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Abstract

We report on the extension of the concurrent constraint language Oxiiraints over finite
sets of integers. Set constraints are an important addition to ther@omgrogramming sys-
tem Oz and are very employable in natural language processing and generahpsobling.
This extension profits much from its integration with the erigttonstraint systems over finite
domains and feature trees, as well as from the availability of first-clasegures. This com-
bination of features is unique to Oz. This paper focuses on the expresw gained by set
constraints and on the benefits of the integration with finite domaistcaints. A number of
case studies demonstrates programming techniques exploring theseagdsant

1 Introduction

Constraints over finite sets of integers (for short set caimgs) are very employable in combina-
torial problem solving and in natural language processiSgts are a natural and frequent data
structure in many problems.g.set constraints allow to conveniently express certain typear-
chies as used in unification grammars.

The higher-order concurrent constraint language Oz [2F7az&ady supports two powerful
constraint systems; one over finite domain constraints §&7 well-established constraint system
for combinatorial problem solving, and one over featuregrégiz. records [23]) as required by
applications in natural language processing.

Supplementing both constraint systems with set consrgietds a significant gain in expres-
siveness for the mentioned classes of applications. Thegration of set constraints into the
general-purpose programming system Oz further empoweras@zprogramming platform for a
wide range of constraint problems. The additional expvessiss of this host language provided by
first-class procedures, inference engines [25], and abj&6] is very convenient.

The implementation effort for the integration of set coasits into Oz was less than three
man-months using the+Cconstraint propagator interface of Oz [18] and resulted library with
adequate efficiency.

This paper demonstrates the gained expressiveness by lexakive show a number of pro-
gramming techniques and point out conciseness of problemulations. We also stress that the
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combination of set constraints and finite domain constaimiproves the problem solving capa-
bilities by extra constraint propagation and new patteonavbid symmetric solutions in problem
formulations.

To support this claim, we investigate a new constraint whigbociates the minimal elements
of a set withn finite domain variables. We employ this constraint in a seteal implementation of
the Steiner problem [3]. We show that in contrast to the glthbrward formulation a significant
reduction of choice points is obtained (due to improved traitg propagation) which results in a
notable decrease of heap space consumption and runtime.

Plan of the paper. The paper is structured as follows. Section 2 introducesiteriogy and the
choice of set constraints we support in Oz. The followingtieas 3 and 4 discuss programming
techniques employing set constraints; Section 4 in pdatidocuses on the interaction of set con-
straints with finite domain constraints and Section 5 dises0z-specific programming idioms.
Section 6 surveys related work, and Section 7 briefly sunzesri

2 Finite Set Constraints in Oz

We assume an integer constasuip and consider subsets of the finite universal gét=
{0,...,sup;.! We adopt the convention thabnstantsand variablesare denoted by loweresp.
upper case letters. A lower casa@lenotes ainteger constanbeing element ofi; s designates a
set constantanging over subsets a@f; N denotes dinite domain integer variabléo be interpreted
as an element ifil, andSis aset variableinterpreted as a subset ©f.

Amongst the constraints we distinguish between basic anebasic onesBasic constraints
are those constraints for which satisfiability and entailtr{ee., logic implication) can be decided
efficiently (or at least efficient enough for the intended leagions). Non-basic constraintare
those for which we intendesp.have to treat satisfiability and entailment in an incompfashion
because of their computational complexity.

Basic and Non-basic Constraints. The most important basic constrairiBsprovide lower and
upper bounds for a set variadle:

B = BANB | sCS | SCs |

The constraints1 € Sandn ¢ Sare derived forms sincee S« {n} C Sandn¢ S« SC U\{n}
(where ¢\{n} is finite since is finite). The cardinality of a set constasis denoted by ¢ A
second pair of basic constraints provides bounds ordindinality #S of (the denotation of) a set
variableS

B = .| n<#S | #S<n

All other set operations like unioq, intersectiom, asymmetric differencg, disjointness|, etc.,
are non-basic constraints
C = B | NG | S=F ‘
E = SUS | SN | S\S

1The set notatioa, ..., b} always denotes eonvexset.l.e..,c € {a,...,b} wheneverm < c < h.
2|n the notation of [9]s C SandSC sappear as €0,g ands €[s ¢;j, respectively.

