
International Journal of Foundations of Computer Science

c World Scientific Publishing Company

TYPE INFERENCE FOR FIRST-CLASS MESSAGES
WITH FEATURE CONSTRAINTS

MARTIN M ÜLLER�
Universität des Saarlandes, 66041 Saarbrücken, Germany

mmueller@ps.uni-sb.de

and

SUSUMU NISHIMURA†

RIMS, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
nisimura@kurims.kyoto-u.ac.jp

Received (received date)
Revised (revised date)

Communicated by Editor’s name

ABSTRACT

We present a constraint system, OF, of feature trees that is appropriate to specify and implement
type inference for first-class messages. OF extends traditional systems of feature constraints by a
selection constraintxhyiz, “by first-class feature tree”y, which is in contrast to the standard selection
constraintx[f ℄y, “by fixed feature” f . We investigate the satisfiability problem of OF and show that
it can be solved in polynomial time, and even in quadratic time if the number of features is bounded.
We compare OF with Treinen’s system EF of feature constraints with first-class features, which has an
NP-complete satisfiability problem. This comparison yields that the satisfiability problem for OF with
negation is NP-hard. We even obtain NP-completeness, for a specific subclass of OF with negation
that is useful for a related type inference problem. Based onOF we give a simple account of type
inference for first-class messages in the spirit of Nishimura’s recent proposal, and we show that it has
polynomial time complexity: We also highlight an immediateextension of this type system that is
desirable but makes type inference NP-complete.

Keywords:object-oriented programming; first-class messages; constraint-based type inference; com-
plexity; feature constraints

1. Introduction

First-class messages add extra expressiveness to object-oriented programming. First-
class messages are analogous to first-class functions in functional programming languages;
a message triggers the call of an object’s corresponding method, just as a functional argu-
ment represents the computation executed on application. For example, amap method can�Partly supported by the Deutsche Forschungsgemeinschaft (DFG) through Sonderforschungsbereich 378 at
the Universität des Saarlandes, Saarbrücken, 1996-98.

†Partly supported by the Japanese Ministry of Education, Science, Sports and Culture, Grant-in-Aid for En-
couragement of Young Scientists, 10780187, 1998.

1

be defined by means of first-class messages bymethod map(o,l) = for each messagem in l: o m
whereo is an object,l is a list of first-class messages, and on execution ofo m, messagem is sent too.

First-class messages are more common in distributed object-oriented programming
where they add crucial expressiveness. A typical use of first-class messages is the dele-
gation of messages to other objects for execution. Such delegate objects are ubiquitous in
distributed systems: for example, proxy servers enable access to external services (e. g., ftp)
beyond a firewall. A delegate object implementing a simple proxy server can be defined as
follows.let ProxyServer = f new(o) = f send(m) = o mg g;
This creates an objectProxyServer with a methodnew that receives an objecto. The
method returns another object that, on receipt of a message labeledsend and carrying a
messagem, forwardsm to o. To create a proxy to an FTP server, we can executelet FtpProxy = ProxyServer new(ftp);
whereftp refers to an FTP object. A typical use of this new proxy is the following one.FtpProxy send(get(’paper.ps.gz’))
Delegation cannot be easily expressed without first-class messages, since the relevant mes-
sages are not known statically and must be abstracted over bya variablem.

In a programming language with records, abstraction over messages corresponds
to abstraction over field names. For example, one might want to use a functionlet f = fn x => y.x; to select any fieldx from recordy. Static typing of first-class mes-
sages and of first-class record fields is difficult for an analogous reason: both message or
record field identifiers may be bound to varying values depending on the execution. Nei-
ther first-class messages nor first-class record fields are not supported in statically typed
languages such as Standard ML [20], Objective Caml [35], or Haskell [30]. There is a type
system for extensible records with first-class record fieldsby Gaster [14], but it is restrictive
in not allowing a single record field type to mention varying record fields.

Recently, the second author has proposed an extension to theML type system that
can deal with first-class messages [25]. In the spirit of Ohori’s polymorphic record type
system [28], he has formulated a type system for first-class messages as a kinded type
system where, intuitively, kinds describe classes (or types) of types. The corresponding
type inference procedure is given in terms of kinded unification. However, the presentation
of both the type system and the type inference in [25] are formally involved and not easily
understandable or suitable for further analysis.

In this paper, we give a constraint-based formulation of type inference for first-class
messages in the spirit of [25] and analyze its complexity. Tothis end, we define a new con-
straint system over feature trees [3] that we call OF (objectsandfeatures). This constraint
system extends known systems of feature constraints [6, 7, 38, 40] by a new, tailor-made

2

constraint: this new constraint is motivated by the type inference of a message sending
statemento m, and pinpoints the key design idea underlying Nishimura’s system.

We investigate the (incremental) satisfiability problem for OF and show that it can be
solved in polynomial time, namely inO(n4) in general and in timeO(n2) for the important
special case that the number of features is bounded. We also investigate the satisfiability
problem for OF constraints with negation by comparing OF with Treinen’s feature con-
straint system EF [40]. We show that checking satisfiabilityfor positive and negative OF
constraints is NP-hard in general, and NP-complete when negation is restricted to a certain
class of formulas.

Based on OF, we define monomorphic type inference for first-class messages. Our
formulation considerably simplifies the original one basedon kinded unification. One ad-
vantage of our formulation is that dealing with constraintsis more flexible than dealing with
the large kinded types according to [25]. More important even is the fact that we strictly
separate the types (semantics) from the type descriptions (syntax), whereas the original
system confused syntax and semantics by allowing variablesin the types themselves.

Our type system reformulates the monomorphic part of Nishimura’s original type sys-
tem as a constrained type system based on OF. This reformulation turns out to be insightful
on its own (see Section 3). From our complexity analysis of OFwe obtain that monomor-
phic type inference for first-class messages can be done in (incremental) polynomial time.
Incrementality is important since it allows for modular (piece-wise) program analysis with-
out loss of efficiency over global (monolithic) program analysis.

Our constraint-based setup of type inference allows us to explain ML-style polymor-
phic type inference [15, 19] as an instance HM(OF) of the HM(X) scheme [26]: Given
a monomorphic type system based on a constraint system X, theauthors give a generic
construction of HM(X),i. e., type inference for ML-style (i. e., Hindley/Milner) polymor-
phic constrained types. Type inference for the polymorphicsystem remains DEXPTIME-
complete, of course [16, 17].

In the remainder of the introduction we summarize the main idea of the type system for
first-class messages and of the constraint system OF.

1.1. The Type System

The type system contains types for objects and messages and explains what type of
messages can be sent to an object of a given type. An object type is a labeled collection of
method types (a product of types) marked byobj. For example, the objecto defined bylet o = f pos(x) = x>0, neg(p) = : pg;
implements two methodspos andneg that behave like functions from integer and boolean,
respectively, to Boolean. Hence, it has the following object type.footnote In contrast
to what is common in the types community, the colons in the type obj(pos:int !bool;neg:bool! bool) do not separate items from their type annotation, but ratherthe
field names from the associated type components. This notation is inherited from the liter-
ature on feature trees and record typing.obj(pos:int! bool;neg:bool! bool) :

3

When a messagef (M) is sent to an object, the method corresponding to the messagela-
bel f is selected and then applied to the message argumentM. Since a message identifier
may refer to many specific messages at run-time, its type is a labeled collection of the cor-
responding argument types (a sum of types) marked bymsg. For example, the expressionlet m = if b then pos(42) else neg(true);
defines thatm be assigned one of the messagepos(42) or neg(true) depending on the
booleanb. Since this disjunction can, in general, not be resolved statically, m is given the
disjunctive message typemsg(pos:int;neg:bool) :
In the context of the previous definitions, the expressiono m is well-typed since two
conditions hold:

1. For both labels that are possible form, pos andneg, the objecto implements a
method that accepts the corresponding message arguments oftypeint or bool.

2. Both methodspos andneg have the same return type, herebool. Thus the type ofo m is statically known even though the message is not.

These are the invariants that Nishimura’s type system [25] is constructed to guarantee.
In this paper, we devise a type system for first-class messages that is based on these

invariants as well – very similar to that of [25]. In the course of the formal developments,
it will become apparent that our type system is slightly weaker than Nishimura’s original
one in that it admits more programs: Some of them are well-typed only because certain
methods are never executed. This weakness is, however, the price to pay in order to achieve
polynomial time complexity of type inference. The obvious way of extending our type
system in order to bridge this gap makes type inference NP-complete.

1.2. Constraint-based Type Inference

It is well-known that many type inference problems have a natural and simple formula-
tion as the satisfiability problem of an appropriate constraint system (e. g. [29, 32, 42]).
Constraints were also instrumental in generalizing the ML-type system towards record
polymorphism [28, 34, 43], overloading [8, 27] and subtyping [1, 12, 32] (see also [26] for
further references).

Along this line, we usefeature trees[3] as the semantic domain of the con-
straint system underlying our type system. A feature tree isa possibly infinite tree
with unordered marked edges (calledfeatures) and with marked nodes (calledla-
bels), where the features departing from the same node must be pairwise distinct.1998asian yearonf paper������For example, the picture on the right shows a feature tree
with two featuresonf andyear that is labeled withpaper at
the root andasian and1998, respectively, at the leaves.

Feature trees have been used as the interpretation do-
main for a class of constraint languages calledfeature con-

4

��������� AAA ��� AAA
α= objpos neg! !

d r d rint bool bool bool ������β= msgpos negint bool γ= bool
Figure 1: Interpretation of Types in Feature Trees

straints[5–7, 23, 38, 40]. These are a class of feature description logics, and, as such, have a
long tradition in knowledge representation and in computational linguistics andconstraint-
based grammars[31, 36]. More recently, they have been used to model record structures
in constraint programming languages [2, 33, 37, 38].

We use feature trees to represent types. Feature trees can naturally represent the types
of all kinds of data structures with labeled components suchas object, record, or message
types. A base type likeint is a feature tree with labelint and no features. A message typemsg(f1:τ1; : : : ; fn:τn) is a feature tree with labelmsg, featuresf1; : : : ; fn, and corresponding
subtreesτ1; : : : ;τn, and an object typeobj(f1:τ1! τ01; : : : ; fn:τn! τ0n) is a feature tree with
label obj, featuresf1; : : : ; fn, and corresponding subtreesτ1! τ01 throughτn! τ0n; the
arrow notationτ! τ0 in turn is a notational convention for a feature tree with label! and
subtreesτ;τ0 at fixed and distinct featuresd andr, the names of which should remind one
of “domain” and “range”.

