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Abstract. We present a constraint system OF of feature trees that is appropri-
ate to specify and implement type inference for first-class messages. OF extends
traditional systems of feature constraints by a selection constraintxhyiz “by first-
class feature tree”y, in contrast to the standard selection constraintx[ f ]y “by fixed
feature” f . We investigate the satisfiability problem of OF and show that it can
be solved in polynomial time, and even in quadratic time in animportant special
case. We compare OF with Treinen's constraint system EF of feature constraints
with first-class features, which has an NP-complete satisfiability problem. This
comparison yields that the satisfiability problem for OF with negation is NP-hard.
Based on OF we give a simple account of type inference for first-class messages
in the spirit of Nishimura's recent proposal, and we show that it has polynomial
time complexity: We also highlight an immediate extension that is desirable but
makes type inference NP-hard.
Keywords: object-oriented programming; first-class messages; constraint-based
type inference; complexity; feature constraints

1 Introduction

First-class messages add extra expressiveness to object-oriented programming. First-
class messages are analogous to first-class functions in functional programming lan-
guages; a message refers to the computation triggered by the corresponding method
call, while a functional argument represents the computation executed on application.
For example, amap method can be defined by means of first-class messages as followsmethod map(o,l) = for each messagem in l: o  m
whereo is an object,l is a list of first-class messages, ando m sends messagem to o.

First-class messages are more common and crucial in distributed object-oriented
programming. A typical use of first-class messages is the delegation of messages to
other objects for execution. Such delegate objects are ubiquitous in distributed systems:
for example, proxy servers enable access to external services (e. g., ftp) beyond a fire-
wall. The following delegate object defines simple proxy server:let ProxyServer = f new(o) = f send(m) = o  mg g;
c Springer-Verlag, to appear inProc. of Asian Computing Science Conferences (ASIAN98)



This creates an objectProxyServer with a methodnew that receives an objecto. The
method returns a second object that, on receipt of a message labeledsend and carrying
a messagem, forwardsm to o. To create a proxy to an FTP server, we can executelet FtpProxy = ProxyServer  new(ftp);
whereftp refers to an FTP object. A typical use of this new proxy is the following one:FtpProxy  send(get('paper.ps.gz' ))
Delegation cannot be easily expressed without first-class messages, since the requested
messages are not known statically and must be abstracted over by a variablem.

In a programming language with records, abstraction over messages corresponds
to abstraction over field names: For example, one might want to use a functionlet fn x = y.x; to select the fieldx from recordy. Neither first-class messages nor
first-class record fields can be type checked in languages from the ML family such
as SML [14] or the objective ML dialect O' Caml [24].

Recently, the second author has proposed an extension to the ML type system that
can deal with first-class messages [18]. He defines a type inference procedure interms
of kinded unification [20] and proves it correct. This procedure is, however, formally
involved and not easily understandable or suitable for further analysis.

In this paper, we give a constraint-based formulation of type inferencefor first-
class messages in the spirit of [18] that considerably simplifies the original formulation,
and we settle its complexity. For this purpose, we define a new constraint system over
feature trees [3] that we call OF (objectsandfeatures). This constraint system extends
known systems of feature constraints [4, 5, 27, 30] by a new tailor-made constraint: this
new constraint is motivated by the type inference of a message sending statemento m, and pinpoints the key design idea underlying Nishimura's system.

We investigate the (incremental) satisfiability problem for OF and showthat it can
be solved in polynomial time, and in timeO(n2) for an important special case. We also
show that the satisfiability problem for positive and negative OF constraints is NP-hard,
by comparing OF with Treinen's feature constraint system EF [30].

Based on OF, we define monomorphic type inference for first-class messages. Our
formulation considerably simplifies the original one based on kinded unification. A key
difference between both is that we strictly separate the types (semantics) from the type
descriptions (syntax), whereas the original system confused syntax and semantics by
allowing variables in the types themselves.

From our complexity analysis of OF we obtain that monomorphic typeinfer-
ence for first-class messages can be done in polynomial time. Incrementality is im-
portant for modular program analysis without loss of efficiency in comparison to
global program analysis. Our constraint-based setup of type inference allows us to
explain ML-style polymorphic type inference [10, 13] as an instance HM(OF) of the
HM(X) scheme [29]: Given a monomorphic type system based on constraint system X,
the authors give a generic construction of HM(X),i. e., type inference for ML-style
polymorphic constrained types. Type inference for the polymorphicsystem remains
DEXPTIME-complete, of course [11].

In the remainder of the introduction we summarize the main idea of the type system
for first-class messages and of the constraint system OF.



