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ABSTRACT

We present a constraint system, OF, of feature trees thapi®griate to specify and implement
type inference for first-class messages. OF extends taditisystems of feature constraints by a
selection constraint(y)z, “by first-class feature tregy, which is in contrast to the standard selection
constraintx| f]y, “by fixed feature”f. We investigate the satisfiability problem of OF and show tha
it can be solved in polynomial time, and even in quadratietifrthe number of features is bounded.
We compare OF with Treinen’s system EF of feature consgaiith first-class features, which has an
NP-complete satisfiability problem. This comparison ysetldat the satisfiability problem for OF with
negation is NP-hard. We even obtain NP-completeness, fpeaific subclass of OF with negation
that is useful for a related type inference problem. Base®Brwe give a simple account of type
inference for first-class messages in the spirit of Nishaisurecent proposal, and we show that it has
polynomial time complexity: We also highlight an immediatetension of this type system that is
desirable but makes type inference NP-complete.

Keywords:object-oriented programming; first-class messages; @nsbased type inference; com-
plexity; feature constraints

1. Introduction

First-class messages add extra expressiveness to obigated programming. First-
class messages are analogous to first-class functionsdtidnal programming languages;
a message triggers the call of an object’s correspondinadejust as a functional argu-
ment represents the computation executed on applicat@rexample, anap method can
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be defined by means of first-class messages by
method map(o,l) = for each messag® in . o+m

whereo is an object] is a list of first-class messages, and on executiasxefn, message
m is sent too.

First-class messages are more common in distributed ebjesited programming
where they add crucial expressiveness. A typical use ofdiests messages is the dele-
gation of messages to other objects for execution. Suclyateebjects are ubiquitous in
distributed systems: for example, proxy servers enablessdo external services.(q, ftp)
beyond a firewall. A delegate object implementing a simptexpiserver can be defined as
follows.

let ProxyServer = { new(o) = { send(m) = o¢m} };

This creates an obje¢roxyServer with a methodnew that receives an object The
method returns another object that, on receipt of a messdgdedsend and carrying a
messagen, forwardsm to o. To create a proxy to an FTP server, we can execute

let FtpProxy = ProxyServer<new(ftp);
whereftp refers to an FTP object. A typical use of this new proxy is tiefving one.
FtpProxy<—send(get(’ paper. ps. gz’ ))

Delegation cannot be easily expressed without first-classsages, since the relevant mes-
sages are not known statically and must be abstracted ovevasiablem.

In a programming language with records, abstraction ovessages corresponds
to abstraction over field names. For example, one might wanuse a function
let f = fn x => y.x; to select any fielck from recordy. Static typing of first-class mes-
sages and of first-class record fields is difficult for an agails reason: both message or
record field identifiers may be bound to varying values dejmendn the execution. Nei-
ther first-class messages nor first-class record fields d@rsupported in statically typed
languages such as Standard ML [20], Objective Caml [35],asKell [30]. There is a type
system for extensible records with first-class record fibld&aster [14], but it is restrictive
in not allowing a single record field type to mention varyiegord fields.

Recently, the second author has proposed an extension tdlthgpe system that
can deal with first-class messages [25]. In the spirit of @hpolymorphic record type
system [28], he has formulated a type system for first-classsages as a kinded type
system where, intuitively, kinds describe classes (orsyé types. The corresponding
type inference procedure is given in terms of kinded unificatHowever, the presentation
of both the type system and the type inference in [25] are &ignnvolved and not easily
understandable or suitable for further analysis.

In this paper, we give a constraint-based formulation o&tirderence for first-class
messages in the spirit of [25] and analyze its complexitythi®end, we define a new con-
straint system over feature trees [3] that we call OBjéctsandfeature$. This constraint
system extends known systems of feature constraints [8, 403 by a new, tailor-made



constraint: this new constraint is motivated by the typeiahce of a message sending
statemenb < m, and pinpoints the key design idea underlying Nishimurgsdem.

We investigate the (incremental) satisfiability problem @ and show that it can be
solved in polynomial time, namely i@(n*) in general and in tim®(n?) for the important
special case that the number of features is bounded. Weralestigate the satisfiability
problem for OF constraints with negation by comparing OFhwiteinen’s feature con-
straint system EF [40]. We show that checking satisfiabfbitypositive and negative OF
constraints is NP-hard in general, and NP-complete wheatimagis restricted to a certain
class of formulas.

Based on OF, we define monomorphic type inference for fiescmessages. Our
formulation considerably simplifies the original one basadinded unification. One ad-
vantage of our formulation is that dealing with constraistaore flexible than dealing with
the large kinded types according to [25]. More importantneigethe fact that we strictly
separate the types (semantics) from the type descript&ymgax), whereas the original
system confused syntax and semantics by allowing variabltae types themselves.

Our type system reformulates the monomorphic part of Nisinéis original type sys-
tem as a constrained type system based on OF. This reforanuiatns out to be insightful
on its own (see Section 3). From our complexity analysis ofw@Fobtain that monomor-
phic type inference for first-class messages can be donedre(nental) polynomial time.
Incrementality is important since it allows for modulardpé-wise) program analysis with-
out loss of efficiency over global (monolithic) program arsis.

Our constraint-based setup of type inference allows us ptagx ML-style polymor-
phic type inference [15, 19] as an instance HM(OF) of the HM¢Xheme [26]: Given
a monomorphic type system based on a constraint system Xauttvrs give a generic
construction of HM(X),i. e,, type inference for ML-stylei(e., Hindley/Milner) polymor-
phic constrained types. Type inference for the polymorghgtem remains DEXPTIME-
complete, of course [16, 17].

In the remainder of the introduction we summarize the maga iof the type system for
first-class messages and of the constraint system OF.

1.1. The Type System

The type system contains types for objects and messagesxplains what type of
messages can be sent to an object of a given type. An objexidyplabeled collection of
method types (a product of types) markedoby. For example, the objeetdefined by

let o = { pos(x) = x>0, neg(p) = = p};

implements two methodsos andneg that behave like functions from integer and boolean,
respectively, to Boolean. Hence, it has the following objgpe.footnote In contrast
to what is common in the types community, the colons in theetypj(pos:int —
bool, neg:bool — bool) do not separate items from their type annotation, but ratier
field names from the associated type components. This antigtinherited from the liter-
ature on feature trees and record typing.

obj(pos:int — bool,neg:bool — bool) .



When a messagg(M) is sent to an object, the method corresponding to the mesaage
bel f is selected and then applied to the message argukheftince a message identifier
may refer to many specific messages at run-time, its typeabeldd collection of the cor-
responding argument types (a sum of types) markegdgy For example, the expression

let m = if b then pos(42) else neg(true);

defines thain be assigned one of the messau®s(42) or neg(true) depending on the
boolearb. Since this disjunction can, in general, not be resolvetitsiéy, m is given the
disjunctive message type

msg(pos:int,neg:bool) .

In the context of the previous definitions, the expressian m is well-typed since two
conditions hold:

1. For both labels that are possible f@r pos and neg, the objecto implements a
method that accepts the corresponding message argumeypeoft or bool.

2. Both methodpos andneg have the same return type, héxeol. Thus the type of
o < m is statically known even though the message is not.

These are the invariants that Nishimura’s type system R8bnstructed to guarantee.

In this paper, we devise a type system for first-class messhage is based on these
invariants as well — very similar to that of [25]. In the coeie the formal developments,
it will become apparent that our type system is slightly wergkan Nishimura’s original
one in that it admits more programs: Some of them are webkdypnly because certain
methods are never executed. This weakness is, howeverjtledgpay in order to achieve
polynomial time complexity of type inference. The obviouaywof extending our type
system in order to bridge this gap makes type inference Nifptzte.

1.2. Constraint-based Type Inference

Itis well-known that many type inference problems have ars&and simple formula-
tion as the satisfiability problem of an appropriate corstraystem €. g.[29, 32, 42]).
Constraints were also instrumental in generalizing the tiylie system towards record
polymorphism [28, 34, 43], overloading [8, 27] and subtypjfh, 12, 32] (see also [26] for
further references).