A feature constraint systemis given by a language of constraints that contains certain
primitive constraintsand is closed at least under conjunction, and their interpretation over
feature trees. The most fundamental constraint languages proposed are those of FT [3] pro-
viding for primitive constraints for equality on feature trees, feature selection, and labeling,
and of CFT [38] that extends FT by a constraint on the set of possible features (a so-called
arity constraint).

Roughly, we obtain our constraint system OF from CFT by the addition of a primitive
constraint whose semantics reflects the intuition underlying well-typed message passing in
Nishimura’s system. The constraint language of OF is this one:

ϕ ::= x= y j a(x) j x[f ℄y j F(x) j xhyiz j ϕ^ϕ0
The first three primitive constraints are well-known: The symbol = denotes equality on
feature trees,a(x) holds if x denotes a feature tree that is labeled witha at the root, and
x[f ℄y holds if the subtree of (the denotation of)x at featuref is defined and equal to (the
denotation of)y. For a finite set of featuresF, the constraintF(x) holds ifx hasat mostthe
features inF at the root; in contrast, the arity constraint of CFT forcesx to haveexactlythe
features inF . The constraintxhyiz is new. It holds for three feature treesτx, τy, andτz if(i) τx has at least the features at the root thatτy has, and if(ii) for all root featuresf at τy,
the subtree ofτx at f equalsτy: f ! τz (whereτy: f is the subtree ofτy at f).

It is not difficult to see thatxhyiz is tailored to type inference of message sending.a For

aThe notation of the constraintxhyiz is chosen to indicate its close relationship tox[f ℄y. For its application to

5

example theProxyServer above gets the following polymorphic constrained type:8αβγ :obj(α)^msg(β)^αhβiγ) obj(new:α! obj(send:β! γ)) :
Using notation from [26], the matrix of this type has two parts, a term part right of), and
a constraint part left of). The term part describes an object that accepts a message labelednew with argument typeα, returning an object that accepts a message labeledsend with
argument typeβ and has corresponding return typeγ. The constraint part in addition re-
quires thatα be an object type,β be a message type appropriate forα, and the correspond-
ing method type inα have return typeγ. A possible monomorphic instance of this type
would bind said three variables was follows:α = obj(pos:int!bool;neg:bool!bool),
β =msg(pos:int;neg:bool), andγ = bool. Figure 1 illustrates these bindings in terms of
the corresponding feature trees.

Plan. Section 2 defines the constraint system OF, considers the complexity of its sat-
isfiability problem, and proves that an extension of system OF with negation makes the
satisfiability problem NP-complete. Section 3 applies OF tothe type inference for first-
class messages and shows that its complexity is polynomial.Section 4 discusses properties
of the corresponding type system in relation to this complexity result. Section 5 concludes
the paper.

2. The Constraint System OF

2.1. Syntax and Semantics

The constraint system OF is defined as a class of constraints along with their inter-
pretations over feature trees. We assume three infinite setsV , of variables, with typical
membersx;y; andz, F , of features, with typical memberf , whereF contains at leastd
andr, andL, of labels, with typical membersa andb that contains at least!. The meaning
of constraints depends on this label. We writex for a sequencex1; : : : ;xn of variables whose
lengthn does not matter, andx:y for a sequence of matching pairsx1:y1; : : : ;xn:yn. We use
similar notation for other syntactic categories.

We also writex =̇ y to denote that variablesx andy are syntactically identical.

2.1.1. Feature Trees

A pathπ is a word over features. Theempty pathis denoted byε and the free-monoid
concatenation of pathsπ andπ0 asππ0; we haveεπ = πε = π. Given pathsπ andπ0, π0 is
called aprefix ofπ if π = π0π00 for some pathπ00. We writejπj to denote the length of pathπ
and also writef 2 π if there is an occurrence of featuref in π. A tree domainis a non-empty
prefix closed set of paths. Afeature treeτ is a pair(D;L) consisting of a tree domainD and
a labeling function L: D!L. Given a feature treeτ, we writeDτ for its tree domain andLτ
for its labeling function. Thearity ar(τ) of a feature treeτ is defined byar(τ) = Dτ \F .
If π 2 Dτ, we write asτ:π the subtree ofτ at pathπ: formally Dτ:π = fπ0 j ππ0 2 Dτg
type inference, the following reading might be helpful:xhyizhas two parts, namely ‘xhy’ and ‘iz’. ‘ xhy’ represents
the messagey sent to objectx (whereh is a stylized) and ‘iz’ represents the resultz.

6

andLτ:π = f(π0;a) j (ππ0;a) 2 Lτg. A feature tree isfinite if its tree domain is finite, and
infiniteotherwise. Thecardinalityof a setSis denoted by #S. Given feature treesτ1; : : : ;τn,
distinct featuresf1; : : : ; fn, and a labela, we write asa(f1:τ1; : : : ; fn:τn) (simply a, when
n = 0) the feature tree whose domain isfεg[Sn

i=1f fiπ j π 2 Dτig and whose labeling isf(ε;a)g[Sn
i=1f(fiπ;b) j (π;b) 2 Lτig. We useτ1! τ2 to denote the feature treeτ with

Lτ = (ε;!), ar(τ) = fd; rg, τ:d = τ1, andτ:r = τ2.

2.1.2. Syntax

The class ofOF constraintsϕ is defined by the following abstract syntax.

ϕ ::= x= y (Equality)j a(x) (Labeling)j x[f ℄y (Selection)j F(x) (Arity Bound)j xhyiz (Object Selection)j ϕ^ϕ0 (Conjunction)

We callx= y, a(x), x[f ℄y, F(x), andxhyiz primitive OF constraints. A first-order formula
built from OF constraints and existential quantification iscalled anexistential OF formula.

We writeϕ0 � ϕ if all primitive constraints inϕ0 are also contained inϕ, and we write
x = y2 ϕ [etc.] if x = y is a primitive constraint inϕ [etc.]. We denote withF(ϕ), L(ϕ),
andV(ϕ) the set of features, labels, and variables occurring in a constraintϕ. Thesize S(ϕ)
of a constraintϕ is defined as the number of variable, feature, and label occurrences inϕ.

2.1.3. Semantics

We interpret OF constraints in the structureF T of feature trees. The signature ofF T

contains the symbol=, for everya 2 L a unary relation symbola(�), for every f 2 F a
binary relation symbol�[f ℄�, for every finite subsetF of F a unary relation symbolF(�),
and the ternary relation symbol�h�i�. We interpret= as equality on feature trees and the
other relation symbols as follows:

a(τ) iff (ε;a) 2 Lτ
τ[f ℄τ0 iff τ: f = τ0
F(τ) iff ar(τ) � F
τhτ0iτ00 iff 8 f 2 ar(τ0) : f 2 ar(τ) andτ: f = τ0: f ! τ00

Let Φ andΦ0 be first-order formulas built from OF constraints with the usual first-order
connectives_, ^,:,!, etc., and quantifiers. We callΦ satisfiable(valid) if Φ is satisfiable
(valid) in F T . We say thatΦ entailsΦ0, writtenΦ j=OF Φ0, if Φ! Φ0 is valid, and thatΦ
is equivalentto Φ0, writtenΦ j=j

OF
Φ0, if Φ$Φ0 is valid.

A key semantic difference between the selection constraints x[f ℄y and xhyiz is that
“selection by (fixed) feature”x[f ℄y is functional, while object “selection by (first-class)
feature tree”xhyiz is not, as expressed by the following statements.j=OF x[f ℄y^x[f ℄y0 ! y= y0 (1)6j=OF xhyiz^xhyiz0 ! z= z0 (2)

7

The second implication is not valid sinceymay have no subtrees: In this case, the constraint
xhyizdoes not constrainzat all. That is, the following implication is valid.j=OF fg(y) ! 8z xhyiz (3)

If, however,y is known to have at least one feature at the root, then object selection becomes
functional, too. For arbitraryf , the following holds:j=OF y[f ℄y0^xhyiz^xhyiz0 ! z= z0 (4)

The implications (3) and (4) are crucial for the polynomial complexity of OF satisfiability
and they are also significant for type inference (see Section3).

2.1.4. Feature Terms

For convenience, we will usefeature terms[3] as a generalization of first-order terms:
Feature termst are built from variables by feature tree constructiona(f1:t1; : : : ; fn:tn) (de-
notinga whenn= 0) where the featuresf1; : : : fn are required to be pairwise distinct.

Equations between feature terms can be straightforwardly expressed as a conjunction
of OF constraintsx= y, a(x), F(x), x[f ℄y, and existential quantification. For example, the
equationx= a(f :b) corresponds to the formula9y (a(x)^f fg(x)^ x[f ℄y^b(y)^fg(y)).
In analogy to the notationτ1! τ2, we use the additional abbreviationx = y! z for the
equationx=!(d:y; r:z).

For the sake of conciseness in the following sections, we shall also extend the flat
syntax of constraints to a “nested” one by allowing feature terms wherever only variables
were allowed before:

ϕ ::= � � � j t1 = t2 j a(t) j t1[f ℄t2 j F(t) j t1ht2it3
As usual, the semantics of these constraints is understood as a homomorphic lifting of
the flat ones from variables to feature terms. Notice, however, that the extended syntax
is not part of the formal system of OF, but just a notational convention. Every nested OF
constraint can be written as a flat OF constraint with existential quantification.

2.2. Constraint Solving

Theorem 1. The satisfiability problem of OF constraints is decidable inincremental poly-
nomial space and time.

For the proof, we define constraint solving by a rewriting system on constraints and the
failure flagfail. The rules in Figure 2 should be clear by themselves. Note that the treatment
of object selection in two separate rules is not essential simplifies the subsequent analysis,
as we believe. We call a constraint isclosedif it is invariant under the rules.

Theorem 1 follows from Propositions 1 through 4 as stated herebelow.

Proposition 1 (Correctness). The rules in Figures 2 define equivalence transformations
on constraints.

