
Finite Set Constraints in Oz

Tobias Müller and Martin Müller
Forschungsbereich Programmiersysteme

Universität des Saarlandes

66041 Saarbrücken, Germanyftmueller,mmuellerg@ps.uni-sb.de
Abstract

We report on the extension of the concurrent constraint language Oz by constraints over finite
sets of integers. Set constraints are an important addition to the constraint programming sys-
tem Oz and are very employable in natural language processing and general problem solving.
This extension profits much from its integration with the existing constraint systems over finite
domains and feature trees, as well as from the availability of first-class procedures. This com-
bination of features is unique to Oz. This paper focuses on the expressiveness gained by set
constraints and on the benefits of the integration with finite domain constraints. A number of
case studies demonstrates programming techniques exploring these advantages.

1 Introduction

Constraints over finite sets of integers (for short set constraints) are very employable in combina-
torial problem solving and in natural language processing.Sets are a natural and frequent data
structure in many problems,e.g.set constraints allow to conveniently express certain typehierar-
chies as used in unification grammars.

The higher-order concurrent constraint language Oz [27, 21] already supports two powerful
constraint systems; one over finite domain constraints [17]as a well-established constraint system
for combinatorial problem solving, and one over feature trees (viz. records [23]) as required by
applications in natural language processing.

Supplementing both constraint systems with set constraints yields a significant gain in expres-
siveness for the mentioned classes of applications. The integration of set constraints into the
general-purpose programming system Oz further empowers Ozas a programming platform for a
wide range of constraint problems. The additional expressiveness of this host language provided by
first-class procedures, inference engines [25], and objects [10] is very convenient.

The implementation effort for the integration of set constraints into Oz was less than three
man-months using the C++ constraint propagator interface of Oz [18] and resulted in alibrary with
adequate efficiency.

This paper demonstrates the gained expressiveness by example. We show a number of pro-
gramming techniques and point out conciseness of problem formulations. We also stress that the

In François Bry, Burkhard Freitag, and Dietmar Seipel, editors,13. Workshop Logische Programmierung, pages 104–
115, Technische Universität München, 17–19 September 1997.

combination of set constraints and finite domain constraints improves the problem solving capa-
bilities by extra constraint propagation and new patterns to avoid symmetric solutions in problem
formulations.

To support this claim, we investigate a new constraint whichassociates then minimal elements
of a set withn finite domain variables. We employ this constraint in a set-based implementation of
the Steiner problem [3]. We show that in contrast to the straightforward formulation a significant
reduction of choice points is obtained (due to improved constraint propagation) which results in a
notable decrease of heap space consumption and runtime.

Plan of the paper. The paper is structured as follows. Section 2 introduces terminology and the
choice of set constraints we support in Oz. The following Sections 3 and 4 discuss programming
techniques employing set constraints; Section 4 in particular focuses on the interaction of set con-
straints with finite domain constraints and Section 5 discusses Oz-specific programming idioms.
Section 6 surveys related work, and Section 7 briefly summarizes.

2 Finite Set Constraints in Oz

We assume an integer constantsup and consider subsets of the finite universal setU =f0; : : : ;supg.1 We adopt the convention thatconstantsandvariablesare denoted by lowerresp.
upper case letters. A lower casen denotes aninteger constantbeing element ofU; s designates a
set constantranging over subsets ofU; N denotes afinite domain integer variableto be interpreted
as an element inU, andS is aset variableinterpreted as a subset ofU.

Amongst the constraints we distinguish between basic and non-basic ones.Basic constraints
are those constraints for which satisfiability and entailment (i.e., logic implication) can be decided
efficiently (or at least efficient enough for the intended applications). Non-basic constraintsare
those for which we intendresp.have to treat satisfiability and entailment in an incompletefashion
because of their computational complexity.

Basic and Non-basic Constraints. The most important basic constraintsB provide lower and
upper bounds for a set variable:2

B ::= B1^B2 j s� S j S� s j : : :
The constraintsn2 Sandn =2 Sare derived forms sincen2 S$ fng � Sandn =2 S$ S�Unfng
(whereUnfng is finite sinceU is finite). The cardinality of a set constants is denoted by #s. A
second pair of basic constraints provides bounds on thecardinality #S of (the denotation of) a set
variableS:

B ::= : : : j n� #S j #S� n

All other set operations like union[, intersection\, asymmetric differencen, disjointnessk, etc.,
are non-basic constraintsC :

C ::= B j C1^C2 j S= E j S1 � S2 j S1kS2 j : : :
E ::= S1[S2 j S1\S2 j S1nS2 j : : :

1The set notationfa; : : : ;bg always denotes aconvexset.I.e.., c2 fa; : : : ;bg whenevera� c� b.
2In the notation of [9],s� SandS� s appear ass2[/0;S] ands2[S;U], respectively.

