
Constructive Disjunction in OzTobias M�uller and J�org W�urtzGerman Research Center for Arti�cial Intelligence (DFKI)D-66123 Saarbr�ucken,Stuhlsatzenhausweg 3,GermanyEmail: ftmueller,wuertzg@dfki.uni-sb.de �AbstractConstraint programming has been proved as an excellent tool to solve combinatori-al problems in many application areas. Through constraint propagation large parts ofthe search space can be pruned away. Hard problems are those which involve disjunc-tive constraints introducing non-determinism. While the introduction of choice-pointsfor disjunctive constraints may lead to combinatorial explosion, other approaches onlycheck whether the disjunction can still be satis�ed. Constructive disjunction instead liftscommon information of alternatives up and thus allows other parts of the computation tobene�t from this extra information. This form of propagation improves pruning of searchspaces for certain classes of problems, such as scheduling, time tabling and the like, enor-mously. We present how to realize constructive disjunction for �nite domain constraintswithout local computation spaces in the concurrent constraint language Oz. The imple-mentation is achieved with minimal e�ort reusing existing concepts. Our implementationscheme is suited for other constraint systems based on arc-consistency algorithms too.1 IntroductionThe power of constraint logic programming (CLP) has been proved by languages such as CHIP[DVS+88], Prolog III [Col90] or CLP(R) [JL87]. But these languages lack a feature, whichbecomes essential to solve problems in di�erent application areas: the 
exibility to implementnew constraints and search strategies in the language itself. More 
exibility for inventing newconstraints was achieved by the sequential language ECLiPSe [ECR94] and the experimentalconcurrent constraint languages cc(FD) [VSD95] and AKL(FD) [CC95]. But with respectto search strategies these languages are fairly limited too. An improvement is Oz [Smo95,ST95], which is a fully implemented higher-order concurrent constraint language supportingconstraint programming techniques, encapsulated search [SSW94] and object-oriented pro-gramming. Furthermore, Oz provides the �rst fully-
edged �nite domain constraint system,which, inspired by cc(FD), makes the cardinality combinator and constructive disjunctionavailable in a concurrent language.Besides 
exibility the amount of constraint propagation is crucial. The aim is to achievestrong pruning of the search space with an e�cient technique. An important component of�In Andreas Krall and Ulrich Geske, eds., 11. Workshop Logische Programmierung, Technische Universit�at Wien,Austria, 27{29 September 1995, GMD-Studien, GMD{Forschungszentrum Informationstechnik GmbH, D-53754Sankt Augustin,



constraint programs are disjunctive constraints like that two jobs A and B running on a singlemachine must not overlap in time. In most sequential CLP systems these constraints areimplemented by using choice-points. One clause states that A ends before B starts and theother way around in the other clause. Unfortunately, the search space is not reduced activelybut only when a clause is non-deterministically chosen possibly leading to combinatorialexplosion.An improvement was made by introducing the cardinality operator (as described e.g.in[VSD95]) which allows to model disjunctions in a way that they prune the search spaceactively. Assume we want to model the disjunctionA.start+7 � B.start _ B.start+7 � A.startThe �rst alternative states that A (started at A.start with duration 7) runs (and �nishes)before B and the second that B runs before A. If it becomes known that A cannot run before B,the second alternative B.start+7�A.start is added as an active constraint possibly furtherpruning the search space (and vice versa if B cannot run before A). Thus, only deterministicchoices are made.But we can extract more information from a disjunction. Assume that A and B may startbetween times 1 and 10, i.e., A.start, B.start 2 f1; : : : ; 10g. The set f1; : : : ; 10g is called thedomain of the variables. The left alternative of the disjunction constrains A.start to f1; 2; 3gand B.start