8

ϕ^x= y

ϕ[y=x℄^x= y
if x2 V (ϕ) andx 6=̇ y (Substitution)

ϕ^x[f ℄y^x[f ℄z
ϕ^x[f ℄z^y= z

(Selection)

ϕ^F(x)^F 0(x)
ϕ^F \F 0(x) (Arity Intersection)

ϕ

ϕ^x[f ℄x0 if xhyiz^y[f ℄y0 2 ϕ and
not existsz : x[f ℄z2 ϕ; x0 fresh

(Object Selection I)

ϕ

ϕ^x0 = y0! z
if xhyiz^y[f ℄y0^x[f ℄x0 2 ϕ and

x0 = y0! z 62 ϕ
(Object Selection II)

ϕ^a(x)^b(x)
fail

if a 6= b (Label Clash)

ϕ^F(x)^x[f ℄x0
fail

if f 62 F (Arity Clash)

Figure 2: Constraint Solving Rules

Proof. We check rule by rule. Rules (Substitution), (Selection), (Label Clash), and (Arity
Clash) are standard rules for solving feature constraints.Rule (Arity Intersection) allows
one to normalize a constraint to contain at most one arity bound per variable. (Object Se-
lection I) reflects the fact thatxhyiz implies all features necessary fory to be also necessary
for x, and (Object Selection II) establishes the selection relation xhyizat a featuref known
for bothx andy. 2

Notice that the number of fresh variables introduced in rule(Object Selection I) is
bounded: This rule adds at most one fresh variable per constraint xhyiz and featuref and
the number of both is constant during constraint solving. For the subsequent analysis, it is
convenient to think of the fresh variables as fixedonce and for allfor every constraintϕ.
Hence, we define the finite set :

V 0(ϕ) =def V(ϕ)[fvx; f 2 V j x2V(ϕ); f 2 F(ϕ);vx; f freshg
Proposition 2 (Termination). The rewrite system in Figures 2 terminates on all OF con-
straintsϕ.

Proof. Let ϕ be an arbitrary constraint. Obviously,F(ϕ) is a finite set and the number of
occurring features is fixed since no rule adds new feature symbols. Secondly, recall that

9

the number of fresh variables introduced in rule (Object Selection I) is bounded. Call a
variablex eliminatedin a constraintx = y^ϕ such thatx 6=̇ y if x 62 V(ϕ). We use the
constraint measure(O1(ϕ);O2(ϕ);NE(ϕ);S(ϕ)) defined by

O1(ϕ): number of sextuples(x;y;z;x0;y0; f) of non-eliminated variablesx;y;z;x0;y0 2
V 0(ϕ) and featuresf 2 F(ϕ) such thatxhyiz^x[f ℄x0^y[f ℄y0 2 ϕ butx0 = y0! z 62 ϕ.

O2(ϕ): number of pairs(x; f) of non-eliminated variablesx2V 0(ϕ) and featuresf 2 F(ϕ)
such that there existsy;y0 andzwith xhyiz^y[f ℄y0 2 ϕ butx[f ℄x0 62 ϕ for anyx0.

NE(ϕ): number of non-eliminated variables.

S(ϕ): size of constraint as defined in Section 2.1.2.

The measure ofϕ is bounded from below and strictly decreased by every rule application
as the following table shows. This proves our claim.

O1 O2 NE S
(Arity Intersection) = = = <

(Selection) = = = <
(Substitution) � � <

(Object Selection I) = <
(Object Selection II) < 2

Proposition 3 (Polynomial Complexity). We can implement the rewrite system in Fig-
ure 2 such that it uses at most space O(n3) and incremental time O(n4), and at most linear
space and incremental time O(n2) if the number of features is bounded.

Proof. See Section 2.3.1 for details. 2
Proposition 4. Every OF constraintϕ which is closed under the rules in Figure 2 (and
hence is different from fail) is satisfiable.

Proof. See Section 2.3.2 for details. 2
2.3. Proofs on Constraint Solving

2.3.1. Proposition 3: Constraint Solving has Polynomial Complexity

We implement the constraint solver as a rewriting on pairs(P;S) whereS is thestore
that flags failure or represents a satisfiable constraint in asolved form, and whereP is the
pool (multiset) of primitive constraints that still must be added toS. To decide satisfiability
of ϕ we start the rewriting on the pool of primitive constraints in ϕ and the empty store and
check the failure flag on termination.

Defineni = #V(ϕ), nf = #F(ϕ), nv = ni +ni �nf = #V 0(ϕ), wherein the indexϕ is left
implicit throughout the paper. The indexi refers to theinitially available variables inϕ.

10

Data Structures. We use the usual union-find algorithm with path compression [18] for
the representation of equivalence classes on equated variables. It uses a data structure of
sizeO(nv) that allows the addition of a new equation in timeO(n �α(nv)) whereα(nv) is
the inverse of the Ackermann function.

In addition, the store contains the following:

1. for every variablex2V 0(ϕ)nV(ϕ), a flag whether or not it has been introduced be-
fore: sizeO(nv)

2. for everyx2V(ϕ), at most one labela per variablex2V(ϕ) to represent constraints
a(x): sizeO(ni)
For the newly introduced variables inV 0(ϕ)nV(ϕ) the label is always!.

3. for everyx2V 0(ϕ) at most one variable entryy per featuref to represent constraints
x[f ℄y: sizeO(nv �nf)

4. for everyx2V(ϕ), a boolean array of sizenf to representF(x): sizeO(ni �nf)
For all newly introduced variables inV 0(ϕ)nV(ϕ) the arity bound isfd; rg and, there-
fore, need not be represented explicitly.

This representation allows one to decide in constant time whether or not:9y x[f ℄y is
implied by the store:

5. A list of object selection constraintsxhyiz: sizeO(n).
This size estimation exploits the fact that the constraint never introduces new selec-
tion constraintsxhyiz.

6. A directed graphGϕ whose nodes are the initial variables and whose edges are(x;y)
such that there existsyhxiz for somez. This graph is represented by an incidence
matrix mapping each node to an array of outgoing edges. This graph has overall
O(n) edges: sizeO(n).
The graphGϕ allows depth-first tree traversal in timeO(n).

This data structure has overall size

x=y + a(x) + x[f ℄y + F(x) + xhyiz
O(nv + ni + nv �nf + ni �nf + n) = O(nv �nf +n)

which isO(n) if the number of features is bounded andO(ni�nf �nf +n) = O(n3) other-
wise. It allows to check in timeO(α(nv)) whether it contains a given primitive constraint
and to add the primitive constraint, if missing. This is clear in the non-incremental (off-line)
case wherenv, ni , andnf are fixed. In the incremental (on-line) case, wherenv, ni , andnf

may grow proportional ton in the worst case, we can use dynamically extensible hash
tables [9] to retain (amortized) constant time check and update for primitive constraints.

11

One-step Satisfiability. Each step of the algorithm removes a primitive constraint from
the poolP, adds it to the storeS, and then derives all its immediate consequences under the
constraint solving rules: Amongst them, equationsx= y and selectionsx[f ℄y are put back
into the pool, while selectionsxhyizand arity boundsF(x) are directly added to the store.

We show that every step can be implemented such that it costs linear time.
The subsequent discussion is understood modulo equality. This means that, every time

a primitive constraint is picked up from the pool, the first operation is the replacement of
each variable by its representative in the corresponding equivalence class. Since the union-
find data structure allows one to lookup in constant time for avariable the representative of
its equivalence class, this preprocessing does not change the complexity considerations.

We consider the primitive constraints one by one.

F(x): We check rules (Arity Intersection) and (Arity Clash). If the store already contains
an arity constraintF 0(x), we replaceF 0(x) by F \F 0(x) which can be computed in
time O(nf), otherwise we simply addF(x) in time O(1). Next, we check for all
featuresf known forx, i. e., in timeO(nf), whether or notf is contained in the new
arity. The overall cost is O(nf).

a(x): It suffices to check applicability of rule (Label Clash) and adda(x) to the store. This
can obviously done in constant time O(1).

x[f ℄y: We must consider rules (Selection), and (Object Selection I/II).

(Selection) We check whether the store containsx[f ℄y0 for somey0. If so, we addy=
y0 to the pool and terminate (we need not consider the rules (Object Selection
I/II) in this case); if not, we simply addx[f ℄y and proceed. Furthermore, we
check whetherF(x) exists with f 62 F. Both can be done in constant timeO(1).

(Object Selection I) We compute the set of all variables to which the existence of
featuref propagates fromx. This can be done by a depth-first search through
the graphGϕ containing an edge(x;y) for every constraintyhxiz.
For all theseO(ni) variables we check whether the selection entry ofz at f is
filled. If not, we addz[f ℄vz; f , i. e., O(n) selection constraints in the worst case.

The cost is O(n).
(Object Selection II)� For all O(n) selection constraints of the formzhxiz0 such thatz[f ℄z00 exists

for somez00, we assertz00 = y! z0 as follows: We addz00[d℄y andz00[r℄z0 to
the pool, andfd; rg(z00) to the store.
In addition, we may addO(n) new selection constraints.
The cost is O(n).� For all O(n) selection constraints of the formxhziz0 such thatz[f ℄z00 exists
for somez00, asserty= z00! z0. We do this dually to the previous case and
with the same resources. This costs O(n).

The overall cost is O(n).
This step addsO(n) new selection constraints.

12

xhyiz: We first addxhyiz to the list of object selection constraints and set up the graphGϕ
by simply adding an edge(x;y). This costs O(1).
Then we consider (Object Selection I/II):

(Object Selection I) For all featuresf such that the store containsy[f ℄y0 for somey0,
we must assert thatx has featuref too. This can be done in total timeO(nf).

(Object Selection II) For all featuresf such that the store containsy[f ℄y0 andx[f ℄x0
for somex0;y0 the constraintx0 = y0! z may have to be added as in the appli-
cation of the same rule above. This costs O(nf).
In addition, this step might introduceO(nf) new selection constraints.

The overall cost of addingxhyiz is O(nf).
This step addsO(nf) new selection constraints.

x= y: If x andy are equal, nothing needs to be done. Otherwise, we must consider rule
(Substitution) first, and then all other rules. At first, the equivalence classes ofx andy
are merged, which can be done in time O(α(nv)).
Secondly, all constraints ony must be transferred tox (or vice versa). This is done
by an additional case distinction.

a(y): Addinga(x) costs constant time O(1).
F(y): AddingF(y) costs time O(nf).
y[f ℄z: TheO(nf) selection constraintsx[f ℄zwill be added to the pool in timeO(nf).
yhy0iy00: All selections ony0 by f have to be propagated tox by (Object Selection

I/II). Notice that, however, for all featuresf of y0 a selection constrainty[f ℄z
has been asserted when that object selection constraint wasentered into the
store. Hence propagation toy (equivalently propagation tox, afterx andy are
equated) is treated by the other step of satisfiability checking (c.f. the casex[f ℄y
(Object Selection I/II))

We need not touch the list of object selection constraints. Only what we have to
do is to retain the consistency of the graphGϕ by merging the out-going edges
of y to those ofx. This costs O(n).

y0hyiy00: By a similar argument, the cost is shown to be O(n).
In summary, one step of the algorithm costsO(n), and every step may at most add a single
equation andO(n) selection constraints.