Solved Forms. Every basic constraintB can easily be checked for satisfiability; further, ifB is
satisfiable, it can be brought into a solved form which contains for every set variableS the greatest
(least) setssglb

3 (slub
4) and integersnmin andnmax such thatB entails

sglb � S� slub ^ nmin� #S� nmax:
Obviously, #sglb � nmin and nmax� #slub are properties of the solved form. Given a basic con-
straintB in solved form, we denote withglb(S) andlub(S) (w.r.t. B) the respective bounds of the
set interval for a variableS. A satisfiable constraintdeterminesa (set) variableS if the denotation
of S is uniquely fixed by the constraint. A basic constraintB in solved form determines a variableS
if and only if glb(S) = lub(S) w.r.t. B.

Constraint Store and Propagators. The concurrent constraint framework [15, 24, 27] organizes
computation in a number of concurrent actors operating and communicating over a shared constraint
store. The implementation model underlying constraint programming in Oz [21] places basic con-
straints in theconstraint storeand implements non-basic constraints as actors, calledpropagators.

The operation totell a basic constraintB to the constraint storeC is executed as follows: If
C ^B is satisfiable, then the storeC is extended toC ^B without interruption; otherwise, a fail-
ure condition is raised. Apropagator Pis an actor whose logic semantics is given by a (usually,
non-basic) constraintCP, and whose operational semantics is correct but not necessarily complete
w.r.t. its logic semantics. The variables inCP are called theparametersof P. Imposinga propaga-
tor P means installing an actor which continuously watches the constraint storew.r.t. its parameters.
When the parameters ofP become further constrained in the store,P may be activated and then, on
its part, tells constraints according to its operational semantics. Once the constraint store entailsCP,
P is redundant and may disappear.P will disappear latest when the constraint store determinesall
its parameters, or ifCP is inconsistent with the constraint store (in which case a failure condition is
raised).Propagationis the process of running all propagators to termination.

As an example for constraint propagation, assume the store/0 � S1;S2 � f1; : : : ;5g, as well
as propagators for the non-basic constraintsS1 [S2 = f1; : : : ;5g and S1kS2. Telling the basic
constraints 12 S1 and 2=2 S2 yields the intermediate constraint storef1g � S1 � f1; : : : ;5g and
/0 � S2 � f1;3;4;5g. Then, when constraint propagation has finished, the constraint store holdsf1;2g � S1 � f1; : : : ;5g^ /0� S2 � f3;4;5g. Eventually, telling #S2 = 3 determinesS1 andS2, i.e.,
yields the constraint storeS1 = f1;2g^S2 = f3;4;5g.
Distribution. Problem solving in Oz is realized as an interleaving of (basic) constraint solving
and propagation, as well as search guided by the creation of choice points and distribution. A
typical choice point for set constraint problems is given bya disjunction of the formn2 S_n =2 S.
Distribution is the operation of picking one of the current choice points and offering the suggested
alternatives for independent exploration [26]. Which choice point to pick at a certain stage and in
which order to explore the alternatives is up to thedistribution strategyfixed for the problem at
hand. As part of a search procedure, the above-mentioned failure conditions are interpreted as the
absence of solutions; elsewhere they amount to a runtime error.

Connecting Finite Domains and Finite Sets. The cardinality constraintN = #S relates sets and
integers. The presence of the finite domain constraint system of Oz [17, 21] suggests to generalize

3greatestlowerbound
4leastupperbound

the basic constraintsn� #Sand #S� n to the more expressive propagators

N � #S j #S� N:
This establishes a close link between both constraint systems since the integer variables can,e.g.
carry domain restrictions likeN2 f1; : : : ;5g. Often it is also convenient to realize that we have finite
sets ofintegers(instead of arbitrary elements) and to exploit their natural order or the expressiveness
of arithmetics. As an example of propagators for constraints required by a natural language pars-
ing application, consider the propagatorsmin(S) = N andmax(S) = N meaning that the minimal
(resp.maximal) integer in (the denotation of)Sequals (the denotation of)N. A propagator which
turned out useful to break symmetries and to provide extra propagation (see Section 4.1) general-
izesmin(S) = N to minN(S) = [N1; : : : ;Nk] saying thatk� #Sand that thek minimal elements ofS
areN1 throughNk in this order.

