Type Inference for First-Class Messages
with Feature Constraints

Martin Muller! and Susumu Nishimuta

1 Universitat des Saarlandes, 66041 Saarbriicken, Germany
mmueller@ps.uni-sb.de
2 RIMS, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
nisimura@kurims.kyoto-u.ac.jp

Abstract. We present a constraint system OF of feature trees that i®ppp
ate to specify and implement type inference for first-classsages. OF extends
traditional systems of feature constraints by a selectimstaintx(y)z “by first-
class feature treg/, in contrast to the standard selection constrdifity “by fixed
feature” f. We investigate the satisfiability problem of OF and showt thean
be solved in polynomial time, and even in quadratic time ifnaportant special
case. We compare OF with Treinen's constraint system EFatirie constraints
with first-class features, which has an NP-complete satitfiaproblem. This
comparison yields that the satisfiability problem for OFwitgation is NP-hard.
Based on OF we give a simple account of type inference fordlests messages
in the spirit of Nishimura's recent proposal, and we show ithaas polynomial
time complexity: We also highlight an immediate extensioat tis desirable but
makes type inference NP-hard.

Keywords: object-oriented programming; first-class messages; @nsbased
type inference; complexity; feature constraints

1 Introduction

First-class messages add extra expressiveness to object-oriented pnagyafirst-
class messages are analogous to first-class functions in functional promgguan-
guages; a message refers to the computation triggered by the corregporativod
call, while a functional argument represents the computation executed tcasipp.
For example, anap method can be defined by means of first-class messages as follows

method map(o,l) = for each messags in I: o+ m

whereo is an object] is a list of first-class messages, and m sends message to o.

First-class messages are more common and crucial in distributed objettedlri
programming. A typical use of first-class messages is the delegatiorsgages to
other objects for execution. Such delegate objects are ubiquitoudriibatied systems:
for example, proxy servers enable access to external sereicgsftp) beyond a fire-
wall. The following delegate object defines simple proxy server:

let ProxyServer = { new(o) = { send(m) =0 < m} };

(© Springer-Verlag, to appear Proc. of Asian Computing Science Conferences (ASIAN98)

This creates an obje€roxyServer with a methodnew that receives an object The
method returns a second object that, on receipt of a message labsitdnd carrying
a messagen, forwardsm to o. To create a proxy to an FTP server, we can execute

let FtpProxy = ProxyServer «+ new(ftp);
whereftp refers to an FTP object. A typical use of this new proxy is the follgione:
FtpProxy « send(get('paper.ps.gz')

Delegation cannot be easily expressed without first-class messageshsineguested
messages are not known statically and must be abstracted over by a variable

In a programming language with records, abstraction over messages cadgspo
to abstraction over field names: For example, one might want to use admuncti
let fn X = y.x; to select the fieldk from recordy. Neither first-class messages nor
first-class record fields can be type checked in languages from the ML family such
as SML [14] or the objective ML dialect O' Caml [24].

Recently, the second author has proposed an extension to the ML typmdyst
can deal with first-class messages [18]. He defines a type inference procetiunesn
of kinded unification [20] and proves it correct. This procedure is, lvewdormally
involved and not easily understandable or suitable for further analysis

In this paper, we give a constraint-based formulation of type inferéorcérst-
class messages in the spirit of [18] that considerably simplifies thaatiformulation,
and we settle its complexity. For this purpose, we define a new @dmistiystem over
feature trees [3] that we call Oelfjectsandfeature$. This constraint system extends
known systems of feature constraints [4, 5, 27, 30] by a new tailmterwonstraint: this
new constraint is motivated by the type inference of a message sendiemehb <«

m, and pinpoints the key design idea underlying Nishimura's system.

We investigate the (incremental) satisfiability problem for OF and dhewvit can
be solved in polynomial time, and in tin@(n?) for an important special case. We also
show that the satisfiability problem for positive and negative OFstaimts is NP-hard,
by comparing OF with Treinen's feature constraint system EF [30].

Based on OF, we define monomorphic type inference for first-class mes€ages
formulation considerably simplifies the original one based on kindéitation. A key
difference between both is that we strictly separate the types (semartitsje type
descriptions (syntax), whereas the original system confused syntaearahtcs by
allowing variables in the types themselves.

From our complexity analysis of OF we obtain that monomorphic typer-
ence for first-class messages can be done in polynomial time. Incremerddlity i
portant for modular program analysis without loss of efficiency in carspn to
global program analysis. Our constraint-based setup of type inferermwesalis to
explain ML-style polymorphic type inference [10, 13] as an instanb#®F) of the
HM(X) scheme [29]: Given a monomorphic type system based on cortstyaitem X,
the authors give a generic construction of HM(X)e., type inference for ML-style
polymorphic constrained types. Type inference for the polymorphétem remains
DEXPTIME-complete, of course [11].

In the remainder of the introduction we summarize the main idea of/fieedystem
for first-class messages and of the constraint system OF.

1.1 The Type System

The type system contains types for objects and messages and explains pehaf ty
messages can be sent to a given object type. An object type is a labeled colléction o
method typesi(e., a product of function types distinguished by labels) markeddjy

E. g, the object

let o = { pos(x) = x>0, neg(p) = — p}

implements two methodgos and neg that behave like functions from integer

and boolean to boolean, respectively. Hence, it has an objectdtyjjpos:int —

bool, neg:bool — bool).: When a messagigM) is sent to an object, the corresponding
method is selected according to the message lalagld then applied to the message
argumentM. Since a message parameter may refer to a variety of specific messages at
run-time, it has a message type markednsy that collects the corresponding types (as

a sum of types distinguished by labels). For example, the expression

m = if b then pos(42) else neg(true);

defines, depending dn a messagen of message typensg(pos:int,neg:bool). The
expressiom < m is well-typed since two conditions hold:

1. For both labels that are possible far pos andneg, the objecto implements a
method that accepts the corresponding message arguments ofttgpéool.

