are canonical for the given input. The analogous alignment algorithm computes
the optimal alignment among all possible alignments that are canonical for the
given input. What is a canonical alignment? For the prediction algorithm the
definition of canonical was chosen such that from the O(n8) instances of the split
type 1234153, the split type 1c23c41c53c only considers the O(n4) instances that are
“most reasonable” for the current input. Most reasonable in that case meant that the
children 1 and 3 must be maximally extended stems. If we apply the same restriction
to the splits of the second sequence that we consider for the alignment, we have only
O(n2) many instances, since in the alignment we have given structures and hence
for both the first and third child only O(n) instead of O(n2) many instances. To
resemble the complexity of the prediction algorithm we can consider O(n4) instead
of O(n2) instances and hence relax the restriction of canonicity. Hence we define
the first and third child of 1c23c41c53c to be canonical if and only if their first and
last boundary, as well as their second and third boundary are connected by arcs.
Then each of the children is determined by those two arcs and hence has O(n2)
instances which results in a total number of O(n4) instances of 1c23c41c53c and a
much weaker restriction of canonicity. Without increasing this number of instances
asymptotically, in addition we can also consider the instances where the child 1 or 3
is empty. Then an alignment is canonical, if each stem of a canonical pseudoknot in
the first sequence is aligned either to a gap or to a fragment ([l1, r1], [l2, r2]) of the
second sequence for which (l1, r2) ∈ Pb and (r1, l2) ∈ Pb.

79

5 Polynomial Alignment of Restricted Classes of Pseudoknots

One little detail is still missing. The R&G algorithm does not decompose the
canonical stems of the split type 1c23c41c53c any further. But to compute the
alignment this is necessary since the children 1 and 3 are not atomic. Since those
children are parts of canonical stems, they can be further decomposed with the
split type 12′G2′1. As this decomposition relies on no other split types, the first
and last boundary both remain invariant. Hence, by a grouping according to those
two boundaries the space complexity can be reduced by a quadratic factor. The
final time and space complexity for the alignment algorithm of R&G structures is
therefore bounded by O(n4) and O(n2), respectively.

5.4 Possible Extensions of the Scheme

In this section we briefly sketch possible extensions of the alignment algorithm
scheme. The ideas are not described in detail but just point to possible directions
of future work.

5.4.1 A Scanning Variant

So far we have assumed to apply the algorithm to two sequences of approximately
the same length. But alignment methods can also be used to scan a large structure
for a small motif, i.e. to find within the large structure the part that best matches
the motif. This can, for example, be realized with a sliding window approach in
which a window of the size of the motif is slided over the first sequence and for each
position of the window its optimal alignment to the motif is computed according to
the algorithm scheme. Finally, among all window positions the one with the best
alignment is the one that fits best to the motif.

The problem with such a sliding window approach is that, since the windows
overlap, a lot of alignments of fragments are recomputed many times. Therefore, it
would be desirable to reuse the results computed for a window position i as much
as possible when the window is slid to the next position i+1. While this is more an
implementation issue than a general problem it nevertheless causes some difficulties.
At least a grouping to reduce space complexity will usually conflict with such an
optimization for a scanning variant.

5.4.2 A Variant for Combined Alignment and Structure Prediction

The alignment algorithm scheme requires two sequences with given, fixed structures
as input. For the first sequence such a structure is necessary to construct the parse
tree that determines how the structure is recursively decomposed. However, for the
second sequence the presence of the structure is no essential requirement, since the
algorithm scheme considers all fragments of it independent from the structure. In
the second sequence the structure is only required for the scoring scheme. Hence, the
algorithm scheme could be generalized to align one sequence with given structure to
another one without given structure.

80

5.4 Possible Extensions of the Scheme

One possibility would be to assume for the second sequence Sb not a fixed set of
base pairs Pb, but a base pair probability matrix that gives for each potential base
pair a probability. Those probability matrices for pseudoknot structures could, for
example, be computed with the D&P pseudoknot prediction algorithm [17] since
this algorithm is not only able to predict the MFE structure but also the partition
function. Compared to computing the MFE structure with any prediction algorithm
described in Section 3.2 this approach would be much more robust, since it does not
commit to the most probable structure but considers all structures simultaneously
together with their associated probability.

Only little modifications of the algorithm scheme are necessary in order to work
with a base pair probability matrix instead of a fixed structure for the second se-
quence, since just the scoring scheme has to be adjusted to account for the base
pair probabilities. So, whenever two atomic fragments are aligned to each other,
there is not either an arc match or an arc breaking or some other case, but only a
probability for each of these cases. Hence, the computation at the leaves of the parse
tree must be modified such that it combines the probabilities of all those possible
cases into one score. For the inner nodes of the parse tree the computation would
remain unchanged.

While the approach with base pair probability matrices would be similar to the
LocARNA approach [59, 41] also a Sankoff [49] like approach based on a full energy
model would be a possible alternative. While the approach with base pair proba-
bility matrices is still a two stage approach where first structure probabilities are
determined with a prediction algorithm and later on the alignment is computed, the
Sankoff algorithm computes the structure and the alignment simultaneously. How-
ever, such an extension is less straight forward and would require to compute scores
for both the folding and the alignment with exactly the same recursive decomposi-
tion.

In principle also the assumption of a given structure for the first sequence could
be relaxed. For example, instead of one fixed parse tree the algorithm could also
make use of a directed graph that represents several alternative parse trees that are
overlaid on top of each other. Of course the complexity of the approach would grow
with the number of alternative parse trees but as long as only a small number of
highly probable structures is considered, it might still be feasible.

5.4.3 A Partition Function Variant

For RNA structure prediction several approaches do not generate the optimal struc-
ture but compute a probability for each possible base pair under the assumption
that the ensemble of all structures is Boltzmann distributed [35, 17]. This is more
robust than just reporting the optimal structure since in many cases there exist
suboptimal structures nearby the optimum that are also relevant in practice.

The same principle can also be applied to the alignment task by computing prob-
abilities for each possible alignment edge. These probabilities can serve then as a
local reliability measure for the alignment. Hofacker et al. [26] have shown how to

81

5 Polynomial Alignment of Restricted Classes of Pseudoknots

extend the Sankoff algorithm [49] in that way.
Technically, the probabilities in these approaches are computed based on the par-

tition function. The set of all possible alignments (or for structure prediction the
set of all possible structures) is assumed to be Boltzmann distributed such that the
probability of each alignment is proportional to its Boltzmann weight. While assum-
ing the Boltzmann distribution is reasonable for the ensemble of RNA structures in
thermodynamic equilibrium, this assumption is somehow artificial for alignments.
In particular the temperature parameter has no physical interpretation but is just
an abstract parameter that controls how strong the probability of an alignment is
related to its score. Nevertheless the assumption of a Boltzmann distribution has
been used for alignments and yields good results in practice [26].