Putting it all together. It remains to estimate the number of steps:� There are at leastO(n) steps needed for touching all primitive constraints inϕ.� Amongst the new equations, there are at mostO(nv) relevant ones, in the sense that
one can at most enforcenv non-trivial equations before all variables are equated.
That is, all butO(nv) equations cost constant time.

13

� Amongst the new selection constraints, there are at mostO(nv � nf) relevant ones
since adding a selection constraintx[f ℄y induces immediate work only ifx has no
selection constraint onf yet. The others will generate a new equation and terminate
then. Hence, all butO(nv �nf) selection constraints cost constant time.

In summary, there are
O(nv+nv �nf) = O(nv �nf)

steps that costO(n) each. Each of these steps may add a single equation andO(n) selections
each of which may add a new equation itself. Hence we have

O(nv �nf � (1+n)) = O(nv �nf �n)
steps that costO(1) each. Overall, the algorithm has the complexity

O(nv �nf �n) = O(ni �nf
2 �n)

SinceO(nf) = O(ni) = O(n) in general, this bound isO(n4). If the number of features is
bounded,i. e., O(nf) = O(1), the bound is ratherO(n2).
2.3.2. Proposition 4: Constraint Solving is Complete

In order to show that every constraint closed under the rulesin Figure 2 is satisfiable,
we need some additional machinery:

First, we define a notion ofpath reachabilitysimilar to the one used in earlier work on
feature constraints, such as [10, 22, 23]. For all pathsπ and constraintsϕ, we define

ϕ;π
as the smallest binary relation satisfying the following conditions. We readx

ϕ;π y as “y is
reachable fromx over pathπ in ϕ”

x
ϕ;ε x if x2V(ϕ)

x
ϕ;ε y if x= y2 ϕ

x
ϕ; f y if x[f ℄y2 ϕ

x
ϕ;ππ0 y if x

ϕ;π zandz
ϕ;π0 y:

Likewise, we definex
ϕ;π a reading as “labela can be reached fromx over pathπ in ϕ”:

x
ϕ;π a if x

ϕ;π y anda(y) 2 ϕ

Path reachability satisfies the following closure conditions.

Lemma 1.

1. Whenever x
ϕ;π f y there exists z such that x

ϕ;π z and z
ϕ; f y.

2. Whenever x
ϕ; f π y there exists z such that x

ϕ; f z and z
ϕ;π y.

Moreover, we observe the following simple facts.

Lemma 2.

14

1. If ϕ is closed under rule (Substitition) and x= y2 ϕ such that x6=̇ y, then x does not
occur in any other primitive constraint inϕ apart from x= y.

2. If ϕ is closed under rule (Selection) and (Substitition) and x
ϕ;π y;x ϕ;π z, then y=̇ z.

Proof. Statement 1 is trivial. Statement 2 follows by induction over π using closure ofϕ
under (Selection) and (Substitution). 2

We now proceed to prove Proposition 4.
Fix an arbitrary labelunit. For every closed constraintϕ we define the mappingαϕ

from variables into feature trees defined as follows.

Dαϕ(x) = fπ j existsy : x
ϕ;π yg

Lαϕ(x) = f(π;a) j x
ϕ;π ag[f(π;unit) j π 2 Dαϕ(x) but 6 9a : x

ϕ;π ag
We have to show that this indeed defines a mapping into featuretrees and thatαϕ is a
solution ofϕ.

1. αϕ defines a mapping into feature trees: Pick some variablex2 V (ϕ).
Dαϕ(x) is non-emptysinceε 2 Dαϕ(x) due tox

ϕ;ε x. Dαϕ(x) is prefix-closeddue to
Lemma 1.1. So,Dαϕ(x) is a tree domain.

Let (π;a);(π;b) 2 Lαϕ(x). If a = unit, thenb = unit by definition ofLαϕ(x). Other-
wise, we prove by induction overπ thata= b.

π = ε: By definition of Lαϕ(x) we know thatx
ϕ;ε a andx

ϕ;ε b. Therefore, there
exist variablesy; : : :yn andz; : : : ;zm such that(x =̇)y1 = y2;y2 = y3; : : : ;yn�1 = yn;a(yn) 2 ϕ(x =̇)z1 = z2;z2 = z3; : : : ;zm�1 = zm;b(zm) 2 ϕ

By Lemma 2.1 we know it must hold thatx=̇ y0 =̇ � � � =̇ yn�1 =̇ z0 =̇ � � � =̇ zm�1.
We obtaina= b from closure ofϕ under (Label Clash).

π = f π0: By definition of Lαϕ(x) and Lemma 1.2 we know that there are variables

x0;x00 such thatx[f ℄x0;x[f ℄x00 2 ϕ, x
ϕ; f x0;x0 ϕ;π0 a andx

ϕ; f x00;x00 ϕ;π0 b.

From Lemma 2.2, we obtain thatx0 =̇ x00. Thus,a= b follows directly from the
induction assumption.

Finally, Lαϕ(x) is total onDαϕ(x) by definition.

2. αϕ is a solution ofϕ: We check every primitive constraint inϕ.

x= y2 ϕ: Dαϕ(y) � Dαϕ(x) andLαϕ(y) � Lαϕ(x) follows directly from the definition
of path reachability. The inverse inclusions follow from Lemma 2.1. Hence,
αϕ(x) = αϕ(y).

x[f ℄y2 ϕ: Dαϕ(y) � Dαϕ(x): f andLαϕ(y) � Lαϕ(x): f follows from definition of path
reachability. The inverse inclusions follow from Lemma 2.2. Hence,αϕ(x): f =
αϕ(y).

15

a(x) 2 ϕ: By definition ofαϕ and path reachability,(ε;a) 2 Lαϕ(x).
F(x) 2 ϕ: If f 2 Dαϕ(x), then there must exist variablesy1; : : : ;yn;zsuch that(x =̇)y1;y2; : : : ;yn�1 = yn;yn[f ℄z2 ϕ :

By Lemma 2.1 andF(x) 2 ϕ, we know thatx =̇ y1 =̇ � � � =̇ yn andx[f ℄z2 ϕ.
Now, ar(x)� F follows from closure ofϕ under (Arity Clash).

xhyiz2 ϕ: Let f 2 ar(αϕ(y)). By an argument similar to the previous case using
Lemma 2.1 we know thaty[f ℄y0 2 ϕ for somey0. By closure ofϕ under (Ob-
ject Selection I) this impliesx[f ℄x0 2 ϕ for somex0, andαϕ(x): f = αϕ(x0) =
αϕ(y): f ! αϕ(z) follows from closure ofϕ under (Object Selection II).

2.4. Relation of OF to Known Feature Constraint Systems

Various feature constraint systems have been considered inthe literature [3, 5, 23, 38,
40]. These comprise, amongst others, feature constraints from the following list.

ψ ::= x= y j a(x) j x[f ℄y j Fx j u= f j x[u℄y j ψ^ψ0 :
The constraintsx= y, a(x), andx[f ℄y are the ones of OF. The constraintx[u℄y is two-sorted:
It contains variablesx;y ranging over feature trees and a variableu ranging over features.
In the arity constraintFx, F is a finite set of features. It states thatx hasexactlythe features
in F at the root. That is, its semantics is given by

Fτ if ar(τ) = F

Apparently, both arity constraints are interreducible by means of (an exponential number
of) disjunctions:F(x)$WF 0�F F 0x. The constraints of FT [3] containx = y, a(x), and
x[f ℄y, CFT [38] extends FT byFx, and EF [40] contains the constraintsx=y, a(x), u = f ,
Fx, andx[u℄y.

Recall that OF cannot express the fact that a feature tree hasa feature at the root.b In
contrast, EF can by means of existential quantification overthe feature selector:9u 9y (x[u℄y)

The satisfiability problems for FT and CFT are quasi-linear [38]. In contrast, the satis-
fiability problem for EF is NP-complete [40]. Treinen shows NP-hardness of satisfiability
for EF by reduction of the minimal cover problem (see [13, 40]and compare Section 4.2).
In his NP-hardness proof, the following fact is crucial.j=EF f f1; : : : ; fngx^x[u℄y ! n_

i=1

u= fi

In order to express a corresponding disjunction in OF, we need existential quantification
and, in particular, constraints of the form:fg(y):j=OF f f1; : : : ; fng(x)^xhyiz^:fg(y) ! n_

i=1

9zi y[fi ℄zi

bIn the sense that there is no OF constraintϕ such that all solutions ofϕ for a fixed variabley is the set of
feature trees with at least one feature (c. f., [5]).

16

Call OFne the constraint system that is obtained from OF by addition ofconstraints of the
form :fg(x). Now we show that we can reduce the satisfiability check for EFto the one
for OFne.

Proposition 5. There is an embedding[[�℄℄ of EF into OFne such that every EF constraintψ
is satisfiable if and only if[[ψ℄℄ is.

Proof. We assume a special labelunit which we use to represent labelsf in EF by feature
treesunit(f :unit).c[[a(x)℄℄ = a(x)[[x[f ℄y℄℄ = 9z9w (x[f ℄z^z= w!y^unit(w)^fg(w))[[x= y℄℄ = x= y[[u= f ℄℄ = 9x (unit(u)^f fg(u)^u[f ℄x^unit(x)^fg(x))[[x[u℄y℄℄ = xhuiy^:fg(u)[[f f1; : : : ; fngx℄℄ = f f1; : : : ; fng(x)^Vn

i=19y x[fi ℄y): Assume a satisfiable EF constraintψ and letα be an EF solution ofψ.

Without loss of generality, we can assume that no feature tree in the image ofα
contains featuresd andr and labels! andunit (if α does not satisfy this condition
we can always rename the features and labels in the image ofα to another EF solution
which does, because we have assumed infinitely many featuresand labels; see [21]
for a detailed argument to this end).