Along this line, we usefeature trees[3] as the semantic domain of the con-
straint system underlying our type system. A feature trea igossibly infinite tree
with unordered marked edges (callédature3 and with marked nodes (calleth-
belg, where the features departing from the same node must bevigaidistinct.
For example, the picture on the right shows a feature tree paper
with two featuresonf andyear that is labeled wittpaper at
the root andisian and1998, respectively, at the leaves. Con/ \’eaf

Feature trees have been used as the interpretation dé)s-i
main for a class of constraint languages cafieature con-

an 1998



o= obj B= msg y= bool
Ty/\ytg ?7/\gtg
— — int bool

int  bool bool bool

Figure 1: Interpretation of Types in Feature Trees

straints[5—7, 23, 38, 40]. These are a class of feature descriptgingpand, as such, have a
long tradition in knowledge representation and in compaoitat linguistics andonstraint-
based grammarg31, 36]. More recently, they have been used to model recoudtsires
in constraint programming languages [2, 33, 37, 38].

We use feature trees to represent types. Feature trees teaallyaepresent the types
of all kinds of data structures with labeled components agchbject, record, or message
types. A base type likint is a feature tree with labét and no features. A message type

subtreeqy,...,Tn, and an object typebj(f1:t1 — 17,..., fniTn — Ty,) is a feature tree with
label obj, featuresfy, ..., fn, and corresponding subtrees — 1) throught, — 1;,; the
arrow notatiort — 1’ in turn is a notational convention for a feature tree withelab and
subtreeq, 1’ at fixed and distinct featuresandr, the names of which should remind one
of “domain” and “range”.

A feature constraint systeis given by a language of constraints that contains certain
primitive constraintsaand is closed at least under conjunction, and their intéaiom over
feature trees. The most fundamental constraint languagesged are those of FT [3] pro-
viding for primitive constraints for equality on featureés, feature selection, and labeling,
and of CFT [38] that extends FT by a constraint on the set ofiptesfeatures (a so-called
arity constraint).

Roughly, we obtain our constraint system OF from CFT by thditamh of a primitive
constraint whose semantics reflects the intuition undeglyiell-typed message passing in
Nishimura’s system. The constraint language of OF is thés on

¢ = x=ylaX [ Xfly [ FX) | xy)z| ¢’

The first three primitive constraints are well-known: Thendpl = denotes equality on
feature treesa(x) holds if x denotes a feature tree that is labeled vétat the root, and
x[f]y holds if the subtree of (the denotation afat featuref is defined and equal to (the
denotation of)y. For a finite set of featurds, the constrainFE (x) holds ifx hasat mostthe
features ir at the root; in contrast, the arity constraint of CFT foreés haveexactlythe
features inF. The constraink(y)z is new. It holds for three feature tregg 1y, andt; if
(i) T« has at least the features at the root thatas, and if(ii ) for all root features atty,
the subtree ofy at f equalsty.f — 1, (Wherety.f is the subtree ofy at f).

Itis not difficult to see thax(y)z s tailored to type inference of message sendifgr

aThe notation of the constrain{y)z is chosen to indicate its close relationshipxtb]y. For its application to



example théroxyServer above gets the following polymorphic constrained type:
VaBy.obj(a) Amsg(B) Aa(B)y= obj(new:a — obj(send: —Y)).

Using notation from [26], the matrix of this type has two ga# term part right of>, and

a constraint part left of-. The term part describes an object that accepts a messajedab
new with argument typex, returning an object that accepts a message lalsebed! with
argument typd and has corresponding return typeThe constraint part in addition re-
quires thatr be an object type be a message type appropriatedoand the correspond-
ing method type i have return typg. A possible monomorphic instance of this type
would bind said three variables was follows: = obj(pos:int—bool,neg:bool—bool),

B = msg(pos:int,neg:bool), andy = bool. Figure 1 illustrates these bindings in terms of
the corresponding feature trees.

Plan. Section 2 defines the constraint system OF, considers th@legity of its sat-
isfiability problem, and proves that an extension of systefmvith negation makes the
satisfiability problem NP-complete. Section 3 applies Ofh®type inference for first-
class messages and shows that its complexity is polynoBeation 4 discusses properties
of the corresponding type system in relation to this comiplarsult. Section 5 concludes
the paper.

2. The Constraint System OF

2.1. Syntax and Semantics

The constraint system OF is defined as a class of constrdorig avith their inter-
pretations over feature trees. We assume three infinitelgetsd variables with typical
memberscy, andz, ¥, of features with typical memberf, where ¥ contains at least
andr, andZ, of labels with typical membera andb that contains at least. The meaning
of constraints depends on this label. We wrxifer a sequencey, . .., x, of variables whose
lengthn does not matter, arxly for a sequence of matching paksys, ..., X):yn. We use
similar notation for other syntactic categories.

We also writex = y to denote that variablesandy are syntactically identical.

2.1.1. Feature Trees

A pathTtis a word over features. Thampty paths denoted by and the free-monoid
concatenation of pathsandt astut; we haveent = e = 1. Given pathstandrt, 17 is
called aprefix ofrtif m= 1’1" for some patht’. We write |t to denote the length of path
and also writef € Ttif there is an occurrence of featufén 1. A tree domairis a non-empty
prefix closed set of paths. #&ature treer is a pair(D, L) consisting of a tree domab and
alabeling function L. D — £. Given a feature treg we writeD; for its tree domain ant;
for its labeling function. Therity ar(1) of a feature trea is defined byar(t) = D: N F.
If 1€ Dy, we write ast.1t the subtree of at pathtt formally Dy = {1 | 107 € D¢}

type inference, the following reading might be helpfxy)z has two parts, namelx(y' and ‘)Z. ‘ x(y’ represents
the messagg sent to objeck (where( is a stylized«) and )Z represents the resutt



andL = {(1,a) | (T0t,a) € L;}. A feature tree idiniteif its tree domain is finite, and
infinite otherwise. Theardinality of a setSis denoted by 8 Given feature trees, . .., Ty,
distinct featured, ..., fn, and a labeh, we write asa(f1:11,..., fn:Th) (simply a, when
n = 0) the feature tree whose domain{is} UL, {fiTt | € Dy;} and whose labeling is
{(e,a)}UUL {(fit.b) | (T, b) € Ly, }. We uset; — T2 to denote the feature traewith
L = (g,—), ar(1) ={d,r}, 1.d =11, andt.r = 12.

2.1.2. Syntax

The class oDF constraintsp is defined by the following abstract syntax.

¢ = x=y (Equality)
| a(x) (Labeling)
| X[fly (Selection)
| F(X) (Arity Bound)
| x(y)z (Object Selection)
| dAQ (Conjunction)

We callx =Yy, a(x), X[ f]y, F(x), andx(y)z primitive OF constraintsA first-order formula
built from OF constraints and existential quantificationadled arexistential OF formula
We writed’ C ¢ if all primitive constraints inp’ are also contained if, and we write
x=y € ¢ [etc.] if x=y is a primitive constraint irp [etc.]. We denote withF (¢), L(¢),
andV(¢) the set of features, labels, and variables occurring in atcaintd. Thesize $¢)
of a constrain® is defined as the number of variable, feature, and label cecoes inp.

2.1.3. Semantics

We interpret OF constraints in the structyfe” of feature trees. The signature $fI
contains the symbok, for everya € £ a unary relation symba(-), for everyf € ¥ a
binary relation symbol[f]-, for every finite subsef of F a unary relation symbdt (-),
and the ternary relation symbdl)-. We interpret= as equality on feature trees and the
other relation symbols as follows:

a(1) iff  (g,a) €Ly

T[flv  iff tf=7

F (1) iff ar(t)CF

)t iff Vfear(t):fear(t)andt.f =1.f - 1"

Let ® and®' be first-order formulas built from OF constraints with thesaisfirst-order
connective¥, A, 0, —, etc, and quantifiers. We calb satisfiablg(valid) if @ is satisfiable
(valid) in F 7. We say thatb entails®’, written ® =, @', if ® — @' is valid, and thatb
is equivalento @', written® |=| . @', if ® > @' is valid.

A key semantic difference between the selection consgairily and x(y)z is that
“selection by (fixed) featureX[f]y is functional, while object “selection by (first-class)
feature tree’k(y)zis not, as expressed by the following statements.

For  XIyAXTlY — y=Y 1)
o xWzAx{iyyZz — z=7 %)



The second implication is not valid singenay have no subtrees: In this case, the constraint
x(y)zdoes not constrainat all. That is, the following implication is valid.

Foe {3¥) — VzXy)z ®)

If, howevery is known to have at least one feature at the root, then olgésttion becomes
functional, too. For arbitrary, the following holds:

o MY AXY)ZAXY)Z = z=7 4)

The implications (3) and (4) are crucial for the polynomiaiplexity of OF satisfiability
and they are also significant for type inference (see Se8jion

2.1.4. Feature Terms

For convenience, we will useature termg3] as a generalization of first-order terms:
Feature terms are built from variables by feature tree construct@dify :ty, ..., fa:ty) (de-
notinga whenn = 0) where the featurefy, ... f, are required to be pairwise distinct.