The partition function Z is the sum of the Boltzmann weights of all alignments
and can be computed via DP by recursively computing the partition function of
fragments. If the recursion to compute the optimal alignment has disjoint cases, the
partition function can be computed with the same recursive decomposition. The only
difference is that while the computation of the optimum maximizes over different
cases and in each case adds the costs of the parts that the recursion descents to, the
computation of the partition function adds the Boltzmann weights computed in the
different cases and each of those Boltzmann weights is the product of the Boltzmann
weights of the parts that the recursion descents to. The requirement that the cases
are disjoint is necessary to avoid counting the Boltzmann weights of some alignments
more than once. Note that in the current form, the cases of the alignment algorithm
scheme are not disjoint: if in some alignment a position of the second sequence is
aligned to a gap then splitting directly before this gap and splitting directly behind
it are two different cases that both consider this alignment (see Figure 3.6).

The partition function can be used to compute the probability of each single
alignment A as P (A) = w(A)

Z
where w(A) denotes the Boltzmann weight for A. The

probability of a singe alignment edge (i, j) is then

∑

A with (i,j)∈A

P (A) =

∑

A with (i,j)∈Aw(A)

Z
(5.2)

Similar to the inside outside algorithm for probabilistic context-free grammars [4, 30],
the sum of the Boltzmann weights of alignments that contain a certain alignment
edge (i, j) can be obtained more efficiently by calculating this weight not for the
entire structure directly, but to compute it for some inner fragment (inner proba-
bilities) and a complementary outer fragment (outer probabilities) and multiplying
the two values.

In summary, to turn the algorithm scheme into a partition function variant, mainly
the following aspects have to be modified: the cases of the recursion have to be made
disjoint and an additional recursion has to be developed to compute the outer prob-
abilities (the inner probabilities can be computed analogous to the current recursion
of the scheme).

82

6 Practical Applications

This chapter describes some practical applications of the algorithms developed in
this thesis to evaluate their applicability. First, in Section 6.1 implementations
for both the alignment methods developed in Chapters 4 and 5 are presented and
compared to other existing alignment approaches. Then, in Section 6.2 a pipeline
for the detection of pseudoknots in potential non-coding RNAs that is based on
the new alignment algorithms is discussed and applied to biological data from two
different organismic species.

6.1 Implementations

6.1.1 FPTalign

FPTalign, a prototype of the pseudoknot alignment algorithm presented in Chapter 4,
was implemented in C++. The implementation is based on the advanced version of
the algorithm including the stem optimization to be as efficient as possible. It uses
the general edit distance with the restriction on arc altering as scoring scheme and
directly implements the recursion discussed in Section 4.3.3.

To make it applicable to larger instances the program also offers the possibility not
to fill the entire matrices of the recursion but to only evaluate a user specified range
around the diagonal of the matrices. This is a frequently used heuristic optimization
that can be applied to most alignment approaches. If the two aligned sequences have
approximately the same length, this heuristic effectively enforces that any position
i of one sequence can only be aligned to positions of the other sequence within some
range [i−d, i+d] where d is the user specified parameter. If the input sequences have
a high similarity, their optimal alignment satisfies this property for rather small d.
Hence, often the optimal alignment can be found much faster with such a restriction,
however, the optimality of the result is no more guaranteed.

6.1.2 PKalign

The alignment method for restricted classes of pseudoknots described in Chapter 5
was implemented in a program called PKalign. Since this method is able to handle
various classes of pseudoknots one major design decision had to be made for the
implementation: it could either just focus on one class of pseudoknots or implement
the algorithm scheme in its full generality. While the latter option is more flexible
and powerful, it is more complex to implement, leaves less room for optimizations
and has some overhead due to its generality. Nevertheless, this second alternative

83

6 Practical Applications

was chosen in order to be able to compare the behavior of the algorithm scheme on
the various classes of structures.

As described in Section 5.2, the algorithm requires a parse tree of the first sequence
as input. This parse tree has a major impact on the time and space requirement of
the algorithm since the essential difference among the various pseudoknot classes is
how the parse trees for the respective class look like. The implementation computes
a suitable parse tree in a preprocessing step. In practice it is straightforward to find
some valid parse tree but it is much harder to find the parse tree on which the algo-
rithm runs fastest. Several parsers that differ in their time and space requirements
and in the quality of the resulting parse tree, have been implemented. In other
words, some of the parsers take much more time than others but the resulting parse
tree might be better in the sense that the subsequent computation of the alignment
is much faster. All the parsers where implemented by Jörg Bruder in the context
of his diploma thesis [8] that also contains a detailed description and comparison of
the various parsers. The evaluation done later in this chapter uses a heuristic parser
that turned out to work best on most instances.

As described in Section 5.2.2, the space requirement of the algorithm can be op-
timized for various pseudoknot classes by reordering the evaluation of the recursion
appropriately. As this reordering is different for each structure class, it is diffi-
cult to implement in a general fashion. In principle, the parse tree obtained in the
preprocessing step would need to be analyzed by the program with respect to the
invariants that it satisfies and then an appropriate evaluation order would have to
be chosen. Hence, the evaluation order cannot be hard coded in the implementation.
To simplify the implementation and to avoid the resulting time overhead, the space
optimization was not implemented. This is the biggest drawback of having a uni-
versal implementation for all pseudoknot classes instead of an implementation that
is tailored to one specific class. In the latter case the respective space optimization
could be implemented easily without a time overhead.

Similar to FPTalign, also PKalign allows to limit the computation of the matrices to
a range around the diagonal. Again, such a limitation leads to a significant reduction
in time and space consumption but, as a heuristic, might yield suboptimal results.

6.1.3 Comparison of both Approaches

Alignment approaches differ in the quality of their results, the class of structures
which they can be applied to and in their time and space consumption. Since the two
algorithms implemented in PKalign and FPTalign solve the same alignment problem
with the same scoring scheme, the quality of their results is always equal and they
differ only in the two other aspects.

While FPTalign accepts arbitrary pseudoknots as input, PKalign is restricted to
pseudoknots contained in any of the pseudoknot classes described in Section 5.3.
Condon et al. [11] analyze pseudoknot structures from various databases and report
that 434 of the 486 considered structures belong to the R&G class, which is the
largest class handled by the algorithm and which contains all the other classes.

84

6.1 Implementations

Table 6.1: Space requirements and runtime (on a single Opteron 2356 processor
with 2.3 GHz) for the alignment of pseudoknot structures from the Rfam
database. The column class denotes the simplest class of pseudoknots
that contains the respective structures, n denotes the average sequence
length and k the maximal crossing number, i.e. the exponential factor in
the complexity analysis of FPTalign.
⋆For one member of the family, the pseudoknot is not canonical and hence is not con-
tained in the R&G class but only in the A&U class.
⋆⋆For Corona FSE PKalign was only able to align four out of the five instances with
the reported 8 GB of memory.