SCS | SIS |
.




Solved Forms. Every basic constrainB can easily be checked for satisfiability; furtherAfis
satisfiable, it can be brought into a solved form which corgdor every set variabl8the greatest
(least) setsg|b3 (sup®) and integersimin andnmay such thatB entails

SbCESCSwb A Nmin < H#S < Nmax-

Obviously, #gib < Nmin and Nmax < #5yp are properties of the solved form. Given a basic con-
straintB in solved form, we denote withlb(S) andlub(S) (w.r.t. B) the respective bounds of the
set interval for a variabl&. A satisfiable constrairdeterminesa (set) variableSif the denotation

of Sis uniquely fixed by the constraint. A basic constra#in solved form determines a varialfe

if and only if glb(S) = lub(S) w.r.t. B.

Constraint Store and Propagators. The concurrent constraint framework [15, 24, 27] organizes
computation in a number of concurrent actors operating anthwunicating over a shared constraint
store. The implementation model underlying constraingmmming in Oz [21] places basic con-
straints in theconstraint storeand implements non-basic constraints as actors, cattgzhgators

The operation tdell a basic constrain to the constraint storg is executed as follows: If
C A B is satisfiable, then the sto@is extended ta” A B without interruption; otherwise, a fail-
ure condition is raised. Aropagator Pis an actor whose logic semantics is given by a (usually,
non-basic) constraintp, and whose operational semantics is correct but not natgssamplete
W.r.t. its logic semantics. The variables@ are called thgparametersof P. Imposinga propaga-
tor P means installing an actor which continuously watches timstraint storev.r.t. its parameters.
When the parameters Bfbecome further constrained in the stdPanay be activated and then, on
its part, tells constraints according to its operationataetics. Once the constraint store entgis
P is redundant and may disappeRrwill disappear latest when the constraint store determéties
its parameters, or ifp is inconsistent with the constraint store (in which caselaracondition is
raised).Propagationis the process of running all propagators to termination.

As an example for constraint propagation, assume the &tare5;, S C {1,...,5}, as well
as propagators for the non-basic constrafats) S, = {1....,5} and §||S. Telling the basic
constraints k S and 2¢ S yields the intermediate constraint stofé} C S C {1....,5} and
0 C S C{1,3,4,5}. Then, when constraint propagation has finished, the @nststore holds
{1,2} €S CH{1,...,5} A0 C S C {3,4,5}. Eventually, telling #, = 3 determines§; andS, i.e,,
yields the constraint stoi® = {1,2} AS; = {3,4,5}.

Distribution.  Problem solving in Oz is realized as an interleaving of (©asbnstraint solving
and propagation, as well as search guided by the creatioha€e points and distribution. A
typical choice point for set constraint problems is giveralgisjunction of the fornrme Svn¢ S
Distribution is the operation of picking one of the current choice poimid affering the suggested
alternatives for independent exploration [26]. Which clegpoint to pick at a certain stage and in
which order to explore the alternatives is up to thstribution strategyfixed for the problem at
hand. As part of a search procedure, the above-mentioniedefaionditions are interpreted as the
absence of solutions; elsewhere they amount to a runtiroe err

Connecting Finite Domains and Finite Sets. The cardinality constraintl = #Srelates sets and
integers. The presence of the finite domain constraint sysfeDz [17, 21] suggests to generalize

Sgreatestowerbound
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the basic constraints < #Sand # < n to the more expressive propagators
N<#S | #S<N.