to f8; 9; 10g and accordingly for the right alternative. Thus, independent whichalternative will succeed we know that neither A nor B will start at times 4,5,6, or 7. Thecommon information of both alternatives is that A.start and B.start will take values inthe set f1; 2; 3; 8; 9; 10g. This is the essence of constructive disjunction: extract commoninformation from the alternatives. An application which impressively shows a speed-up ofmore than one order of magnitude obtained by using constructive disjunction is a time tablingapplication for a German college discussed in [HW95].1While constructive disjunction is theoretically well understood, there is no detailed in-formation on an implementation apart from AKL(FD) [CC95]. But constructive disjunctionin AKL(FD) depends heavily on its underlying so-called indexical-scheme [VSD91]. Herewe show how constructive disjunction and speculative computation can be implemented inOz. We claim that our implementation scheme is suitable for all �nite domain systems usingarc-consistency algorithms, where constraints are realized by computational entities, whichwe call propagators. Our implementation can be generalised to further constraint systemsbased on propagators for which the generalisation of information can be e�ciently computed,as for instance intervals over reals.2 Computation in Oz2.1 Computation SpacesThe central notion in Oz is that of a computation space. A computation space consistsessentially of a constraint store and a set of associated tasks.Constraints residing in the constraint store are equations between variables and values ofthe Oz universe, as for instance atoms or integers, or other variables. Furthermore, the store1Note that even the search strategy may bene�t from constructive disjunction. As an example considerthe �rst-fail strategy which chooses the variable with the currently smallest domain �rst for labelling.2



contains constraints x 2 D whereD is a �nite domain, i.e., a �nite set of nonnegative integers.Oz provides e�cient algorithms to decide satis�ability and implication for constraints residingin the constraint store.Tasks inspect the constraint store and reduce if the store con-tains su�cient information. On reduction a task may impose fur-ther constraints on the store or spawn new tasks. A typical task storetask � � � taskis a conditional like if X::3#6 then {Browse yes} else {Browse no} fi. As soon the con-junction of the constraints in the store logically implies X 2 f3; : : : ; 6g, the atom yes willbe displayed and the conditional task will cease to exist. If the negation X 62 f3; : : : ; 6g isimplied, no will be displayed.Tasks associated to a computation space may spawn local computation spaces. In theprevious example, the clause of the conditional spawns a computation space consisting of astore containing the constraint X 2 f3; : : : ; 6g. Therefore, computation can lead to a tree ofcomputation spaces. In local stores all information is visible from stores above in the tree.The computation space a task is spawned in is called its host space.2.2 PropagatorsFor more expressive constraints, like x+ y = z, it is known that deciding their satis�ability isnot computationally tractable. Therefore, such constraints are not contained in the constraintstore but are modelled by installing so-called propagators.A propagator can be thought as a long-lived task which tries to amplify the informationin the store. Given a constraint store S and a propagator P , the propagator can tell the storea basic constraint B whenever the conjunction S ^ P entails the constraint B. A propagatormust remain in a computation space until it is entailed by the constraint store. For instance,assume a store containing X,Y,Z 2 f1; : : : ; 10g. The propagator X+Y=:Z 2 ampli�es the storeto X,Y 2 f1; : : : ; 9g and Z 2 f2; : : : ; 10g (since the other values cannot satisfy the constraint).Telling the constraint Z=5 causes the propagator to strengthen the store to X,Y 2 f1; : : : ; 4g.Imposing X=2 makes the propagator telling Y=3 and ceasing it to exist.2.3 Disjunctive ConstraintsThere are several ways to express disjunctive constraints in Oz. In