Equations between feature terms can be straightforwaxgigessed as a conjunction
of OF constraintx =y, a(x), F(x), x[f]y, and existential quantification. For example, the
equationx = a( f:b) corresponds to the formuBy (a(x) A { f}(X) AX[fly Ab(y) A{}(y)).

In analogy to the notatiom; — T2, we use the additional abbreviatian= y — z for the
equatiorx = —(d:y,r:z).

For the sake of conciseness in the following sections, wdl als extend the flat
syntax of constraints to a “nested” one by allowing feateres wherever only variables
were allowed before:

o u= - | u=t | a® | ulfl. | FO | tk

As usual, the semantics of these constraints is unders®adhmomorphic lifting of
the flat ones from variables to feature terms. Notice, howdhat the extended syntax
is not part of the formal system of OF, but just a notationaivemtion. Every nested OF
constraint can be written as a flat OF constraint with ext&equantification.

2.2. Constraint Solving

Theorem 1. The satisfiability problem of OF constraints is decidabléicremental poly-
nomial space and time.

For the proof, we define constraint solving by a rewritingtegs on constraints and the
failure flagfail. The rules in Figure 2 should be clear by themselves. Notétibdreatment
of object selection in two separate rules is not essentighlfies the subsequent analysis,
as we believe. We call a constraintiesedif it is invariant under the rules.

Theorem 1 follows from Propositions 1 through 4 as statedtdow.

Proposition 1 (Correctness). The rules in Figures 2 define equivalence transformations
on constraints.



dAX=y
oly/ X Ax=y
dAX[flyaX[f]z

if xe V(¢) andx#y (Substitution)

(Selection)

dAX[flzAy =1z

ANE(X) AF'(X
PAF(X) (x) (Arity Intersection)

dAFNF'(x)

L if x(y)zAy[f]y € ¢ and (Object Selection 1)
dAXfIX notexistzz: x[f]ze ¢, X fresh

# if x(y)zAy[f]ly AX[f]X € ¢ and (Object Selection 1)
dAX =y >z X=y —=z¢¢

M ifab (Label Clash)

fall

AR AXTIX if fgF (Arity Clash)

fail

Figure 2: Constraint Solving Rules

Proof. We check rule by rule. Rules (Substitution), (Selectiob@bel Clash), and (Arity
Clash) are standard rules for solving feature constraiRtge (Arity Intersection) allows
one to normalize a constraint to contain at most one arityndqer variable. (Object Se-
lection I) reflects the fact thaky)z implies all features necessary fpto be also necessary
for x, and (Object Selection Il) establishes the selectionimelaty)z at a featuref known
for bothx andy. |

Notice that the number of fresh variables introduced in (@bject Selection 1) is
bounded: This rule adds at most one fresh variable per @nsky)z and featuref and
the number of both is constant during constraint solving.tke subsequent analysis, it is
convenient to think of the fresh variables as fixatte and for alfor every constraind.
Hence, we define the finite set :

V(D) =def V() U{vi € V|xeV(d),f e F(d), v fresht

Proposition 2 (Termination). The rewrite system in Figures 2 terminates on all OF con-
straints¢.

Proof. Let ¢ be an arbitrary constraint. Obviousky(¢) is a finite set and the number of
occurring features is fixed since no rule adds new featurébeisn Secondly, recall that



the number of fresh variables introduced in rule (Objece&#n I) is bounded. Call a
variablex eliminatedin a constraintx = y A ¢ such thatx # y if x ¢ V(¢). We use the
constraint measur@1(¢),02(¢),NE(¢),S(¢)) defined by

O1(9): number of sextuplegx,y,zX,y,f) of non-eliminated variables,y,zx,y' €
V'(¢) and featured € F(¢) such thak(y)zAX[fIX Ay[f]Y € o butX =y — z¢ ¢.

O2(¢): number of pairgx, f) of non-eliminated variablese V'(¢) and feature$ € F(¢)
such that there exisisy’ andz with x(y)zAy[f]y € ¢ butx[f]X & ¢ for anyx..

NE(¢): number of non-eliminated variables.
S(¢): size of constraint as defined in Section 2.1.2.

The measure o is bounded from below and strictly decreased by every rupdiegtion
as the following table shows. This proves our claim.

O, O, NE S
(Arity Intersection) | = = = <
(Selection) = = = <
(Substitution) < < <
(Object Selection )] = <
(Object Selection 1)) <

O

Proposition 3 (Polynomial Complexity). We can implement the rewrite system in Fig-
ure 2 such that it uses at most spacg®) and incremental time *), and at most linear
space and incremental time(@) if the number of features is bounded.

Proof. See Section 2.3.1 for details. O

Proposition 4. Every OF constrainty which is closed under the rules in Figure 2 (and
hence is different from fail) is satisfiable.

Proof. See Section 2.3.2 for details. O

2.3. Proofs on Constraint Solving

2.3.1. Proposition 3: Constraint Solving has Polynomiainptexity

We implement the constraint solver as a rewriting on pgS) whereSis thestore
that flags failure or represents a satisfiable constraintsiohaed form, and wher is the
pool (multiset) of primitive constraints that still must be adde S. To decide satisfiability
of ¢ we start the rewriting on the pool of primitive constraimgiand the empty store and
check the failure flag on termination.

Definen; = #V(9), nf = #F (), ny = nj +n;-ng = #V'(¢), wherein the index is left
implicit throughout the paper. The indéerefers to thenitially available variables ip.

10



Data Structures. We use the usual union-find algorithm with path compressi&j for
the representation of equivalence classes on equatedhidt uses a data structure of
sizeO(ny) that allows the addition of a new equation in ti®én - a(ny)) wherea(ny) is
the inverse of the Ackermann function.

In addition, the store contains the following:

1. for every variablex € V'(¢)\V(¢), a flag whether or not it has been introduced be-
fore: sizeO(ny)

2. foreveryx € V(¢), at most one label per variablex € V (¢) to represent constraints
a(x): sizeO(n;)
For the newly introduced variables¥i(¢)\V(¢) the label is always-.

3. foreveryx € V'(¢) at most one variable entyyper featuref to represent constraints
X[ fly: sizeO(ny - n¢)

4. foreveryx € V(¢), a boolean array of siz& to represenE (x): sizeO(n; - n¢)

For all newly introduced variables (¢)\V (¢) the arity bound ifd,r} and, there-
fore, need not be represented explicitly.

This representation allows one to decide in constant timetér or not-3y X[ f]y is
implied by the store:

5. Alist of object selection constraintgy)z sizeO(n).

This size estimation exploits the fact that the constra@vien introduces new selec-
tion constraintx(y)z

6. Adirected graply whose nodes are the initial variables and whose edggs.afe
such that there existgx)z for somez. This graph is represented by an incidence
matrix mapping each node to an array of outgoing edges. Trajgshghas overall
O(n) edges: sizeO(n).

The graphGy allows depth-first tree traversal in tin@n).

This data structure has overall size

x=y + ax + X[ fly + F(x) +  x(y)z
Onv + n + nm-nf + nm-nf + n)=0(n-ns+n)

which isO(n) if the number of features is bounded aBth; x n¢ x ns +n) = O(n®) other-
wise. It allows to check in tim®(a(ny)) whether it contains a given primitive constraint
and to add the primitive constraint, if missing. This is cl@ahe non-incremental (off-line)
case whera, n;, andn; are fixed. In the incremental (on-line) case, wharen;, andns
may grow proportional ta in the worst case, we can use dynamically extensible hash
tables [9] to retain (amortized) constant time check andatgtbr primitive constraints.

11



One-step Satisfiability. Each step of the algorithm removes a primitive constraiomnfr
the poolP, adds it to the stor§, and then derives all its immediate consequences under the
constraint solving rules: Amongst them, equatigrsy and selectiong| f]y are put back
into the pool, while selectiongly)z and arity bound§ (x) are directly added to the store.

We show that every step can be implemented such that it ¢ostw time.

The subsequent discussion is understood modulo equadlity.riieans that, every time
a primitive constraint is picked up from the pool, the firseogtion is the replacement of
each variable by its representative in the correspondingyalgnce class. Since the union-
find data structure allows one to lookup in constant time feargable the representative of
its equivalence class, this preprocessing does not chaegmmplexity considerations.