This establishes a close link between both constraint mgsténce the integer variables cang.
carry domain restrictions like € {1,...,5}. Often itis also convenient to realize that we have finite
sets ofintegers(instead of arbitrary elements) and to exploit their ndtorder or the expressiveness
of arithmetics. As an example of propagators for constsaiauired by a natural language pars-
ing application, consider the propagatonin(S) = N andmaxS) = N meaning that the minimal
(resp.maximal) integer in (the denotation dfequals (the denotation o. A propagator which
turned out useful to break symmetries and to provide extpggation (see Section 4.1) general-
izesmin(S) = N to minN(S) = [Ny, ..., Ni] saying thak < #Sand that th&k minimal elements 08
areN; throughNy in this order.

3 Problem Solving with Set Constraints

This section illustrates problem solving with finite set swaints in Oz by means of examples. The
provided constraint solving abstractions of Oz requiré flnablems are to be formulated as unary
Oz procedures, typically with the following structure.

proc {Probl em Sol }
% impose constraints and propagators
% specify distribution strategy

end

These are then passed to an inference enginethie Oz Explorer [25]) to explore the specified
search space. The formal argumeat refers to the sought solution.

Note some examples in this section use finite domain conggrarinite domain infix operators
end with a “ ", as for instance £<: ". Finite domain library procedures begin witkD. ", as for
instance FD. decl .

3.1 The Steiner Problem

The ternary Steiner problem [3] of ordeasks fom(n— 1) /6 sets with cardinality 3 such that every
two of them share at most one element. It has been provedathatsblution to exish mod6 must
be 1 or 3. The Oz functiost ei ner below maps an integerto an (anonymous) procedure mod-
eling the Steiner problem of order (Anonymous procedures in Oz are marked iith To solve
the Steiner problem of order 9, say, one may invoke the OzdEepby executindg Expl or eOne
{Steiner 9}}.

fun {Steiner N
proc {$ Ss}
case
N mod 6 == 1 orelse N mod 6 == % 1.
then
{FS.var.list.lub (N*(N-1)) div 6 [1#N] Ss} %2
{ForAl'l Ss proc {$ S} {FS.card S 3} end} %3.#5=3

{ForAl'l Tail Ss % 4.
proc {$ S1|Sr}
{ForAl'l Sr % 5.
proc {$ S2} S3 in
S3 = {FS.intersect S1 S2} %6. 3=S1NR

{FS. cardRange 0 1 S3} %7.#3 € {0,1}



end}
end}

{FS. distribute naive Ss} % 8.
else fail end
end
end

The case statement in line 1 checks whether there can be lripise for a givenN. The library
procedurg FS. var.list.lub Len Lub Xs} constrainsXs to a list ofLen set variables§ (see
line 2). Further, each of these is constraineddby § C setLub) wheresetLub) is the set de-
scribed by the Oz termaub: e.g. sef[ 1 3 5#7] ) = {1,3,5,6,7}. The cardinality of all§ is con-
strained to 3 (line 3). Two nested loops (lines 4 and 5), usiadibrary procedureBor Al | Tai | ®
andFor Al | 8, require all pairwise distinct elements x§ to have at most one element in com-
mon. The library abstractiofiFS. car dRange M N S} imposes the constraiM< #S <N, and
{FS.intersect X Y Z} expectedlyX n Y=2Z (lines 6 and 7). Line 8 specifies the distribu-
tion strategy to always pick the leftmost undetermined elet8 of Ss and the smallest integer
with n € lub(S)\glb(S), and then to distribute the choice poine Svn¢ S

3.2 Hamming Distance

This example uses sets to model bit strings. The problemfigllas/s: given integers, b, andd,

find n tuplesw € {0, 1}® such that the hamming distance of all pairwise distinctes$ at least.
For example:

declare B=5 D=2 N-=16
Thehamming distance(lr,w) between two tupleg= (v, ...,V,) andw = (wy, ..., W) wherev,w €
{0,1}" is defined as the number of positiongherev; # w;. We can model tuples € {0,1}° as
setssy C {1,...,b} wherei € s, if and only ifw; = 1. Then the hamming distance betwesmdw
is just

hvw) = b—#sNsy) —#({1,...,b}\ (s, Usy)):