this section we discussthe disjunctive combinator and rei�ed constraints.3 For demonstration purposes we use theconstraint jX � 1j = Y , which is equivalent to the disjunction X � 1 = Y _ 1�X = Y .Disjunctive Combinator. Oz provides for a disjunctive combinator, which installs localcomputation spaces. The combinator discards its host computation space if all its clauses arefailed. If a clause does not contain any tasks and the local store is entailed by the parent'sstore, the combinator ceases to exist. If there is only one clause left, the local space of thatclause is merged with the parent's space.The above mentioned example can be formulated as follows.2An appended colon marks a �nite domain propagator.3Distributing disjunctions, which are used for search, are not considered in this paper. They serve both aschoice-points and as constraints. For a more thorough discussion see [MPSW94].3



X :: 1#5 Y :: [0 1 5] % X 2 f1; : : : ; 5g Y 2 f0; 1; 5gOR X - 1 =: Y [] 1 - X =: Y ROBecause the global information on the variables is visible in the local stores, the propagatorin the left clause ampli�es the left store to X 2 f1; 2g and Y 2 f0; 1g. The store of the rightclause contains the constraints X=1 and Y=0. But this information is hidden from the parent'sspace. Imposing the constraint X=2 makes the right clause fail. Thus, the remaining localcomputation space is merged. The lifted propagator (by merging its clause) imposes now theconstraint Y=1.Rei�ed Constraints. Another way to express disjunctions for �nite domain constraintsin Oz is to use so-called rei�ed constraints, i.e., propagators that re
ect the validity of aconstraint into a f0; 1g-valued re
ection variable. Because rei�ed constraints avoid localcomputation spaces, they are more e�cient than disjunctive combinators. The re
ection ofvalidity is essentially achieved by e�cient tests.Assume that we want to reify a propagator P in a variable B. If B is constrained to 1(0), the propagator P (its negation :P ) is installed. Vice versa, if the propagator P wouldcease to exist because it is valid (it is failed), the variable B is bound to 1 (0).Our example becomes:X :: 1#5 Y :: [0 1 5] R1 :: 0#1 R2 :: 0#1R1 = (X - 1 =: Y) R2 = (1 - X =: Y)R1 + R2 >: 0Since no propagator nor its negation is entailed, the store is not changed. Telling the basicconstraint X=2 is inconsistent with the propagator 1-X=:Y, which causes R2 to be constrainedto 0. The inequality R1+R2>:0 ampli�es the store by R1=1 which in turn causes the propagatorX-1=:Y to be installed. This propagator tells immediately the constraint Y=2.3 Constructive DisjunctionIn this section we de�ne constructive disjunction and show an example of its use in Oz. Fora more detailed discussion of the theoretical background see for example [JS93].3.1 BackgroundAssume a computation space consisting of tasks T and a store S. A disjunctive combinatorwith n clauses spawns n local computation spaces, which consist of tasks T1; : : : ; Tn and storesS1; : : : ; Sn. Making the disjunction constructive means to lift common information from theclauses. Most information can be gained by merging for each clause the tasks Ti with theglobal tasks T and the store Si with the store S. We call S 0i the resulting stores after thecomputation has terminated. Let L be the set of constraints such that all S 0i entail L. Wenow lift L by adding it to S. For �nite domains this means to compute the union of thedomains of the occurring variables.This approach to constructive disjunction has been shown to be very expensive (see forexample [CC95]). Thus, we restrict constructive disjunction in that the global tasks T are notmerged with the local tasks Ti. Only the global store is visible for speculative computation.The yielded performance results justify our approach.4