3 Problem Solving with Set Constraints

This section illustrates problem solving with finite set constraints in Oz by means of examples. The
provided constraint solving abstractions of Oz require that problems are to be formulated as unary
Oz procedures, typically with the following structure.

proc {Problem Sol}
... % impose constraints and propagators
... % specify distribution strategy

end

These are then passed to an inference engine (e.g. the Oz Explorer [25]) to explore the specified
search space. The formal argumentSol refers to the sought solution.

Note some examples in this section use finite domain constraints. Finite domain infix operators
end with a “:”, as for instance “=<:”. Finite domain library procedures begin with “FD.”, as for
instance “FD.decl”.

3.1 The Steiner Problem

The ternary Steiner problem [3] of ordern asks forn(n�1)=6 sets with cardinality 3 such that every
two of them share at most one element. It has been proved that for a solution to existn mod6 must
be 1 or 3. The Oz functionSteiner below maps an integern to an (anonymous) procedure mod-
eling the Steiner problem of ordern. (Anonymous procedures in Oz are marked with$.) To solve
the Steiner problem of order 9, say, one may invoke the Oz Explorer by executing{ExploreOne
{Steiner 9}}.

fun {Steiner N}
proc {$ Ss}

case
N mod 6 == 1 orelse N mod 6 == 3 % 1:

then
{FS.var.list.lub (N*(N-1)) div 6 [1#N] Ss} % 2:
{ForAll Ss proc {$ S} {FS.card S 3} end} % 3: #S= 3

{ForAllTail Ss % 4:
proc {$ S1|Sr}

{ForAll Sr % 5:
proc {$ S2} S3 in

S3 = {FS.intersect S1 S2} % 6: S3= S1\S2
{FS.cardRange 0 1 S3} % 7: #S32 f0;1g

end}
end}

{FS.distribute naive Ss} % 8:
else fail end

end
end

The case statement in line 1 checks whether there can be any solutions for a givenN. The library
procedure{FS.var.list.lub Len Lub Xs} constrainsXs to a list ofLen set variablesSi (see
line 2). Further, each of these is constrained by/0 � Si � set(Lub) whereset(Lub) is the set de-
scribed by the Oz termLub: e.g. set([1 3 5#7]) = f1;3;5;6;7g. The cardinality of allSi is con-
strained to 3 (line 3). Two nested loops (lines 4 and 5), usingthe library proceduresForAllTail 5

andForAll 6, require all pairwise distinct elements ofXs to have at most one element in com-
mon. The library abstraction{FS.cardRange M N S} imposes the constraintM� #S� N, and
{FS.intersect X Y Z} expectedlyX \ Y = Z (lines 6 and 7). Line 8 specifies the distribu-
tion strategy to always pick the leftmost undetermined elementS of Ss and the smallest integern
with n2 lub(S)nglb(S), and then to distribute the choice pointn2 S_n =2 S.

3.2 Hamming Distance

This example uses sets to model bit strings. The problem is asfollows: given integersn, b, andd,
find n tuplesw2 f0;1gb such that the hamming distance of all pairwise distinct tuples is at leastd.
For example:

declare B=5 D=2 N=16

Thehamming distance h(v;w) between two tuplesv= (v1; : : : ;vb) andw=(w1; : : : ;wb) wherev;w2f0;1gb is defined as the number of positionsi wherevi 6= wi. We can model tuplesw2 f0;1gb as
setssw� f1; : : : ;bg wherei 2 sw if and only if wi = 1. Then the hamming distance betweenv andw
is just

h(v;w) = b�#(sv\sw)�#(f1; : : : ;bgn(sv[sw)):
The conditionh(v;w) � d for all v;w now codes as

proc {MinDist Sv Sw}
AllBits = {FS.value.new [1#B]} % AllBits= f1; : : : ;Bg
Common1s = {FS.intersect Sv Sw} % Common1s= Sv\Sw
Common0s = {FS.complIn {FS.union Sv Sw} AllBits} % AllBitsn(Sv[Sw)

in
{FS.card Common1s} + {FS.card Common0s} =<: B-D

end

such that the hamming problem can be modelled as follows.

proc {Hamming Ss}
{FS.var.list.lub N [1#B] Ss}

{ForAllTail Ss
proc {$ S1|Sr}

{ForAll Sr proc {$ S2} {MinDist S1 S2} end}
end}

{FS.distribute naive Ss}
end

5{ForAllTail [X1 : : : Xn] P} reduces to{P [X1 : : : Xn]} {P [X2 : : : Xn]} : : : {P [Xn]}.
6{ForAll [X1 : : : Xn] P} reduces to{P X1} {P X2} : : : {P Xn}.