The conditionh(v,w) < d for all v,w now codes as

proc {MnDi st Sv Sw}

Al Bits = {FS. val ue. new [ 1#B] } % AllBits={1,...,B}
Conmonls = {FS.intersect Sv Sw} % Commofs = Svn Sw
Comon0s = {FS.conplIn {FS. union Sv Sw} AllBits} % AlIBits\ (SvU Sw)

in
{FS.card Comonls} + {FS.card Conmon0Os} =<: B-D
end

such that the hamming problem can be modelled as follows.

proc {Hamm ng Ss}
{FS.var.list.lub N [1#B] Ss}

{ForAll Tail Ss
proc {$ Si1|Sr}

{ForAl'l Sr proc {$ S2} {MnDist S1 S2} end}
end}

{FS.distribute naive Ss}
end

S{ForAll Tail [X1 ... Xa] P} reducestd P [ X1 ... Xn]} {P [X2 ... Xa]} ... {P [Xa]}.
8{ForAll [X; ... Xa] P} reducestdP Xi} {P X2} ... {P Xn}.




4 |Interaction with Finite Domain Constraints

Arithmetics on the elements of finite sets can be a powerflnado prune the search space and
to avoid symmetries. Therefore, we support mixed propagatperating over both the set and the
integer domain. This is conveniently achieved since Ozides/for a full-fledged finite domain
solver with various flexible propagators for integers amigtics (see [21]).

4.1 Ordering Sets

Problem formulations asking for a collection of sets run sk of having numerous symmetric
solutions. This can be avoided if an order on sets is availd®uch an order cam,g, be given in
terms of an integer rantank(s) associated with every sst

An immediate way to define a rank is to interpret the charetiefunction of every set as a bit
stringresp.as a binary number.

(bo,b1,...,bsup)2 whereb; € {0,1} andb =1iffics

For largesup however, this function is impractical since it takes hugdugs of ordelO(25UP).
Further, the obtained constraint propagation is not satiefy.

In case the cardinality of all relevant sets is fixed, say éonssto k such thas= {ny, ..., ng},
we can do much better by ordering the integarshroughny and interpreting them as a number to
the basesup+ 1.

(N1, . Mk)supr1 1)

If we have referencehl; throughNg to the elements; throughng we can state the fact that they
must be ordered through the finite domain integer propagator

Ni<: No<: ... <! N. 2)

This gives strong constraint propagation whenever the ®ohsome\; are narrowed. The library
procedurg FS. mi nN S DV} supports the rank function (2) more immediately. Its logimantics
is

Jo>n: S={Xq,.... X0 U{Xat1, ..., Xo} A X1<...<Xo A DV=[Xq,.... %] .
Informally, FS. mi nN constrains the elements of the IBY to then minimal elements of and
vice versa. The propagator for the rank function for subséfdl, ..., N} with (uniformly) fixed

cardinality 3 can now be implemented as follows (wheBesupis the implementation dependent
maximal integer available in the @D system).

proc {Rank S N ?U} % ? annotates U as output
Xs = {FD.list 3 1#N} [X1L X2 X3] = Xs % X1,X2,X3 {1,...,N}
NI = N#1 NIN1 = N1*N1 in
U = {FD. decl } % Ue {0,...,FD.sup}
{FS. m nN S Xs} % relate S and Xs
U= NINL * X1 + N1 * X2 + X3 % compute rank

end

We examine the effect of this rank function by reconsidetirgSteiner problem. Add the following
code right before line 8 to the functia ei ner in Section 3.1.

local
S1| Sr = Ss % 1. split list Ss in head and tail
Xs = {FD.list 3 1#N} % 2. Xs={X1,X2,X3}, X1,X2,X3¢ {1...,N}

"Note that this does not require all sets to havesémefixed cardinality!