3.2 Constructive Disjunction in OzOz syntactically supports constructive disjunction by the keywords dis and end. The clausescan contain arbitrary �nite domain expressions. Picking up our example, we obtainX :: 1#5 Y :: [0 1 5] % X 2 f1; : : : ; 5g Y 2 f0; 1; 5gdis X - 1 =: Y [] 1 - X =: Y endBut in contrast to the previous versions of disjunctions, X and Y are immediately con-strained: X 2 f1; 2g and Y 2 f0; 1g. This is the result of lifting, i.e., X 2 f1; 2gleft [ f1grightand Y 2 f0; 1gleft [ f0gright. Telling X=2 fails the right clause and merges the computationspace with the parent's computation space, which results in telling Y=1.4 Implementing Constructive Disjunction4.1 IdeaWhile local computation spaces described in Section 2.1 are an elegant way to express specula-tive computation, they are rather expensive. This is because constraint propagation typicallyleads to frequent movements in the tree of computation spaces. Thus we implement con-structive disjunction using only its host computation space and simulate speculative work byspecial-purpose tasks computing with fresh variables. We call the used tasks also propagatorsbecause they are implemented with the same technique as the propagators in Section 2.2. Theinformation 
ow between simulated computation spaces must be monitored and propagatorsmust be prevented from raising inconsistencies, i.e., computation must be encapsulated.The variables syntactically occuring in the clauses of a disjunction are called the originalvariables. To encapsulate computation, we �rst introduce for every clause of the disjunc-tion fresh variables by renaming the original variables. These variables are called renamedvariables. Furthermore, a kind of special-purpose propagator is introduced: a controlled prop-agator. Such a propagator is controlled by a further argument, its controller. A controlledpropagator may amplify the constraint store like its uncontrolled counterpart if this does notlead to an inconsistent store. If the store would become inconsistent, the propagator ceasesto exist and constrains its controller (see below). For instance, the controlled propagatorfor X < Y ampli�es the store as X<:Y but does not discard its host space. By constrainingthe controller, the propagator may be forced to cease to exist or to install its uncontrolledcounterpart.The connection between original and renamed variables is established by another special-purpose propagator, called the cd-manager. This propagator monitors the simulated localcomputation spaces of the clauses and realizes the operational semantics of a disjunction. If anoriginal variable is further constrained, the corresponding renamed variables are constrainedaccordingly by the cd-manager. The cd-manager lifts common information of alternatives bygeneralising the constraints on the renamed variables.5



4.2 An ExampleThe following example illustrates the source-level transformations done for constructive dis-junction in Oz. The example is taken from [HW95]. The variable B is constrained to 1 if thetwo jobs T1 and T2 do overlap and to 0 otherwise. Tns denotes the starting point and Tndthe duration of the task Tn.disB =: 1T1s + T1d >: T2sT2s + T2d >: T1s[] B =: 0T1s + T1d =<: T2s[] B =: 0T2s + T2d =<: T1send =) local B_1 B_2 B_3 C_1 C_2 C_3T1s_1 T1s_2 T1s_3 T1d_1 T1d_2 T1d_3T2s_1 T2s_2 T2s_3 T2d_1 T2d_2 T2d_3 in% initializing controller variablesC_1 :: 0#1 C_2 :: 0#1 C_3 :: 0#1% first clause(B_1 =: 1) ./ C_1(T1s_1 + T1d_1 >: T2s_1) ./ C_1(T2s_1 + T2d_1 >: T1s_1) ./ C_1% second clause(B_2 =: 0) ./ C_2(T1s_2 + T1d_2 =<: T2s_2) ./ C_2% third clause(B_3 =: 0) ./ C_3(T2s_3 + T2d_3 =<: T1s_3) ./ C_3% spawning cd-manager{CDM C_1#C_2#C_3 B#T1s#T1d#T2s#T2d(B_1#T1s_1#T1d_1#T2s_1#T2d_1)#(: : :)#(: : :)}endBy local : : : in : : : end fresh variables are introduced with limited scope. {CDM : : :} de-notes application of the procedure CDM with its arguments. There is a controller associatedwith each clause, i.e., C_1, C_2 and C_3. Furthermore, each clause has its own set of consis-tently renamed variables, i.e., B, Ts1, Td1, Ts2 and Td2 correspond to B_1, Ts1_1, Td1_1, Ts2_1and Td2_1 in clause 1 and for the other clauses accordingly. The expression (P) ./ C asso-ciates the controller C with the controlled version of propagator P . First, the controllers areinitialised, then the propagators of the clauses are installed and �nally the cd-manager CDMis called with the controllers, the original variables and the renamed variables as arguments.4.3 