4 Interaction with Finite Domain Constraints

Arithmetics on the elements of finite sets can be a powerful means to prune the search space and
to avoid symmetries. Therefore, we support mixed propagators operating over both the set and the
integer domain. This is conveniently achieved since Oz provides for a full-fledged finite domain
solver with various flexible propagators for integers arithmetics (see [21]).

4.1 Ordering Sets

Problem formulations asking for a collection of sets run therisk of having numerous symmetric
solutions. This can be avoided if an order on sets is available. Such an order can,e.g., be given in
terms of an integer rankrank(s) associated with every sets.

An immediate way to define a rank is to interpret the characteristic function of every set as a bit
stringresp.as a binary number.(b0;b1; : : : ;bsup)2 wherebi 2 f0;1g andbi = 1 iff i 2 s

For largesup, however, this function is impractical since it takes huge values of orderO(2sup).
Further, the obtained constraint propagation is not satisfactory.

In case the cardinality of all relevant sets is fixed, say for somes to k such thats= fn1; : : : ;nkg,
we can do much better by ordering the integersn1 throughnk and interpreting them as a number to
the basesup+1.7 (n1; : : : ;nk)sup+1 (1)

If we have referencesN1 throughNk to the elementsn1 throughnk we can state the fact that they
must be ordered through the finite domain integer propagators

N1 <: N2 <: : : : <: Nk : (2)

This gives strong constraint propagation whenever the bounds of someNi are narrowed. The library
procedure{FS.minN S DV} supports the rank function (2) more immediately. Its logic semantics
is 9o� n : S=fX1; : : : ;Xng[fXn+1; : : : ;Xog ^ X1<:: :<Xo ^ DV=[X1; : : : ;Xn] :
Informally, FS.minN constrains the elements of the listDV to then minimal elements ofS and

vice versa. The propagator for the rank function for subsetsof f1; : : : ;Ng with (uniformly) fixed
cardinality 3 can now be implemented as follows (whereFD:supis the implementation dependent
maximal integer available in the OzFD system).

proc {Rank S N ?U} % ? annotates U as output
Xs = {FD.list 3 1#N} [X1 X2 X3] = Xs % X1,X2,X32 f1; : : : ;Ng
N1 = N+1 N1N1 = N1*N1 in
U = {FD.decl} % U2 f0; : : : ;FD:supg
{FS.minN S Xs} % relate S and Xs
U =: N1N1 * X1 + N1 * X2 + X3 % compute rank

end

We examine the effect of this rank function by reconsideringthe Steiner problem. Add the following
code right before line 8 to the functionSteiner in Section 3.1.

local
S1|Sr = Ss % 1: split list Ss in head and tail
Xs = {FD.list 3 1#N} % 2: Xs= fX1;X2;X3g, X1;X2;X32 f1: : : ;Ng

7Note that this does not require all sets to have thesamefixed cardinality!

N1 = N+1 N1N1 = N1*N1
in

{FS.minN S1 Xs} % 3: initial value for FoldL
{FoldL Sr % 4:

proc {$ [X1 X2 X3] S2 ?Ys} % 5: ? annotates Ys as output
[Y1 Y2 Y3] = Ys in
Ys = {FD.list 3 1#N} % 6: Y1;Y2;Y32 f1; : : : ;Ng
{FS.minN S2 Ys}
N1N1*X1 + N1*X2 + X3 <: N1N1*Y1 + N1*Y2 + Y3 % enforce order

end
Xs % pass first set as initial value to FoldL
_} % ignore result of FoldL

end

The code steps through the listSs of set variables which is required to have at least one element
(line 1). TheFoldL statement in line 4 imposes on all pairs of adjacent set variables an ordering
constraint according to the anonymous procedure in line 5. This anonymous procedure is derived
from the above defined procedureRank but is tailored for the combination withFoldL.