2. Both methodpos andneg have the same return type, héil. Thus the type of
o < m is unique even though the message type is underspecified.

These are the crucial intuitions underlying Nishimura's type sy$te8h Our type
inferences captures these intuitions fully. Formally, however, ope ipference im-
plements a type system that does not exactly match the original one: Sslighitly
weaker and hence accepts more programs than Nishimura's. This weakness is crucial
in order to achieve polynomial time complexity of type inference. Hawvgtype infer-

ence for a stronger system that fills this gap would require bothipesihd negative

OF constraints and thus make type inference NP-hard.

1.2 Constraint-based Type Inference

It is well-known that many type inference problems have a natural anpleiformu-
lation as the satisfiability problem of an appropriate constraint sygem[21, 32]).
Constraints were also instrumental in generalizing the ML-type systemrds record
polymorphism [20, 23, 33], overloading [6, 19] and subtyping]1i(see also [29]).

Along this line, we adoptfeature trees[3] as the semantic domain of the
constraint system underlying our type system. A feature tree is abbosefi-
nite tree with unordered marked edges (calfedture$ and with marked nodes
(called labelg, where the features at the same node must be pairwise different.

1 Notice that the colons in the typj(pos:int — bool, neg:bool — bool) do not separate items
from the annotation of their types, but rather the field nafras the associated type compo-
nents. This notation is common in the literature on feattees and record typing.

For example, the picture on the right shows a feature tree
with two featuresonf andyear that is labeled withpaper
at the root andsian resp.1998 at the leaves. com/ Near
Feature trees can naturally model objects, records,
and messages as compound data types with labeled cogsian 1998
ponents. A base type likiat is a feature tree with label
int and no features. A message typeg(f1:11,..., faiTy) is a feature tree with label
msg, features{ f1,..., fn}, and corresponding subtre€s, ..., T, }, and an object type
obj(fi:ty = T},..., falTah = 1, is a feature tree with labelbj, features{ fy,..., fn},
and corresponding subtrees— 1} throught, — Ty; the arrow notatiomr — 1" in turn
is a notational convention for a feature tree with labehlnd subtrees, T’ at fixed and
distinct featuresl andr, the names of which should remind of “domain” and “range”.
Feature trees are the interpretation domain for a class of constraint |laasgregd
feature constraintf4, 5, 16, 27, 30]. These are a class of feature description logics, and,
as such, have a long tradition in knowledge representation and in catigmat lin-
guistics anctonstraint-based grammaf22, 25]. More recently, they have been used to
model record structures in constraint programming languages [2, 26, 27]
The constraint language of our system OF is this one:

paper

¢ = 0Ad' | x=ylaX [Xfly [F() | xy)z

The first three constraints are the usual ones: The symhi@notes equality on feature
trees,a(x) holds if x denotes a feature tree that is labeled vatét the root, and(|fly
holds if the subtree of (the denotation afat featuref is defined and equal tp For
a set of featuref, the constrainE (x) holds if x hasat mostthe features irF at the
root; in contrast, the arity constraint of CFT [27] force® haveexactlythe features in
F. The constraink(y)zis new. It holds for three feature treg Ty, andt; if (i) Tx has
more features at the root thay) and if (i) for all root featured atty, the subtree ofy
at f equalsty.f — 1, (Whererty.f is the subtree ofy at f).

It is not difficult to see thak(y)z is tailored to type inference of message sending.
For example th€roxyServer above gets the following polymorphic constrained type:

Yoy .obj(a) Amsg(B) Aa(B)y= {new:a — {send:} — y}}

Using notation from [29], this describes an object that accepts a messagaladel
with argument type, returning an object that accepts a message lalseled with
argument typg and has return typg the type expresses the additional constraint that
o be an object typep be a message type appropriate égrand the corresponding
method type iro has return typg.

Plan. Section 2 defines the constraint system OF, considers the complexityaiti
isfiability problem, and compares OF with the feature constraint systemmsthe lit-
erature. Section 3 applies OF to recast the type inference for first-class e®ssal
compares it with the original system [18]. Section 4 concludes the paper.

Some of the proofs in this paper are only sketched for lack of space. Thdatemp
proofs are found in an appendix of the full paper [17].

2 The Constraint System OF

2.1 Syntax and Semantics

The constraint system OF is defined as a class of constraints along witinteegare-
tation over feature trees. We assume two infinite §éisf variables xy,z ..., and ¥
of features f..., where# contains at leasd andr, and a set. of labels ab,... that
contains at leasty: The meaning of constraints depends on this label. We wifite a
sequenceay, ..., X, of variables whose lengtihdoes not matter, arxly for a sequence
of pairsxi:y1, ..., Xn:yn. We use similar notation for other syntactic categories.