RNA family class n k
time space

FPTalign PKalign FPTalign PKalign

Tymo tRNA A&U 83 1 0.1 s 2 min 50.6 s 0.5 GB 8 GB
Prion pknot R&G 41 1 0.8 s 15.0 s 0.5 GB 0.5 GB
Parecho CRE R&G 112 1 1.0 s - 0.5 GB > 8 GB
Antizyme FSE A&U 58 1 9.2 s 1 min 38.8 s 0.5 GB 4 GB
Corona FSE R&G⋆ 82 1 22.9s 4 min 16.4 s 1 GB 8 GB⋆⋆

Corona pk3 A&U 63 1 29.7 s 1 min 43.4 s 0.5 GB 4 GB
Entero Ori L&P 122 1 32.8 s - 1 GB > 8 GB
Alpha RBS R&E 110 4 - - > 8 GB > 8 GB

Furthermore, 411 structures belong to the D&P class, which can be aligned by
the algorithm scheme one order of magnitude faster. If isolated base pairs that are
sometimes considered as tertiary rather than secondary structures are removed, even
483 of the 486 structures belong to the R&G class.

To evaluate time and space consumption of PKalign and FPTalign, several pseu-
doknot structures from the Rfam database [24] where aligned. A benchmark set
of 8 RNA families that are annotated with pseudoknots was used. Albeit in total
Rfam contains 16 such families, the test set was restricted to RNAs with a length of
at most 125. From each family, five pairs of members where randomly chosen and
aligned with both algorithms. The runtime of all five runs was then averaged. To
determine the memory consumption, all alignments where computed several times
with increasing memory limits, namely 0.5 GB, 1 GB, 4 GB and 8 GB, until a run
was successful. For both programs the heuristic option to limit the computation of
the matrices around the diagonal was not used.

The results are given in Table 6.1. On all test instances FPTalign performed
better than PKalign. The most prominent aspect of the results is that PKalign has a
very high memory consumption that makes it impossible to align three of the eight
families within the 8 GB limit. In contrast, for FPTalign this is only the case for one
instance, Alpha RBS, and most other instances can be aligned even with 0.5 GB
of memory. The structure Alpha RBS is a complicated structure in terms of both
algorithms: for FPTalign it is the only structure for which the exponential factor k
in the complexity estimation has a size larger than one and for PKalign it is the only
structure in the test set that falls in the most complex class R&G. While FPTalign

85

6 Practical Applications

computes all alignments within a few seconds, the running times of PKalign are in
the range of a few minutes.

While the results suggest that PKalign is inferior to FPTalign on practical instances
this does not imply the same for the underlying algorithms. As described in Sec-
tion 6.1.2 PKalign is a very general implementation that can handle various restricted
classes of pseudoknots. Due to this generality it does not implement the space op-
timizations that exist for several of those classes. As the evaluation shows the high
space consumption is the major drawback of PKalign. Hence, an implementation
that is tailored to one specific class of pseudoknots could be much more efficient
in practice. Besides the possible space improvement, such an implementation could
also be significantly faster since it does not need to implement arbitrary splits and
fragments in the general way as PKalign does.

6.1.4 Further Evaluation of FPTalign

Since FPTalign turns out to be the more efficient than PKalign this section describes
further tests with FPTalign for larger and more complex pseudoknot structures. The
results in this section where published in [37].

For this evaluation alignments of RNA structures of the tmRNA database [64]
where computed. We have chosen the longest tmRNA sequence (Mycobacteriophage
Bxz1, MB), the shortest sequence (Cyanidium caldarium, CC), the sequence that
contains the largest crossing stems (Ureaplasma parvum, UP), and a nested version
(UPnest) of the latter, where we removed all left crossing arcs.

We were able to compute the pairwise alignments of these sequences with 1 GB of
memory with one exception using 2 GB. Table 6.2 shows that the runtime scales well
with the complexity of the involved pseudoknots. As we suggested, the exponential
factor k is small on all instances. Whereas alignments of sequences with large pseu-
doknots take several hours, sequences with small pseudoknots can be aligned in a
few minutes. In contrast, sequence length has a much smaller impact on runtime,
as in particular the alignments with UPnest show.

As described in Section 4.3.2, the algorithm partitions set of arc pairs into the
non-crossing set NC and the crossing set CR and applies to each of the two a
different recursion. For the results in Table 6.2 this partition was done according to
the left crossing stem criterion (see Lemma 10). However, the runtime can depend
heavily on the partition. For example, the alignment of Ureaplasma parvum and
Mycobacteriophage Bxz1 took less than three hours if CR was chosen to contain
the pairs of left crossing arcs, but more than 6 hours if CR was chosen to contain
the right crossing arcs instead. Notably, in this case the better partitioning can be
identified in advance by comparing the parameters k and s; k is equal for both cases,
s is 10/7 for the left crossing and 12/12 for the right crossing case. This comparison
indicates that a more sophisticated partitioning into crossing and nested arc pairs,
e.g. greedy or stochastic local optimization, may result in significant speed-ups in
practice.

86

6.1 Implementations

Table 6.2: Runtime of the alignments (on a single Xeon 5160 processor with 3.0
GHz) and the properties of the aligned structures (n=sequence length,
s=max. number of arcs in crossing stem, pk=number of pseudoknots,
k=fixed parameter of the algorithm) for left crossing partitioning.

aligned sequences n s k pk memory runtime

UP / UP 413/413 10/10 1 4/4 ≤ 2 GB 726m 52s
UP / MB 413/437 10/7 1 4/2 ≤ 1 GB 172m 53s
UP / CC 413/254 10/2 1 4/1 ≤ 1 GB 11m 51s

UP / UPnest 413/413 10/0 0 4/0 ≤ 1 GB 4m 43s

MB / MB 437/437 7/7 1 2/2 ≤ 1 GB 43m 20s
MB / CC 437/254 7/2 1 2/1 ≤ 1 GB 3m 56s

MB / UPnest 437/413 7/0 0 2/0 ≤ 1 GB 3m 27s

CC / CC 254/254 2/2 1 1/1 ≤ 1 GB 1m 11s
CC / UPnest 254/413 2/0 0 1/0 ≤ 1 GB 2m 6s

UPnest/UPnest 413/413 0/0 0 0/0 ≤ 1 GB 4m 21s

6.1.5 Comparison to Heuristic Approaches

Besides the algorithms developed in this thesis, for the pairwise alignment of pseudo-
knot structures there exist only two other algorithms that compute an exact solution
of the problem. For these two approaches by Evans [20, 21] no implementations are
available. The only implemented approach for pseudoknot alignment it the lara

program [5]. In contrast to PKalign and FPTalign, lara is not based on dynamic pro-
gramming but on integer linear programming (ILP). The integer linear program is
solved by lara using Lagrangian relaxation, which is a heuristic approach that does
not guarantee an optimal solution. Nevertheless, it gives you a quality guarantee
since the method computes not only some alignment but also a bound on how far
this alignment is from the optimal one. For some instances this leads to a provably
optimal solution. We compared lara to FPTalign to analyze the differences between
heuristic and exact approaches.