These (logically) redundant ordering constraints significantly reduce memory consumption and
runtime for this problem: The speed-up factor for the Steiner problem of order 9 is 6:3 and memory
consumption reduces by a factor of 5:9. Further, the number of choice points and failures drops
drastically (see the table below).

We also compare our set-based implementation against an analogous implementation with finite
domain integer constraints where sets are modelled with lists of (reified) 0/1-variables (basically
encoding sets by their characteristic functions; the program code can be found in the Appendix). As
expected, the number of choice points and failures does not differ between both implementations.
However, we observe a significant advantage in time and spacefor the set-based solution. We expect
this observation to remain true for other set-specific problems.

The table below compares Oz’s setresp.finite domain constraints for the steiner problem. The
figures for choice points and failures were obtained by the OzExplorer [25]. The linessteiner(n)�
andsteiner(n)refer to the implementations which doresp.do not use the redundant ordering con-
straints. Since we compare two solutions for one problem we prefer to give ratios rather than
absolute figures for runtime and memory consumption.

problem sets finite domains runtime memory
choice
points

failures
choice
points

failures
fd

sets
fd

sets
steiner(7) 20 6 20 6 – –
steiner(7)� 15 1 15 1 – –
steiner(9) 4545 452 4545 452 2.8 3.6
steiner(9)� 565 54 565 54 2.5 2.7
Entries of ‘–’ are due to unmeasurable runtimeresp.memory consumption since the problem is too small.

4.2 Sets with Attributed Elements

Many practical problems require to associate set elements with attributes such as weights. Such
weights may denote the cost or benefit contributed by some element of a set and can be employed
to specify an optimal solution. Weights can also model resource consumption in problems involving
limited resources, as, for instance, in the bin-packing which we discuss here.

The bin-packing problem is to partition a number of itemsi with individual weightswi in a
minimal number of bins with uniformly limited capacityc. Each binb can be represented as a set

sb of items such that the capacity constraintc�∑i2sb
wi is respected. Based on this idea, we model

the bin-packing problem as follows.

fun {BinPacking Weights Capacity}
proc {$ Ss}

LB = {FoldL Weights Number.´ +´ 0} div Capacity % 1: min. num. of bins
UB = {Length Weights} % 2: max. num. of bins
Items = {List.number 1 UB 1} % 3: Items = [1, . . . , UB]
NbBins = {FD.int LB#UB}

in
{FD.distribute naive [NbBins]} % 4: choose number of bins

{FS.var.list.lub NbBins Items Ss} % 5: bins S: /0 � S� set(Items)g
{FS.partition Ss {FS.value.new Items}} % 6: pack each item exactly once
{ForAll Ss % 7: for all bins

proc {$ S} BL in
{FS.reified.areIn Items S BL} % 8: reflect membership
{FD.sumC Weights BL ´ =<:´ Capacity} % 9: respect capacity

end}

{FS.distribute naive Ss} % 10: place items
end

end

In order to implement the capacity constraint, this implementation uses the (so-called reified) con-
straint(i 2 s^ r = 1)_ (i =2 s^ r = 0) which reflects the validity ofi 2 s into r (see line 8). The
library procedure{FS.reified.areIn Es S Bs} realizes this constraint: For all elementsE of
the listEs, the membership ofE in S is reflected in a 0/1-variable in the listBs (at the correspond-
ing position). In line 9, the inequationWeights * BL =<: Capacity on the scalar product
of Weights andBL is computed using the propagator{FD.sumC W BL ´ =<:´ C} from theFD
library. The propagator{FS.partition Ss U} enforces the elements of the listSs of sets to
represent a partition of the setU.

Note that the distribution strategy is two-dimensional. First, in line 4, the distribution strategy
fixes the number of bins for one branch of the search tree, where the numbers are tried in ascending
order to minimize the number of bins. Thereafter, the items are placed according to the distribution
strategy specified in line 10 which straightforwardly triesto put the next item in the leftmost bin (in
Ss).

5 Oz-specific Programming Idioms

As part of aconcurrentconstraint language there is further expressiveness to ourfinite set constraint
system than what was mentioned up to here. In particular, entailment of basic constraints by the
constraint store is treated properly. The following example illustrates entailment of membership and
ground inclusion. Assume the constraint store/0�S1;S2 �U, and execute the following statement:

thread if {FS.subset S1 S2} then {Show yes} else {Show no} end end % S1� S2?
thread if {FS.include 1 S2} then {Show yes} else {Show no} end end % 12 S2?