We consider the primitive constraints one by one.

F(x): We check rules (Arity Intersection) and (Arity Clash). Ietktore already contains
an arity constrainE’(x), we replaceF’(x) by F N F’(x) which can be computed in
time O(n¢), otherwise we simply adé& (x) in time O(1). Next, we check for all
featuresf known forx, i. e, in time O(n¢), whether or nof is contained in the new
arity. The overall cost is O(ns).

a(x): It suffices to check applicability of rule (Label Clash) anttia(x) to the store. This
can obviously done in constant time 0(1).

x[f]ly: We must consider rules (Selection), and (Object Selectl)n |

(Selection) We check whether the store contajiip/ for somey’. If so, we add/ =
y' to the pool and terminate (we need not consider the ruless@Bjelection
I/1) in this case); if not, we simply add[f]y and proceed. Furthermore, we
check whetheF (x) exists withf ¢ F. Both can be done in constant tirdg1).

(Object Selection 1) We compute the set of all variables tactvithe existence of
featuref propagates from. This can be done by a depth-first search through
the graphGy containing an edgéx,y) for every constrainy(x)z.

For all theseD(n;) variables we check whether the selection entry af f is

filled. If not, we addZ[f]v, ¢, i. e, O(n) selection constraints in the worst case.

The costis O(n).
(Object Selection 11)

¢ For allO(n) selection constraints of the formix)Z such that]f]Z’ exists
for somez’, we assery’ =y — Z as follows: We add’[d]y andZ’[r]Z to
the pool, and d,r}(Z’) to the store.
In addition, we may ad®(n) new selection constraints.
The cost is O(n).

e For allO(n) selection constraints of the forr{z)Z such that]f]Z’ exists
for somez’, assery = Z' — Z. We do this dually to the previous case and
with the same resources. This costs O(n).

The overall cost is O(n).
This step add®(n) new selection constraints.
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x(y)z We first addx(y)z to the list of object selection constraints and set up thplyGy
by simply adding an edgg,y). This costs 0(1).

Then we consider (Object Selection I/11):

(Object Selection 1) For all featurdssuch that the store contaigid ]y for somey’,
we must assert thathas feature too. This can be done in total timeO(ng).

(Object Selection 1) For all featurelssuch that the store contaiggf ]y andx| f]x
for somex,y the constraink’ =y — zmay have to be added as in the appli-
cation of the same rule above. This costs O(ny).

In addition, this step might introdud®(n¢) new selection constraints.

The overall cost of addingy)zis O(ns).

This step add®(n¢) new selection constraints.

x=Yy: If xandy are equal, nothing needs to be done. Otherwise, we mustdeoirsile
(Substitution) first, and then all other rules. At first, tlggivalence classes g&fandy
are merged, which can be done in time O(a(ny)).

Secondly, all constraints gnmust be transferred to(or vice versa). This is done
by an additional case distinction.

a(y): Addinga(x) costs constant time 0(1).
F(y): AddingF (y) costs time O(ny).
y[f]z TheO(n¢) selection constraintg f]zwill be added to the pool in tim®(ns).
y{y')y': All selections ony’ by f have to be propagated foby (Object Selection
I/1). Notice that, however, for all featurek of y' a selection constrain f]z
has been asserted when that object selection constraineéntased into the
store. Hence propagation yolequivalently propagation te, afterx andy are

equated) is treated by the other step of satisfiability cimegfc.f. the casef]y
(Object Selection 1/11))

We need not touch the list of object selection constraintdy @hat we have to
do is to retain the consistency of the grapfby merging the out-going edges
of y to those of. This costs O(n).

Y (y)y"': By a similar argument, the cost is shown to be O(n).

In summary, one step of the algorithm co®), and every step may at most add a single
equation and(n) selection constraints.

Putting it all together. It remains to estimate the number of steps:

e There are at lea$d(n) steps needed for touching all primitive constraintg$in

e« Amongst the new equations, there are at n@(st,) relevant ones, in the sense that
one can at most enforag non-trivial equations before all variables are equated.
That is, all butO(ny) equations cost constant time.
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e Amongst the new selection constraints, there are at 1®0sf- n;) relevant ones
since adding a selection constraifif]y induces immediate work only & has no
selection constraint oh yet. The others will generate a new equation and terminate
then. Hence, all bub(ny - n¢) selection constraints cost constant time.

In summary, there are
O(ny+ny-n¢) = O(ny - nt)

steps that co$d(n) each. Each of these steps may add a single equaticD@mdelections
each of which may add a new equation itself. Hence we have

O(ny-ni-(1+n)) = O(ny-n¢-n)
steps that cogd(1) each. Overall, the algorithm has the complexity
O(ny-ns-n) = O(ni-n¢?-n)
SinceO(n¢) = O(n;) = O(n) in general, this bound iI©(n*). If the number of features is
boundedi. e., O(ns) = O(1), the bound is rathe®(n?).
2.3.2. Proposition 4: Constraint Solving is Complete

In order to show that every constraint closed under the rinl€$gure 2 is satisfiable,
we need some additional machinery:

First, we define a notion gfath reachabilitysimilar to the one used in earlier work on
feature constraints, such as [10,22,23]. For all pathsd constraint$, we define&,T
as the smallest binary relation satisfying the followingdibions. We read~»y as ‘yis
reachable fronx over pathrtin ¢”

xLex if xeVv(o)

xgsy if x=yeod

xdiy it Kflyeo
xgmy if x&nzandz&n,y.

Likewise, we define@*ﬁ»,T areading as “labeh can be reached fromover pathrtin ¢”:

xgna if xgnyanda(y)ecb

Path reachability satisfies the following closure condisio
Lemma 1.
] : t& ¢
1. Whenever x»y5 Y there exists z such thatx;z and 25 ¢ y.
2. Whenever )&fny there exists z such that&f z and z&n y.
Moreover, we observe the following simple facts.

Lemma 2.
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1. If ¢ is closed under rule (Substitition) and=xy € ¢ such that x# y, then x does not
occur in any other primitive constraint ip apart from x=y.

2. If ¢ is closed under rule (Selection) and (Substitition) aﬁ%,xy,x&nz, then y=z.

Proof. Statement 1 is trivial. Statement 2 follows by induction omeausing closure ofy
under (Selection) and (Substitution). |

We now proceed to prove Proposition 4.
Fix an arbitrary labelnit. For every closed constraigtwe define the mappingg
from variables into feature trees defined as follows.

Doy = {T| existsy: x&ny}

L U

{(ma) | x&na}u{(n,unit) | € Dg,(x) but Aa:x~>na}

g (x)

We have to show that this indeed defines a mapping into featees and thatyy is a
solution of¢.

1. ay defines a mapping into feature trees: Pick some varablé/(¢).

Day (%) is non-emptysincee € Doy (%) due tox &s X. Dayx) is prefix-closeddue to
Lemma 1.1. SoDq,x) is a tree domain.

Let (Ta), (T b) € Lgy(x- If @= unit, thenb = unit by definition ofL, (. Other-
wise, we prove by induction overthata = b.

n=g¢: By definition of Ly, x We know thatx &s a andles b. Therefore, there

exist variabley, ...y, andz,.. .z, such that

(X=)a=2,2=123,...,Zm-1=Zm,b(Zm) €

By Lemma 2.1 we knowitmustholdthatyy=---=yp-1 =2 =+ = Zmn_1.
We obtaina = b from closure ofp under (Label Clash).

= f1': By definition of Loy () and Lemma 1.2 we know that there are variables
X, X" such thai[f]x, X[ f]X" € ¢, o X, X '&ﬁ aandx-d x”,x”gn/ b.
From Lemma 2.2, we obtain th&t= x". Thus,a= b follows directly from the
induction assumption.

Finally, Ly, (x) is total onDg, x by definition.
2. ay is a solution ofp: We check every primitive constraint in

Xx=ye¢: Day(y) € Dayx) and Lag(y) € Lagx) follows directly from the definition
of path reachability. The inverse inclusions follow fromnhena 2.1. Hence,
0 (X) = ag(y).

X[fly € ¢: Dag(y) € Dagx.f @ndLg,(y) € Loy x.t follows from definition of path
reachability. The inverse inclusions follow from Lemma.Zncepny(x).f =
ap(y)-
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a(x) € ¢: By definition ofay and path reachabilityg, a) € Lq,(x -
Fx)e¢: If fe Dag %) then there must exist variablgs .. ., yn, zsuch that

(X=)y1.¥2,...,¥Yn-1=Yn,¥n[f]zE .