Implementation by Special-Purpose PropagatorsWe �rst explain the implementation of propagators as described in Section 2.2. Thereafterthe implementation of the special-purpose propagators will be explained.Implementation of propagators. Propagators are implemented as C++ functions. Theyare associated to their host computation space and establish a constraint over a set of variables(see Section 2.1 and 2.2). A propagator has three possible states:1. A propagator is sleeping. Each variable constrained by the propagator has an entryin its suspension list, containing all information to rerun the propagator, i.e., its codeaddress, its computation space and a reference to the set of variables it constrains.2. A propagator is woken up. At least one variable constrained by the propagator hasbeen constrained in the computation space S. This causes the suspension list of thevariable to be scanned and all sleeping propagators which are installed in S or a spacesbelow will be reinvocated at the next occasion.6



3. A propagator is running. A propagator can be running by initial installation or byreinvocation. At the initial run a suspension entry is added to the suspension list ofeach argument variable to allow reinvoaction of the propagator. Before reinvoking apropagator the computation space it is hosted in is reinstalled. Running a propagatormay yield three di�erent results, which are interpreted by the running system:(a) The propagator is inconsistent with the constraint store and returns as resultfailure. This causes its host computation space to be discarded.(b) The propagator ampli�es the store of its host space, but later ampli�cation orinconsistency may be possible. The propagator returns sleep.(c) The propagator cannot amplify the store anymore. It returns success and thesuspension entries are removed.Implementation of constructive disjunction. The cd-manager acts as glue betweenthe components of a constructive disjunction. Because of the scope for the renamed variables,the controlled propagators can only be reinvocated by the cd-manager. In the following weshow the structure of the cd-manager:Step 1. Propagate information into clauses.Step 2. Check if cd-manager can reduce.Step 3. Execute propagators in clauses.Step 4. Check if cd-manager can reduce.Step 5. Lift common information.A cd-manager is reinvocated if an original variable is constrained. Therefore, in step 1new information needs to be propagated into the clauses of the disjunction. This is doneby constraining renamed variables by the domains of the corresponding original variablesif no inconsistency arises. If an inconsistency would arise, the corresponding controller isconstrained to 0. A controlled propagator ceases to exist if its controller is constrained to 0.If all clauses of a disjunction are failed, the computation space must be discarded. The cd-manager observes this case if all controllers are 0. In this case the host space is discarded. Ifonly one clause of a disjunction is left, it must be merged with the host space. The cd-managerobserves this if all but one controller is constrained to 0. In that case, the controller di�erentfrom 0 is constrained to 1 and the original variables are uni�ed with the renamed variablesof this remaining clause. If a controller of a controlled propagator is constrained to 1, theuncontrolled counterpart is installed. Thus, the controlled propagators are replaced by theiruncontrolled counterparts and suspend also on the original variables. If the controllers do notful�ll these two conditions, the execution of the cd-manager is continued. This implementsstep 2.Constraining renamed variables may require reinvocation of the propagators in the clauses.That happens in step 3. To have full control on the controlled propagators, the cd-managercan call such propagators directly (note that they are simple C++ functions). The controlledpropagators are executed until no more ampli�cation of the store takes place. If a controlledpropagator would make the store inconsistent, it ceases to exist and constrains its controller to7