Feature Trees. A pathTtis a word over features. Trampty pathis denoted by and
the free-monoid concatenation of pathand asTut; we haveenm = T = 1. Given
pathsrtandtt, 1 is called aprefix oftif = 'n” for some patht’. A tree domainis
a non-empty prefix closed set of pathsfefature treer is a pair(D,L) consisting of a
tree domairD and alabeling function L. D — L. Given a feature treg, we write Dy
for its tree domain andl; for its labeling function. Tharity ar(1) of a feature tree is
defined byar(t) = D: N ¥ . If Tt € Dy, we write ast.Tithe subtree of at pathrt formally
Din={m | Tt € D} andL, = {(1W,a) | (107,a) € L;}. A feature tree idinite if
its tree domain is finite, anohfinite otherwise. Thecardinality of a setSis denoted
by #S. Given feature trees, . .., Tp, distinct featureds, ..., f,, and a labeh, we write
asa(f1:14,. .., fniTn) the feature tree whose domain &, { firt | e Dy, } and whose
labelingis{(e,a)} UUL{(fim.b) | (Tt b) € Ly, }. We user; — 12 to denote the feature
treet with Ly = (g,—), ar(1) = {d,r}, 1.d = 11, andt.r = 1».

Syntax. An OF constraint¢ is defined as a conjunction of the followinggimitive
constraints:

X=Yy (Equality)

a(x) (Labeling)

X[fly (Selection)

F(x) (Arity Bound)
x(y)z (Object Selection)

Conjunction is denoted by. We write¢’ C ¢ if all primitive constraints inp’ are also
contained inp, and we writex=y € ¢ [etc.] if x=y is a primitive constraintip [etc.].

We denote withF(¢), L(¢), andV () the set of features, labels, and variables occurring
in a constrainty. Thesize $¢) of a constraint is the number of variable, feature, and
label symbols ird.

Semantics. We interpret OF constraints in the structyfe of feature trees. The sig-
nature ofF T contains the symbeat, the ternary relation symbe(-)-, for everyae L
a unary relation symbda(-), and for everyf € ¥ a binary relation symbol f]-. We
interpret= as equality on feature trees and the other relation symbols as follows.

a(1) if (g8 €l

T[flv if tf=1

F(t if ar(t)CF
/

)
7o' if Vfear(t):fear(t)andt.f =1.f > 1/

Let ® and @' be first-order formulas built from OF constraints with the usuat-fir
order connectivey, A, -, —, etc, and quantifiers. We catp satisfiable(valid) if ®
is satisfiable (valid) inf 7. We say thatb entails®’, written ® |=,. @', if ® — @' is
valid, and thatd is equivalento @' if ® < @' is valid.

A key difference between the selection constraiht$y andx(y)zis that “selection
by (fixed) feature” is functional, while “selection by (first-class) featuee” is not:

XflyAX(fly = y=Y 1)
xXWzZAX(y)Z A z=27)

The reason for the second equation not to hold is yiratly have no subtrees: In this
case, the constraimnty)z does not constrainat all. . e., this implication holds:

{}(y) — vzxy)z (3)

If, howevery is known to have at least one feature at the root, then selectingboih
Z byy from x implies equality oz andZz:

VITlY Axty)zaxiy)Z - = z=7 (4)

OF cannot express thgthas a non-empty arity; rather, to express thdias some
feature it must provide a concrete witness. Using negation, this caxpressed as
-{}(x). However, while satisfiability for OF is polynomial, it becomes N&rhif it is
extended such that{}(x) can be expressed (see Section 2.3).

Feature Terms. For convenience, we will occasionally use feature terms [3] as a
generalization of first-order terms: Feature tertmare built from variables by fea-
ture tree construction lika(fy:ts,.. ., foitn), where again the featurds, ... f, are re-
quired to be pairwise distinct. Equations between feature terms caralghsiorwardly
expressed as a conjunction of OF constraints y, a(x), F(x), x[f]y, and existen-

tial quantification. For example, the equative= a(f:b) corresponds to the formula
Ay (@) A {fH(x) AX[flyADb(y) A{}(y)). In analogy to the notatioty — T2, we use the
abbreviatiorx = y — z for the equatiox = —(d:y,r:2).

2.2 Constraint Solving

Theorem 1. The satisfiability problem of OF constraints is decidable in inczatal
polynomial space and time.

For the proof, we define constraint simplification as a rewritingesyion constraints in
Figure 1. The theorem follows from Propositions 1, 2 and 3 belale&(Substitution),
(Selection), (Label Clash), and (Arity Clash) are standard. Rules (Rritpagation
I/ll) reflect the fact that a constraimty)z implies the arity bound or to subsume the
one ory. (Arity Intersection) normalizes a constraint to contain at most onglaoiind
per variable. (Object Selection |) reflects tlg)z implies all features necessary fpr
to be also necessary ferand (Object Selection I1) establishes the relatior, gf andz
at a joint featuref.

dAX=Yy

_ if xe fv(d) (Substitution)
oly/X Ax=y
M (Selection)
dAX[flzAy =12
¢ AXy)ZAF (Y if not existsF' : F'(y) € ¢ (Arity Propagation I)

& AX(Y)ZAF (X) AF(y)

¢ AX)ZAFIAF'Y) if FNF'£F' (Arity Propagation 1)
O AX(Y)ZAF(X) AFNF'(y)
M (Arity Intersection)

dAFNF'(x)
L if x(y)zAy[f]ly € ¢ and (Object Selection 1)
dAXF]X not existsz: x[f]ze ¢, X fresh
if x(y)zAy[fly AX[f]X € ¢ and (Object Selection I1)
OAX =y =z X=y —>z¢¢
$AabIABE) itab (Label Clash)

fail

AP0 AT it f ¢ F (Arity Clash)

fail
Fig. 1. Constraint Solving Rules

Notice that the number of fresh variables introduced in rule (Object Setebtis
bounded: This rule adds at most one fresh variable per consxgjatand featuref
and the number of both is constant during constraint simplificationttte subsequent
analysis, it is convenient to think of the fresh variables as fixed in advareed;lwe
define the finite setV'(¢) =qer V(¢) U{vx s € V |XEV(9), T € F(d), vy s fresh}.

