
Extending a Concurrent Constraint
Language by Propagators
Tobias Müller and Jörg Würtz
Programming Systems Lab
Universität des Saarlandes and DFKI Saarbrücken
Postfach 15 11 50, D-66041 Saarbrücken, Germany
Email: ftmueller,wuertz g@ps.uni-sb.de

Abstract

To solve large and hard discrete combinatorial problems it is often necessary to
design new constraints. Current systems either focus on thehigh-level modeling
aspect or on very efficient implementation technology. While each approach lacks
the advantages of the other one, this paper describes the combination of both ap-
proaches in the concurrent constraint language Oz. Throughan interface to program
new finite domain constraints efficiently in C++, the benefits of a high-level language
to model a problem and of an efficient implementation technology for user-defined
constraints are inherited.

Constraints and the Oz runtime system are linked together only by the interface
abstractions. The interface supplies adequate abstractions to implement advanced
algorithmic techniques. It provides, for example, also means to reflect the validity
of a constraint and to control and inspect the state of the actual implementation of a
constraint. This allows to solve demanding combinatorial problems, as for instance
hard scheduling problems.

The described interface is not limited to concurrent constraint languages or a
particular constraint system.

1 Introduction

Over the last years several approaches and systems were suggested to solve dis-
crete combinatorial problems with finite domain constraints [4, 19, 3, 2, 5, 8]. To
solve large and hard combinatorial problems it is often necessary to program new
customized constraints and search strategies. Several approaches were suggested in
literature.

A constraint logic programming (CLP) language likeECLiPSe [5] is well-suited
to model constraint problems on a high-level. It provides certain primitives like
attributed variables to design new constraints. But many techniques to solve hard
problems require destructive low-level operations, whichare difficult to program
efficiently in this setting.

The indexical approach [19, 3] allows the user to program some new constraints.
But it has no support to apply more sophisticated algorithmic techniques to imple-
ment new constraints (see also Section 8 and [13]).

In Jan Małuszyński, editor,Proceedings of the International Logic Programming Symposium, pages
149–163. The MIT Press, 1997.

On the other hand, combinatorial problems can be tackled in alanguage like
C++ together with a dedicated library for constraint solving (seee.g.ILOG [8]). Al-
though, many programming abstractions are provided through C++ classes, it is hard
for a C++ library to provide an adequate level of abstraction to program the constraint
model intended to solve the actual problem.

Each approach lacks the advantages of the others. In this paper we describe
the combination of the advantages of these approaches by interfacing the high-level
language Oz [17] with an interface to program new constraints efficiently in C++. Oz
is a concurrent constraint programming (CCP) language [14]which comes with a
rich predefined constraint library. By the concepts of a constraint store and entail-
ment, new constraints can be programmed in the language itself. Furthermore, Oz
provides means to program new search strategies [16].

Typically, the first step to solve a demanding problem consists in a prototypical
implementation. In case of using Oz, rapid prototyping is supported by the features
of a high-level language. After identifying the performance-critical parts of the
program which are not covered by predefined library constraints, these parts should
be re-casted in a very efficient implementation. To this aim an interface is provided
which supports adequate abstractions to implement new constraints in C++. Thus, the
application programmer can benefit from both a high-level language and an efficient
C++ implementation.

The actual implementation of a constraint through the interface is called a prop-
agator. The interface itself is called the Constraint Propagator Interface (CPI) of
Oz. Propagators and the Oz runtime system are linked together only by the inter-
face abstractions. The programmer is freed from tedious tasks like suspending or
resuming propagators. Furthermore, the CPI provides abstractions to hideresp.han-
dle specific features of Oz like computation spaces and equality constraints. That
helps the programmer to concentrate on propagation techniques rather than on (in
this context) irrelevant issues.

The implementation of advanced propagators is supported asfollows. The va-
lidity of arbitrary constraints can be reflected into a 0/1-valued variable (also called
reification) efficiently by a general and easy-to-use mechanism. The state of a prop-
agator can be controlled and inspected by the programmer. For example, it is pos-
sible to extend the set of variables an already running propagator is constraining.
Running propagators can spawn further propagators to strengthen constraint prop-
agation. Furthermore, it is possible to keep a history of computation steps in the
propagator’s state. This can be used to avoid redundant computation.

The interface design can also be used for Prolog-based implementations provid-
ing for coroutining. Moreover, it can be extended by furtherconstraint systems, as
already done at the DFKI for set interval constraints.

We emphasise that to prove the practicability of our approach Oz’s whole fi-
nite domain constraint library is implemented using the CPI. The resulting con-
straint solver shows competitive performance to state-of-the-art finite domain sys-
tems. It shows also competitive expressiveness and employsnon-trivial algorithms
for scheduling applications [20].