This creates two threads which concurrently wait for the constraint store to either entail or disentail
(i.e., entail the negation of) their guards. Initially, the constraint store neither entails nor disentails
any of these guards, hence both conditionals suspend. Now weexecute the following lines.

{FS.include 1 S2} % 12 S2?
{FS.include 2 S2} % 22 S2?
{FS.value.new [1#2] S1} % S1= f1;2g

Execution of the first statement tells 12 S2 and wakes up the second conditional which then
outputsyes. The second statement tells 22 S2; the first conditional remains suspended. Fi-
nally, telling S1 = f1;2g yields the constraint storeS1 = f1;2g ^ f1;2g � S2 � FS:sup which
entailsS1 � S2 and wakes up the first conditional.

The combination of conditionals with first-class procedures provides a flexible tool-box for the
development of user-defined propagators. For instance, consider the iterator which adds an element
with valuen2 to S2 for every integern2 S1 between 1 and 5.

{Loop.for 1 5 1
proc {$ N}

thread if {FS.include N S1} then {FS.include N*N S2} end end
end}

This particular scheme is supported by the library somewhatmore conveniently and efficiently. The
procedure{FS.forAllIn S P} applies procedureP to every element in the setS as soon as it
becomes known.8

{FS.forAllIn S1
proc {$ N}

case N*N=<FS.sup then {FS.include N*N S2} else skip end
end}

Often,e.g.in program analysis [20], one asks for the least solution (orthe smallest set solutions) of
a collection of set constraints. The corresponding Oz idiomlooks as follows.

proc {Problem S}
. . . % 1: impose basic constraints and propagators
choice % 2: Finally (i.e.on stability) . . .

S = {FS.value.new {FS.reflect.glb S}} % 3: . . . equate S with glb(S)
end

end

This idiom specifies that a certain collection of constraints be solved before, as final operation, an
undetermined set variableS is equated to its greatest lower bound.9 It allows, for instance, a concise
formulation of the constraint-based safety analysis of Palsberg and Schwartzbach [20] in Oz.

6 Related Work

Meanwhile, there have been a number of proposals for the integration of sets into constraint/logic
programming. The various set constraint systems differ in syntax, i.e., in the set description lan-
guage, and in the power of the constraint solving mechanism they provide. Let us briefly mention
the general lines of the different approaches. For a thorough overview see [9, 28].

The simplest set constraint systems allow for the description of finite ground sets by enumer-
ation of their elementsf1;2;3g, f1; f (a);2g, or f1;f2g;ff3ggg. Our approach belongs into this
class, along with Gervet’s CONJUNTO [8], the set constraint library ofECLiPSe [6], and ILOG

SOLVER [11, 22], a commercial library to enable constraint programming in C++. This line of re-
search focuses on solving simple set constraints like membership and equality, and treats more
complex constraints with consistency techniques from constraint programming.

8On a first view, the reader may ignore the difference betweenif andcase here. On a second view note that the
guard of anif is astatementwhich succeeds or fails while the guard of ancase is anexpressionwhich evaluates to a
boolean value. The choice ofcase in the example at hand is simpler and more efficient.

9We remark that this non-monotonic reflection operation may exhibit an inconsistency not realized before. Recall that
propagatorP may implement their logic semanticsCP incompletely and thus not realize non-satisfiability ofCP w.r.t. the
current constraint store.

More complex systems provide for a regular set description language. This includes the early
work by Walinsky on CLP(Σ�) [29] which deals with regular sets ofwords, as well as Foster’s more
recent CLP(SC) [7] (proposed by Kozen [12]) which deals withregular sets oftrees. Regular sets
of trees have been particularly prominent in static programanalysis (see [1, 19] for overviews and
references) and several specialised solvers have been developed. In this domain, constraint solving
usually means testing satisfiability of a constraint, or emptiness of a set variable in all solutions (or
a distinguished solution) of a constraint.

A third approach allows set descriptions of the formfX;Yg (also calledset terms) whereX
andY are variables denoting elements, and provide an associative, commutative, and idempotent
unification procedure. This is the approach of systems like CLPS [14], flogg [5], and others [2,
13, 28]. Yet different approaches allow set comprehensionslike fx j p(x)g with an intensional
semantics [4], or consider non-standard set domains for interpretation of cyclic set descriptions
like X = fX;fXgg [16].