1.1 The Type System

The type system contains types for objects and messages and explains what type of
messages can be sent to a given object type. An object type is a labeled collection of
method types (i. e., a product of function types distinguished by labels) marked byobj.
E. g., the objectlet o = f pos(x) = x>0, neg(p) = : pg
implements two methodspos and neg that behave like functions from integer
and boolean to boolean, respectively. Hence, it has an object typeobj(pos:int !bool;neg:bool! bool).1 When a messagef (M) is sent to an object, the corresponding
method is selected according to the message labelf and then applied to the message
argumentM. Since a message parameter may refer to a variety of specific messages at
run-time, it has a message type marked bymsg that collects the corresponding types (as
a sum of types distinguished by labels). For example, the expressionm = if b then pos(42) else neg(true);
defines, depending onb, a messagem of message typemsg(pos:int;neg:bool). The
expressiono m is well-typed since two conditions hold:

1. For both labels that are possible form, pos andneg, the objecto implements a
method that accepts the corresponding message arguments of typeint or bool.

2. Both methodspos andneg have the same return type, herebool. Thus the type ofo m is unique even though the message type is underspecified.

These are the crucial intuitions underlying Nishimura's type system[18]. Our type
inferences captures these intuitions fully. Formally, however, our type inference im-
plements a type system that does not exactly match the original one: Ours is slightly
weaker and hence accepts more programs than Nishimura's. This weakness is crucial
in order to achieve polynomial time complexity of type inference. However, type infer-
ence for a stronger system that fills this gap would require both positive and negative
OF constraints and thus make type inference NP-hard.

1.2 Constraint-based Type Inference

It is well-known that many type inference problems have a natural and simple formu-
lation as the satisfiability problem of an appropriate constraint system(e. g. [21, 32]).
Constraints were also instrumental in generalizing the ML-type systemtowards record
polymorphism [20, 23, 33], overloading [6, 19] and subtyping [1, 8] (see also [29]).

Along this line, we adoptfeature trees[3] as the semantic domain of the
constraint system underlying our type system. A feature tree is a possibly infi-
nite tree with unordered marked edges (calledfeatures) and with marked nodes
(called labels), where the features at the same node must be pairwise different.

1 Notice that the colons in the typeobj(pos:int! bool;neg:bool! bool) do not separate items
from the annotation of their types, but rather the field namesfrom the associated type compo-
nents. This notation is common in the literature on feature trees and record typing.



1998asian yearconf paper@@@���For example, the picture on the right shows a feature tree
with two featuresconf andyear that is labeled withpaper
at the root andasian resp.1998 at the leaves.

Feature trees can naturally model objects, records,
and messages as compound data types with labeled com-
ponents. A base type likeint is a feature tree with labelint and no features. A message typemsg( f1:τ1; : : : ; fn:τn) is a feature tree with labelmsg, featuresf f1; : : : ; fng, and corresponding subtreesfτ1; : : : ;τng, and an object typeobj( f1:τ1! τ01; : : : ; fn:τn! τ0n) is a feature tree with labelobj, featuresf f1; : : : ; fng,
and corresponding subtreesτ1! τ01 throughτn! τ0n; the arrow notationτ! τ0 in turn
is a notational convention for a feature tree with label! and subtreesτ;τ0 at fixed and
distinct featuresd andr, the names of which should remind of “domain” and “range”.

Feature trees are the interpretation domain for a class of constraint languages called
feature constraints[4, 5, 16, 27, 30]. These are a class of feature description logics, and,
as such, have a long tradition in knowledge representation and in computational lin-
guistics andconstraint-based grammars[22, 25]. More recently, they have been used to
model record structures in constraint programming languages [2, 26, 27].

The constraint language of our system OF is this one:

ϕ ::= ϕ^ϕ0 j x= y j a(x) j x[ f ]y j F(x) j xhyiz
The first three constraints are the usual ones: The symbol= denotes equality on feature
trees,a(x) holds if x denotes a feature tree that is labeled witha at the root, andx[ f ]y
holds if the subtree of (the denotation of)x at featuref is defined and equal toy. For
a set of featuresF , the constraintF(x) holds if x hasat mostthe features inF at the
root; in contrast, the arity constraint of CFT [27] forcesx to haveexactlythe features in
F . The constraintxhyiz is new. It holds for three feature treesτx, τy, andτz if (i) τx has
more features at the root thanτy, and if(ii) for all root featuresf atτy, the subtree ofτx

at f equalsτy: f ! τz (whereτy: f is the subtree ofτy at f ).
It is not difficult to see thatxhyiz is tailored to type inference of message sending.

For example theProxyServer above gets the following polymorphic constrained type:8αβγ :obj(α)^msg(β)^αhβiγ) fnew:α!fsend:β! γgg
Using notation from [29], this describes an object that accepts a message labelednew
with argument typeα, returning an object that accepts a message labeledsend with
argument typeβ and has return typeγ; the type expresses the additional constraint that
α be an object type,β be a message type appropriate forα, and the corresponding
method type inα has return typeγ.

Plan. Section 2 defines the constraint system OF, considers the complexity of its sat-
isfiability problem, and compares OF with the feature constraint systemsfrom the lit-
erature. Section 3 applies OF to recast the type inference for first-class messages and
compares it with the original system [18]. Section 4 concludes the paper.

Some of the proofs in this paper are only sketched for lack of space. The complete
proofs are found in an appendix of the full paper [17].