Remark 1.In addition to the rules in Figure 1, there are two additional rulssfjad
by implications (3) and (4):
o AX(y)z
¢

P AX(Y)ZAX(Y)Z
dAX(Y)zAZz="2Z

if {}y)eo (Empty Message)

if y[fly € ¢ (Non-empty Message)

The first one is just a simplification rule that does not have an impetttosatisfiability
check. It helps reducing the size of a solved constraint and therefore gmeesand
time. Secondly, compact presentation of a solved constraint can be crucialtypth
inference application where solved constraints must be understoodgyaprmers.
The second one is a derived rule that should be given priority ovef{@bject Selection

.
Proposition 1. The rewrite system in Figure 1 terminates on all OF constrajnts

Proof. Let ¢ be an arbitrary constraint. Obviousky(¢) is a finite set and the number
of occurring features is fixed since no rule adds new feature symbols. @go@tall
that the number of fresh variables introduced in rule (Object Selectiandpunded.
Call a variablex eliminatedn a constraink=yA ¢ if x¢Z V(¢). We use the constraint
measuréO1,0,, A E,S) defined by

(O1) number of sextuplesx,y,z,X,y,f) of non-eliminated variableg,y,z X,y €
V'(¢) and features € F () such thak(y)zAX[f]X Ay[f]y e p butX =y — z& .

(02) number of tuplegx, f) of non-eliminated variables € V'(¢) and featured €
F(¢) such that there existgy andz with x(y)zAy[f]y € ¢ butx[f]X ¢ ¢ for
anyx.

(A) number of non-eliminated variabless V'(¢) for which no arity bound-(x) € ¢
exists.

(E) number of non-eliminated variables.

(S size of constraint as defined above.

The measure of is bounded and strictly decreased by every rule application as the
following table shows. this proves our claim.
01|02 A
(Arity Propagation 1l) =
(Arity Intersection)
(Selection)
(Substitution)

(Arity Propagation I)
(Object Selection 1)
(Object Selection 11)

m

VVVIAANANWD

IA

A AN
Vv AIAN
v Al

O

A

Proposition 2. We can implement the rewrite system in Figure 1 such that it uses space
O(n®) and incremental time °), or, if the number of features is bounded, such that it
uses linear space and incremental timéng).

Proof. We implement the constraint solver as a rewriting on péR$) whereS is
the store that flags failure or represents a satisfiable constraint ilveddorm, and
whereP is the pool (multiset) of primitive constraints that still must ddded ts. To
decide satisfiability ob we start the rewriting on the pool of primitive constraintsin
and the empty store and check the failure flag on termination.

For lack of space, we defer some involved parts of the proof to the funjajz].

Definen; = #V(0), ny=n;-ns = #V'(¢), n = #L(d), n; = #F(¢). In the full paper,
we define a data structure for the store that consists of a uniodditadstructure [12] for

equations, tables for the constraiatg), F (x), andx| f]z, a list for constraintg(y)z, and
two adjacency list representations of the graphs whose nodes are iflevaniiables,
and whose edg€s, y) are given by the constraintgy)z for the first one ang(x)z for
the second one. (See appendix of the full paper [17] for details). Thasstlaicture has
size
O(ni-ng+ni+ny-ne+ni-ng+n) = O(ny-ng+n)

which is O(n) if the number of features is assumed constant @(wf) otherwise. It
also allows to check in tim@®(1) whether it contains a given primitive constraint; and
to add it in quasi-constant tinfeThis is clear in the non-incremental (off-line) case
whereny, nj, ng,andng are fixed. In the incremental (on-line) case, wheygen;, ns,
andns may grow, we can use dynamically extensible hash tables [7] to retain constan
time check and update for primitive constraints.

Each step of the algorithm removes a primitive constraint from thé Ppadds it
to the storeS, and then derives all its immediate consequences under the simplification
rules: Amongst them, equatiors= y and selectiong[f]y are put back into the pool,
while selectionx(y)z and arity bound§ (x) are directly added to the store.

We show that every step can be implemented such that it cost€time n; - n¢).3
(The complete analysis of this time bound can be found in appendixeofuth pa-
per [17]). We also show that every step may at most@@g equations an®(ny) se-
lection constraints of the for f]y. It remains to estimate the number of steps: There
are at leasO(n) steps needed for touching all primitive constraintgin

— Amongst the new equations, there are at n@(st,) relevant ones, in the sense that
one can at most executg equations before all variables are equated. That is, all
butO(ny) equations cost constant time.

— Amongst the new selection constraint, there are at r@gs{ - n;) relevant ones
since adding a selection constraiht]y induces immediate work only i has no
selection constraint ohyet. The others will generate a new equation and terminate
then. Hence, all bud(ny - n¢) selection constraints cost constant time.

In summary, there ar®(n+ ny - n¢) steps that cogd(n + n; - n¢). Each of these steps
may addO(n) equations an@®(ny) selections each of which may add a new equation
itself. Hence we hav®((n+ny-n¢) - (n+ny)) steps that cosd(1). Overall, the algo-
rithm has the complexity

O((n+ny-n¢)-(N+ni-nf)+ (n+ny-ng) - (n+ny)-1) = O((N+ny-ng)-(N+n;-ng))

SinceO(n¢) = O(n) andO(ny,) = O(n; -n¢) = O(n?), this bound iLO(n®). If the number
of features is bounde@(n,) = O(n;) = O(n), so the bound is rath@(n?). m|

Notice that a constraint system of records with first-class record labelsained
as an obvious restriction of OF and the above result implies the saraetimplexity
bound as OF.