The evaluation was done as follows. From each of the eight families of the Rfam

database used in Section 6.1.3 the two members with the lowest sequence identity
where chosen in order to maximally challenge the algorithms. The chosen pairs where
aligned with both lara and FPTalign two times: one run with the given pseudoknot
structures and one run with only the nested part of the structure. The second
run is used to measure the benefit of considering the pseudoknotted structure for
the respective algorithm. For FPTalign also two additional runs where computed
with different diagonal limitations (as described in Section 6.1.1). The edit costs of
FPTalign where set to wd = 17, wm = 8, wr = 32, wb = 24, and wam = 4. Since
the publicly available version of lara does not accept fixed pseudoknot structures as
input, a tailored version of the tool, kindly provided by its authors, was used. The
scoring parameters of lara where set as provided by the authors of lara for this test.
The quality of the computed alignments was determined by the COMPALIGN score

87

6 Practical Applications

Table 6.3: Accuracy and runtime of lara and FPTalign. The accuracy is measured
with the COMPALIGN score with respect to the hand cured reference
alignment of the Rfam database. Values in brackets are for nested input
structures. For FPTalign three runs where computed: without diagonal
limitation, and with a limitation of 20 and 10.

RNA family
sequence
identity

accuracy

lara
FPTalign

- 20 10

Parecho CRE 83% 1.0000 (1.0000) 0.9868 (0.8728) 0.9868 0.9868
Entero Ori 74% 0.9648 (0.9648) 0.9492 (0.9492) 0.9492 0.1875

Antizyme FSE 70% 0.9739 (0.9217) 0.9304 (0.9304) 0.9304 0.9304
Tymo tRNA 51% 0.9643 (0.9345) 0.9643 (0.9167) 0.9643 0.9643
Prion pknot 51% 0.8537 (0.3902) 0.8537 (0.8537) 0.8537 0.8537
Alpha RBS 48% 0.8605 (0.8605) - (0.8605) 1.0000 1.0000
Corona FSE 42% 0.6265 (0.5542) 0.6386 (0.5723) 0.6386 0.6386
Corona pk3 42% 0.9600 (0.9600) 0.9120 (0.9120) 0.9120 0.9120

RNA family
time

lara
FPTalign

- 20 10

Parecho CRE 0.087s (0.080s) 1.137s (0.858s) 0.421s 0.237s
Entero Ori 0.411s (0.383s) 60.128s (0.283s) 4.094s 0.018s

Antizyme FSE 0.037s (0.033s) 9.529s (0.054s) 8.617s 3.482s
Tymo tRNA 0.055s (0.051s) 0.099s (0.037s) 0.074s 0.069s
Prion pknot 0.047s (0.071s) 0.634s (0.016s) 0.619s 0.463s
Alpha RBS 0.079s (0.077s) - (0.073s) 15m30.186s 4m5.764s
Corona FSE 0.047s (0.051s) 23.114s (0.036s) 20.781s 9.379s
Corona pk3 0.076s (0.087s) 26.469s (0.037s) 26.706s 11.317s

which represents the percentage of columns that are identically aligned as in the
reference alignment from the Rfam database. The results are shown in Table 6.3.

The evaluation shows that the quality of the computed alignments is comparable
for both approaches. There are instances where FPTalign is slightly better and
instances where lara is slightly better. The latter is possible since lara and FPTalign

are based on different scoring schemes and hence an optimal solution with respect
to one scoring scheme can still be worse than a suboptimal solution with respect
to the other scoring scheme. In particular, lara supports affine gap costs which is
currently not implemented in FPTalign. A closer inspection of the alignments shows
that FPTalign would benefit from affine gap costs in three out of the eight examples
(namely Entero Ori, Antizyme FSE, and Corona FSE). Another difference in the
scoring is that FPTalign scores all base mismatches with the same constant wm and
all arc mismatches with the same constant wam, whereas lara uses a RIBOSUM
matrix [29] that scores a base or arc mismatch depending on the actual bases.

88

6.2 A Pipeline to Detect Conserved Pseudoknots

In both approaches the alignment computed for the pseudoknot structures is sig-
nificantly better than the alignment computed for the nested input structures. A
clear example for this is the Prion pknot alignment where lara has a score of 0.8537
for the pseudoknot input but only 0.3902 for the nested input. In the latter case,
lara aligns the entire crossing stem wrong by shifting it by one position. Except for
Entero Ori, the diagonal limitations for FPTalign do not affect the result.

The runtimes of both approaches are in a range that makes them applicable in
practice. Only for the Alpha RBS family which contains a complex pseudoknot
consisting of three crossing stems, FPTalign failed in the run without any diagonal
limitations due to the memory limit. For nested input structures the runtime for
both approaches is comparable and always below one second. For crossing input
structures the runtime of FPTalign increases significantly whereas for lara the crossing
structures do not increase the runtime. Hence, the presence of pseudoknots makes
it harder to find an optimal result, as FPTalign does, but does not affect the runtime
of the heuristic approach of lara.

In general the evaluation shows that the exact solution of the alignment problem is
feasible with FPTalign but not as fast as the heuristic approach of lara. The results of
PKalign are comparable to the results of lara, although the current implementation
employs a much simpler scoring scheme without affine gap costs or sophisticated
mismatch costs as the RIBOSUM matrix employed by lara. The addition of these
features is just an implementation issue but would lead to better results. Further
improvements could be obtained by a thorough parameter tuning based on available
benchmark sets like the BRAliBase [22], but those are out of the scope of this thesis.

Although lara is faster, the DP method used by FPTalign has advantages in certain
scenarios. In contrast to heuristic methods as lara, the DP based methods devel-
oped in this thesis do an exhaustive recursive traversal of the search space of possible
alignments. This does not only lead to a solution that is guaranteed to be optimal
with respect to the scoring scheme, but also allows for extensions like a partition
function variant as sketched in Section 5.4.3. Since the partition function requires to
sum instead of minimize over the Boltzmann weights of all alignments, this problem
cannot be solved by a heuristic search through the search space of potential align-
ments but requires an exhaustive traversal. Hence, the algorithms developed in this
thesis will have most practical relevance due to their potential for such extensions.

Finally, the good behavior of the lara heuristic encourages to investigate additional
heuristics to prune the search space of the DP approaches. Besides the already im-
plemented diagonal limitation, there exist also more advances techniques used in
other DP algorithms for RNA structures, like for example the sparsification tech-
nique that was recently applied to RNA folding [58, 3] and co-folding [62].