2 The Constraint System OF

2.1 Syntax and Semantics

The constraint system OF is defined as a class of constraints along with their interpre-
tation over feature trees. We assume two infinite setsV of variables x;y;z; : : :, andF

of features f; : : :, whereF contains at leastd andr, and a setL of labels a;b; : : : that
contains at least!: The meaning of constraints depends on this label. We writex for a
sequencex1; : : : ;xn of variables whose lengthn does not matter, andx:y for a sequence
of pairsx1:y1; : : : ;xn:yn. We use similar notation for other syntactic categories.

Feature Trees. A pathπ is a word over features. Theempty pathis denoted byε and
the free-monoid concatenation of pathsπ andπ0 asππ0; we haveεπ = πε = π. Given
pathsπ andπ0, π0 is called aprefix ofπ if π = π0π00 for some pathπ00. A tree domainis
a non-empty prefix closed set of paths. Afeature treeτ is a pair(D;L) consisting of a
tree domainD and alabeling function L: D! L. Given a feature treeτ, we writeDτ
for its tree domain andLτ for its labeling function. Thearity ar(τ) of a feature treeτ is
defined byar(τ) =Dτ\F . If π2Dτ, we write asτ:π the subtree ofτ at pathπ: formally
Dτ:π = fπ0 j ππ0 2 Dτg andLτ:π = f(π0;a) j (ππ0;a) 2 Lτg. A feature tree isfinite if
its tree domain is finite, andinfinite otherwise. Thecardinality of a setS is denoted
by #S. Given feature treesτ1; : : : ;τn, distinct featuresf1; : : : ; fn, and a labela, we write
asa( f1:τ1; : : : ; fn:τn) the feature tree whose domain is

Sn
i=1f fiπ j π 2 Dτig and whose

labeling isf(ε;a)g[Sn
i=1f( fiπ;b) j (π;b) 2 Lτig. We useτ1! τ2 to denote the feature

treeτ with Lτ = (ε;!), ar(τ) = fd; rg, τ:d = τ1, andτ:r = τ2.

Syntax. An OF constraintϕ is defined as a conjunction of the followingprimitive
constraints:

x= y (Equality)
a(x) (Labeling)
x[ f ]y (Selection)
F(x) (Arity Bound)
xhyiz (Object Selection)

Conjunction is denoted bŷ. We writeϕ0 � ϕ if all primitive constraints inϕ0 are also
contained inϕ, and we writex= y2 ϕ [etc.] if x= y is a primitive constraint inϕ [etc.].
We denote withF(ϕ), L(ϕ), andV(ϕ) the set of features, labels, and variables occurring
in a constraintϕ. Thesize S(ϕ) of a constraintϕ is the number of variable, feature, and
label symbols inϕ.

Semantics. We interpret OF constraints in the structureF T of feature trees. The sig-
nature ofF T contains the symbol=, the ternary relation symbol�h�i�, for everya2 L

a unary relation symbola(�), and for everyf 2 F a binary relation symbol�[ f ]�. We
interpret= as equality on feature trees and the other relation symbols as follows.

a(τ) if (ε;a) 2 Lτ
τ[ f ]τ0 if τ: f = τ0
F(τ) if ar(τ) � F
τhτ0iτ00 if 8 f 2 ar(τ0) : f 2 ar(τ) andτ: f = τ0: f ! τ00



Let Φ and Φ0 be first-order formulas built from OF constraints with the usual first-
order connectives_, ^, :,!, etc., and quantifiers. We callΦ satisfiable(valid) if Φ
is satisfiable (valid) inF T . We say thatΦ entailsΦ0, written Φ j=OF Φ0, if Φ! Φ0 is
valid, and thatΦ is equivalentto Φ0 if Φ$Φ0 is valid.

A key difference between the selection constraintsx[ f ]y andxhyiz is that “selection
by (fixed) feature” is functional, while “selection by (first-class) featuretree” is not:

x[ f ]y^x[ f ]y0 ! y= y0 (1)

xhyiz^xhyiz0 6! z= z0 (2)

The reason for the second equation not to hold is thaty may have no subtrees: In this
case, the constraintxhyizdoes not constrainzat all. I. e., this implication holds:fg(y) ! 8z xhyiz (3)

If, however,y is known to have at least one feature at the root, then selecting bothzand
z0 by y from x implies equality ofzandz0:

y[ f ]y0^xhyiz^xhyiz0 ! z= z0 (4)

OF cannot express thaty has a non-empty arity; rather, to express thaty has some
feature it must provide a concrete witness. Using negation, this can beexpressed as:fg(x). However, while satisfiability for OF is polynomial, it becomes NP-hard if it is
extended such that:fg(x) can be expressed (see Section 2.3).

Feature Terms. For convenience, we will occasionally use feature terms [3] as a
generalization of first-order terms: Feature termst are built from variables by fea-
ture tree construction likea( f1:t1; : : : ; fn:tn), where again the featuresf1; : : : fn are re-
quired to be pairwise distinct. Equations between feature terms can be straightforwardly
expressed as a conjunction of OF constraintsx = y, a(x), F(x), x[ f ]y, and existen-
tial quantification. For example, the equationx = a( f :b) corresponds to the formula9y (a(x)^f fg(x)^x[ f ]y^b(y)^fg(y)). In analogy to the notationτ1! τ2, we use the
abbreviationx= y! z for the equationx=!(d:y; r:z).
2.2 Constraint Solving

Theorem 1. The satisfiability problem of OF constraints is decidable in incremental
polynomial space and time.