2 All constraints except equations can be added in @), but addition of an equation costs
amortized timeD(a(ny)) wherea(ny) is the inverse of Ackermann's function. For all practical
purposesg (ny) can be considered as constant.

3 To be precise, each step coSt@ 1+ n; - n¢ +a(ny)) which we sloppily simplify tad(n+n; -n¢).

Proposition 3. Every OF constraing which is closed under the rules in Figure 1 (and
hence is different from fail) is satisfiable.

Proof. For the proof, we need to define a notion of path reachability similaremhe
used in earlier work, such as [15, 16]. For all pathand constraintg, we define a
binary relation<s;;, wherex~» y reads asy is reachable front over pathrtin ¢”:

x&s X for everyx

xgsy if y=xedorx=yed

ng y if Xflyeo

xgmy if x&nzandzﬁ»ﬂ V.

Define relationx ,ﬂ;n ameaning that “labed can be reached fromover pathrtin ¢”:

x'gna if xgnyanda(y)ecb

Fix an arbitrary labelnit. For every closed constraifitwe define the mapping from
variables into feature trees defined as follows.

Day = {m| existsy: x&ny}
Loy = {(ma) | x-Sra}U{(munit) | € Dygy but Za: x-Sy a)

It remains to be shown that defines a mapping into feature trees for closed con-
straintsp, and thatr indeed satisfie$. This can be done by a straightforward induction
over pathst |

2.3 Relation to Feature Constraint Systems

We compare OF with feature constraint systems in the literature: Given-gdrted
signature with variablegy,z ... andu,v,w,... ranging over feature trees and features,
resp, collections of feature constraints from the following list have, agst others,
been considered [3, 27, 30]:

¢ u= x=ylaX | xfly| Fx|u=1]xuy]|¢r¢

The constraintg =y, a(x), andx|f]y are the ones of OF. The arity bouRd (whereF
is a finite set of features) states thidtasexactlythe features i at the root.

Ft if ar(t)=F

Apparently, both arity constraints are interreducible by means of rdiipns:
F(X) ¢ Vg cg F'x. The constraints of FT [3] contak=y, a(x), andx[f]y, CFT [27]
extends FT by¥x, and EF [30] contains the constraintsy, a(x), x = f, Fx, andx{uly.

The satisfiability problems for FT and CFT are quasi-linear [27]. Intrest, the
satisfiability problem for EF is NP-hard, as Treinen shows by redudiegninimal
cover problem to it [9, 30]. Crucial in this proof is the followingplication

n
{fi,....falxAxuly = \u=f
i=1

In order to express a corresponding disjunction in OF, we need etiidtgmantification
and constraints of the form{}(y)

n
{fo.) AXZA-{}Y) = \/3zy[fi]a
i=1
With this new constraint we reduce the satisfiability check for EF tatrefor OF.

Proposition 4. There is an embeddinf]] from EF constraints into OF with negative
constraints of the form{}(x) such that every EF constraigtis satisfiable iff[$] is.

Proof. Labelinga(x) and equalityx = y translate trivially. Now assume two special
labelsunit andlab; we use these to represent labkls EF by feature treelab(f:unit).

[u=f] = 3Ix(lab(u) A {f}(u) AU[f]XxA unit(X) A {}(x))
[x{uly] = XUy A={}(u)
[{fe,.... X = {fr., T} O A AL, 3y X fily

To show that satisfiability of an EF constraintimplies satisfiability of the OF con-
straint [¢] we map every EF solution af to an OF solution of[¢] by replac-
ing every featuref by lab(f:unit) and every feature tree of the fora{f:1...) by
a(fiunit > 1...).

For the inverse, we take a satisfiable OF constfifitand construct an OF solution
of [¢] which maps all variables in selector position ix(u)y to a feature tree with
exactly one feature. From this solution we derive an EF solutigntof replacing these
singleton-feature trees by their unique feature. Notice that the gnlatinstructed in
the proof of Proposition 3 does not suffice since it may mapa feature tree without
any feature.

Formally, we extend the definition of path reachcalbility)by?i»,T F meaning that
“arity boundF can be reached fromover pathrtin ¢”:

X&T[F if x&nyandF(y)ed)

We assume an order dn(¢), and, for non-empty, let min(F) denote the smallest
feature inF wrt. this order. We defina as follows:

Day = {m| existsy: xgny}u{nf | xgn F, f =min(F)}
Loy = {(ma) | x-bra}U{(munit) | € Dyy, Za: x-ral}

By the constraint-{}(u) in the translation ok(u)y we know that, for closed and non-
failed ¢, the seF must be non-empty in the first line. Henceis a well-defined map-

ping into feature trees. It is easy to show thatatisfiesp and thair corresponds to an
EF solution as sketched above. |

Corollary 1. The satisfiability problem of every extension of OF that can express
—{}(x) is NP-hard.