6.2 A Pipeline to Detect Conserved Pseudoknots

The reliability of pseudoknot de-novo prediction is still very low. Common prediction
programs tend to predict pseudoknots even in pseudoknot free RNA and do not

89

6 Practical Applications

allow to distinguish safely between true pseudoknots and false positives. Therefore,
we developed a prototypical pipeline that combines the de-novo prediction with a
subsequent alignment step to identify predicted pseudoknots that are evolutionary
conserved among homologous RNAs and contain compensatory base pair mutations.
Such a procedure is useful for reliably annotating pseudoknots in unknown RNA,
e.g. from genome wide screens for non-coding RNA and yields less false positives
than a de-novo prediction on the single sequences. At the current stage the pipeline
should be considered as a prototype that shows that pseudoknot alignment can be
applied to real biological data in a large scale and that gives a first impression on
how frequently conserved pseudoknot structures occur. Not much effort has been
put into the tuning of the parameters so far. To improve the quality of the generated
results, this is a necessary next step to take.

6.2.1 Detecting Pseudoknots in Ciona intestinalis

A first prototype of the pipeline was applied to an RNAz screen of Ciona intesti-
nalis [36]. The results of this section where published in [38].

The pipeline starts with a set of homologous RNAs, and performs the following
steps: 1.) for each sequence predict locally optimal and suboptimal pseudoknots
of the R&G class (using pknotsRG [44] in local mode). 2.) determine candidate
pseudoknots that occur at similar positions in k of our sequences (here, k = 3).
3.) using PKalign, align the k-tuples of pseudoknots pairwise all-against-all; this
information is used to construct a multiple alignment by T-Coffee [40]. 4.) analyze
the alignment for conserved, crossing compensatory mutations.

Before applying it to the detection of unknown structures, the approach was tested
on the 8 Rfam families that where also used for evaluation in Section 6.1.3. The aim
here was to check whether the pipeline is able to reproduce the known pseudoknots.
For each family, six sequences where selected randomly for the analysis. Pseudoknot
candidates with crossing compensatory mutations where found in all of these fami-
lies. For four families we could reproduce triplet alignments of the known pseudo-
knots. Three of these showed crossing compensatory mutations; an example is given
in Fig. 6.1a. The figure depicts an alignment of the pseudoknotted sub-sequences
with start and end position. For each sub-sequence we show the structure predicted
by pknotsRG. The last line gives the consensus structure and highlights base pairs
of the pseudoknot which are confirmed by crossing compensatory mutations.

The procedure was then applied to the 50 unannotated ncRNA candidates pre-
dicted by an RNAz screen of Ciona intestinalis [36]. In this screen, the C. intestinalis
genome was compared to C. savignyi and O. dioica, thus per candidate we get three
sequences from the three organisms that are analyzed by the above pipeline. Since
the RNAz screen looks at both possible reading directions separately, for the pipeline
we always considered the reading direction in which the respective candidate was
identified. In total, we predicted pseudoknot candidates for only 14 of the 50 RNAs;
in contrast, pknotsRG predicts pseudoknots in all of the ncRNAs. Fig. 6.1b shows
one prediction by this experiment.

90

6.2 A Pipeline to Detect Conserved Pseudoknots

a)
[[-[[[[[....((.....-)).-((((((((((..]]]]]-]]....))))))))))

X90572.1 6 cu-uguacagaaugguaag-cac-guguaguaggagguaca-agcaacccuauugcau 59

[[-[[[[[....((.....-)).-((((((((((..]]]]]-]]....))))))))))

X66718.1 6 cu-uguacagaaugguaag-cac-guguaaugggagguaca-agcaaccccauugcau 59

[[[[[[-[.(((...-..)))...((((((((((.-]-]]]]]]-...))))))))))

AF058944.1 6 cucuau-cagauugg-augucuugcugcuauaaua-g-auagag-aagguuauagcag 58

cons. str. [[-[[[-[................((((((((((.-]-]]]-]]....))))))))))

b)
[[[[[[[..((((]]]]]]].(((((((...)))))))......))))--

ci_658349 52 ucucagggugaaaucugagacggaaacgauucguuuccuauauauuuc-- 99

[[[[[[.(((((((]]]]]].(((((((...))))))).....)))))))

cs_658349 55 ucucaguuuaauaccugggacggaaacgauucguuuccucuauguauuaa 104

[[[[[[[.(((((]]]]]]].((-(((.....)))-)).....-)))))-

od_658349 53 ucucagugugacagcugagaccg-uccuacuggga-cgucuau-uguca- 98

cons. str. [[[[[[[..((((]]]]]]].((-(((.....)))-))......))))..

Figure 6.1: a) Correctly predicted pseudoknot in the Rfam family Corona pk3 and
its alignment. b) Predicted pseudoknot of potential ncRNA.

6.2.2 An Advanced Pipeline for Drosophilids

After the tests with the Ciona intestinalis data, we applied a refined version of the
pipeline to a much larger data set of of Drosophila melanogaster and eleven related
drosophilid species. The data set consisted of the 163377 high confidence candidates
(p > 0.9) of the RNAz screen by Rose et al. [48]. Each candidate is based on an
alignment of between three and six out of the 12 drosophilid species.

Compared to the pipeline used for the Ciona intestinalis data, two changes where
made. First, FPTalign was used instead of PKalign, since the evaluation in Sec-
tion 6.1.3 has shown that it is faster in practice. Second, before aligning the pseu-
doknots, the vicinity of the pseudoknots was aligned with LocARNA. A new, yet
unpublished, partition function variant of this tool was used to determine for each
pair of predicted pseudoknots the probability that the fragments containing the
pseudoknots are aligned to each other. Only if this probability was above a given
threshold, the pseudoknots where aligned with PKalign and extended with the Lo-

cARNA alignment to get alignments of the entire candidate sequences. Finally, as
in the previous pipeline, the pairwise alignments where combined with T-Coffee to
a multiple alignment and analyzed for compensatory mutations.

The RNAz screen whose data was used as input, considered windows of 120 nu-
cleotides length in steps of 40 nucleotides such that neighboring windows overlap
80 nucleotides. Therefore, some RNAz hits occurred in several neighboring win-
dows. In those cases, all windows where taken as input of our pipeline such that
for the 16377 RNAz hits in total 23926 windows where considered. Within those
23026 windows, the pipeline could find 906 pseudoknot structures that contained at
least one compensatory mutation in each of the crossing stems. From the remaining
windows, 18333 contained conserved pseudoknots predictions but they did not show

91

6 Practical Applications

[[[[[[[[.(((......]]]]]]]]..)))

[[[[[[[[[...(((....]]]]]]]]]...)))

DroSec_CAF1 1 guccuggugaugccucuaugcaagcauuaccacggauauu 40

[[[[[[[[.(((......]]]]]]]]..)))

[[[[[[[[[...(((....]]]]]]]]]...)))

DroSim_CAF1 1 auccugguggugccucuaugcaagcauuaccacggauauu 40

[[[[[[[[.(((......]]]]]]]]..)))