Given a feature treeτ, we defineτ" as the feature tree where� The tree domainDτ" is the smallest prefix-closed set of path containingf f1r � � � fn�1r fnr; f1r � � � fn�1r fnd j f1 � � � fn 2 Dτg.� The labeling functionLτ" is defined by

Lτ"(π) =8>><>>: Lτ(ε) if π = ε
Lτ(f1 � � � fn) if π = f1r � � � fn�1r fnr (n� 1)unit if π = f1r � � � fn�1r fnd (n� 1)! if π = f1r � � � fn�1r fn (n� 1)

It is easy to seeτ" is well-defined. Intuitively,τ" is obtained fromτ by recursively
replacing all subtrees ofτ of the forma(f1 : τ1; : : : ; fn : τn) by a(f1 : unit! τ1; : : : ; fn :unit! τn).
Now, we define a mappingα0 from variablesx andu to feature trees based on the EF
solutionα so thatα0 is an OF solution of[[ψ℄℄.

α0(u) = unit(f :unit) if α(u) = f
α0(x) = α(x)" otherwise

We check thatα0 is indeed a solution of[[ψ℄℄ by case analysis.

cNotice that, for conciseness, we use feature variablesu just like ordinary (feature tree) variables on the right
hand side of the equations. Notice also, that the existential quantifiers are a matter of convenience only: Their
addition does not affect the complexity of the satisfiability problem for OF.

17

a(x) 2 ψ: It holds that(ε;a) 2 Lα(x). Hence,(ε;a) 2 Lα0(x) by definition ofLτ" .
x[f ℄y2 ψ: Sinceα is a solution forx[f ℄y, we haveα(x): f = α(y). By definition,

α0(x): f = unit!α0(y). Hence,α0 solves[[x[f ℄y℄℄.
x= y2 ψ: α(x) = α(y) impliesα(x)" = α(y)".
u= f 2 ψ: By definition,α0(u) = unit(f :unit). Hence,α0 solves[[u= f ℄℄.
x[u℄y2 ψ: Let f = α(u). Sinceα is a solution forx[u℄y, we haveα(x): f = α(y). By

definition,α0(x): f = unit!α0(y) andα0(u) = unit(f :unit). Hencear(α0(u)) =f fg 6= /0, f 2 ar(α0(x)) andα0(x): f = α0(u): f!α0(y).f f1; : : : ; fngx2 ψ: ar(τ) = ar(τ") holds for any feature treeτ by definition. Hence
α0 is a solution for[[f f1; : : : ; fngx℄℄.(: Let ψ be an EF constraint such that[[ψ℄℄ is satisfiable. We can assume thatψ does not

contain any occurrence of featuresd and r and labels! andunit without loss of
generality.

Since[[ψ℄℄ is satisfiable, there is a choice, for all feature variables of a featurefu and
a fresh variablexu such that

ϕ =def [[ψ℄℄^ ^
u2V(ψ)u[fu℄xu

is satisfiable. Notice that thefu are usually distinct for distinct feature variables
u. For instance, ifψ is f f1; f2gx^ x[u℄y^fg1;g2gx^ x0[u0℄y0 then fu 2 f f1; f2g and
fu0 2 fg1;g2g.
Let ϕ0 be the largest (positive) OF constraint contained inϕ. Apparently, all con-
straints of the form:fg(u) in [[ψ℄℄ are trivially satisfied by any solution ofϕ0. Hence,
every solution ofϕ0 is also a solution ofϕ and, thus, of[[ψ℄℄.
Let αϕ0 be solution ofϕ0 as defined in the proof of Proposition 4. Sinceψ does not
containd; r;! andunit, without loss of generality alsoαϕ0 does not.

Next, we show, for all feature variablesu2V(ψ), that all feature selection constraints
onu in the closure ofϕ0 mention the same featurefu. There are two cases:

u= f 2 ψ: In this case, the claim follows from satisfiability of[[ψ℄℄ where, of course,
fu = f .

u= f 62 ψ: In this case,x[u℄y2 ψ holds for somex;y, sinceu 2 V(ψ). Moreover,
by definition of[[ψ℄℄, u occurs only in the corresponding object selection con-
straints in[[ψ℄℄ (apart from the negated ones) and, additionally, in the feature
selectionu[fu℄xu 2 ϕ0. By inspection of the rules of Figure 2 (in particular, rule
(Object Selection I)) one obtains that no selection constraints onu are added
during constraint solving.

As a consequence, we conclude thatαϕ0 maps all feature variablesu to a tree with
the singleton arityf fug.
From the OF solutionαϕ0 we will now construct an EF solutionα of ψ. Intuitively,
for all variablesx, α(x) will be the feature tree obtained by recursively replacing all

18

subtrees ofαϕ0(x) of the formτ0 ! τ by τ. Moreover, all feature variablesu are
mapped to the unique feature in the arity ofαϕ0(u). Formally, for allu;x2V(ϕ0):

α(u) = f if ar(αϕ0(u)) = f fg
α(x) = αϕ0(x)#

whereinαϕ0(x)# is defined now. First, defineh as the functionh on paths without
featured that purges all occurrences of featurer.

h(ε) = ε

h(π f) = �
h(π) if f = r
h(π) f if f 6= d; r

Givenh, for all τ, define the tree domain

D#(τ) = fh(π) j π 2 Dτ andd 62 πg
and the labeling

L#(τ) = f(π;Lτ(π0)) j d 62 π0; h(π0) = π and 2jπj= jπ0jg
Given these, we define

αϕ0(x)# = (D#(αϕ0(x));L#(αϕ0(x)))
In general,(D#(τ);L#(τ)) does not define a feature tree for arbitraryτ sinceh(π0) in
the definition ofL#(τ) may not work injective. However, this is the case for all paths
in the image ofαϕ0 for the occurring variables.

We show, for allx2 V(ϕ0) and for all pathsπ;π0 in Dαϕ0 (x) with d 62 π;π0, thatπ =
π0 holds wheneverh(π) = h(π0) and bothπ andπ0 have even lengths. Proof is by
induction on the length ofh(π).
h(π) = h(π0) = ε: π andπ0 must beε or a non-empty sequence ofr. However, the

latter case does not occur:φ0 mentionsd andr either by[[x[f ℄y℄℄ or by [[x[u℄y℄℄
through the rule (Object Selection II). In either case, any occurrence of featurer
in a pathπ2Dαϕ0 (x) is always preceded by some featuref 6= d; r so thath(π) =
ε if and only if π = ε. Thusπ = π0 = ε.

h(π) = h(π0) 6= ε: In this case there exist a pathπ00 and a featuref 6= d; r such that
h(π) = f π00. By a similar discussion as above, it holds thatπr 2 Dαϕ0(x) when-
everπ 2 Dαϕ0 (x) and the last feature inπ is different fromd or r. Hence, by the

defintion ofh, there exist pathsπ0 andπ00 such thatπ = f rπ0, π0 = f rπ00 and
h(π0) = h(π00) = π00. Sinceπ0 andπ00 have even lengths,π0 = π00 by induction
hypothesis, and thusπ = π0.

It remains to check thatα is indeed a solution of[[ψ℄℄ by case analysis:

a(x) 2 ψ: It holds that(ε;a) 2 Lαϕ0 (x). Hence,(ε;a) 2 Lα(x) by definition.

19

x[f ℄y2 ψ: By the definition ofαϕ0 , we haveαϕ0(x): f = unit!αϕ0(y). Hence by the
definition ofα, α(x): f = α(y).

x= y2 ψ: αϕ0(x) = αϕ0(y) impliesα(x)ϕ0# = α(y)ϕ0#.
u= f 2 ψ: It holds thatαϕ0(u) = unit(f :unit). Hence,α(u) = f by definition.

x[u℄y2 ψ: By the definition ofαϕ0 , we can assumeαϕ0(u) = unit(fu : unit). Since
αϕ0 validatesxhuiy, we havefu 2 ar(αϕ0(x)) andαϕ0(x): fu = unit!αϕ0(y). By
the definition ofα, it holds thatα(x): fu = α(y) andα(u) = fu. Hence,α is a
solution forx[u℄y.f f1; : : : ; fngx2 ψ: By f f1; : : : ; fng(x)2 [[ψ℄℄, we havear(αϕ0(x))�f f1; : : : ; fng. The
inverse inclusion is by

Vn
i=19y x[fi ℄y2 [[ψ℄℄. Hence,ar(αϕ0(x)) = f f1; : : : ; fng

and alsoar(α(x)) = f f1; : : : ; fng by definition ofα. 2
Corollary 1. The satisfiability problem for OFne is NP-complete.

Proof. NP-hardness follows from Proposition 5 in combination withthe facts that satisfia-
bility for EF is NP-complete [40] and that[[�℄℄ is a polynomial-size embedding.

An NP algorithm to decide satisfiability of an OFne constraint is straightforward: Given
an OFne constraintϕ, make a non-deterministic choice of a featurefu and a fresh variable
vu for everyu such that:fg(u) 2 ϕ and check satisfiability of

ϕ00 =def ϕ0^ ^:fg(u)2ϕ
u[fu℄vu :

This non-deterministic algorithm is correct because whenever ϕ is satisfiable there must
be a choice thatϕ00 is satisfiable as well. By Theorem 1, the test for satisfiability of ϕ00 is
polynomial in the size ofϕ00. Furthermore, since there are no negated selection constraints,
it suffices to chose the featuresfu from the finite setF(ϕ). Hence, the choice is finite and the
size ofϕ andϕ00 are asymptotically the same. Hence, the algorithm takes non-deterministic
polynomial time. 2
Corollary 2. The satisfiability problem of every extension of OF that can express:fg(x)
is NP-hard.

For example, the satisfiability problem of positive and negative OF constraints is NP-hard.
The precise complexity of OF constraints with negation is left open.

2.5. Additional Simplification Rules

This section shortly discusses some constraint simplification rules that are not necessary
for the satisfiability check but are worth considering for other reasons.

20

The following two additional rules are justified by implications (3) and (4):

ϕ^xhyiz^xhyiz0
ϕ^xhyiz^z= z0 if y[f ℄y0 2 ϕ (Double Object Selection)

ϕ^xhyiz
ϕ

if fg(y) 2 ϕ (Feature-less Selector)

The rule (Double Object Selection) is derived from (Object Selection I/II) and can be used
to speed up the satisfiability test when given priority over rule (Object Selection II). In
contrast, the rule (Feature-less Selector) is not a derivedone; it can be used to reduce the
size of a constraint and therefore may save space and time.

The following rule allows the arity bound to be propagated through object selection.