For example, the satisfiability problem of positive and negative Qfstraints is NP-
hard.

x:terl O,FEM:t" b=t msg(f:t))
p.rext VAR 5T Fbitypeof(b) CONST O.FF F(M):t Mse

¢, 0%t -M:t) foreveryi=1,...,n
¢7r F {fl(x:]_) = M]_, ceey fn(Xn) = Mn} OII)J('I:]_t:I_*}tIg7 cey fntn*}t{])

OBJ

O,F=M:ty ¢,T=N:tp ¢ =orobj(ts) A msg(t2) Aty (to)ts
¢,TFM <« N:t3

MsGPAss

o,My:h-Mity ¢, Fyiti N
¢,FFlety=MinN:ty

LET (monomorphic)

Fig. 2. The Monomorphic Type System

3 Type Inference

We reformulate the type inference of [18] in terms of OF constraintsin&hat paper,
we consider a tiny object-oriented programming language with thisaathstyntaxt

M &= b (Constant)
| x (Variable)
| (M) (Message)
| {fi(x1) =Mz,..., fa(Xn) = Mn} (Object)
| M<N (Message Passing)
| lety=MinN (Let Binding)

The operational semantics contains no surprise (see [18]). For tks, tye assume
additional distinct labelsnsg andobj to mark message and object types, and a set of
distinct labels such ast, bool, etc, to mark base types. Monomorphigpesare all
feature trees over this signature; monomorpyie termsare feature terms:

t = «a (Type variable)
| int]bool]... (Base type)
| msg(fiity,..., faitn) (Message type)
| obj(friti—t],..., fath—t)) (Object type)

Somewhat sloppily, we allow for infinite (regular) feature termshsas to incorporate
recursive types without an expliqit notation. Recursive types are necessary for the
analysis of recursive objects. We assume a mapipepf from constants of base type
to their corresponding types. We also usekimlingnotationx :: a(f1:ty, ..., foity) to
constrairx to a feature tree whose arity is underspecifeedy, a(x) A AiLq X[fi]ti.

Monomorphic Type Inference. The monomorphic type system is given in Figure 2.
As usual,l is a finite mapping from variables to type terms dna : t extendd” so

4 In contrast to [18], we drofetobj and allowlet to introduce recursively defined expressions.

I(x,b) = aX)A{}(x) if a= typeof(b)
I(xy) = X=y
1(x,f(M)) = 3y (msg(X) AX[f]yAI(y,M))
I(%{f1(x1) =Mg,.... fa(Xn) =Mn}) = obj(X) A{f1,..., fn}(X)A

ALp 3% X FZ(X[fi]X AX =% — ZA 1(z,M)))
I(x,M < N) = 3y3z(y(2xAobj(y) A I(y,M)Amsg(z) A I(z,N))

I(x,lety=MinN) 3y (I(y,M)AI(x,N))

Fig. 3. Monomorphic Type Inference for First-Class Messages wkhdonstraints

that it maps variablgtot. The type system defines judgmedt$ - M : t which reads
as “under the type assumptionslirsubject to the constrairt, the expressioM has
typet”;> the constrainty in well-formed judgements is required to be satisfiable. We
do not comment further on the type system here but refer to [18] faitioms and
to [28,29] for notation. The corresponding type inference is giveRigure 3 as a
mapping! from a variablex and a program expressiois to an OF constraint such
that every solution oxin I(x,M) is a type ofM. For ease of reading, we use the bound
variables in program expressions as their corresponding type vari@olesctness of
the type inference with respect to the type system is obvious, andlitahe clear that
soundness of the type system (with respect to the assumed operatioaatissjrcan
be shown along the lines given in [18]. The type inference generates mainhehose
size is proportional to the size of the given program expressioncéjeme know from
Proposition 2 that type inference can be done in polynomial time aakSp

Let us give some examples. To reduce the verbosity of OF constraiatshall
freely use feature term equations as introduced above. First, the statement

let 01 = {succ(x)=x+1, pos(x)=x>0};

defines an object with two methosiscc : int—int andpos : int—bool. Type inference
gives the type of this object as an OF constraint on the type varatdquivalent to

$1 = 01 =obj(succ:int—int,pos:int—bool).
A delegate object for the objeacl is defined as follows:
let 02 = {redirect(m)= ol + m};

wherem is a parameter that binds messages to be redirecteld fsssuming the vari-
ableo; to be constrained by, the constraing, restrictso, to the type ob2:

5 This terminology is slightly sloppy but common: Sirtamay contain type variables it is rather
a typetermthan a type and it would be accurate to say Mdias “some type matchirig.

6 To be precise, we have to show that every satisfiable OF eimstterived by type inference
is satisfiable in the smaller domain of types; this is easy.

¢2 = 3Im3Iz (o = obj(redirect : m—2z) A 01(M)zA msg(m)).
The return type of a message passing to this obgedf,
let w = 024 redirect(succ(1));
is described as the solution f A ¢2 A ¢3 for the type variablev, where
d3 = TIZ (02(Z)WAZ :: msg(redirect : msg(succ:int))),

The solved form ob1 A §2 A d3 contains the primitive constraintt(w), which tells the
intended result typant.
If o1 does not respond to the message argumerddifect, for instance as in

let v = 02« redirect(pred(1))

Y

atype error is detected as inconsistency in the derived constraint. Hemrihtraint
b4 = 3IZ (02(Z)W AZ :: msg(redirect : msg(pred : int)))

implies3Z (01(Z)W AZ :: msg(pred : int)), and hence that; has a featurgred which
contradictsp, by an arity clash.