By Lemma 2.1 andF(x) € ¢, we know thatx =y; = --- =y, andX[f]z € ¢.
Now, arx) C F follows from closure ofp under (Arity Clash).

x(y)ze ¢: Let f € ar(ag(y)). By an argument similar to the previous case using
Lemma 2.1 we know that[f]y’ € ¢ for somey'. By closure of¢ under (Ob-
ject Selection 1) this implies[f]x' € ¢ for somex’, anday(x).f = ay(X) =
ag(y).f — ay(z) follows from closure ofp under (Object Selection II).

2.4. Relation of OF to Known Feature Constraint Systems

Various feature constraint systems have been consideri iliterature [3,5, 23, 38,
40]. These comprise, amongst others, feature constragrtsthe following list.

W m= x=yla() | Xfly | Fx|u=" | xuy | wAy.

The constraintg =y, a(x), andx| f]y are the ones of OF. The constraifu]y is two-sorted:

It contains variableg,y ranging over feature trees and a variabl&nging over features.
In the arity constrainfx, F is a finite set of features. It states thdtasexactlythe features
in F at the root. That is, its semantics is given by

Ft if ar(t)=F

Apparently, both arity constraints are interreducible byams of (an exponential number
of) disjunctions:F(x) <+ \/e:.cp F'x. The constraints of FT [3] contan=y, a(x), and
x[f]y, CFT [38] extends FT b¥x, and EF [40] contains the constraintsy, a(x), u = f,
Fx, andx|u]y.

Recall that OF cannot express the fact that a feature tree festure at the rodt.In
contrast, EF can by means of existential quantification thefeature selector:

Ju 3y (Xuly)

The satisfiability problems for FT and CFT are quasi-lin&®][ In contrast, the satis-
fiability problem for EF is NP-complete [40]. Treinen showB{Hardness of satisfiability
for EF by reduction of the minimal cover problem (see [13,d0fi compare Section 4.2).
In his NP-hardness proof, the following fact is crucial.

n
Fee  {fi....falxAxuly —  \u=f
i=1
In order to express a corresponding disjunction in OF, wel reedgstential quantification
and, in particular, constraints of the fora{ } (y):

For A{fLIAXYZA-Y) =V 3zfilz
i=1

bIn the sense that there is no OF constrairguch that all solutions af for a fixed variabley is the set of
feature trees with at least one featucef( [5]).
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Call OF'¢ the constraint system that is obtained from OF by additiocaofstraints of the
form —={}(x). Now we show that we can reduce the satisfiability check fotdthe one
for OF®,

Proposition 5. There is an embeddirig]] of EF into OF'¢ such that every EF constraint
is satisfiable if and only ify]) is.

Proof. We assume a special lahglit which we use to represent labdlsn EF by feature
treesunit(f:unit).

[a(x)] = ax)

X f1vl = Jz3w (X[f]zA z=w—yAunit(w) A {}(w))
[x=Y] = X=y

[u=f] = 3x (unit(u) A {f}(u) AU[F]XA unit(x) A {}(x))
[X[u]y] = xuyA-{}()

[[{ fl: Tty fn}x]] = {fla Ty fn}(x) A /\Inzlzly X[fl]y

=: Assume a satisfiable EF constrainand leta be an EF solution o.

Without loss of generality, we can assume that no featueeitrahe image ofx
contains featured andr and labels— andunit (if a does not satisfy this condition
we can always rename the features and labels in the imag®another EF solution
which does, because we have assumed infinitely many feantebels; see [21]
for a detailed argument to this end).

Given a feature treg, we definet’ as the feature tree where
e The tree domairD,; is the smallest prefix-closed set of path containing
{flr s fn_lrfnr, fir--- fap_1rfpd | fi---fh € DT}.
e The labeling function.; is defined by

L:(¢) if T=¢
L ) Le(fre--fq) if mt=fore- fpoarfar (n>1)
o (1) = unit if = for--- fp_arfpd (n> 1)
— if = for--- fp_arfa (n>1)

It is easy to see' is well-defined. Intuitivelyx" is obtained front by recursively
replacing all subtrees afof the forma(fy: t1,..., fn:Tn) bya(fi:unit = 11,..., fn:
unit — Tn)

Now, we define a mapping' from variablesc andu to feature trees based on the EF
solutiona so thato” is an OF solution of ).

a’(u) = unit(fuunit) ifa(u)="f
a(x) = aX’ otherwise

We check that!’ is indeed a solution df] by case analysis.

®Notice that, for conciseness, we use feature variabjest like ordinary (feature tree) variables on the right
hand side of the equations. Notice also, that the existemtiantifiers are a matter of convenience only: Their
addition does not affect the complexity of the satisfiapititoblem for OF.
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a(x) € Y: Itholds that(e,a) € Ly(. Hence€,a) € Ly (y by definition ofL.

x[fly € Y: Sincea is a solution forx[f]y, we havea(x).f = a(y). By definition,
a’'(x).f = unit—a’(y). Henceg' solves|x f]y].

x=yey: a(x)=a(y)impliesa(x)’ =a(y)'.

u=f e Y: By definition,a’(u) = unit(f:unit). Hencea' solves[u = fJ.

x[uly € Y: Let f =a(u). Sincea is a solution forx[uly, we havea (x).f = a(y). By
definition,a’(x). f = unit—a’(y) anda’(u) = unit(f:unit). Hencear(a'(u)) =
{f}#0, f € ar(0’(x)) andd’(x).f = a'(u). f=ad’(y).

{f1,..., fa}x € Y: ar(1) = ar(t") holds for any feature tree by definition. Hence
o’ is a solution fof[{ f1,..., fa}X].

<: Lety be an EF constraint such thjpp] is satisfiable. We can assume tigatloes not
contain any occurrence of featurdsaandr and labels— andunit without loss of
generality.

Since[[y] is satisfiable, there is a choice, for all feature variabfesfeaturef, and
a fresh variable, such that

O =der [UIA A ulfux

uev(y)

is satisfiable. Notice that th&, are usually distinct for distinct feature variables
u. For instance, ifp is { f1, f2}x AX[uly A {91, 92} XA X [U]y thenf, € {f1, f2} and

fw € {91,02}.

Let ¢’ be the largest (positive) OF constraint contained inApparently, all con-
straints of the formn{} (u) in W] are trivially satisfied by any solution ¢f. Hence,
every solution ofy’ is also a solution o and, thus, of{].

Letay be solution ofp’ as defined in the proof of Proposition 4. Singeloes not
containd, r, — andunit, without loss of generality alsmy does not.

Next, we show, for all feature variablas V (), that all feature selection constraints
onuin the closure o’ mention the same featufg. There are two cases:

u=f e Y: Inthis case, the claim follows from satisfiability fpfi]] where, of course,
fu=f.

u=f € : In this casex[uly € Y holds for somex,y, sinceu € V(). Moreover,
by definition of W], u occurs only in the corresponding object selection con-
straints in[[Y] (apart from the negated ones) and, additionally, in theufeat
selectionu[ fy]xy € ¢'. By inspection of the rules of Figure 2 (in particular, rule
(Object Selection 1)) one obtains that no selection coidsanu are added
during constraint solving.

As a consequence, we conclude tbigt maps all feature variablasto a tree with
the singleton arity f,}.

From the OF solutiomy we will now construct an EF solutiom of . Intuitively,
for all variablesx, a(x) will be the feature tree obtained by recursively replacihg a
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subtrees ofxy (x) of the formt’ — 1 by 1. Moreover, all feature variablas are
mapped to the unique feature in the arityogf (u). Formally, for allu,x € V(¢'):

a(uy = f if ar(ag (u)) ={f}
a(x) = orq,r(x)l

whereinoy (x)* is defined now. First, definke as the functiorh on paths without
featured that purges all occurrences of feature

h(e) = ¢
h(m) iff=r
h(mf) = { h(rof if f£d,r

Givenh, for all T, define the tree domain
D'(t) = {h(m) | Te Dy andd ¢ T}
and the labeling
L'r) = {(mL(m)) | dgm, h(rt) = mand 2r = [t}
Given these, we define

ay ()" = (DM(ay (X)), L (ag (%)

In general(D*(1),L*(1)) does not define a feature tree for arbitraiginceh(1t) in
the definition ofL!(t) may not work injective. However, this is the case for all gath
in the image ofxy for the occurring variables.