N1 = N+1 NIN1 = NI1*N1
in

{FS. m nN S1 Xs} % 3. initial value for FoldL
{Fol dL Sr % 4.
proc {$ [X1 X2 X3] S2 ?Ys} % 5. ? annotates Ys as output
[YL Y2 Y3] = Ys in
Ys = {FD.list 3 1#N} %6.YLY2,Y3e {1,...,N}

{FS.m nN S2 Ys}
NIN1*X1 + N1*X2 + X3 <: NIN1*Y1l + N1*Y2 + Y3 % enforce order

end
Xs % pass first set as initial value to FoldL
_} % ignore result of FoldL

end

The code steps through the I8¢ of set variables which is required to have at least one elemen
(line 1). TheFol dL statement in line 4 imposes on all pairs of adjacent setbi@gaan ordering
constraint according to the anonymous procedure in lineHs @nonymous procedure is derived
from the above defined proceduRank but is tailored for the combination witkol dL.

These (logically) redundant ordering constraints sigaiftty reduce memory consumption and
runtime for this problem: The speed-up factor for the Steimeblem of order 9 is 8 and memory
consumption reduces by a factor oB5 Further, the number of choice points and failures drops
drastically (see the table below).

We also compare our set-based implementation against &gana implementation with finite
domain integer constraints where sets are modelled with di(reified) 0/1-variables (basically
encoding sets by their characteristic functions; the @agecode can be found in the Appendix). As
expected, the number of choice points and failures doesiffiet Hetween both implementations.
However, we observe a significant advantage in time and $pattee set-based solution. We expect
this observation to remain true for other set-specific wtdl.

The table below compares Oz’s sesp.finite domain constraints for the steiner problem. The
figures for choice points and failures were obtained by th&Qaorer [25]. The linesteiner(n)
andsteiner(n)refer to the implementations which desp.do not use the redundant ordering con-
straints. Since we compare two solutions for one problem wéepto give ratios rather than
absolute figures for runtime and memory consumption.

problem sets finite domains | runtime memory

choice . choice . fd fd

) failures . failures

points points sets sets
steiner(7) 20 6 20 6 - -
steiner(7) 15 1 15 1 - -
steiner(9) 4545 452 4545 452 2.8 3.6
steiner(9) 565 54 565 54 2.5 2.7

Entries of ‘- are due to unmeasurable runtireep.memory consumption since the problem is too small.

4.2 Sets with Attributed Elements

Many practical problems require to associate set elemeitibsattributes such as weights. Such
weights may denote the cost or benefit contributed by sonmeegieof a set and can be employed
to specify an optimal solution. Weights can also model resmaonsumption in problems involving
limited resources, as, for instance, in the bin-packingcivive discuss here.

The bin-packing problem is to partition a number of iteimaith individual weightsw; in a
minimal number of bins with uniformly limited capacity Each binb can be represented as a set



S of items such that the capacity constraint y;. W is respected. Based on this idea, we model
the bin-packing problem as follows.

fun {Bi nPacki ng Wi ghts Capacity}

proc {$ Ss}
LB = {Fol dL Wi ghts Nunmber. + 0} div Capacity % 1. min. num. of bins
UB = {Length Wi ght s} % 2. max. hum. of bins
Items = {List.nunber 1 UB 1} % 3. ltems =1, ..., UB]
NbBi ns = {FD.int LB#UB}
in
{FD. di stribute naive [NbBi ns]} % 4. choose number of bins
{FS.var.list.lub NbBins Itens Ss} % 5. bins S:0 C SC sef(ltems}
{FS.partition Ss {FS.val ue. new Itens}} % 6. pack each item exactly once
{ForAl'l Ss % 7. for all bins
proc {$ S} BL in
{FS.reified.areln Itens S BL} % 8. reflect membership
{FD. sunC Wi ghts BL "=<:" Capacity} % 9. respect capacity
end}
{FS.distribute naive Ss} % 10. place items
end

end

In order to implement the capacity constraint, this implatagon uses the (so-called reified) con-
straint(i € sAr =1) Vv (i ¢ sAr = 0) which reflects the validity of € sinto r (see line 8). The
library procedurd FS.rei fied. areln Es S Bs} realizes this constraint. For all elemegtsf
the listEs, the membership dt in Sis reflected in a 0/1-variable in the liB (at the correspond-
ing position). In line 9, the inequationéi ghts * BL =<: Capacity on the scalar product
of Wei ght s andBL is computed using the propagaf{deD. sunC WBL “=<:" C} from theFD
library. The propagatof FS. partition Ss U} enforces the elements of the IS$ of sets to
represent a partition of the sat

Note that the distribution strategy is two-dimensionakskiin line 4, the distribution strategy
fixes the number of bins for one branch of the search tree,erthernumbers are tried in ascending
order to minimize the number of bins. Thereafter, the iteragtaced according to the distribution
strategy specified in line 10 which straightforwardly triegput the next item in the leftmost bin (in
Ss).