For the proof, we define constraint simplification as a rewriting system on constraints in
Figure 1. The theorem follows from Propositions 1, 2 and 3 below. Rules (Substitution),
(Selection), (Label Clash), and (Arity Clash) are standard. Rules (ArityPropagation
I/II) reflect the fact that a constraintxhyiz implies the arity bound onx to subsume the
one ony. (Arity Intersection) normalizes a constraint to contain at most one arity bound
per variable. (Object Selection I) reflects thatxhyiz implies all features necessary fory
to be also necessary forx, and (Object Selection II) establishes the relation ofx, y, andz
at a joint featuref .



ϕ^x= y

ϕ[y=x]^x= y
if x2 f v(ϕ) (Substitution)

ϕ^x[ f ]y^x[ f ]z
ϕ^x[ f ]z^y= z

(Selection)

ϕ^xhyiz^F(x)
ϕ^xhyiz^F(x)^F(y) if not existsF 0 : F 0(y) 2 ϕ (Arity Propagation I)

ϕ^xhyiz^F(x)^F 0(y)
ϕ^xhyiz^F(x)^F \F 0(y) if F \F 0 6= F 0 (Arity Propagation II)

ϕ^F(x)^F 0(x)
ϕ^F \F 0(x) (Arity Intersection)

ϕ

ϕ^x[ f ]x0 if xhyiz^y[ f ]y0 2 ϕ and
not existsz : x[ f ]z2 ϕ; x0 fresh

(Object Selection I)

ϕ

ϕ^x0 = y0! z
if xhyiz^y[ f ]y0 ^x[ f ]x0 2 ϕ and

x0 = y0! z 62 ϕ
(Object Selection II)

ϕ^a(x)^b(x)
fail

if a 6= b (Label Clash)

ϕ^F(x)^x[ f ]x0
fail

if f 62 F (Arity Clash)

Fig. 1. Constraint Solving Rules

Notice that the number of fresh variables introduced in rule (Object Selection I) is
bounded: This rule adds at most one fresh variable per constraintxhyiz and featuref
and the number of both is constant during constraint simplification. For the subsequent
analysis, it is convenient to think of the fresh variables as fixed in advance. Hence, we
define the finite set :V 0(ϕ) =def V(ϕ)[fvx; f 2 V j x2V(ϕ); f 2 F(ϕ);vx; f freshg.
Remark 1.In addition to the rules in Figure 1, there are two additional rules justified
by implications (3) and (4):

ϕ^xhyiz
ϕ

if fg(y) 2 ϕ (Empty Message)

ϕ^xhyiz^xhyiz0
ϕ^xhyiz^z= z0 if y[ f ]y0 2 ϕ (Non-empty Message)



The first one is just a simplification rule that does not have an impact on the satisfiability
check. It helps reducing the size of a solved constraint and therefore saves space and
time. Secondly, compact presentation of a solved constraint can be crucial in the type
inference application where solved constraints must be understood by programmers.
The second one is a derived rule that should be given priority over rule (Object Selection
II).

Proposition 1. The rewrite system in Figure 1 terminates on all OF constraintsϕ.

Proof. Let ϕ be an arbitrary constraint. Obviously,F(ϕ) is a finite set and the number
of occurring features is fixed since no rule adds new feature symbols. Secondly, recall
that the number of fresh variables introduced in rule (Object Selection I) is bounded.
Call a variablex eliminatedin a constraintx= y^ϕ if x 62V(ϕ). We use the constraint
measure(O1;O2;A;E;S) defined by

(O1) number of sextuples(x;y;z;x0;y0; f ) of non-eliminated variablesx;y;z;x0;y0 2
V 0(ϕ) and featuresf 2 F(ϕ) such thatxhyiz^x[ f ]x0^y[ f ]y0 2 ϕ butx0 = y0! z 62ϕ.

(O2) number of tuples(x; f ) of non-eliminated variablesx 2 V 0(ϕ) and featuresf 2
F(ϕ) such that there existsy;y0 and z with xhyiz^ y[ f ]y0 2 ϕ but x[ f ]x0 62 ϕ for
anyx0.

(A) number of non-eliminated variablesx2 V 0(ϕ) for which no arity boundF(x) 2 ϕ
exists.

(E) number of non-eliminated variables.
(S) size of constraint as defined above.

The measure ofϕ is bounded and strictly decreased by every rule application as the
following table shows. this proves our claim.