We show, for alix € V(¢') and for all pathgt, 1 in D%, (x With d ¢ L 17, thatmi=

¢ holds wheneveh(m) = h(1?) and bothrt and @ have even lengths. Proof is by
induction on the length dfi(1).

h(m) = h(?) = &: Ttand™ must bes or a non-empty sequence of However, the
latter case does not occug: mentionsd andr either by[[x[f]y] or by [x[u]y]
through the rule (Object Selection Il). In either case, acguorence of featune
in a pathrte D%, (v is always preceded by some featdirg d,r so thath(r) =
eifand only ift=¢. Thusmt=1 =¢.

h(m) = h(1?) # & In this case there exist a patti and a featurd # d,r such that
h(m) = fr". By a similar discussion as above, it holds tiat Doy (% when-
everme D%, (x and the last feature imis different fromd orr. Hence, by the
defintion ofh, there exist pathsp andt, such thatt= frmp, @ = frrg and
h(mo) = h(1G,) = 1. Sincetp andy, have even lengthsy = 17, by induction
hypothesis, and thus= 1.

It remains to check that is indeed a solution dfy] by case analysis:

a(x) € Y: Itholds that(e,a) € L%,(X). Hence,(€,a) € Ly(x) by definition.
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X[f]y € w: By the definition ofay, we haveny (x). f = unit—ag (y). Hence by the
definition ofa, a(x).f = a(y).

X=y €Y gy (X)=0y(y) implies,O((x)q,ri = C((y)q)rl.
u=f e Y It holds thatoy (u) = unit(f:unit). Hencea(u) = f by definition.

X[uly € @: By the definition ofa, we can assumey (u) = unit(fy : unit). Since
ag validatesk(u)y, we havefy € ar(agy (X)) andag (). fy = unit—agy (y). By
the definition ofa, it holds thato(x). fy = a(y) anda(u) = f,. Hencea is a
solution forx[uly.

{f1,.... fa}xe W By {fy,..., fn}(X) € [W], we havear(ag (X)) C{f1,..., fn}. The
inverse inclusion is by\[L; 3y X[ fily € [W]. Hencear(ay (x)) = {f1,..., fn}
and alsaar(a(x)) = {f1,..., fn} by definition ofa.

Corollary 1. The satisfiability problem for OF is NP-complete.

Proof. NP-hardness follows from Proposition 5 in combination vtita facts that satisfia-
bility for EF is NP-complete [40] and thdt] is a polynomial-size embedding.

An NP algorithm to decide satisfiability of an @¥fonstraint is straightforward: Given
an OF® constrainth, make a non-deterministic choice of a featfifend a fresh variable
v, for everyu such that={}(u) € ¢ and check satisfiability of

¢” =def ¢//\ /\ U[fu]Vu-
-{}(ueo

This non-deterministic algorithm is correct because wheng is satisfiable there must
be a choice thap” is satisfiable as well. By Theorem 1, the test for satisfighdf ¢” is
polynomial in the size of”. Furthermore, since there are no negated selection comstra
it suffices to chose the featurésfrom the finite seF (¢). Hence, the choice is finite and the
size ofp and¢” are asymptotically the same. Hence, the algorithm takesdeter ministic
polynomial time. |

Corollary 2. The satisfiability problem of every extension of OF that cgoress—{}(x)
is NP-hard.

For example, the satisfiability problem of positive and rizgaOF constraints is NP-hard.
The precise complexity of OF constraints with negationfisdpen.

2.5. Additional Simplification Rules

This section shortly discusses some constraint simplificatiles that are not necessary
for the satisfiability check but are worth considering fdretreasons.
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The following two additional rules are justified by implieats (3) and (4):

¢ AX(Y)ZAX(Y)Z if y[fly € ¢ (Double Object Selection)
dAX{Y)zAz=7Z
M if {}(y)€d (Feature-less Selector)
o

The rule (Double Object Selection) is derived from (ObjesleStion 1/11) and can be used
to speed up the satisfiability test when given priority oude r(Object Selection Il). In
contrast, the rule (Feature-less Selector) is not a dedwe! it can be used to reduce the
size of a constraint and therefore may save space and time.

The following rule allows the arity bound to be propagatedtigh object selection.

b AX(y)z
O AX(Y)ZAF(X)

if F(x) € ¢ (Arity Propagation)

This rule is justified by the following implication valid inf©
S X(WZAF() = F(y)

This rule makes explicit arity constraints that are mediateough selection constraints
x(y)z. By so propagating arity constraints and by normalizingrthveith (Arity Intersec-
tion) one obtains a normal form that allows one to read ofstiallest implied arity bound
per variable. This rule appears useful to make type infoonaasily accessible: The set
of possible message names for every bound message ideistifizectly represented by
the arity bound on its type. In Section 4.3, we adopt this toldetermine identifiers with
empty message type. Note that arity propagation can bepocated into the satisfiability
check without affecting polynomial complexity [24].

3. Type Inference

In this section, we reformulate the type inference of Nighian[25] in terms of OF
constraints.

Let us consider a tiny object-oriented programming langualjose abstract syntax is
defined as follows.

M = b (Constant)
| x (Variable)
| (M) (Message)
| {fi(x1) =My, ..., fa(xn) = Mn} (Object)
| M«N (Message Passing)
| lety=MinN (Let Binding)
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x:tel
S.rx:t VAR 9.7 - b typeof(b) “ONST

O,F-M:t" ¢ Eort:imsg(fit))
o.M F f(M):t

MsG

o, Mxiti-Mi:tf foreveryi=1,...,n

)

q), r l_ {f]_(X]_) = Ml, ey fn(Xn) = Mn} . ObJ(f]_tl—)ti, ey fntn—)tr{])

OBJ

o,Fr-M:ty ¢6,F=N:to ¢ ‘ZOF obj(t1) A msg(t2) Aty (to)ts
¢, M« N:t3

MsGPass

o,My:taFM:its ¢, My:t1EN:t
d.,MFlety=MinN:t,

LET (monomorphic)

Figure 3: The monomorphic type system for first-class messag

The language syntax is simplified over [25] by dropplagbj altogether; it should be
understood that thiet expression allows recursive definition for a certain refewedass of
expressions, dstobj in [25] allows recursive definition only for objects.

The operational semantics is defined along the line of [25¢ d& not repeat it here
since it is just the intuitive call-by-value semantics aeao an object-oriented language.

For the types, we assume additional distinct labelg andobj to mark message and ob-
ject types, and a set of distinct labels suclnasbool, etc, to mark base types. Monomor-
phictypesare certain feature trees over this signature, and mondritdype termsare the
corresponding feature terms. Type terms obey the followlggract syntax:

t = a (Type variable)
| int | bool | ... (Base type)
| msg(fiity,..., fuitn) (Message type)
| obj(fiti—t], ..., faita—t)) (Object type)

3.1. Monomorphic Type System and Type Inference

We assume a mappingpeof from constants of base type to their corresponding types,
for instancetypeof (1) = typeof(2) = ... = int andtypeof (true) = typeof(false) = bool.
We also use th&indingnotationt :: a(f1:ty,..., faity) to state that denotes a feature tree
with underspecified arity containing the featufds, ..., f,} and corresponding subtrees;
for examplet - a(fi:ty, ..., faitn) is equivalent ta(t) A AL, t[filti.

The monomorphic type system is given in Figure 3. As usu&pa environmenit
is a finite mapping from variablesto type termg, andl";x : t extendd™ so that it maps
variablex to t. The type system defines judgments suclpds+ M : t which reads as
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1(x,T,b) = a)A{}X if a= typeof(b)
I1(xT,y) = x=T(y)

I1(x,T, f(M)) = 3y (msg(X) AX[flyA I(y,[,M))

(

I, T, {fi1(x1) =M1,..., fn(xn) =Mn})

= obj(X)A{f1,...., i} () AALLIX IX FZ(FiIX AX =% = ZA I(ZT;x %, M;))
I(X,T,M+ N) = 3Jy3z(y(@xAobj(y) AI(y,[,M)Amsg(2) A I(z,[,N))
IX,lety=MinN) = 3y(I(y,[y:v.M)AIXT;y:y,N))

Figure 4: Monomorphic type inference for first-class messagith OF constraints

“under the type assumptionsiinsubject to the constrain, the expressioM has typd”; 9

the constrain in well-formed judgments is required to be satisfiable. Wadiocomment
further on the type system here but refer to [25] for intuis@nd to [26, 39] for notation.
Notice that terms are, as usual, finite entities that do, kewelenote infinite feature
trees. That means the type system of Figure 3 can deal witlhsige types without the need
for an explicity notation as commonly used.), see [4]). Recursive types are necessary
for the analysis of recursive objects.
The corresponding type inference is given in Figure 4 as gimggd from a variablex,
a type environmerit, and a program expressiolkto an OF constraint such that every so-
lution of xin I(x,I",M) is a type oM under the type assumptionslin For ease of reading,
we reuse the bound variables in program expressions asdsgiciated type variables.
Correctness of the type inference with respect to the typeesyis obvious. Soundness
of the type system (with respect to the assumed operatienastics) can be shown along
the line given in [25].