5 Oz-specific Programming ldioms

As part of aconcurrentconstraint language there is further expressiveness tinitgrset constraint
system than what was mentioned up to here. In particulaajler@nt of basic constraints by the
constraint store is treated properly. The following examlhlistrates entailment of membership and
ground inclusion. Assume the constraint std@ S,. S, C U, and execute the following statement:

thread if {FS. subset S1 S2} then {Show yes} else {Show no} end end % SlLC ?
thread if {FS.include 1 S2} then {Show yes} else {Show no} end end %lecX?

This creates two threads which concurrently wait for thest@int store to either entail or disentail
(i.e., entail the negation of) their guards. Initially, the coasit store neither entails nor disentails
any of these guards, hence both conditionals suspend. Nax&grite the following lines.

{FS.include 1 S2} % 1lec 27?
{FS.include 2 S2} % 2e RX7?
{FS. val ue. new [ 1#2] S1} % Sl ={1,2}



Execution of the first statement tells€lS, and wakes up the second conditional which then
outputsyes. The second statement tellse2S;; the first conditional remains suspended. Fi-
nally, telling S = {1,2} yields the constraint stor§ = {1,2} A {1,2} C $ C FSsup which
entailsS; C S, and wakes up the first conditional.

The combination of conditionals with first-class procedyseovides a flexible tool-box for the
development of user-defined propagators. For instancsjaenthe iterator which adds an element

with valuen? to S2 for every integen € Sl between 1 and 5.

{Loop.for 1 51

proc {$ N}
thread if {FS.include N S1} then {FS.include N*N S2} end end
end}

This particular scheme is supported by the library somewitae conveniently and efficiently. The
procedureg FS. for Al Il In S P} applies procedur@ to every element in the s&as soon as it
becomes knowA.

{FS.forAllln S1

proc {$ N
case N*N=<FS.sup then {FS.include N*N S2} else skip end
end}

Often, e.g.in program analysis [20], one asks for the least solutioriiersmallest set solutions) of
a collection of set constraints. The corresponding Oz idimoks as follows.

proc {Probl em S}
R % 1. impose basic constraints and propagators
choice % 2. Finally (i.e. on stability) . ..
S = {FS.value.new {FS.reflect.glb S}} %3....equate S with gli5)
end
end

This idiom specifies that a certain collection of constiing solved before, as final operation, an
undetermined set variabis equated to its greatest lower botthti.allows, for instance, a concise
formulation of the constraint-based safety analysis o$lial and Schwartzbach [20] in Oz.

6 Related Work

Meanwhile, there have been a number of proposals for thgratien of sets into constraint/logic
programming. The various set constraint systems diffeymas, i.e., in the set description lan-
guage, and in the power of the constraint solving mecharti@y provide. Let us briefly mention
the general lines of the different approaches. For a thdrawgrview see [9, 28].

The simplest set constraint systems allow for the desoripgi finite ground sets by enumer-
ation of their element$1.2,3}, {1. f(a).2}, or {1,{2},{{3}}}. Our approach belongs into this
class, along with Gervet's @4JuNTO [8], the set constraint library oECL'PS [6], and ILOG
SOLVER [11, 22], a commercial library to enable constraint prograng in C+. This line of re-
search focuses on solving simple set constraints like meshipeand equality, and treats more
complex constraints with consistency techniques from tcaims programming.

80n a first view, the reader may ignore the difference betviteandcase here. On a second view note that the
guard of anif is astatementvhich succeeds or fails while the guard of@ase is anexpressiorwhich evaluates to a
boolean value. The choice ohse in the example at hand is simpler and more efficient.