ϕ^xhyiz
ϕ^xhyiz^F(x) if F(x) 2 ϕ (Arity Propagation)

This rule is justified by the following implication valid in OF:j=OF xhyiz^F(x) ! F(y)
This rule makes explicit arity constraints that are mediated through selection constraints
xhyiz. By so propagating arity constraints and by normalizing them with (Arity Intersec-
tion) one obtains a normal form that allows one to read off thesmallest implied arity bound
per variable. This rule appears useful to make type information easily accessible: The set
of possible message names for every bound message identifieris directly represented by
the arity bound on its type. In Section 4.3, we adopt this ruleto determine identifiers with
empty message type. Note that arity propagation can be incorporated into the satisfiability
check without affecting polynomial complexity [24].

3. Type Inference

In this section, we reformulate the type inference of Nishimura [25] in terms of OF
constraints.

Let us consider a tiny object-oriented programming language whose abstract syntax is
defined as follows.

M ::= b (Constant)j x (Variable)j f (M) (Message)j f f1(x1) = M1; : : : ; fn(xn) = Mng (Object)j M N (Message Passing)j let y= M in N (Let Binding)

21

x : t 2 Γ
ϕ;Γ ` x : t

VAR ϕ;Γ ` b : typeof(b) CONST

ϕ;Γ `M : t 0 ϕ j=OF t :: msg(f :t 0)
ϕ;Γ ` f (M) : t

MSG

ϕ;Γ;xi : ti `Mi : t 0i for everyi = 1; : : : ;n
ϕ;Γ ` f f1(x1) = M1; : : : ; fn(xn) = Mng : obj(f1:t1!t 01; : : : ; fn:tn!t 0n) OBJ

ϕ;Γ `M : t1 ϕ;Γ ` N : t2 ϕ j=OF obj(t1)^msg(t2)^ t1ht2it3
ϕ;Γ `M N : t3

MSGPASS

ϕ;Γ;y : t1 `M : t1 ϕ;Γ;y : t1 ` N : t2
ϕ;Γ ` let y= M in N : t2

LET (monomorphic)

Figure 3: The monomorphic type system for first-class messages

The language syntax is simplified over [25] by droppingletobj altogether; it should be
understood that thelet expression allows recursive definition for a certain relevant class of
expressions, asletobj in [25] allows recursive definition only for objects.

The operational semantics is defined along the line of [25]. We do not repeat it here
since it is just the intuitive call-by-value semantics adapted to an object-oriented language.

For the types, we assume additional distinct labelsmsg andobj to mark message and ob-
ject types, and a set of distinct labels such asint, bool, etc., to mark base types. Monomor-
phic typesare certain feature trees over this signature, and monomorphic type termsare the
corresponding feature terms. Type terms obey the followingabstract syntax:

t ::= α (Type variable)j int j bool j : : : (Base type)j msg(f1:t1; : : : ; fn:tn) (Message type)j obj(f1:t1!t 01; : : : ; fn:tn!t 0n) (Object type)

3.1. Monomorphic Type System and Type Inference

We assume a mappingtypeof from constants of base type to their corresponding types,
for instancetypeof(1) = typeof(2) = : : : = int andtypeof(true) = typeof(false) = bool.
We also use thekindingnotationt :: a(f1:t1; : : : ; fn:tn) to state thatt denotes a feature tree
with underspecified arity containing the featuresf f1; : : : ; fng and corresponding subtrees;
for example,t :: a(f1:t1; : : : ; fn:tn) is equivalent toa(t)^Vn

i=1 t[fi ℄ti .
The monomorphic type system is given in Figure 3. As usual, atype environmentΓ

is a finite mapping from variablesx to type termst, andΓ;x : t extendsΓ so that it maps
variablex to t. The type system defines judgments such asϕ;Γ ` M : t which reads as

22

I (x;Γ;b) = a(x)^fg(x) if a= typeof(b)
I (x;Γ;y) = x= Γ(y)
I (x;Γ; f (M)) = 9y (msg(x)^x[f ℄y^ I (y;Γ;M))
I (x;Γ;f f1(x1) = M1; : : : ; fn(xn) = Mng)= obj(x)^f f1; : : : ; fng(x)^Vn

i=19xi 9x0 9z(x[fi ℄x0^x0 = xi ! z^ I (z;Γ;xi : xi ;Mi))
I (x;Γ;M N) = 9y9z(yhzix^obj(y)^ I (y;Γ;M)^msg(z)^ I (z;Γ;N))
I (x; let y= M in N) = 9y (I (y;Γ;y : y;M)^ I (x;Γ;y : y;N))

Figure 4: Monomorphic type inference for first-class messages with OF constraints

“under the type assumptions inΓ subject to the constraintϕ, the expressionM has typet”;d

the constraintϕ in well-formed judgments is required to be satisfiable. We donot comment
further on the type system here but refer to [25] for intuitions and to [26, 39] for notation.

Notice that terms are, as usual, finite entities that do, however, denote infinite feature
trees. That means the type system of Figure 3 can deal with recursive types without the need
for an explicitµ notation as commonly used (e.g., see [4]). Recursive types are necessary
for the analysis of recursive objects.

The corresponding type inference is given in Figure 4 as a mappingI from a variablex,
a type environmentΓ, and a program expressionsM to an OF constraint such that every so-
lution of x in I (x;Γ;M) is a type ofM under the type assumptions inΓ. For ease of reading,
we reuse the bound variables in program expressions as theirassociated type variables.

Correctness of the type inference with respect to the type system is obvious. Soundness
of the type system (with respect to the assumed operational semantics) can be shown along
the line given in [25].

Theorem 2. Type inference for first-class messages is polynomial in time and space.

Proof. The type inference generates an existential formulaΦ over OF constraints whose
size is proportional to the size of the given program expression. From Proposition 3 we
know that satisfiability ofΦ can be decided in polynomial time and space. Finally, it is
easy to show that every OF-formulaI(x;Γ;M) that is satisfiable over arbitrary feature trees
is already satisfiable over the smaller domain of types. 2
3.2. Polymorphic Type Inference

We can obtain the polymorphic type inference by applying thescheme HM(X) [26].
The constraint system OF is a viable parameter for HM(X) since it satisfies the two required
properties, called coherence and soundness. Both assume a notion of monomorphic types

dThis terminology is slightly sloppy but common: Sincet may contain type variables it is rather a typeterm
than a type and it would be accurate to say thatM has “some type matchingt”.

23

and a (subtyping) order on them. In our case, these are given by feature trees and equality
on them; it does no harm that our monomorphic types may be infinite. Thecoherence
property requires that the considered order on types is semantically well-behaved and holds;
for equality, this condition becomes trivial. Thesoundnessproperty that a solved constraint
indeed has a solution follows from Proposition 4.

3.3. Examples

Let us consider some typing examples in the monomorphic typesystem. In the subse-
quent discussions, we will freely use the compact feature term notation of OF constraints.

Remark.In general, type inference requires that constraints representing a type must be
compactly presented in order to make them easily digestibleby programmers. The use of
a term notation is crucial here, even though it is not during type inference. But, as the
OCaml [35] experience shows, terms do not suffice. In OCaml anadditional abbreviation
mechanism for object types is provided which usually grow rather large. Corresponding
mechanisms seem to be in place when putting our system into practice.

As a first example, the statementlet o1 = fsu(x)=x+1, pos(x)=x>0g;
defines an object with two methodssu : int!int andpos : int!bool. Type inference
gives the type of this object as an OF constraint on the type variableo1 equivalent to

ϕ1 =def o1 = obj(su : int!int;pos : int!bool):
A delegate object for the objecto1 is defined as follows:let o2 = frediret(m)= o1 mg;
wherem is a parameter that binds messages to be redirected too1. Assuming the variableo1

to be constrained byϕ1, the constraintϕ2 restrictso2 to the type ofo2:

ϕ2 =def 9m9z(o2 = obj(rediret : m!z)^o1hmiz^msg(m)):
The return type of a message passing to this object, for instance as inlet w = o2 rediret(su(1));
is described as the solution ofϕ1^ϕ2^ϕ3 for the type variablew, where

ϕ3 =def 9z0 (o2hz0iw^z0 :: msg(rediret : msg(su : int)));
The solved form ofϕ1^ϕ2^ϕ3 contains the constraintint(w)^fg(w), which represents
the intended result typeint.

If o1 does not respond to the message argument ofrediret, for instance as inlet v = o2 rediret(pred(1));
a type error is detected as inconsistency in the derived constraint. Here, the constraint

24

ϕ4 =def 9z0 (o2hz0iw0^z0 :: msg(rediret : msg(pred : int)))
implies9z0 (o1hz0iw0 ^ z0 :: msg(pred : int)), and hence thato1 has a featurepred which
contradictsϕ1 by (Arity Clash).

4. Empty Message Types

In Section 2.1.3, we have seen that the OF first-order selection constraintxhyiz is not
functional,i. e., the implicationxhyiz^xhyiz0! z= z0 doesnothold becausey may denote
a tree without any features. In terms of typing, this means that M N may be well-typed
even ifN has theempty message typemsg, i. e., the message type represented by a feature
tree without any feature. The empty message type does not mention any message names or
argument types as possible types for the expressionN. Hence the empty message type is
given to an expression that is syntactically used as a message but will not to any message
at run-time.

We consider this phenomenon more closely which may be calledan undesirable prop-
erty of our type system. However, we also show that a straightforward fix of this problem
makes type inference NP-complete. This illustrates our conviction that empty message
types are the price to pay for a polynomial type inference of typing first-class messages.

4.1. Empty Message Types are Weird

Consider the following well-typed program.let o1 = fa(x)=x+1, b(x)=x>0g inlet o2 = fb(x)=x=0,(x)=x*2g inlet o3 = ffoo(m)= begin o1 m; o2 m endg;
It is easy to see that every successful execution of the body of the methodfoo must returnbool: The argument messagem of foo must be accepted by both the objectso1 ando2,
which share only the methodb of type int! bool.