[[[[[[[[[...(((....]]]]]]]]]...)))

[[[[[[[[[........((]]]]]]]]]...))

DroEre_CAF1 1 auccugguaaugccucuaugcaugcguugccacagauauu 40

[[[[[[[[.(((......]]]]]]]]..)))

[[[[[[[[[...(((....]]]]]]]]]...)))

3L_DroMel_CAF1 1 auccugguaaugccucuaugcaagcguuaccacggauauu 40

[[[[[[[[.(((......]]]]]]]]..)))

[[[[[[[[[........((]]]]]]]]]...))

[[[[[[[[[...(((....]]]]]]]]]...)))

DroYak_CAF1 1 auccuggcaaugccucuaugcaugcauugccacagauauu 40

cons. str. [[[[[[[[.(((......]]]]]]]]..)))

Figure 6.2: The predicted pseudoknot structures for locus 7542, window 12257.

compensatory mutations in at least one of the two crossing stems. Finally, for 506
windows the predicted pseudoknots could not be aligned within the 4GB memory
limit and for 4181 windows the LocARNA alignments showed that none of the pre-
dicted pseudoknots where aligned to each other with a probability above the given
threshold of 0.001.

The 906 putative pseudoknot structures predicted by the pipeline where then
sorted according to the following score. The score is a sum over scores for all
compensatory mutated base pairs p that cross at least one other compensatory
mutated base pair. Each of these p has a score of (c + 1)k, where c denotes the
number of compensatory mutated base pairs that cross p and k denotes the number of
predicted structures that contain p. A sample prediction is shown in Figure 6.2. As
shown in the figure, pknotsRG predicted for each of the sequences several suboptimal
pseudoknot structures. While the first stem is similar in all of those predictions
and confirmed by four compensatory mutations, only for one prediction of each
sequence, the second stem is confirmed by a mutation. Also note that many of the
compensatory mutations change some A-U in a wobble base pair G-U or vice versa.
This mutation is more probable than others since it is the only mutation that is
consistent with the structure and does not require the simultaneous mutation of
both bases. Nevertheless, in highly conserved sequences with only few mutations, it
is a strong indication for the correctness of the structure. In Figure 6.2, for example,
the compensatory mutations are the only present mutations and gaps are not present
at all in the considered region.

92

7 Conclusions

In this thesis we systematically analyzed the problems of RNA pseudoknot structure
prediction and alignment. In particular, we focused on the question how dynamic
programming algorithms for these problems recursively decompose the RNA struc-
tures during their computation.

Compared to pseudoknot free structures the main difference present in all consid-
ered algorithms is the use of fragments that contain gaps. Furthermore, the analysis
of the existing pseudoknot prediction algorithms showed that there is not just one
canonical way for such a decomposition, but a wide range of more or less efficient
decomposition strategies that work for certain restricted classes of pseudoknots. We
highlighted the similarities of all those approaches by embedding them all in a com-
mon scheme that is able to explain the recursive structure and the resulting time
and space complexity of the algorithms and abstracts from all the details of the
underlying scoring schemes.

For pseudoknot alignment we developed two new approaches. The first approach
can handle arbitrary pseudoknots and is fixed parameter tractable. The fixed pa-
rameter of this complexity analysis is small on practical instances, namely between
one and four for all considered examples. Furthermore, the complexity of the al-
gorithm scales well with the complexity of the pseudoknots given as input. The
algorithm can be considered as a generalization of the algorithm of Jiang et al. [27]
to arbitrary pseudoknot structures.

The second approach is not motivated by previous alignment methods but by
the existing DP based structure prediction algorithms. We developed a general
scheme that yields for each of the prediction algorithms a corresponding alignment
algorithm that covers the same class of structures with only a linear overhead in
space and time. For six out of the seven analyzed structure classes no alignment
algorithms existed so far. For the last, most complex class, the new scheme yields
an alignment algorithm with time and space complexity of (nm6) and O(nm4),
respectively, whereas the best previous approach has O(n5m5) and O(n4m4) space
complexity (where n and m denote the length of the two sequences, respectively).
The fastest among all instances of the scheme has O(nm4) time and O(nm2) space
complexity and is able to align pseudoknots of the R&G class.

The two new alignment approaches show that, despite the NP-hardness of the
general pseudoknot alignment problem, it is feasible for many practical instances
and can be solved exactly without the need of an approximation scheme. Both the
restriction to certain pseudoknot classes to guarantee a polynomial complexity and
the alignment of arbitrary pseudoknots in a fixed parameter tractable framework
turned out to be successful. The dissimilarity of the two approaches also shows

93

7 Conclusions

that there is a wide range of options of how to compute alignments efficiently. For
applications that only consider certain kinds of pseudoknots there is probably a lot
of room for specialized algorithms that work well for the instances of interest. The
algorithm scheme developed in this thesis does not only cover various such classes of
pseudoknots but also forms a flexible starting point for the development of further
specialized algorithms as it can probably be extended with additional constraints.

Both alignment methods where implemented to evaluate their applicability in
practice. In the current implementation the fixed parameter tractable approach,
FPTalign, turned out to be better than the other approach, PKalign, on most in-
stances. However, it is not yet clear whether this difference in performance can be
attributed to the underlying algorithms or is just an artifact of the generic imple-
mentation of PKalign that covers all considered restricted classes of pseudoknots
simultaneously. The quality of the alignments computed by FPTalign and PKalign

is comparable to the alignments computed by the only other available pseudoknot
alignment tool lara. However, since lara is a heuristic approach without an optimal-
ity guarantee for the result, its time and space consumption is less than for the two
new approaches.

An important step for future work will be to make the new algorithms more
accessible to biologists. For the polynomial alignment method an implementation
should be developed that is less generic than PKalign. It should concentrate on
just one class of pseudoknots and could therefore be optimized much better to be
fast and to require less memory. Furthermore, the implementations should not only
be available as command line tools but also via a web front end which is the de
facto standard that biologist are used to work with. Another important aspect is
the optimization of the parameters of the scoring scheme to yield good results on
practical instances.

Finally, several extensions of the polynomial alignment scheme are worthwhile to
investigate. Besides a scanning variant and a variant that works with non-fixed input
structures, in particular a partition function variant would be of practical relevance.

94

Bibliography

[1] Tatsuya Akutsu. Dynamic programming algorithms for RNA secondary struc-
ture prediction with pseudoknots. Discrete Applied Mathematics, 104:45–62,
2000.

[2] Julien Allali and Marie-France Sagot. A new distance for high level RNA
secondary structure comparison. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 2(1):3–14, 2005.

[3] Rolf Backofen, Dekel Tsur, Shay Zakov, and Michal Ziv-Ukelson. Sparse RNA
folding: Time and space efficient algorithms. In Proceedings of the 20th Sympo-
sium of Combinatorial Pattern Matching (CPM 2009), volume 5577 of LNCS,
pages 249–262. Springer, 2009.