In comparison with its closest relatives CONJUNTO and ILOG SOLVER, our set constraint sys-
tem differs in the following aspects. While CONJUNTO deals with finite ground sets over the Her-
brand universe (including power sets), we only treat sets ofintegers; the same holds for ILOG

SOLVER. In CONJUNTO, a set may, once and for all, be associated with weights per element.
In contrast, we consider weights as attributes of individual elements which are not part of the set
constraints, and allow to have several attributes per element (e.g.weight and benefit of an item in
context of the knapsack problem). To our knowledge, ILOG SOLVER does not actively support at-
tributed elements, although it ought to be expressive enough to model them. We allow for attributes
to be used as parameter of distribution strategies, an option which the library of ILOG SOLVER as
is does not provide. Also note that neither CONJUNTOnor ILOG SOLVER areconcurrentconstraint
languages; hence both only provide a satisfiability test only while we need to handle entailment,
too.

7 Conclusion

Set constraints are well-suited to extend the expressiveness of constraint programming platforms
and in particular, in conjunction with other constraint systems, ase.g.finite domain constraints. But
there is also a significant performance improvement which isonly possible by the combination of
both constraint systems (compare Section 4.1). Due to the availability of a high-level C++ constraint
propagator interface, the implementation of the set constraint system took only three man-months.

Acknowledgments. The authors would like to thank Carmen Gervet and Denys Duchier for in-
teresting and useful discussions. Further, we are gratefulto Jörg Würtz and the anonymous referees
for their comments on earlier versions of the paper. Additionally, Jörg Würtz provided the initial
finite domain formulation of the Steiner program. The research reported here has been supported by
the Esprit Working Group CCL II (EP 22457) and the SFB 378 at the Universität des Saarlandes.

References

[1] A. Aiken and N. Heintze. Constraint-Based Program Analysis, 1995. Invited Lecture at the 22nd ACM Symposium
on Principles of Programming Languages.

[2] C. Beeri, S. Nagvi, O. Shmueli, and S. Tsur. Set Constructors in a Logic Database Language.The Journal of Logic
Programming, pages 181–232, 1991.

[3] N. Beldiceanu. An example of introduction of global constraints in chip: Application to block theory problems.
Technical Report TR-LP-49, ECRC, Munich, Germany, May 1990.

[4] P. Bruscoli, A. Dovier, E. Pontelli, and G. Rossi. Compiling intensional sets in CLP. InInternational Conference
on Logic Programming, pages 647–661. The MIT Press, Jan. 1994.

[5] A. Dovier and G. Rossi. Embedding Extensional Finite Sets in CLP. InProceedings of the International Logic
Programming Symposium, 1993.

[6] ECRC. ECLiPSe, User Manual Version 3.5.2, December 1996.

[7] J. Foster. CLP(SC): Implementation and Efficiency Considerations. InProceedings Workshop on Set Constraints,
held in Conjunction with CP’96, Boston, Massachusetts, 1996.

[8] C. Gervet. Set Intervals in Constraint-Logic Programming: Definitionand Implementation of a Language. PhD
thesis, Université de France-Compté, Sept. 1995. European Thesis.

[9] C. Gervet. Interval Propagation to Reason about Sets: Definition and Implementation of a Practical Language.
Constraints, 1(2), 1997.

[10] M. Henz, G. Smolka, and J. Würtz. Object-Oriented Concurrent Constraint Programming in Oz. In V. Saraswat
and P. V. Hentenryck, editors,Principles and Practice of Constraint Programming, chapter 2, pages 27–48. The
MIT Press, Cambridge, MA, 1995.

[11] ILOG, URL: http://www.ilog.com. ILOG SOLVER 3.2, User Manual, 1996.

[12] D. Kozen. Set Constraints and Logic Programming. In1st International Conference on Constraints in Computa-
tional Logics, volume 845 ofLecture Notes in Computer Science. Springer-Verlag, Berlin, Germany, 1994. also
Information and Computation, to appear.

[13] G. Kuper.Logic Programming with Sets. Academic Press, New York, N.Y., 1990.

[14] B. Legeard and E. Legros. Short Overview of the CLPS System. InProceedings of the International Symposium
on Programming Language Implementation and Logic Programming, Aug. 1991.

[15] M. J. Maher. Logic semantics for a class of committed-choice programs. In J.-L. Lassez, editor,Logic Program-
ming: Proceedings of the 4th International Conference (Melbourne), pages 858–876, 1987.