O1 O2 A E S
(Arity Propagation II)= = = = <
(Arity Intersection) = = = = <
(Selection) = = = = <
(Substitution) � � � < =
(Arity Propagation I) = = < = >
(Object Selection I) = < > > >
(Object Selection II) < = = = > 2

Proposition 2. We can implement the rewrite system in Figure 1 such that it uses space
O(n3) and incremental time O(n5), or, if the number of features is bounded, such that it
uses linear space and incremental time O(n2).
Proof. We implement the constraint solver as a rewriting on pairs(P;S) whereS is
the store that flags failure or represents a satisfiable constraint in a solved form, and
whereP is the pool (multiset) of primitive constraints that still must be added toS. To
decide satisfiability ofϕ we start the rewriting on the pool of primitive constraints inϕ
and the empty store and check the failure flag on termination.

For lack of space, we defer some involved parts of the proof to the full paper [17].
Defineni = #V(ϕ), nv = ni �nf = #V0(ϕ), nl = #L(ϕ), nf = #F(ϕ). In the full paper,

we define a data structure for the store that consists of a union-finddata structure [12] for



equations, tables for the constraintsa(x), F(x), andx[ f ]z, a list for constraintsxhyiz, and
two adjacency list representations of the graphs whose nodes are the initial variables,
and whose edges(x;y) are given by the constraintsxhyiz for the first one andyhxiz for
the second one. (See appendix of the full paper [17] for details). This data structure has
size

O(ni �nf +ni +nv �nf +ni �nf +n) = O(nv �nf +n)
which is O(n) if the number of features is assumed constant andO(n3) otherwise. It
also allows to check in timeO(1) whether it contains a given primitive constraint; and
to add it in quasi-constant time.2 This is clear in the non-incremental (off-line) case
wherenv, ni , nf ,andns are fixed. In the incremental (on-line) case, wherenv, ni , nf ,
andns may grow, we can use dynamically extensible hash tables [7] to retain constant
time check and update for primitive constraints.

Each step of the algorithm removes a primitive constraint from the pool P, adds it
to the storeS, and then derives all its immediate consequences under the simplification
rules: Amongst them, equationsx = y and selectionsx[ f ]y are put back into the pool,
while selectionsxhyiz and arity boundsF(x) are directly added to the store.

We show that every step can be implemented such that it costs timeO(n+ni �nf ).3
(The complete analysis of this time bound can be found in appendix of the full pa-
per [17]). We also show that every step may at most addO(n) equations andO(nv) se-
lection constraints of the formx[ f ]y. It remains to estimate the number of steps: There
are at leastO(n) steps needed for touching all primitive constraints inϕ.

– Amongst the new equations, there are at mostO(nv) relevant ones, in the sense that
one can at most executenv equations before all variables are equated. That is, all
butO(nv) equations cost constant time.

– Amongst the new selection constraint, there are at mostO(nv � nf ) relevant ones
since adding a selection constraintx[ f ]y induces immediate work only ifx has no
selection constraint onf yet. The others will generate a new equation and terminate
then. Hence, all butO(nv �nf ) selection constraints cost constant time.

In summary, there areO(n+nv �nf ) steps that costO(n+ni �nf ). Each of these steps
may addO(n) equations andO(nv) selections each of which may add a new equation
itself. Hence we haveO((n+nv �nf ) � (n+nv)) steps that costO(1). Overall, the algo-
rithm has the complexity

O((n+nv �nf ) � (n+ni �nf )+(n+nv �nf ) � (n+nv) �1) = O((n+nv �nf ) � (n+ni �nf ))
SinceO(nf ) =O(n) andO(nv) = O(ni �nf ) =O(n2), this bound isO(n5). If the number
of features is bounded,O(nv) = O(ni) = O(n), so the bound is ratherO(n2). 2

Notice that a constraint system of records with first-class record labels isobtained
as an obvious restriction of OF and the above result implies the same time complexity
bound as OF.
2 All constraints except equations can be added in timeO(1), but addition of an equation costs

amortized timeO(α(nv)) whereα(nv) is the inverse of Ackermann's function. For all practical
purposes,α(nv) can be considered as constant.

3 To be precise, each step costsO(n+ni �nf +α(nv))which we sloppily simplify toO(n+ni �nf ).



Proposition 3. Every OF constraintϕ which is closed under the rules in Figure 1 (and
hence is different from fail) is satisfiable.

Proof. For the proof, we need to define a notion of path reachability similar to the one
used in earlier work, such as [15, 16]. For all pathsπ and constraintsϕ, we define a
binary relation

ϕ;π, wherex
ϕ;π y reads as “y is reachable fromx over pathπ in ϕ”:

x
ϕ;ε x for everyx

x
ϕ;ε y if y= x2 ϕ or x= y2 ϕ

x
ϕ; f y if x[ f ]y2 ϕ

x
ϕ;ππ0 y if x

ϕ;π zandz
ϕ;π0 y:

Define relationsx
ϕ;π a meaning that “labela can be reached fromx over pathπ in ϕ”:

x
ϕ;π a if x

ϕ;π y anda(y) 2 ϕ

Fix an arbitrary labelunit. For every closed constraintϕ we define the mappingα from
variables into feature trees defined as follows.