Theorem 2. Type inference for first-class messages is polynomial ia eind space.

Proof. The type inference generates an existential fornduiaver OF constraints whose
size is proportional to the size of the given program expoessFrom Proposition 3 we
know that satisfiability ofp can be decided in polynomial time and space. Finally, it is
easy to show that every OF-formulg, ", M) that is satisfiable over arbitrary feature trees
is already satisfiable over the smaller domain of types. O

3.2. Polymorphic Type Inference

We can obtain the polymorphic type inference by applyinggtieeme HM(X) [26].
The constraint system OF is a viable parameter for HM(X)esihsatisfies the two required
properties, called coherence and soundness. Both assuati®a of monomorphic types

d4This terminology is slightly sloppy but common: Sincenay contain type variables it is rather a tyjeem
than a type and it would be accurate to say Mdias “some type matchirtg.
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and a (subtyping) order on them. In our case, these are givésekure trees and equality
on them; it does no harm that our monomorphic types may beitmfirThe coherence
property requires that the considered order on types isrstizaly well-behaved and holds;
for equality, this condition becomes trivial. Teeundnesproperty that a solved constraint
indeed has a solution follows from Proposition 4.

3.3. Examples

Let us consider some typing examples in the monomorphicdyptem. In the subse-
guent discussions, we will freely use the compact featura tetation of OF constraints.

Remark.In general, type inference requires that constraints sgoing a type must be
compactly presented in order to make them easily digedtplerogrammers. The use of
a term notation is crucial here, even though it is not durypmetinference. But, as the
OCaml [35] experience shows, terms do not suffice. In OCanaldatitional abbreviation

mechanism for object types is provided which usually grothealarge. Corresponding
mechanisms seem to be in place when putting our system iatbige.

As a first example, the statement
let 01 = {succ(x)=x+1, pos(x)=x>0};

defines an object with two methodacc : int—int andpos : int—bool. Type inference
gives the type of this object as an OF constraint on the typabigo; equivalent to

®1  =def 01 =obj(succ:int—int,pos:int—bool).
A delegate object for the objeet is defined as follows:
let 02 = {redirect(m)= ol + m};

wherem is a parameter that binds messages to be redirectdd fsssuming the variable;
to be constrained by, the constraing restrictso, to the type ob2:

d2 =def IM3Iz(02 = obj(redirect : m—2) A 01 (M)zA msg(m)).
The return type of a message passing to this object, forrinstas in
let w = 024 redirect(succ(1));
is described as the solution f A §2 A ¢3 for the type variablev, where
03  =det 37 (02(Z)WAZ :: msg(redirect : msg(succ:int))),

The solved form ofp1 A 2 A 3 contains the constraimtt(w) A {}(w), which represents
the intended result typet.
If o1 does not respond to the message argumerddifect, for instance as in

let v = 02« redirect(pred(1));

a type error is detected as inconsistency in the derivedicns Here, the constraint
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b2 =det 3IZ (02(Z)W AZ :: msg(redirect : msg(pred : int)))

implies 37 (01(Z)W AZ :: msg(pred : int)), and hence that; has a featurgred which
contradictsh, by (Arity Clash).

4. Empty M essage Types

In Section 2.1.3, we have seen that the OF first-order sefectnstrain(y)z is not
functional,i. e., the implicatiorx(y)zA x{(y)Z — z= Z doesnothold becausg may denote
a tree without any features. In terms of typing, this meaasih+< N may be well-typed
even ifN has theempty message typesg, i. e., the message type represented by a feature
tree without any feature. The empty message type does ndion@my message names or
argument types as possible types for the expredsdioHence the empty message type is
given to an expression that is syntactically used as a megsagvill not to any message
at run-time.

We consider this phenomenon more closely which may be cattashdesirable prop-
erty of our type system. However, we also show that a striigliard fix of this problem
makes type inference NP-complete. This illustrates ouwiction that empty message
types are the price to pay for a polynomial type inferencegpiing first-class messages.

4.1. Empty Message Types are Weird

Consider the following well-typed program.

let o1 = {a(x)=x+1, b(x)=x>0} in
let 02 = {b(x)=x=0,c(x)=x*2} in
let 03 = {foo(m)= begin 0l m; 02¢—m end};

It is easy to see that every successful execution of the bbtheanethodfoo must return
bool: The argument message of foo must be accepted by both the objestsando?2,
which share only the methddof typeint — bool.

However, the body of methofibo is not necessarily executed at all in which case the
return type is irrelevant. Type inference reflects thisctffey deriving from this program
(essentially) the following constraint:

01 = obj(a:int—int,b :int—bool) A
02 = obj(b : int—bool,c :int—int) A
03 = obj(foo : Mm—2) Ao1(M)zg A Ox(M) 22

Notice thatz = bool is not entailed! Also, the type of the message passirigsm and
02<—m need not coincide with the return typefafo: Neitherz= z; norz= z is entailed.

By a similar argument, the following program can be consdeacceptable even
though the methofbo cannot be executed at all without failure:

let o1 = {a(x)=x+1} in
let 02 = {c(x)=x*2} in
let 03 = {foo(m)= begin 0l<m; 02+—m end}
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or-M:t; ¢6,F=N:t2 ¢ |:OF Obj(tl) A msg(tg) /\—‘{}(tg) /\t1<t2)t3
¢,FFM<«+ N:t3

MsGPass’

Figure 5: The typing rule for message passing when emptyagessare excluded

These examples may be surprising, since a program is waldtgven though it may con-
tain statements for which there is no effective executionthls respect, our type system
is weaker than that of [25]. The weakness is apparently dubag@dmission of empty
message types where type inference stops and leaves fitesibf further analysis unex-
ploited.

Nonetheless, there is a strong rationale that we say oursiygiem is a relevant one: It
is still soundin the sense that execution of a well-typed program is tyfe Sgype safety
is guaranteed since, when an identifier has the empty mesgagdt is never bound to a
message at run-time.

4.2. Type Inference is NP-complete if Empty Messages aleded

One may insist that method invocation by empty messageddheuletected as a type
error. In this case, it is easy to manipulate the type systahtlze type inference to ensure
this: One just needs to disallow the empty message typeg osigation.

The only typing rule affected by this restriction isddPAss which changes to G-
Pass’ as shown in Figure 5. The corresponding clause for typeémfee is this one:

IXM«N) = 3y3Iz(y(2xAobj(y) AI(y,M) Amsg(z2) A—{}(2) A I(zN)) (5)

However, recall that the polynomial time complexity of thealysis depends on the above-
mentioned weakness. Type inference for the type systemthdthule MSGPASS' instead

of MsGPasswould be NP-complete, since the general satisfiability fgobOF with neg-
ative constraints:{ }(x) is NP-complete (Corollary 1 of Proposition 5).

To prove NP-completeness, the close correspondence betdeavith negation and
EF helps us again: Treinen reduced Minimal Cover Problenh d 3he satisfiability of
EF [40]. Following Treinen, we give an encoding of the MininGover Problem to the
type inference problem for first-class messages where themnessage type is disallowed
(i. e, we consider the type system given by Figure 3 and the ridePASS replaced by
MsGPASS).

The Minimum Cover Problem (MCP) is defined as follows:

Given a collectiors, . .., S, of finite sets and a natural numbdex n, is there
n

asubset C {1,...,n} whose cardinality is at mo&tsuch thal JSj={JS§ ?
j€el i=1
Since the MCP is known to be NP-complete and the reductioolimpmial, this proves
that type inference problem to be NP-hard.
The adaptation of Treinen’s reduction is an immediate oegaren here for complete-
ness’ sake. For proofs, we refer the reader to Treinen’sstipo [40].
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4.2.1. The Encoding

We assume that an instangg . .., Sy, k of the MCP is given. We define the d¢tto be
coveredU =qef UiL1 S, and, for every € U, the sed, of indexesj of those sets in which
uoccurs:d, = {j | u€ S;}. Without loss of generality, we assume tllat..,n € 7.