[16] S. Manandhar. An Attributive Logic of Set Descriptionsand Set Operations. InAnnual Meeting of the Association
of Computational Linguistics, 1994.

[17] T. Müller and J. Würtz. A survey on finite domain programming in Oz. InNotes on the DFKI-Workshop:
Constraint-Based Problem Solving, Technical report D-96-02, Kaiserslautern, Germany, 1996.

[18] T. Müller and J. Würtz. Extending a concurrent constraint language by propagators. In J. Małuszyński, editor,
Proceedings of the International Logic Programming Symposium, pages 149–163. The MIT Press, 1997.

[19] L. Pacholski and A. Podelski. Set Constraints: A Pearl in Research on Constraints. In G. Smolka, editor,3rd

International Conference on Principles and Practice of Constraint Programming, volume 1330 ofLecture Notes in
Computer Science. Springer-Verlag, Berlin, Germany, 1997. Tutorial Abstract.

[20] J. Palsberg and M. I. Schwartzbach. Safety Analysis versus Type Inference.Information and Computation, 1995.

[21] Programming Systems Lab. The Oz Programming System, 1997. Universität des Saarlandes:
http://www.ps.uni-sb.de/www/oz/.

[22] J. F. Puget. Finite Set Intervals. InProceedings Workshop on Set Constraints, held in Conjunction with CP’96,
Boston, Massachusetts, 1996.

[23] P. V. Roy, M. Mehl, and R. Scheidhauer. Integrating Efficient Records into Concurrent Constraint Programming. In
International Symposium on Programming Language Implementation and Logic Programming, Aachen, Germany,
Sept. 1996. Springer-Verlag, Berlin, Germany.

[24] V. A. Saraswat.Concurrent Constraint Programming. The MIT Press, Cambridge, MA, 1993.

[25] C. Schulte. Oz Explorer: A visual constraint programming tool. In L. Naish, editor,Proceedings of the Fourteenth
International Conference on Logic Programming, Leuven, Belgium, 8-11 July 1997. The MIT Press.

[26] C. Schulte, G. Smolka, and J. Würtz. Encapsulated search and constraint programming in Oz. InSecond Workshop
on Principles and Practice of Constraint Programming, Orcas Island, Washington, USA, May 1994. Springer-
Verlag.

[27] G. Smolka. The Oz Programming Model. In J. van Leeuwen, editor, Computer Science Today, volume 1000 of
Lecture Notes in Computer Science, pages 324–343. Springer-Verlag, Berlin, Germany, 1995.

[28] F. Stolzenburg. Membership-constraints and complexity in logic programming with sets. In F. Baader and K. U.
Schulz, editors,Frontiers in Combining Systems, pages 285–302. Kluwer Academic, Dordrecht, The Netherlands,
1996.

[29] C. Walinsky. CLP(Σ�): Constraint Logic Programming with Regular Sets. InProceedings of the International
Conference on Logic Programming, pages 181–190, 1989.

A Finite Domain Implementation of the Steiner Problem

fun {Steiner N}
proc {$ Triples}

N1 = N+1 N1N1 = N1*N1
in

case N mod 6 == 1 orelse N mod 6 == 3 then
% create list of triples which model set of cardinality 3
Triples = {MakeList N*(N-1) div 6}
{ForAll Triples proc {$ T} T = {FD.list 3 1#N} end}

% triple elements must be different
{ForAll Triples FD.distinct}

% all pairs in two different triples must be different
{ForAllTail Triples proc {$ [T11 T12 T13]|Tr}

{ForAll Tr
proc {$ [T21 T22 T23]}

{FD.sum [T11 =: T21
T11 =: T22
T11 =: T23
T12 =: T21
T12 =: T22
T12 =: T23
T13 =: T21
T13 =: T22
T13 =: T23]

´ =<:´ 1}
end}

end}

% order triple elements
{ForAll Triples proc {$ [T1 T2 T3]} T1<:T2 T2<:T3 end}

% impose order on triples
{ForAllTail Triples proc {$ [T11 T12 T13]|Tr}

case Tr of nil then skip
[] [T21 T22 T23]|_
then

N1N1*T11 + N1*T12 + T13
<:
N1N1*T21 + N1*T22 + T23

end
end}

% create choice points
{FD.distribute naive {Flatten Triples}}

else fail
end

end
end