0. The result of this computation can be inspected by the cd-manager through the controllersin the same way as in step 2.Finally, in step 5, for all original variables the unions of the domains of the correspondingrenamed variables are computed. The original variables are constrained by this set of unions.That may cause further constraint propagation in the host computation space, which is thedesired e�ect of constructive disjunction.4.4 OptimisationsAvoiding redundant renamed variables. A drawback of this implementation techniquedescribed so far is that for every original variable a renamed variable per clause has to beintroduced, even if the original variable is not present in that clause. That means a signi�cantmemory overhead for certain applications. To cure the problem we introduce void-variables,which are represented as atoms and are treated by the cd-manager like variables with anarbitrary large domain. The following example makes it clear.disX <: Z[] Y <: Zend =) local C_1 C_2 X_1 Z_1 Y_2 Z_2 inC_1 :: 0#1 C_2 :: 0#1(X <: Z) ./ C_1 % 1st clause(Y <: Z) ./ C_2 % 2nd clause{CDM C_1#C_2 X#Z#Y(X_1# void #Z_1)#( void #Y_2#Z_2)}endDiscarding the cd-manager earlier. Whenever checking whether a cd-manager can re-duce or not (step 2 and 4 of the cd-manager) a quite good chance to reduce is ignored: a clauseof a disjunction is implied by the host computation space, i.e., the constraints of the clauseare implied by the constraints in the host space and no propagators are left. To check thesecond condition an extra counter is necessary keeping track of propagators still existing in aclause. This can be done by constraining the controller of a clause initially to f0; : : : ; n+ 1g,where n is the initial number of propagators of this clause. When a propagator ceases toexist it constrains the controller variable C of the clause to C 2 f0; : : : ; upperBound(C)� 1g.Thus, if the controller of a clause is constrained to f0; 1g and the domains of the originalvariables are subsets of the domains of the renamed variables the cd-manager can cease toexist. The controllers of the remaining clauses are constrained to 0.5 DiscussionFor a comparison with Oz, there are only two experimental concurrent constraint languages,namely cc(FD) and AKL(FD) [CC95] available, which provide for constructive disjunctiontoo. While constructive disjunction can be nested in cc(FD), this has to be done by out-folding by the programmer in Oz. Unfortunately, no implementation of cc(FD) [VSD95] iscurrently available for further evaluation.In AKL(FD) two versions of constructive disjunction are compared. The full versiondescribed in Section 3.1 is shown to be powerful but extremely costly. The recommendedversion of AKL(FD) is less expressive than constructive disjunction in Oz. For example, inAKL(FD) it is not possible to deduce from (Y = 1 _ Z = 1) ^ X = Y ^ X = Z that all8



three variables are equal to 1. The implementation heavily bases on the underlying indexicalscheme used to implement the constraints.The sequential language ECLiPSe [ECR94] provides for so-called generalised propaga-tion [PW93]. Predicate calls can be annotated resulting in speculative computation to extractmore information for pruning. With generalised propagation, constructive disjunction can bemodelled by stating clauses as di�erent facts. Because general propagation can become veryexpensive, it is possible to choose several levels of generalisation.Also in the sequential setting there are so-called high-level constraints [EK93]. Predicatesmodelling constraints can be annotated by conditions when to wake up and when the corre-sponding constraint is entailed. The information which results from the de�ning predicatesis generalised similar to constructive disjunction.The following table contains computation results obtained comparing constructive dis-junction (CD) with rei�ed constraints (Rei�ed) and the disjunctive combinator (OR). Thecolumn Time gives the overall runtime in seconds on a Sun Sparc10 with 50 MHz whileChoices gives the number of labelling steps. The �rst two columns belong to a real-worldtime tabling problem described in [HW95]. The last two columns belong to a medium-sizedscheduling problem where the optimal