Following Treinen, we construct a program that is well-tygleand only if the given
instance of the MCP has a solution. We use variakle® represent the elemenisc U
and variableg;, ... ,z, to represent the se%, ..., S,.

In order to stay close to Treinen’s encoding in syntax, fieeseatic statements are
used.

e The first statement introduces an identifier of some type tms, simulates an ex-
istential quantifier.

IxM =def {foo(x) =M}
e The second statement forceandy to have the same type:
X~y =def 3f ( f<bar(x); f<bar(y) )
e The third statement says that an object x &eactlymethods labeledify, ..., fn}:

{f1.....fn}x =def Ayq,. .., 3yn (x~{f1(z1)=y1,.... fn(zn) =yn})
e The last two statements say thas labeled byobj (resp, msg).

IN x =def Jy (x¢y)

OUT x =def 3y (yx)

The syntax of these statements is motivated by Treinensding, whose intention
will become clear below.

Furthermore, conjunctive notatiof_; M;j means the corresponding sequence of state-
mentsMy;...; M.
The progranM that we construct is a sequence of three program expressions

M = M1;M2; M3

Well-typedness of the first programM; requires thak, has an object type whose set of
method labels coincides wiily, and that the type dofj is the return type of the methgd
of xy ifand only ifu € §j.

M1 =gef /\ duxu; /\ /\ 3z ((xu ¢ j(2)) ~2j)

ueU ueu jegy
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The choice of an appropriate dets now expressed by labeling on the variablesThe
idea, as in Treinen’s reduction, is to enforce one of two traings on every;: IN z; (that
expresses; is a member ofj. e., in the minimum cover) ifi € | andOUT z (z; is not
a member of, e., out of the minimum cover) otherwise. Intuitively, this encogliworks
because at most a single label is allowed on the same node.

Well-typedness of the second prograda implies the fact that for at least— k of the
zj it holds thatOUT gz;.

/\ vy ((x+v)~y; OUTy; {ily))

The statementi}y forces for each a different type of.
Well-typedness of the stateme requires that eack has a method whose return
type, according to the definition &1, must be one of thg and also it holds thdi z;.

M3 =def /\ vz ((xi < v)~z; INz)
ieu

We notice that our encoding implements the EF labeling caimgsIN x andOUT x in
Treinen’s original encoding by OF labedbj andmsg, respectively. We need this transla-
tion, since the type inference cannot enforce arbitrarglia constraint. Our encoding,
however, preserves the intended function of Treinen’s dimgpthat separates the given
sets into two disjoint classes.

The length of the statemeM is in fact linear in the size of the representation of the
MCP. Hence, we obtain

Theorem 3. Type checking and type inference for first-class messagd®-kard when
the empty message type is disallowed.

Proof. See the proof of Theorem 4 in [40]. O

Combining this theorem and Corollary 1 of Proposition 5, waaude that

Coroallary 3. Type checking and type inference for first-class messagi®isomplete
when the empty message type is disallowed.

4.3. Discussion

The immediate question arising Theoré@mis this: Is there any polynomial time type
inference algorithm for first-class messages that prokieinpty message types?

According to the discussion so far, there is no such algoritiwe believe that the prob-
lem is inherently NP-complete. Of course, there might berdainedy different approach to
typing first-class messages that would give rise to such gorighm. We must leave the
problem open. Instead, we suggest two pragmatic ways ohbaxdur cake (no empty
messages) and eating it, too (reasonably efficient typednée).

We could just ignore NP-completeness and use negation alalisempty message
types as sketched. If the number of message labels in a pndgrsignificantly smaller
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than the size of the program, then the enumeration of labiglstrbe tolerable. Exponential
behaviour might simply not show up.

One could also require the programmer to provide at leastatmess label for every
message identifier in the program. This indirectly avoidpgmmessage types without
the need for negation in type inference. In practice, theginwould complain about
every message identifier for which no witness label wereiexjh the program. To over-
come this complaint, a type annotation would be needed thatc admittedly, restrict
polymorphism. Polynomial type inference would be achievegassing the obligation of
providing witness features from the compiler (search) eogtogrammer.

4.4. Comparison with Nishimura’s System

In Nishimura’s original type system [25], referred to‘Asn the following, constraints
are modeled as kinded type variables. The kindings haveamtforward syntactic cor-
respondence with OF constraints: the message kindin§fi:ts, ..., faitn))e corresponds
to X :: msg(fiity,..., falth) AF(X) and the object kinding :: {y1—t1,...,Yn—ta}g corre-
sponds twbj(x) A AlL; X(Yi)ti AF(X).

Our reformulation HM(OF) of D is in the same spirit as the reformulation
HM(REC) [26] of Ohori’s type system for the polymorphic redacalculus. One might
thus expect the relation @b and HM(OF) to be as close as that between Ohori’s system
and HM(REC) which type exactly the same programs (“full aaithful”); this is, however,
not the case.

There is a significant difference between the kind syste end OF. InD, (kinded)
types may contain variables: For instance, an object rigtgrimtegers as a response to
messages of typereceives the type kinded y—int} . On unifying two kindsly—int}
and{y—Z}, the type inference foD derives equality of andint since it issyntactically
known that bottz andint denote the type of the response of the same object to the same
message. Thus i®, the name of type variables is crucial. In this paper, véesbnly
occur as part of type descriptioris€., syntax) while the (semantic) domain of types does
not contain variables. That is, we understgyesint} not as aypebut as part of aype
descriptionwhich can be expressed by a constraint bl@x) A X{y)int.

As a consequence, well-typedness in our system does nohdiepethe choice of
variable names but only on the type of variables. This is UfsuaviL-style type systems
but does not hold fof). Consider the following example:

{foo(m) = (0+m) + 1; (0+—m) & true}

This program is accepted by the OF-based type system, digceonstrainb{m)int A
o{m)bool is satisfiable withm as the empty message. The type systenmowever, rejects
that program after trying to unifint andbool during type inference.

The following example shows why this syntactic argument rhayconfusing. Sys-
tem D accepts the program

{bar(m) = ({}m) + 1; ({}m) & true}

but rejects the equivalent one
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let o={} in {foo(m) = (0<—m) + 1; (04—m) & true};

As afinal difference betweeh and our modified type system notice tHaaccepts sending
messages to an empty object such as

{bar(m)={} m}

whereas our system does not accept this program.

5. Conclusion

We have presented a new constraint system OF over feataesearal investigated the
complexity of its satisfiability problem. OF is designed $precification and implementa-
tion of type inference for first-class messages in the spifMishimura’s system [25]. We
have given a type system for which monomorphic type infezamith OF constraints can
be done in polynomial time; this system is weaker than thgital one, but, as we have
shown, the additional expressiveness would have rendecgdmorphic type inference
NP-complete. Given OF, we can add ML-style polymorphismrstantiating the recent
HM(X) scheme to the constraint system OF.

OF developed from the practical problem of understandiritgba given type system
and its type inference problem. Although it turned out vewitful to define OF as a
member of the family of feature constraint systems, we docoasider OF to be a very
natural such member from a predicate logical point of viewre Bemantics ok(y)z is
application-specific, fairly complex, and signature-degent.

More fundamental, seems to be another relative of OF: Assimaddition to the
feature tree variablesy,z a class of variables ranging over sets of features, withcalpi
membersal, v and define the class of constraints

¢ = x=y | Xfly | F(x | ax |
u=v | feu | xuy | Fu [ ¢oAr¢

with the now obvious semantics. This system is an extensfoBFoas well, and it

is not signature-dependent as OF is. It can easily be embethde OF by repre-
senting sets of featureffy,..., fn} by feature trees with the corresponding arity, say
set(fi:unit,..., fa:unit), and all complexity results carry over. It appears as if ehemn-
straints could be useful in type inference for a system afmetypes with first-class labels
as alluded to in the introduction. This is left to further@stigation, however.

In another line of research, it could be interesting to matexige the relationship
between kind based analysis of types and solving featumdbamnstraints. In particular,
Ohori’s polymorphic record type [28] seems to be closelatesd to CFT [38].

From the application point of view, constraints are a usgfide for providing type in-
formation in a succinct presentation. In recent studies32], constraints are a central tool
of simplifying verbose type information and to assist theggammer to detect the source
of type errors. As touched upon in Section 3.3, OF conssailtine are not sufficient for
this purpose. This issue is beyond the subject of the premdr, but the experience of
OCaml [35] is likely to be relevant here.
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