Plan of the paper. The following section introduces the computation model of Oz
followed by the introduction of the CPI abstractions. Section 4 explains the imple-
mentation of a propagator. The advanced expressiveness of the CPI in conjunction
with a case-study is discussed in Section 5 and 6. The specificfeatures of Oz are
considered in the following Section 7. The paper closes withrelated work, a perfor-

mance evaluation, and a conclusion.

2 Computation with Constraints in Oz

As a particular instance of a CCP language we consider Oz [17,16, 11]. Further,
the paper focuses onfinite domain constraintsover non-negative integers (for short
finite domain constraints, see [16] for details).

In Oz a distinction is made between those constraints which are basic and those
which are not. For the purpose of this paper, abasic constrainttakes the formx = n, x = y, or x 2 D, wherex andy are variables,n is an integer andD is a
finite domain. A constraintx 2 D is called adomain constraint. We say a variablex is determinedif the store entails a constraintx = n. The basic constraints reside
in theconstraint storeC. Efficient algorithms to decide satisfiability and entailment
are provided for basic constraints.

For more expressive constraints, likex+ y = z, deciding their satisfiability is
not computationally tractable. Such non-basic constraints are not held in the con-
straint store but are realized aspropagators. A propagator is a computational agent
which tries to narrow down the domains of variables by addingappropriate basic
constraints to the store. The termconstraint propagationrefers to advancing the
constraint store in this way. A propagator imposing the constraint P advances the
storeC to the storeC ^ B, if C ^ P entailsB andB adds new and consistent
information toC. The variables a propagator is narrowing are called itsparameters.

The implementation of a propagator defines the amount of constraint propaga-
tion, i.e., its operational semantics. Often a complete propagator which imposes
the strongest basic constraint entailed byC ^ P is computationally too expensive.
Thus, weaker propagation is usually employed. For some application areas domain-
specific techniques can be exploited which lead to very good results (see also Sec-
tion 9). A propagator may also cease to exist. If it ceases to exist, eitherP is entailed
byC, orC ^ P is unsatisfiable.

As an example for constraint propagation, assume a store containing x; y; z 2f1; : : : ; 10g. The propagator forx+y < z narrows the domains tox; y 2 f1; : : : ; 8g
andz 2 f3; : : : ; 10g (since the other values cannot satisfy the constraint). Adding
the constraintz = 5 causes the propagator to strengthen the store tox; y 2 f1; : : : ; 3g
andz = 5. Imposingx = 3 lets the propagator narrow the domain ofy to 1.

A computation spacehosts a constraint store and a set of propagators. We first
treat the case where only one computation space is given. Theparticularities of a
hierarchy of computation spaces is described in Section 7.

3 Extending Oz with Propagators

The computational model sketched in Section 2 is realized bythe Oz runtime sys-
tem, which is implemented by an abstract machine [10], called theemulator. In
the current section we explain the interface between the emulator and propagators.
We introduce the provided CPI abstractions as consequence of the interaction be-
tween the emulator and propagators. Note that in the following we also speak of
propagators if we mean the actual implementation of the computational agents.

Overview. A propagator exists in different execution states which arecontrolled by
the emulator. Further, the emulator provides a propagator with resources like com-

putation time and heap memory. To separate the emulator and the implementation
of propagators, from the emulator’s point of view a propagator is an opaque entity
that requires resourcesresp.services.

In turn, a propagator synchronises on the constraint store and may amplify it
with basic constraints. The emulatorresumesa propagator, when the store has been
amplified in a way the propagator is waiting for. For example,many propagators
will only be resumed when the domain bounds of its parametersare narrowed. On
resumption a propagatorreads for its parameters the basic constraints which are
contained in the store. In the course of constraint propagation it writes basic con-
straints to the store.

The CPI is a C++ interface and consequently, provides abstractions as C++ classes.
A propagator is implemented by an instance of a C++ class which stores in its state
references to the propagator’s parameters. Operationally, resuming a propagator
means running its propagation method. Note that in the following C++ identifiers
which start with “OZ_” refer to CPI abstractions.

Handling a propagator. As mentioned above, the emulator regards a propagator as
an opaque entity. Hence, the emulator needs a uniform way to refer to all instances
of propagators. Further, the CPI must ensure that a programmer provides the min-
imal propagator functionality required by the emulator. The compiler should reject
code which is incomplete in that sense. Technically, both requirements are real-
ized in the interface by defining the classOZ_Propagator asabstract base class,
which is the ancestor class of all propagator classes. An abstract base class provides
only the declaration (i.e., only the type signature) but not the definition for its virtual
methods which are indicated by “=0” after the argument list. Virtual methods allow
for dynamic binding of methods. This enables the emulator tocontrol any concrete
instance of a propagator only by having a pointer of type(OZ_Propagator*) to
it and thus, separates completely propagators from the emulator.
enum OZ_Return {ENTAILED, FAILED, SLEEP};

class OZ_Propagator {
public:

virtual OZ_Return propagate(void) = 0;
virtual void updateHeapRefs(OZ_Boolean) = 0;
...