[4] James K. Baker. Trainable grammars for speech recognition. In Speech Com-
munication Papers for the 97th Meeting of the Acoustical Society of America,
pages 547–550, 1979.

[5] Markus Bauer, Gunnar W. Klau, and Knut Reinert. Accurate multiple
sequence-structure alignment of RNA sequences using combinatorial optimiza-
tion. BMC Bioinformatics, 8:271, 2007.

[6] Tara L. Beattie and Richard A. Collins. Identification of functional domains in
the self-cleaving Neurospora VS ribozyme using damage selection. Journal of
Molecular Biology, 267:830–840, Apr 1997.

[7] Guillaume Blin and Hélène Touzet. How to compare arc-annotated sequences:
the alignment hierarchy. In In 13th Symposium on String Processing and
Information Retrieval (SPIRE 2006), volume 4209 of LNCS, pages 291–303.
Springer, 2006.

[8] Joerg Bruder. Design und Evaluierung von Parsing-Techniken für das Sequenz-
Struktur-Alignment von RNA mit Pseudoknoten. Diplomarbeit, Albert-
Ludwigs-University Freiburg, January 2009.

[9] Ho-Lin Chen, Anne Condon, and Hosna Jabbari. An O(n(5)) Algorithm for
MFE Prediction of Kissing Hairpins and 4-Chains in Nucleic Acids. Journal of
Computational Biology, 16(6):803–15, 2009.

[10] Ramu Chenna, Hideaki Sugawara, Tadashi Koike, Rodrigo Lopez, Toby J. Gib-
son, Desmond G. Higgins, and Julie D. Thompson. Multiple sequence alignment

95

Bibliography

with the Clustal series of programs. Nucleic Acids Research, 31(13):3497–500,
2003.

[11] Anne Condon, Beth Davy, Baharak Rastegari, Shelly Zhao, and Finbarr Tar-
rant. Classifying RNA pseudoknotted structures. Theoretical Computer Sci-
ence, 320(1):35–50, 2004.

[12] The ENCODE Project Consortium. Identification and analysis of functional
elements in 1% of the human genome by the ENCODE pilot project. Nature,
447(7146):799–816, 2007.

[13] Jennifer Couzin. Breakthrough of the year. Small RNAs make big splash. Sci-
ence, 298(5602):2296–7, 2002.

[14] Francis Crick. On protein synthesis. Symposium of the Society for Experimental
Biology, 12:138–63, 1958.

[15] Francis Crick. Central dogma of molecular biology. Nature, 227(5258):561–3,
1970.

[16] Jitender S. Deogun, Ruben Donis, Olga Komina, and Fangrui Ma. Rna sec-
ondary structure prediction with simple pseudoknots. In Proceedings of the
second conference on Asia-Pacific bioinformatics (APBC 2004), pages 239–246,
Darlinghurst, Australia, Australia, 2004. Australian Computer Society, Inc.

[17] Robert M. Dirks and Niles A. Pierce. A partition function algorithm for nu-
cleic acid secondary structure including pseudoknots. Journal of Computational
Chemistry, 24(13):1664–77, 2003.

[18] Rodney G. Downey and Michael R. Fellows. Fixed-parameter intractability. In
Proceedings of the Seventh Annual Structure in Complexity Theory Conference,
1992., pages 36–49, Jun 1992.

[19] Patricia A. Evans. Algorithms and Complexity for Annotated Sequence Analysis.
PhD thesis, University of Alberta, 1999.

[20] Patricia A. Evans. Finding common subsequences with arcs and pseudoknots. In
Proceedings of the 10th Annual Symposium on Combinatorial Pattern Matching
(CPM 1999), pages 270–280, London, UK, 1999. Springer-Verlag.

[21] Patricia A. Evans. Finding common rna pseudoknot structures in polynomial
time. In Proceedings of the 17th Annual Symposium on Combinatorial Pat-
tern Matching (CPM 2006), volume 4009/2006 of Lecture Notes in Computer
Science, pages 223–232. Springer Berlin / Heidelberg, 2006.

[22] Paul P. Gardner, Andreas Wilm, and Stefan Washietl. A benchmark of multiple
sequence alignment programs upon structural RNAs. Nucleic Acids Research,
33(8):2433–9, 2005.

96

Bibliography

[23] Robert Giegerich. A systematic approach to dynamic programming in bioin-
formatics. Bioinformatics, 16(8):665–77, 2000.

[24] Sam Griffiths-Jones, Alex Bateman, Mhairi Marshall, Ajay Khanna, and
Sean R. Eddy. Rfam: an RNA family database. Nucleic Acids Research,
31(1):439–41, 2003.

[25] Jakob H. Havgaard, Elfar Torarinsson, and Jan Gorodkin. Fast pairwise struc-
tural RNA alignments by pruning of the dynamical programming matrix. PLoS
Computational Biology, 3(10):1896–908, 2007.

[26] Ivo L. Hofacker and Peter F. Stadler. The partition function variant of sankoff’s
algorithm. In Computational Science - ICCS 2004, Part IV, LNCS 3039, pages
728–735, Heidelberg, June 2004. Springer.

[27] Tao Jiang, Guohui Lin, Bin Ma, and Kaizhong Zhang. A general edit distance
between RNA structures. Journal of Computational Biology, 9(2):371–88, 2002.

[28] Luca Jovine, Snezana Djordjevic, and Daniela Rhodes. The crystal structure of
yeast phenylalanine tRNA at 2.0 A resolution: cleavage by Mg(2+) in 15-year
old crystals. Journal of Molecular Biology, 301(2):401–14, 2000.

[29] Robert J. Klein and Sean R. Eddy. RSEARCH: finding homologs of single
structured RNA sequences. BMC Bioinformatics, 4(1):44, 2003.

[30] K. Lari and S. J. Young. The estimation of stochastic context-free grammars
using the inside-outside algorithm. Computer Speech and Language, 4(1):35–56,
1990.

[31] Rune B. Lyngso and Christian N. S. Pedersen. Pseudoknots in RNA secondary
structures. In Proc. of the Fourth Annual International Conferences on Compu-
tational Molecular Biology (RECOMB 2000). ACM Press, 2000. BRICS Report
Series RS-00-1.

[32] David H. Mathews, Matthew D. Disney, Jessica L. Childs, Susan J. Schroeder,
Michael Zuker, and Douglas H. Turner. Incorporating chemical modifica-
tion constraints into a dynamic programming algorithm for prediction of
RNA secondary structure. Proceedings of the National Academy of Sciences,
101(19):7287–92, 2004.

[33] John S. Mattick. Challenging the dogma: the hidden layer of non-protein-coding
RNAs in complex organisms. Bioessays, 25(10):930–9, 2003.

[34] John S. Mattick. The hidden genetic program of complex organisms. Scientific
American, 291:60–67, Oct 2004.