Dα(x) = fπ j existsy : x
ϕ;π yg

Lα(x) = f(π;a) j x
ϕ;π ag[f(π;unit) j π 2 Dα(x) but 6 9a : x

ϕ;π ag
It remains to be shown thatα defines a mapping into feature trees for closed con-
straintsϕ, and thatα indeed satisfiesϕ. This can be done by a straightforward induction
over pathsπ. 2
2.3 Relation to Feature Constraint Systems

We compare OF with feature constraint systems in the literature: Given a two-sorted
signature with variablesx;y;z; : : : andu;v;w; : : : ranging over feature trees and features,
resp., collections of feature constraints from the following list have, amongst others,
been considered [3, 27, 30]:

ϕ ::= x= y j a(x) j x[ f ]y j Fx j u= f j x[u]y j ϕ^ϕ0
The constraintsx= y, a(x), andx[ f ]y are the ones of OF. The arity boundFx (whereF
is a finite set of features) states thatx hasexactlythe features inF at the root.

Fτ if ar(τ) = F

Apparently, both arity constraints are interreducible by means of disjunctions:
F(x)$WF 0�F F 0x. The constraints of FT [3] containx= y, a(x), andx[ f ]y, CFT [27]
extends FT byFx, and EF [30] contains the constraintsx=y, a(x), x= f , Fx, andx[u]y.

The satisfiability problems for FT and CFT are quasi-linear [27]. In contrast, the
satisfiability problem for EF is NP-hard, as Treinen shows by reducing the minimal
cover problem to it [9, 30]. Crucial in this proof is the following implicationf f1; : : : ; fngx^x[u]y ! n_

i=1

u= fi



In order to express a corresponding disjunction in OF, we need existential quantification
and constraints of the form:fg(y)f f1; : : : ; fng(x)^xhyiz^:fg(y) ! n_

i=1

9zi y[ fi ]zi

With this new constraint we reduce the satisfiability check for EF to theone for OF.

Proposition 4. There is an embedding[[�]] from EF constraints into OF with negative
constraints of the form:fg(x) such that every EF constraintϕ is satisfiable iff[[ϕ]] is.

Proof. Labelinga(x) and equalityx = y translate trivially. Now assume two special
labelsunit andlab; we use these to represent labelsf in EF by feature treeslab( f :unit).[[u= f ]] = 9x (lab(u)^f fg(u)^u[ f ]x^unit(x)^fg(x))[[x[u]y]] = xhuiy^:fg(u)[[f f1; : : : ; fngx]] = f f1; : : : ; fng(x)^Vn

i=19y x[ fi ]y
To show that satisfiability of an EF constraintϕ implies satisfiability of the OF con-
straint [[ϕ]] we map every EF solution ofϕ to an OF solution of[[ϕ]] by replac-
ing every featuref by lab( f :unit) and every feature tree of the forma( f :τ : : :) by
a( f :unit! τ : : :).

For the inverse, we take a satisfiable OF constraint[[ϕ]] and construct an OF solution
of [[ϕ]] which maps all variablesu in selector position inxhuiy to a feature tree with
exactly one feature. From this solution we derive an EF solution ofϕ by replacing these
singleton-feature trees by their unique feature. Notice that the solution constructed in
the proof of Proposition 3 does not suffice since it may mapu to a feature tree without
any feature.

Formally, we extend the definition of path reachability byx
ϕ;π F meaning that

“arity boundF can be reached fromx over pathπ in ϕ”:

x
ϕ;π F if x

ϕ;π y andF(y) 2 ϕ

We assume an order onF(ϕ), and, for non-emptyF , let min(F) denote the smallest
feature inF wrt. this order. We defineα as follows:

Dα(x) = fπ j existsy : x
ϕ;π yg[fπ f j x

ϕ;π F; f = min(F)g
Lα(x) = f(π;a) j x

ϕ;π ag[f(π;unit) j π 2Dα(x); 6 9a : x
ϕ;π ag

By the constraint:fg(u) in the translation ofxhuiy we know that, for closed and non-
failed ϕ, the setF must be non-empty in the first line. Hence,α is a well-defined map-
ping into feature trees. It is easy to show thatα satisfiesϕ and thatα corresponds to an
EF solution as sketched above. 2
Corollary 1. The satisfiability problem of every extension of OF that can express:fg(x) is NP-hard.

For example, the satisfiability problem of positive and negative OF constraints is NP-
hard.



x : t 2 Γ
ϕ;Γ ` x : t

VAR ϕ;Γ ` b : typeof(b) CONST
ϕ;Γ `M : t 0 ϕ j=OF t :: msg( f : t 0)

ϕ;Γ ` f (M) : t
MSG

ϕ;Γ;xi : ti `Mi : t 0
i for everyi = 1; : : : ;n

ϕ;Γ ` f f1(x1) = M1; : : : ; fn(xn) = Mng : obj( f1:t1!t 0
n; : : : ; fn:tn!t 0

n) OBJ

ϕ;Γ `M : t1 ϕ;Γ ` N : t2 ϕ j=OF obj(t1)^msg(t2)^ t1ht2it3
ϕ;Γ `M N : t3

MSGPASS

ϕ;Γ;y : t1 `M : t1 ϕ;Γ;y : t1 `N : t2
ϕ;Γ ` let y= M in N : t2

LET (monomorphic)