Now recall that in OF the implicatior(y)zA x(y)Z — z = Z doesnot hold. The
following example demonstrates how this weakness affects typing aadrigrence.

let o1 = {a(x)=x+1, b(x)=x>0} in 02 = {b(x)=x=0,c(x)=x*2}
in 03 = {foo(m)= begin 0l m; 02<—m end};

It is easy to see that tHeo method always returnisool, since the argument message
of foo must be accepted by both the objestsando2, which share only the method
nameb. However, type inference for this program derives (essentially) thetaint

01 = obj(a:int—int,b : int—bool) Aoy = obj(b : int—bool, c: int—int)A
03 = obj(foo : M—2) Ao1(Myzy A ox(M)22

Herein, the result type of the methodoo is neither entailed to equal norz. This is
reasonable since the messagi this program is not sent and hence may safely return
anything. By a similar argument, the following program can be constiacceptable:

let 01 = {a(x)=x+1} in 02 = {c(x)=x*2}
in 03 = {foo(m)= begin if b then 0l¢<m else 02<—m end}

One may complain that this kind of methods should be detected as a typeMaro
nipulating the type system and the type inference to do this is eagyju3hneeds to
exclude typesnsg(), i. e, message types without any feature. However, recall that the
polynomial time complexity of the analysis depends on this weaknégscadrrespond-

ing clause in the type inference

I(x, £(M)) =3y (={}(x) Amsg(x) AX[flyA I(y,M))

generates OF constraints with negation such that constraint solvindhéae, type
inference) would become NP-hafd.

7 The altered type inference does still not exactly corredporthe original. For example, we
would not accept message sending to an empty object fF 4 m, while the original one
does.

Polymorphic Type Inference. We can obtain the polymorphic type inference by ap-
plying the scheme HM(X) [29]. The constraint system OF is a viablamater for
HM(X) since it satisfies the two required properties, called coherence amdlisess.
Both rely on a notion of monomorphic types, in our case, given by fedtees; it does
no harm that these may be infinite. Té@herenceroperty requires that the considered
order on types is semantically well-behaved; this is trivial in our caseesive only
consider a trivial order on feature trees. Hueindnesproperty that a solved constraint
indeed has a solution follows from Proposition 3.

Comparison with Nishimura. In Nishimura's original type system [18], abbreviated
as D in the following, constraints are modeled as kinded type variableskifaings
have a straightforward syntactic correspondence with OF constridietsiessage kind-
ingx:: {(fi:t1,..., faitn))F correspondsta:: msg(fi:ts,.. ., foith) AF(X) and the object
kindingx:: {y1—=t1,...,Yn—=ta}g corresponds tobj(x) A AL 1 X(yi)ti A F(X).

Our reformulation HM(OF) of D is in the same spirit as the reformulation
HM(REC) [29] of Ohori's type system for the polymorphic recordcodis: Both re-
cast the kinding system as a constraint system. One might thus expeetation ofD
and HM(OF) to be as close as that between Ohori's system and HM(REC) whih t
exactly the same programs (“full and faithful”); this is, however,thetcase.

There is a significant difference between the the kind systeth and OF. InD,
kinded types may contain variables,g, an object returning integers as a response to
messages of typgreceives the kindy—int}r. On unifying two types with kindings
{y—int}g and{y— 7}, the type inference fab unifieszandint since it issyntactically
known that bottz andint denote the type of the response of the same object to the same
message. Thus i, the name of type variables is crucial. In this paper, variables only
occur as part of type descriptionis€., syntax) while the (semantic) domain of types
does not contain variableB. g, we understandy—int} not as atypebut as part of a
type descriptionwhich can be expressed by a constraint bk@x) A x(y)int.

As a consequence, well-typedness in our system does not depend on the €hoice o
variable names but only on the type of variables. This is usual for ile-type systems
but does not hold fof). Consider the following example:

{foo(m) = (0o<m) + 1; (0o<m) & true}

This program is accepted by the OF-based type system, since the coriimgint A
o{m)bool is satisfiable. The type systef, however, rejects it after trying to unifyt
andbool during type inference. To insist that this is a syntactic argumentathiat?D
accepts the following program, whesés replaced by the object const&fijt

{baz(m) = ({}+m) + 1; ({}¢+m) & true}

4 Conclusion

We have presented a new constraint system OF over feature trees and atedgstig
complexity of its satisfiability problem. OF is designed for specifaatind implemen-
tation of type inference for first-class messages in the spirit of Migha's system [18].

We have given a type system for which monomorphic type inferende @it con-

straints can be done in polynomial time; this system is weaker than ifjieairone,

but the additional expressiveness would render monomorphic tygesirce NP-hard
as we have shown. Given OF, we can add ML-style polymorphism baritiating the
recent HM(X) scheme to the constraint system OF.

Acknowledgements.We would like to thank the members of RIMS, Andreas Rossberg
and Joachim Walser for careful proofreading and feedback, as well as Martin Sulzmann
for extensive discussion on HM(X). We also acknowledge helpful resafrkhe refer-

ees.

References

1. A. Aiken and E. Wimmers. Type inclusion constraints arqktinference. IProceedings
of the 6" ACM Conference on Functional Programming and Computer itecture pp.
31-41. ACM Press, New York, June 1993.

2. H. Ai-Kaci and A. Podelski. Towards a meaning of lifee Journal of Logic Programming
16(3 — 4):195-234, July, Aug. 1993.

3. H. Ali-Kaci, A. Podelski, and G. Smolka. A feature-basaustraint system for logic pro-
gramming with entailmentTheoretical Computer Sciencg&22(1-2):263-283, Jan. 1994.

4. R. Backofen. A complete axiomatization of a theory withtéee and arity constraints.
The Journal of Logic Programmin@4(1 — 2):37-71, 1995. Special Issue onComputational
Linguistics and Logic Programming.

5. R.Backofen and G. Smolka. A complete and recursive fedh@ory.Theoretical Computer
Science146(1-2):243-268, July 1995.

6. F. Bourdoncle and S. Merz. Type checking higher-ordeymotphic multi-methods. In
Proceedings of the 224 ACM Symposium on Principles of Programming Languages
302-315. ACM Press, New York, Jan. 1997.