solution is to be found. If we use rei�ed constraintsor the disjunctive combinator no solution is found after more than 900 000 labelling steps.Disjunction Time Choices Time ChoicesCD 32.2 150 10.06 178Rei�ed 323.4 972 ? >900 000OR 411.8 972 ? >900 000Furthermore, we have compared Oz and ECLiPSefor the scheduling problem4. Bothprograms use �rst-fail labelling (in Oz we have programmed the built-in labelling used inECLiPSe). ECLiPSecomputes the optimal solution in 216.87 seconds using the infers mostannotation.RemarkThe research reported in this paper has been supported by the Bundesminister f�ur Bil-dung, Wissenschaft, Forschung und Technologie (FTZ-ITW-9105), the Esprit ProjectACCLAIM (PE 7195) and the Esprit Working Group CCL (EP 6028). The DFKIOz system and the documentation are available from the programming systems lab ofDFKI through anonymous ftp from ps-ftp.dfki.uni-sb.de or through WWW fromhttp://ps-www.dfki.uni-sb.de/oz/.References[CC95] B. Carlson and M. Carlsson. Compiling and executing disjuctions of �nite domain con-straints. In Proceedings of the International Conference on Logic Programming, pages4The code of this benchmark is available from http://ps-www.dfki.uni-sb.de/~wuertz/Oz/benchs.html.The AKL(FD) program did not compile while we were using the indexical scheme for constructive disjunctiondeveloped in [CC95]. 9



117{131, 1995.[Col90] Alain Colmerauer. An introduction to PROLOG-III. Communications of the ACM,33(7):69{90, July 1990.[DVS+88] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Berthier. Theconstraint logic programming language CHIP. In Proceedings of the International Con-ference on Fifth Generation Computer Systems FGCS-88, pages 693{702, Tokyo, Japan,December 1988.[ECR94] ECRC. ECLiPSe, User Manual Version 3.4.1, July 1994.[EK93] M. Anton Ertl and Andreas Krall. High-level constraints over �nite domains. In ManfredMeyer, editor, Proceedings of the International Workshop on Constraint Processing atCSAM'93, St. Petersburg, pages 65{76, July 1993.[HW95] M. Henz and J. W�urtz. Using Oz for college time tabling. In International Confer-ence on the Practice and Theory of Automated Time Tabling, Edinburgh, Scotland, Au-gust/September 1995. To appear.[JL87] J. Ja�ar and J.-L. Lassez. Constraint logic programming. In Proceedings of the ACMSymposium on Principles of Programming Languages, pages 111{119, 1987.[JS93] J. Jourdan and T. Sola. The versatility of handling disjunctions as constraints. In Pro-ceedings of the International Symposium on Programming Language Implementation andLogic Programming, pages 60{74, 1993.[MPSW94] Tobias M�uller, Konstantin Popow, Christian Schulte, and J�org W�urtz. Constraint pro-gramming in Oz. DFKI Oz documentation series, Deutsches Forschungszentrum f�urK�unstliche Intelligenz GmbH, Stuhlsatzenhausweg 3, 66123 Saarbr�ucken, Germany, 1994.[PW93] Thierry Le Provost and Mark Wallace. Generalized constraint propagation over the CLPscheme. The Journal of Logic Programming, 16(3 & 4):319{359, July 1993. Special Issue:Constraint Logic Programming.[Smo95] Gert Smolka. The Oz programmingmodel. In Jan van Leeuwen, editor, Computer ScienceToday, Lecture Notes in Computer Science, vol. 1000. Springer-Verlag, Berlin, 1995. toappear.[SSW94] Christian Schulte, Gert Smolka, and J�org W�urtz. Encapsulated search and constraintprogramming in Oz. In A.H. Borning, editor, Second Workshop on Principles and Practiceof Constraint Programming, Lecture Notes in Computer Science, vol. 874, pages 134{150,Orcas Island, Washington, USA, 2-4 May 1994. Springer-Verlag.[ST95] Gert Smolka and Ralf Treinen, editors. DFKI Oz Documentation Series. GermanResearchCenter for Arti�cial Intelligence (DFKI), Stuhlsatzenhausweg 3, D-66123 Saarbr�ucken,Germany, 1995.[VSD91] P. Van Hentenryck, V. Saraswat, and Y. Deville. Constraint processing in cc(FD). Tech-nical report, Brown University, 1991. Unpublished.[VSD95] P. Van Hentenryck, V. Saraswat, and Y. Deville. Design, implementation and evaluationof the constraint language cc(FD). In Andreas Podelski, editor, Constraints: Basics andTrends, Lecture Notes in Computer Science, vol. 910. Springer Verlag, 1995.
10