Fig. 2. The Monomorphic Type System

3 Type Inference

We reformulate the type inference of [18] in terms of OF constraints. As in that paper,
we consider a tiny object-oriented programming language with this abstract syntax.4

M ::= b (Constant)j x (Variable)j f (M) (Message)j f f1(x1) = M1; : : : ; fn(xn) = Mng (Object)j M N (Message Passing)j let y= M in N (Let Binding)

The operational semantics contains no surprise (see [18]). For the types, we assume
additional distinct labelsmsg andobj to mark message and object types, and a set of
distinct labels such asint, bool, etc., to mark base types. Monomorphictypesare all
feature trees over this signature; monomorphictype termsare feature terms:

t ::= α (Type variable)j int j bool j : : : (Base type)j msg( f1:t1; : : : ; fn:tn) (Message type)j obj( f1:t1!t 01; : : : ; fn:tn!t 0n) (Object type)

Somewhat sloppily, we allow for infinite (regular) feature terms such as to incorporate
recursive types without an explicitµ notation. Recursive types are necessary for the
analysis of recursive objects. We assume a mappingtypeof from constants of base type
to their corresponding types. We also use thekindingnotationx :: a( f1:t1; : : : ; fn:tn) to
constrainx to a feature tree whose arity is underspecified,e. g., a(x)^Vn

i=1x[ fi ]ti .
Monomorphic Type Inference. The monomorphic type system is given in Figure 2.
As usual,Γ is a finite mapping from variables to type terms andΓ;x : t extendsΓ so

4 In contrast to [18], we dropletobj and allowlet to introduce recursively defined expressions.



I (x;b) = a(x)^fg(x) if a= typeof(b)
I (x;y) = x= y

I (x; f (M)) = 9y (msg(x)^x[ f ]y^ I (y;M))
I (x;f f1(x1) = M1; : : : ; fn(xn) = Mng) = obj(x)^f f1; : : : ; fng(x)^Vn

i=19xi 9x0 9z(x[ fi ]x0^x0 = xi ! z^ I (z;Mi ))
I (x;M N) = 9y9z(yhzix^obj(y)^ I (y;M)^msg(z)^ I (z;N))
I (x; let y= M in N) = 9y (I (y;M)^ I (x;N))

Fig. 3. Monomorphic Type Inference for First-Class Messages with OF Constraints

that it maps variablex to t. The type system defines judgmentsϕ;Γ `M : t which reads
as “under the type assumptions inΓ subject to the constraintϕ, the expressionM has
type t”;5 the constraintϕ in well-formed judgements is required to be satisfiable. We
do not comment further on the type system here but refer to [18] for intuitions and
to [28, 29] for notation. The corresponding type inference is given in Figure 3 as a
mappingI from a variablex and a program expressionsM to an OF constraint such
that every solution ofx in I (x;M) is a type ofM. For ease of reading, we use the bound
variables in program expressions as their corresponding type variables.Correctness of
the type inference with respect to the type system is obvious, and it should be clear that
soundness of the type system (with respect to the assumed operational semantics) can
be shown along the lines given in [18]. The type inference generates a constraint whose
size is proportional to the size of the given program expression. Hence, we know from
Proposition 2 that type inference can be done in polynomial time and space.6

Let us give some examples. To reduce the verbosity of OF constraints, we shall
freely use feature term equations as introduced above. First, the statementlet o1 = fsucc(x)=x+1, pos(x)=x>0g;
defines an object with two methodssucc : int!int andpos : int!bool. Type inference
gives the type of this object as an OF constraint on the type variableo1 equivalent to

ϕ1 � o1 = obj(succ : int!int;pos : int!bool):
A delegate object for the objecto1 is defined as follows:let o2 = fredirect(m)= o1  mg;
wherem is a parameter that binds messages to be redirected too1. Assuming the vari-
ableo1 to be constrained byϕ1, the constraintϕ2 restrictso2 to the type ofo2:

5 This terminology is slightly sloppy but common: Sincet may contain type variables it is rather
a typeterm than a type and it would be accurate to say thatM has “some type matchingt”.

6 To be precise, we have to show that every satisfiable OF constraint derived by type inference
is satisfiable in the smaller domain of types; this is easy.



ϕ2 � 9m9z(o2 = obj(redirect : m!z)^o1hmiz^msg(m)):
The return type of a message passing to this object,e. g.,let w = o2 redirect(succ(1));
is described as the solution ofϕ1^ϕ2^ϕ3 for the type variablew, where

ϕ3 � 9z0 (o2hz0iw^z0 :: msg(redirect : msg(succ : int)));
The solved form ofϕ1^ϕ2^ϕ3 contains the primitive constraintint(w), which tells the
intended result typeint.

If o1 does not respond to the message argument ofredirect, for instance as inlet v = o2 redirect(pred(1));
a type error is detected as inconsistency in the derived constraint. Here, the constraint

ϕ4 � 9z0 (o2hz0iw0 ^z0 :: msg(redirect : msg(pred : int)))
implies9z0 (o1hz0iw0^z0 :: msg(pred : int)), and hence thato1 has a featurepred which
contradictsϕ1 by an arity clash.