However, the body of methodfoo is not necessarily executed at all in which case the
return type is irrelevant. Type inference reflects this effect by deriving from this program
(essentially) the following constraint:

o1 = obj(a : int!int;b : int!bool) ^
o2 = obj(b : int!bool; : int!int) ^
o3 = obj(foo : m!z)^o1hmiz1^o2hmiz2

Notice thatz= bool is not entailed! Also, the type of the message passingso1 m ando2 m need not coincide with the return type offoo: Neitherz= z1 norz= z2 is entailed.
By a similar argument, the following program can be considered acceptable even

though the methodfoo cannot be executed at all without failure:let o1 = fa(x)=x+1g inlet o2 = f(x)=x*2g inlet o3 = ffoo(m)= begin o1 m; o2 m endg
25

ϕ;Γ `M : t1 ϕ;Γ ` N : t2 ϕ j=OF obj(t1)^msg(t2)^:fg(t2)^ t1ht2it3
ϕ;Γ `M N : t3

MSGPASS’

Figure 5: The typing rule for message passing when empty messages are excluded

These examples may be surprising, since a program is well-typed even though it may con-
tain statements for which there is no effective execution. In this respect, our type system
is weaker than that of [25]. The weakness is apparently due tothe admission of empty
message types where type inference stops and leaves possibilities of further analysis unex-
ploited.

Nonetheless, there is a strong rationale that we say our typesystem is a relevant one: It
is still soundin the sense that execution of a well-typed program is type safe. Type safety
is guaranteed since, when an identifier has the empty messagetype, it is never bound to a
message at run-time.

4.2. Type Inference is NP-complete if Empty Messages are Excluded

One may insist that method invocation by empty messages should be detected as a type
error. In this case, it is easy to manipulate the type system and the type inference to ensure
this: One just needs to disallow the empty message types using negation.

The only typing rule affected by this restriction is MSGPASS which changes to MSG-
PASS’ as shown in Figure 5. The corresponding clause for type inference is this one:

I (x;M N) = 9y 9z(yhzix^obj(y)^ I (y;M)^msg(z)^:fg(z)^ I (z;N)) (5)

However, recall that the polynomial time complexity of the analysis depends on the above-
mentioned weakness. Type inference for the type system withthe rule MSGPASS’ instead
of MSGPASS would be NP-complete, since the general satisfiability problem OF with neg-
ative constraints:fg(x) is NP-complete (Corollary 1 of Proposition 5).

To prove NP-completeness, the close correspondence between OF with negation and
EF helps us again: Treinen reduced Minimal Cover Problem [13] to the satisfiability of
EF [40]. Following Treinen, we give an encoding of the Minimal Cover Problem to the
type inference problem for first-class messages where the empty message type is disallowed
(i. e., we consider the type system given by Figure 3 and the rule MSGPASS replaced by
MSGPASS’).

The Minimum Cover Problem (MCP) is defined as follows:

Given a collectionS1; : : : ;Sn of finite sets and a natural numberk� n, is there

a subsetI � f1; : : : ;ng whose cardinality is at mostk such that
[
j2I

Sj = n[
i=1

Si ?

Since the MCP is known to be NP-complete and the reduction is polynomial, this proves
that type inference problem to be NP-hard.

The adaptation of Treinen’s reduction is an immediate one and given here for complete-
ness’ sake. For proofs, we refer the reader to Treinen’s exposition [40].

26

4.2.1. The Encoding

We assume that an instanceS1; : : : ;Sn;k of the MCP is given. We define the setU to be
covered,U =def

Sn
i=1Si, and, for everyu2U , the setδu of indexesj of those sets in which

u occurs:δu = f j j u2 Sjg. Without loss of generality, we assume that1; : : : ;n 2 F .
Following Treinen, we construct a program that is well-typed if and only if the given

instance of the MCP has a solution. We use variablesxu to represent the elementsu2U
and variablesz1; : : : ;zn to represent the setsS1; : : : ;Sn.

In order to stay close to Treinen’s encoding in syntax, five schematic statements are
used.� The first statement introduces an identifier of some type and,thus, simulates an ex-

istential quantifier.9x M =def f foo(x) = M g� The second statement forcesx andy to have the same type:x � y =def 9f (f bar(x); f bar(y))� The third statement says that an object x hasexactlymethods labeledf f1; :::; fng:f f1,..., fngx =def 9y1; : : : ;9yn (x�f f1(z1)=y1,..., fn(zn) =yng)� The last two statements say thatx is labeled byobj (resp., msg).IN x =def 9y (x y)OUT x =def 9y (y x)
The syntax of these statements is motivated by Treinen’s encoding, whose intention
will become clear below.

Furthermore, conjunctive notation
Vn

i=1Mi means the corresponding sequence of state-
mentsM1; : : : ;Mn.

The programM that we construct is a sequence of three program expressions:

M = M1;M2;M3

Well-typedness of the first programM1 requires thatxu has an object type whose set of
method labels coincides withδu, and that the type ofz j is the return type of the methodj
of xu if and only if u2 Sj .

M1 =def
û2U

δuxu;
û2U

^
j2δu

9z ((xu j(z))� z j)
27

The choice of an appropriate setI is now expressed by labeling on the variableszi . The
idea, as in Treinen’s reduction, is to enforce one of two constraints on everyzi : IN zi (that
expresseszi is a member of,i. e., in the minimum cover) ifi 2 I andOUT zi (zi is not
a member of,i. e., out of the minimum cover) otherwise. Intuitively, this encoding works
because at most a single label is allowed on the same node.

Well-typedness of the second programM2 implies the fact that for at leastn�k of thezi it holds thatOUT zi .

M2 =def 9x (f1; : : : ;ngx; ^
i2f1;:::;ng9z (x i(z))� zi ;^
i2f1;:::;n�kg9v 9y ((x v)� y; OUT y; figy))

The statementfigy forces for eachi a different type ofy.
Well-typedness of the statementM3 requires that eachxi has a method whose return

type, according to the definition ofM1, must be one of thezi and also it holds thatIN zi .

M3 =def
î2U

9v 9z ((xi v)� z; IN z)
We notice that our encoding implements the EF labeling constraints IN x andOUT x in
Treinen’s original encoding by OF labelsobj andmsg, respectively. We need this transla-
tion, since the type inference cannot enforce arbitrary labeling constraint. Our encoding,
however, preserves the intended function of Treinen’s encoding that separates the given
sets into two disjoint classes.

The length of the statementM is in fact linear in the size of the representation of the
MCP. Hence, we obtain

Theorem 3. Type checking and type inference for first-class messages isNP-hard when
the empty message type is disallowed.

Proof. See the proof of Theorem 4 in [40]. 2
Combining this theorem and Corollary 1 of Proposition 5, we conclude that

Corollary 3. Type checking and type inference for first-class messages isNP-complete
when the empty message type is disallowed.

4.3. Discussion

The immediate question arising Theorem?? is this: Is there any polynomial time type
inference algorithm for first-class messages that prohibits empty message types?

According to the discussion so far, there is no such algorithm – we believe that the prob-
lem is inherently NP-complete. Of course, there might be an entirely different approach to
typing first-class messages that would give rise to such an algorithm. We must leave the
problem open. Instead, we suggest two pragmatic ways of having your cake (no empty
messages) and eating it, too (reasonably efficient type inference).

We could just ignore NP-completeness and use negation to disallow empty message
types as sketched. If the number of message labels in a program is significantly smaller

28

than the size of the program, then the enumeration of labels might be tolerable. Exponential
behaviour might simply not show up.

One could also require the programmer to provide at least onewitness label for every
message identifier in the program. This indirectly avoids empty message types without
the need for negation in type inference. In practice, the compiler would complain about
every message identifier for which no witness label were explicit in the program. To over-
come this complaint, a type annotation would be needed that could, admittedly, restrict
polymorphism. Polynomial type inference would be achievedby passing the obligation of
providing witness features from the compiler (search) to the programmer.

4.4. Comparison with Nishimura’s System

In Nishimura’s original type system [25], referred to asD in the following, constraints
are modeled as kinded type variables. The kindings have a straightforward syntactic cor-
respondence with OF constraints: the message kindingx :: hh f1:t1; : : : ; fn:tniiF corresponds
to x :: msg(f1:t1; : : : ; fn:tn)^F(x) and the object kindingx :: fjy1!t1; : : : ;yn!tnjgF corre-
sponds toobj(x)^Vn

i=1xhyiiti ^F(x).
Our reformulation HM(OF) of D is in the same spirit as the reformulation

HM(REC) [26] of Ohori’s type system for the polymorphic record calculus. One might
thus expect the relation ofD and HM(OF) to be as close as that between Ohori’s system
and HM(REC) which type exactly the same programs (“full and faithful”); this is, however,
not the case.

There is a significant difference between the kind system inD and OF. InD, (kinded)
types may contain variables: For instance, an object returning integers as a response to
messages of typey receives the type kinded byfjy!intjgF . On unifying two kindsfjy!intjgF
andfjy!zjgF , the type inference forD derives equality ofz andint since it issyntactically
known that bothz andint denote the type of the response of the same object to the same
message. Thus inD, the name of type variables is crucial. In this paper, variables only
occur as part of type descriptions (i. e., syntax) while the (semantic) domain of types does
not contain variables. That is, we understandfjy!intjg not as atypebut as part of atype
descriptionwhich can be expressed by a constraint likeobj(x)^xhyiint.

As a consequence, well-typedness in our system does not depend on the choice of
variable names but only on the type of variables. This is usual for ML-style type systems
but does not hold forD. Consider the following example:ffoo(m) = (o m) + 1; (o m) & trueg
This program is accepted by the OF-based type system, since the constraintohmiint^
ohmibool is satisfiable withm as the empty message. The type systemD, however, rejects
that program after trying to unifyint andbool during type inference.

The following example shows why this syntactic argument maybe confusing. Sys-
temD accepts the programfbar(m) = (fg m) + 1; (fg m) & trueg
but rejects the equivalent one

29

let o=fg in ffoo(m) = (o m) + 1; (o m) & trueg;
As a final difference betweenD and our modified type system notice thatD accepts sending
messages to an empty object such asfbar(m)=fg mg
whereas our system does not accept this program.

5. Conclusion

We have presented a new constraint system OF over feature trees and investigated the
complexity of its satisfiability problem. OF is designed forspecification and implementa-
tion of type inference for first-class messages in the spiritof Nishimura’s system [25]. We
have given a type system for which monomorphic type inference with OF constraints can
be done in polynomial time; this system is weaker than the original one, but, as we have
shown, the additional expressiveness would have rendered monomorphic type inference
NP-complete. Given OF, we can add ML-style polymorphism by instantiating the recent
HM(X) scheme to the constraint system OF.

OF developed from the practical problem of understanding better a given type system
and its type inference problem. Although it turned out very fruitful to define OF as a
member of the family of feature constraint systems, we do notconsider OF to be a very
natural such member from a predicate logical point of view: The semantics ofxhyiz is
application-specific, fairly complex, and signature-dependent.