7. M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer Auf Dédeide, H. Rohnert, and R. E.
Tarjan. Dynamic perfect hashing: Upper and lower bour8AM Journal of Computing
23(4):738-761, Aug. 1994.

8. J. Eifrig, S. Smith, and V. Trifonow. Type inference focuesively constrained types and
its application to object-oriented programminBlectronic Notes in Theoretical Computer
Sciencel, 1995.

9. M. R. Garey and D. S. Johnsoi€omputers and Intractability: A Guide to the Theory of
NP-CompletenesdV.H. Freeman and Company, New York, 1979.

10. R. Hindley. The principal type scheme of an object in coratory logic. Transactions of
the American Mathematical Society16:29-60, Dec. 1969.

11. H. G. Mairson. Deciding ML typebility is complete for @eministic exponential time. In
Proceedings of the #7 ACM Symposium on Principles of Programming Languages
382-401. ACM Press, New York, Jan. 1990.

12. K. Mehlhorn and P. Tsakalides. Data structures. In vaeuisen [31], chapter 6, pp. 301—
342.

13. R. Milner. A theory of type polymorphism in programmidgurnal of Computer and System
Science17(3):348-375, 1978.

14. R. Milner, M. Tofte, R. Harper, and D. MacQuedrhe Definition of Standard ML (Revised)
The MIT Press, Cambridge, MA, 1997.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

M. Miiller, J. Niehren, and A. Podelski. Inclusion caasits over non-empty sets of trees.
In M. Bidoit and M. Dauchet, edsBroceedings of the Theory and Practice of Software De-
velopmentvol. 1214 ofLecture Notes in Computer Scienpp. 345-356. Springer-Verlag,
Berlin, Apr. 1997.

M. Miller, J. Niehren, and A. Podelski. Ordering coastts over feature trees. In
G. Smolka, ed.Proceedings of the's International Conference on Principles and Practice
of Constraint Programmingvol. 1330 ofLecture Notes in Computer Sciengp. 297-311.
Springer-Verlag, Berlin, 1997. Full version submitted pesial journal issue of CP'97.

M. Muller and S. Nishimura. Type inference for firstsdanessages with feature constraints.
Technical report, Programming Systems Lab, Universits 8aarlandes, 1998http:
/Iwww.ps.uni-sb.de/Papers/abstracts/FirstClass98.html

S. Nishimura. Static typing for dynamic message$rbreedings of the Q'SACM Sympo-
sium on Principles of Programming Languagpp. 266—278. ACM Press, New York, 1998.
M. Odersky, P. Wadler, and M. Wehr. A second look at oagtilog. InProceedings of the
7th ACM Conference on Functional Programming and Computer itecture ACM Press,
New York, 1995.

A. Ohori. A polymorphic record calculus and its compdat ACM Transactions on Pro-
gramming Languages and Systerhig(6):844-895, 1995.

J. Palsberg. Efficient inference of object typesPtaceedings of the!® IEEE Symposium
on Logic in Computer Sciencpp. 186—-185. IEEE Computer Society Press, 1994.

C. Pollard and I. SagHead-Driven Phrase Structure GrammaS$tudies in Contemporary
Linguistics. Cambridge University Press, Cambridge, Bnd| 1994.

D. Rémy. Type checking records and variants in a nagxtahsion of ML. InProceedings
of the 16" ACM Symposium on Principles of Programming Languages 77—-87. ACM
Press, New York, 1989.

D. Rémy and J. Vouillon. Objective ML: A simple objeciemted extension of ML. In
Proceedings of the 2 ACM Symposium on Principles of Programming Languages
40-53. ACM Press, New York, 1997.

W. C. Rounds. Feature logics. In J. v. Benthem and A. terléte eds.Handbook of Logic
and Languagepp. 475-533. Elsevier Science Publishers B.V. (North &fal), 1997. Part
2: General Topics.

G. Smolka. The Oz Programming Model. In J. van LeeuwenCaanputer Science Today
vol. 1000 ofLecture Notes in Computer Scienpp. 324—-343. Springer-Verlag, Berlin, 1995.
G. Smolka and R. Treinen. Records for logic programmirige Journal of Logic Program-
ming 18(3):229-258, Apr. 1994.

M. Sulzmann. Proofs of properties about HM(X). Techinigport YALEU/DCS/RR-1102,
Yale University, 1998.

M. Sulzmann, M. Odersky, and M. Wehr. Type inference wihstrained types (extended
abstract). In B. Pierce, ecProceedings of the'# International Workshop on Foundations
of Object-oriented Programmindan. 1997. Full version to appear in TAPOS, 1998.

R. Treinen. Feature constraints with first-class festurin A. M. Borzyszkowski and
S. Sokotowski, edsinternational Symposium on Mathematical Foundations om@oter
Science vol. 711 of Lecture Notes in Computer Scieng®. 734-743. Springer-Verlag,
Berlin, 30 August-3 September 1993.

J. van Leeuwen, eddandbook of Theoretical Computer Sciengel. A (Algorithms and
Complexity). The MIT Press, Cambridge, MA, 1990.

M. Wand. Complete type inference for simple objects.Pitaceedings of the IEEE Sym-
posium on Logic in Computer Scienqg. 37—-44. IEEE Computer Society Press, 1987.
Corrigendum in LICS '88, p. 132.

M. Wand. Type inference for record concatenation andiptelinheritance. Information
and Computation93:1-15, 1991.