Now recall that in OF the implicationxhyiz^ xhyiz0 ! z= z0 doesnot hold. The
following example demonstrates how this weakness affects typing and type inference.let o1 = fa(x)=x+1, b(x)=x>0g in o2 = fb(x)=x=0,c(x)=x*2gin o3 = ffoo(m)= begin o1 m; o2 m endg;
It is easy to see that thefoo method always returnsbool, since the argument message
of foo must be accepted by both the objectso1 ando2, which share only the method
nameb. However, type inference for this program derives (essentially) the constraint

o1 = obj(a : int!int;b : int!bool)^o2 = obj(b : int!bool;c : int!int)^
o3 = obj(foo : m!z)^o1hmiz1^o2hmiz2

Herein, the result typezof the methodfoo is neither entailed to equalz1 norz2. This is
reasonable since the messagem in this program is not sent and hence may safely return
anything. By a similar argument, the following program can be considered acceptable:let o1 = fa(x)=x+1g in o2 = fc(x)=x*2gin o3 = ffoo(m)= begin if b then o1 m else o2 m endg
One may complain that this kind of methods should be detected as a type error. Ma-
nipulating the type system and the type inference to do this is easy: One just needs to
exclude typesmsg(), i. e., message types without any feature. However, recall that the
polynomial time complexity of the analysis depends on this weakness: The correspond-
ing clause in the type inference

I (x; f (M)) = 9y (:fg(x)^msg(x)^x[ f ]y^ I (y;M))
generates OF constraints with negation such that constraint solving (andhence, type
inference) would become NP-hard.7

7 The altered type inference does still not exactly correspond to the original. For example, we
would not accept message sending to an empty object as infg  m, while the original one
does.



Polymorphic Type Inference. We can obtain the polymorphic type inference by ap-
plying the scheme HM(X) [29]. The constraint system OF is a viable parameter for
HM(X) since it satisfies the two required properties, called coherence and soundness.
Both rely on a notion of monomorphic types, in our case, given by feature trees; it does
no harm that these may be infinite. Thecoherenceproperty requires that the considered
order on types is semantically well-behaved; this is trivial in our case since we only
consider a trivial order on feature trees. Thesoundnessproperty that a solved constraint
indeed has a solution follows from Proposition 3.

Comparison with Nishimura. In Nishimura's original type system [18], abbreviated
asD in the following, constraints are modeled as kinded type variables. Thekindings
have a straightforward syntactic correspondence with OF constraints:the message kind-
ing x :: hh f1:t1; : : : ; fn:tniiF corresponds tox :: msg( f1:t1; : : : ; fn:tn)^F(x) and the object
kindingx :: fjy1!t1; : : : ;yn!tnjgF corresponds toobj(x)^Vn

i=1xhyiiti ^F(x).
Our reformulation HM(OF) ofD is in the same spirit as the reformulation

HM(REC) [29] of Ohori's type system for the polymorphic record calculus: Both re-
cast the kinding system as a constraint system. One might thus expect the relation ofD
and HM(OF) to be as close as that between Ohori's system and HM(REC) which type
exactly the same programs (“full and faithful”); this is, however, notthe case.

There is a significant difference between the the kind system inD and OF. InD,
kinded types may contain variables,e. g., an object returning integers as a response to
messages of typey receives the kindfjy!intjgF . On unifying two types with kindingsfjy!intjgF andfjy!zjgF , the type inference forD unifieszandint since it issyntactically
known that bothzandint denote the type of the response of the same object to the same
message. Thus inD, the name of type variables is crucial. In this paper, variables only
occur as part of type descriptions (i. e., syntax) while the (semantic) domain of types
does not contain variables.E. g., we understandfjy!intjg not as atypebut as part of a
type descriptionwhich can be expressed by a constraint likeobj(x)^xhyiint.

As a consequence, well-typedness in our system does not depend on the choice of
variable names but only on the type of variables. This is usual for ML-style type systems
but does not hold forD. Consider the following example:ffoo(m) = (o m) + 1; (o m) & trueg
This program is accepted by the OF-based type system, since the constraintohmiint^
ohmibool is satisfiable. The type systemD, however, rejects it after trying to unifyint
andbool during type inference. To insist that this is a syntactic argument notice thatD
accepts the following program, whereo is replaced by the object constantfg:fbaz(m) = (fg m) + 1; (fg m) & trueg
4 Conclusion

We have presented a new constraint system OF over feature trees and investigated the
complexity of its satisfiability problem. OF is designed for specification and implemen-
tation of type inference for first-class messages in the spirit of Nishimura's system [18].



We have given a type system for which monomorphic type inference with OF con-
straints can be done in polynomial time; this system is weaker than the original one,
but the additional expressiveness would render monomorphic type inference NP-hard
as we have shown. Given OF, we can add ML-style polymorphism by instantiating the
recent HM(X) scheme to the constraint system OF.
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