More fundamental, seems to be another relative of OF: Assume, in addition to the
feature tree variablesx;y;z a class of variables ranging over sets of features, with typical
membersu;v and define the class of constraints

ϕ ::= x= y j x[f ℄y j F(x) j a(x) j
u= v j f 2 u j x[u℄y j F(u) j ϕ^ϕ0

with the now obvious semantics. This system is an extension of EF as well, and it
is not signature-dependent as OF is. It can easily be embedded into OF by repre-
senting sets of featuresf f1; : : : ; fng by feature trees with the corresponding arity, sayset(f1:unit; : : : ; fn:unit), and all complexity results carry over. It appears as if these con-
straints could be useful in type inference for a system of record types with first-class labels
as alluded to in the introduction. This is left to further investigation, however.

In another line of research, it could be interesting to make precise the relationship
between kind based analysis of types and solving feature based constraints. In particular,
Ohori’s polymorphic record type [28] seems to be closely related to CFT [38].

From the application point of view, constraints are a usefulguide for providing type in-
formation in a succinct presentation. In recent studies [11, 32], constraints are a central tool
of simplifying verbose type information and to assist the programmer to detect the source
of type errors. As touched upon in Section 3.3, OF constraints alone are not sufficient for
this purpose. This issue is beyond the subject of the presentpaper, but the experience of
OCaml [35] is likely to be relevant here.

30

Acknowledgments

We would like to thank the members of RIMS, Andreas Rossberg and Joachim Walser
for careful proofreading and feedback, as well as Martin Sulzmann for extensive discussion
on HM(X). Thanks are also due to Ralf Treinen as well for providing the system EF that
turned out to fit our needs so nicely. We also acknowledge helpful remarks of the referees
for ASIAN98 and IJFCS.

References

1. A. Aiken and E. Wimmers. Type inclusion constraints and type inference. InProceedings of
the 6th ACM Conference on Functional Programming and Computer Architecture, pp. 31–41.
ACM Press, New York, June 1993.

2. H. Aı̈t-Kaci and A. Podelski. Towards a meaning of life.The Journal of Logic Programming,
16(3–4):195–234, July, Aug. 1993.

3. H. Aı̈t-Kaci, A. Podelski, and G. Smolka. A feature-basedconstraint system for logic pro-
gramming with entailment.Theoretical Computer Science, 122(1–2):263–283, Jan. 1994.

4. R. M. Amadio and L. Cardelli. Subtyping recursive types.ACM Transactions on Program-
ming Languages and Systems, 15(4):575–631, 1993.

5. R. Backofen. Expressivity and Decidability of First-order Languages over Feature
Trees. Doctoral Dissertation. Universität des Saarlandes, Technische Fakultät, D–66041
Saarbrücken, 1994.

6. R. Backofen. A complete axiomatization of a theory with feature and arity constraints.The
Journal of Logic Programming, 24(1–2):37–71, 1995. Special Issue on Computational Lin-
guistics and Logic Programming.

7. R. Backofen and G. Smolka. A complete and recursive feature theory.Theoretical Computer
Science, 146(1–2):243–268, July 1995.

8. F. Bourdoncle and S. Merz. Type checking higher-order polymorphic multi-methods. In
Proceedings of the 24th ACM Symposium on Principles of Programming Languages, pp. 302–
315. ACM Press, New York, Jan. 1997.

9. M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer Auf der Heide, H. Rohnert, and R. E.
Tarjan. Dynamic perfect hashing: Upper and lower bounds.SIAM Journal of Computing,
23(4):738–761, Aug. 1994.

10. J. Dörre.Feature-Logik und Semiunfikation. Doctoral Dissertation. Philosophische Fakultät
der Universität Stuttgart, July 1993. In German.

11. D. Duggan. Correct type explanation. InProceedings of ACM SIGPLAN Workshop on ML,
pp. 49–57, 1998.

12. J. Eifrig, S. Smith, and V. Trifonow. Type inference for recursively constrained types and
its application to object-oriented programming.Electronic Notes in Theoretical Computer
Science, 1, 1995.

13. M. R. Garey and D. S. Johnson.Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, New York, 1979.

14. B. R. Gaster.Records, Variants and Qualified Types. PhD thesis, University of Nottingham,
1998.

15. R. Hindley. The principal type scheme of an object in combinatory logic. Transactions of the
American Mathematical Society, 146:29–60, Dec. 1969.

16. P. C. Kanellakis, H. G. Mairson, and J. C. Mitchell. Unification and ML type reconstruction.
In Computational Logic, Essays in Honor of Alan Robinson, pp. 444–478. The MIT Press,

31

Cambridge, MA, 1991.

17. A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. An analysis of MLtypability. Journal of the
Association for Computing Machinery, 41(2):368–398, Mar. 1994.

18. K. Mehlhorn and P. Tsakalides. Data structures. In van Leeuwen [41], chapter 6, pp. 301–342.

19. R. Milner. A theory of type polymorphism in programming.Journal of Computer and System
Science, 17(3):348–375, 1978.

20. R. Milner, M. Tofte, R. Harper, and D. MacQueen.The Definition of Standard ML (Revised).
The MIT Press, Cambridge, MA, 1997.

21. M. Müller and J. Niehren. Ordering constraints over feature trees expressed in second-order
monadic logic. In T. Nipkow, ed.,International Conference on Rewriting Techniques and
Applications, vol. 1379 ofLecture Notes in Computer Science, pp. 196–210. Springer-Verlag,
Berlin, 1998. Full version to appear in special issue of Information and Computation on
RTA’98.

22. M. Müller, J. Niehren, and A. Podelski. Inclusion constraints over non-empty sets of trees.
In M. Bidoit and M. Dauchet, eds.,Proceedings of the Theory and Practice of Software De-
velopment, vol. 1214 ofLecture Notes in Computer Science, pp. 345–356. Springer-Verlag,
Berlin, Apr. 1997.

23. M. Müller, J. Niehren, and A. Podelski. Ordering constraints over feature trees. In G. Smolka,
ed.,Proceedings of the 3rd International Conference on Principles and Practice of Constraint
Programming, vol. 1330 ofLecture Notes in Computer Science, pp. 297–311. Springer-
Verlag, Berlin, 1997. Full version to appear in special issue on CP’97 of Constraints – An
International Journal.

24. M. Müller and S. Nishimura. Type inference for first-class messages with feature constraints.
In Proceedings of the 4th Asian Computing Science Conference, vol. 1538 ofLecture Notes in
Computer Science, pp. 169–187, Dec. 1998.

25. S. Nishimura. Static typing for dynamic messages. InProceedings of the 25th ACM Sym-
posium on Principles of Programming Languages, pp. 266–278. ACM Press, New York,
1998.

26. M. Odersky, M. Sulzmann, and M. Wehr. Type inference withconstrained types.Theory and
Practice of Object Systems, 5(1):35–55, 1999.

27. M. Odersky, P. Wadler, and M. Wehr. A second look at overloading. InProceedings of the
7th ACM Conference on Functional Programming and Computer Architecture, pp. 135–146.
ACM Press, New York, 1995.

28. A. Ohori. A polymorphic record calculus and its compilation. ACM Transactions on Pro-
gramming Languages and Systems, 17(6):844–895, 1995.

29. J. Palsberg. Efficient inference of object types. InProceedings of the 9th IEEE Symposium on
Logic in Computer Science, pp. 186–185. IEEE Computer Society Press, 1994.

30. S. Peyton Jones, J. Hughes, L. Augustsson, D. Barton, B. Boutel, W. Burton, J. Fasel,
K. Hammond, R. Hinze, P. Hudak, T. Johnsson, M. Jones, J. Launchbury, E. Meijer, J. Pe-
terson, A. Reid, C. Runciman, and P. Wadler. Report on the programming language Haskell
98: A non-strict, purely functional language. Technical report, Feb. 1999. Available at
http://www.haskell.org/definition/.

31. C. Pollard and I. Sag.Head-Driven Phrase Structure Grammar. Studies in Contemporary
Linguistics. Cambridge University Press, Cambridge, England, 1994.

32. F. Pottier. A framework for type inference with subtyping. In Proceedings of the 3rd ACM
SIGPLAN International Conference on Functional Programming, pp. 228–238. ACM Press,
New York, Sept. 1998.

33. Programming Systems Lab. The MOzart Programming System, 1999. Universität des Saar-

32

landes:http://www.mozart-oz.org/.

34. D. Rémy. Type checking records and variants in a naturalextension of ML. InProceedings of
the16th ACM Symposium on Principles of Programming Languages, pp. 77–87. ACM Press,
New York, 1989.

35. D. Rémy and J. Vouillon. Objective ML: An effective object-oriented extension to ML.
Theory And Practice of Object Systems, 4(1):27–50, 1998. A preliminary version appeared
in the proceedings of the 24th ACM Conference on Principles of Programming Languages,
1997.

36. W. C. Rounds. Feature logics. In J. v. Benthem and A. ter Meulen, eds.,Handbook of Logic
and Language, pp. 475–533. Elsevier Science Publishers B.V. (North Holland), 1997. Part 2:
General Topics.

37. G. Smolka. The Oz Programming Model. In J. van Leeuwen, ed., Computer Science Today,
vol. 1000 ofLecture Notes in Computer Science, pp. 324–343. Springer-Verlag, Berlin, 1995.

38. G. Smolka and R. Treinen. Records for logic programming.The Journal of Logic Program-
ming, 18(3):229–258, Apr. 1994.

39. M. Sulzmann. Proofs of properties about HM(X). Technical Report YALEU/DCS/RR-1102,
Yale University, 1998.

40. R. Treinen. Feature constraints with first-class features. In A. M. Borzyszkowski and
S. Sokołowski, eds.,International Symposium on Mathematical Foundations of Computer Sci-
ence, vol. 711 ofLecture Notes in Computer Science, pp. 734–743. Springer-Verlag, Berlin,
30 August–3 September 1993.

41. J. van Leeuwen, ed.Handbook of Theoretical Computer Science, vol. A (Algorithms and
Complexity). The MIT Press, Cambridge, MA, 1990.

42. M. Wand. Complete type inference for simple objects. InProceedings of the IEEE Symposium
on Logic in Computer Science, pp. 37–44. IEEE Computer Society Press, 1987. Corrigendum
in LICS ’88, p. 132.

43. M. Wand. Type inference for record concatenation and multiple inheritance.Information and
Computation, 93:1–15, 1991.

33