9We remark that this non-monotonic reflection operation mdajtet an inconsistency not realized before. Recall that
propagatoP may implement their logic semantic® incompletely and thus not realize non-satisfiabilitydpfw.r.t. the
current constraint store.



More complex systems provide for a regular set descriptimguiage. This includes the early
work by Walinsky on CLPZ*) [29] which deals with regular sets wfords as well as Foster's more
recent CLP(SC) [7] (proposed by Kozen [12]) which deals wéhular sets ofrees Regular sets
of trees have been particularly prominent in static progesualysis (see [1, 19] for overviews and
references) and several specialised solvers have beelopledeln this domain, constraint solving
usually means testing satisfiability of a constraint, or tngss of a set variable in all solutions (or
a distinguished solution) of a constraint.

A third approach allows set descriptions of the fofi,Y} (also calledset term§ where X
andY are variables denoting elements, and provide an assagiatmmutative, and idempotent
unification procedure. This is the approach of systems likPE[14], {log} [5], and others [2,
13, 28]. Yet different approaches allow set comprehensiies{x | p(x)} with an intensional
semantics [4], or consider non-standard set domains fergretation of cyclic set descriptions
like X = {X,{X}} [16].

In comparison with its closest relativeso8JUNTOand ILOG SOLVER, our set constraint sys-
tem differs in the following aspects. WhileaBlauNTO deals with finite ground sets over the Her-
brand universe (including power sets), we only treat setmtefjers; the same holds fordc
SOLVER. In CONJUNTO, a set may, once and for all, be associated with weights enegit.
In contrast, we consider weights as attributes of indiidikaments which are not part of the set
constraints, and allow to have several attributes per alefeey. weight and benefit of an item in
context of the knapsack problem). To our knowledg&d SOLVER does not actively support at-
tributed elements, although it ought to be expressive dmntugodel them. We allow for attributes
to be used as parameter of distribution strategies, anroptitich the library of LOG SOLVER as
is does not provide. Also note that neitheoKUNTONOr ILOG SOLVER areconcurrentconstraint
languages; hence both only provide a satisfiability tesy arlile we need to handle entailment,
too.

7 Conclusion

Set constraints are well-suited to extend the expressigeakconstraint programming platforms
and in particular, in conjunction with other constraintteyss, a®.g.finite domain constraints. But
there is also a significant performance improvement whi@nlg possible by the combination of
both constraint systems (compare Section 4.1). Due to thahility of a high-level G+ constraint
propagator interface, the implementation of the set caimétsystem took only three man-months.
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A Finite Domain Implementation of the Steiner Problem

fun {Steiner N
proc {$ Triples}
N1 = N+1 NIN1 = N1*N1

in
case Nmod 6 == 1 orelse N mod 6 == 3 then
% create list of triples which model set of cardinality 3
Triples = {MakeList N*(N-1) div 6}
{ForAl'l Triples proc {$ T} T = {FD.list 3 1#N} end}
% triple elements must be different
{ForAl'l Triples FD.distinct}
% all pairs in two different triples must be different
{ForAll Tail Triples proc {$ [T11 T12 T13]| Tr}
{ForAl'l Tr
proc {$ [T21 T22 T23]}
{FD.sum [T11 =: T21
T11 = T22
T11 = T23
T12 =1 T21
T12 =1 T22
T12 =1 T23
T13 =1 T21
T13 =1 T22
T13 =: T23]
=< ]_}
end}
end}
% order triple elements
{ForAl'l Triples proc {$ [T1 T2 T3]} T1<:T2 T2<:T3 end}
% impose order on triples
{ForAll Tail Triples proc {$ [T11 T12 T13]| Tr}
case Tr of nil then skip
[T [T21 T22 T23]|_
then
NIN1*T11 + N1*T12 + T13
<
NIN1*T21 + N1*T22 + T23
end
end}
% create choice points
{FD. distribute naive {Flatten Triples}}
else fail
end
end

end