[35] John S. McCaskill. The equilibrium partition function and base pair binding
probabilities for RNA secondary structure. Biopolymers, 29(6-7):1105–19, 1990.

97

Bibliography

[36] Kristin Missal, Dominic Rose, and Peter F. Stadler. Non-coding RNAs in Ciona
intestinalis. Bioinformatics, 21 Suppl 2:ii77–ii78, 2005.

[37] Mathias Möhl, Sebastian Will, and Rolf Backofen. Fixed parameter tractable
alignment of RNA structures including arbitrary pseudoknots. In Proceedings of
the 19th Annual Symposium on Combinatorial Pattern Matching (CPM 2008),
LNCS, pages 69–81. Springer, 2008.

[38] Mathias Möhl, Sebastian Will, and Rolf Backofen. Lifting prediction to align-
ment of RNA pseudoknots. In Proc.of the 13th Annual International Confer-
ences on Computational Molecular Biology (RECOMB 2009), volume 5541 of
LNBI, pages 285–301. Springer, 2009.

[39] Saul B. Needleman and Christian D. Wunsch. A general method applicable to
the search for similarities in the amino acid sequence of two proteins. Journal
of Molecular Biology, 48(3):443–53, 1970.

[40] Cedric Notredame, Desmond G. Higgins, and Jaap Heringa. T-Coffee: A novel
method for fast and accurate multiple sequence alignment. Journal of Molecular
Biology, 302(1):205–17, 2000.

[41] Wolfgang Otto, Sebastian Will, and Rolf Backofen. Structure local multiple
alignment of RNA. In Proceedings of German Conference on Bioinformatics
(GCB’2008), volume P-136 of Lecture Notes in Informatics (LNI), pages 178–
188. Gesellschaft für Informatik (GI), 2008.

[42] Cornelis W. Pleij, Krijn Rietveld, and Leendert Bosch. A new principle of RNA
folding based on pseudoknotting. Nucleic Acids Research, 13(5):1717–31, 1985.

[43] Toolika Rastogi, Tara L. Beattie, Joan E. Olive, and Richard A. Collins. A
long-range pseudoknot is required for activity of the Neurospora VS ribozyme.
EMBO Journal, 15:2820–2825, Jun 1996.

[44] Jens Reeder and Robert Giegerich. Design, implementation and evaluation
of a practical pseudoknot folding algorithm based on thermodynamics. BMC
Bioinformatics, 5:104, 2004.

[45] Jens Reeder, Peter Steffen, and Robert Giegerich. pknotsRG: RNA pseudoknot
folding including near-optimal structures and sliding windows. Nucleic Acids
Research, 35(Web Server issue):W320–4, 2007.

[46] Elena Rivas and Sean R. Eddy. A dynamic programming algorithm for RNA
structure prediction including pseudoknots. Journal of Molecular Biology,
285(5):2053–68, 1999.

[47] Einar A. Rodland. Pseudoknots in RNA secondary structures: representation,
enumeration, and prevalence. Journal of Computational Biology, 13(6):1197–
213, 2006.

98

Bibliography

[48] Dominic Rose, Jörg Hackermüller, Stefan Washietl, Kristin Reiche, Jana Her-
tel, Sven Findeiss, Peter F. Stadler, and Sonja J. Prohaska. Computational
RNomics of drosophilids. BMC Genomics, 8:406, 2007.

[49] David Sankoff. Simultaneous solution of the RNA folding, alignment and pro-
tosequence problems. SIAM Journal of Applied Mathematics, 45(5):810–825,
1985.

[50] Bruce A. Shapiro and Kaizhong Z. Zhang. Comparing multiple RNA secondary
structures using tree comparisons. Computational Applications in Biosciences,
6(4):309–18, 1990.

[51] Sven Siebert and Rolf Backofen. MARNA: multiple alignment and consensus
structure prediction of RNAs based on sequence structure comparisons. Bioin-
formatics, 21(16):3352–9, 2005.

[52] Temple F. Smith and Michael S. Waterman. Comparison of biosequences. Ad-
vanced applied Mathematics, 2:482–489, 1981.

[53] David W. Staple and Samuel E. Butcher. Pseudoknots: RNA structures with
diverse functions. PLoS Biology, 3(6):e213, 2005.

[54] Gary M. Studnicka, Georgia M. Rahn, Ian W. Cummings, and Winston A.
Salser. Computer method for predicting the secondary structure of single-
stranded RNA. Nucleic Acids Research, 5(9):3365–87, 1978.

[55] Maciej Szymanski, Miroslawa Z. Barciszewska, Volker A. Erdmann, and Jan
Barciszewski. A new frontier for molecular medicine: noncoding RNAs.
Biochimica et Biophysica Acta, 1756(1):65–75, 2005.

[56] Yasuo Uemura, Aki Hasegawa, Satoshi Kobayashi, and Takashi Yokomori. Tree
adjoining grammars for RNA structure prediction. Theoretical Computer Sci-
ence, 210:277 – 303, 1999. Paper as Print Copy.

[57] James Watson and Francis Crick. Molecular structure of nucleic acids. a struc-
ture for deoxyribose nucleic acid. Nature, 171:737–741, 1953.

[58] Ydo Wexler, Chaya Zilberstein, and Michal Ziv-Ukelson. A study of acces-
sible motifs and RNA folding complexity. Journal of Computational Biology,
14(6):856–72, 2007.

[59] Sebastian Will, Kristin Reiche, Ivo L. Hofacker, Peter F. Stadler, and Rolf
Backofen. Inferring non-coding RNA families and classes by means of genome-
scale structure-based clustering. PLOS Computational Biology, 3(4):e65, 2007.

[60] Charles Wilson, J. Nix, and Jack Szostak. Functional requirements for spe-
cific ligand recognition by a biotin-binding RNA pseudoknot. Biochemistry,
37:14410–14419, Oct 1998.

99

Bibliography

[61] Charles Wilson and Jack W. Szostak. In vitro evolution of a self-alkylating
ribozyme. Nature, 374(6525):777–82, 1995.

[62] Michal Ziv-Ukelson, Irit Gat-Viks, Ydo Wexler, and Ron Shamir. A faster
algorithm for RNA co-folding. In Keith A. Crandall and Jens Lagergren, edi-
tors, Proceedings of the 8th Workshop on Algorithms in Bioinformatics (WABI
2008), volume 5251 of LNCS, pages 174–185. Springer, 2008.

[63] Michael Zuker and Patrick Stiegler. Optimal computer folding of large RNA
sequences using thermodynamics and auxiliary information. Nucleic Acids Re-
search, 9(1):133–48, 1981.

[64] Christian Zwieb, Jan Gorodkin, Bjarne Knudsen, Jody Burks, and Jacek
Wower. tmRDB (tmRNA database). Nucleic Acids Research, 31(1):446–7,
2003.

100