};

Imposing a propagator. Attaching a propagator instance to its parameters and
introducing a reference to this instance to the emulator is called propagator impo-
sition. This is done by a so-calledheader function. Such a function is connected
via the Oz standard C interface [9] to an Oz procedure. A header function has to
provide the following services.

1. A propagator is imposed as soon as its parameters aresufficiently constrained.
For example, if a parameter which is expected to be an integeris not yet
determined, the propagator should not be imposed yet. On theother hand,
type errors should be detected by the header (e.g., a parameter is an atom
instead of an integer).

2. It is determined on imposition what events cause a propagator to be resumed.
A propagator can be resumed if a parameter is determined, thebounds of
the parameter’s domain are narrowed, the size of the domain is shrunk, or a

parameter is involved in a unification.

3. A reference to the newly created propagator instance has to be passed to the
emulator.

The classOZ_Expect is provided for that purpose. It supplies a set of methods
to test parameters to be sufficiently constrained. Further,they store the event (this
is passed as extra argument to the test method) on which the propagator has to
be resumed. Insufficiently constrained parameters cause the header function to be
suspended such that it is resumed as soon as the parameters concerned are further
constrained.

After creating a new instance of the propagator by invoking its constructor,
a reference of type(OZ_Propagator*) is passed to the methodimpose()
of OZ_Expect to introduce the propagator to the emulator. As a side-effect,
impose() attachessuspensionsto the appropriatesuspension listsof the variable
parameters. These parameters were previously stored in thestate of the propagator
by the test methods. The propagator is nowsuspendingon its parameters and can
be resumed if the parameters are further constrained. In fact, a variable can have
several suspension lists such that the contained propagators are resumed on different
events.

Scheduling a propagator by the emulator.In order to schedule propagators, the
emulator maintains for each propagator an execution state which can take one of the
following values:running , runnable , sleeping , entailed , andfailed .
The emulator’s scheduler switches a propagator between theexecution states as
shown in Figure 1.

When a propagator is imposed, its execution state is immediately setrunning
and the scheduler allocates a time slice for its first execution. After every execu-
tion, when the constraint propagation was performed by the appropriate propagation
method, the emulator evaluates the propagator’s return value.

imposition running

failed

entailed

sleeping

runnable

(1)

(2)

SLEEP
FAILED

ENTAILED

Figure 1: Execution states of a propagator

The valueFAILED is returned if the propagator (according to its operationalse-
mantics) detects its inconsistency with the store. The emulator sets the propagator’s
execution state tofailed and the computation is aborted. The propagator will be
ignored by the emulator until it is eventually disposed by the next garbage collec-
tion. An immediate disposal is not desirable since there maybe multiple references
to a propagator.

The return valueENTAILED indicates that the propagator detects that the con-
straint it implements is entailed by the constraint store,i.e., the propagator cannot
further amplify the constraint store. The emulator sets thepropagator’s execution
state toentailed . It happens the same as for a failed propagator: it will be ig-
nored until it is disposed by garbage collection.

If the propagator can neither detect inconsistency nor entailment, it returns
SLEEP. Its execution state is set tosleeping .

A propagator is resumed if at least one of its variable parameters was involved in
unification or its domain was further narrowed. The emulatorscans the suspension
lists of the concerned variables and either deletes entrieswhere the propagator’s
execution state isfailed resp.entailed or switches the execution state of the
suspending propagator torunnable . This is indicated by transition (1) in Figure 1.
Now, the scheduler takes care of the propagator and will schedule it later on (the
transition (2) fromrunnable to running is subject to the scheduler’s policy and
will be not discussed here). In fact, when the scheduler switches a propagator to
runnable the propagator’s methodpropagate() is executed.

Reading and writing constraints by a propagator.A propagator stores in its state
references to its parameters. Constraint propagation in the implementation consists
basically of the following stages: reading basic constraints of its parameters, writ-
ing further basic constraints to the store and resuming propagators suspending on
these parameters. An instance of the classOZ_FDIntVar provides access to a
parameter’s representation in the constraint store. On construction it obtains access
to a parameter’s suspension lists and the parameter’s finitedomain representation
of classOZ_FiniteDomain . Further, it stores a profile of the finite domain rep-
resentation. A profile consists of the current domain size and the difference be-
tween the current largest and smallest element of the domain. Such a profile is
used by the methodOZ_FDIntVar::leave() to decide whether propagators
suspending on this parameter have to be resumed or not. Instances of the class
OZ_FiniteDomain provide methods to access the representation of the domain
constraint of a parameter.

Memory management. A propagator classP derived fromOZ_Propagator
has to define a methodP::updateHeapRefs() sinceOZ_Propagator de-
clares this method as a pure virtual method. This method is called by the emula-
tor’s garbage collection routine and has to ensure that all references to the emula-
tor’s heap are updated which are reachable from the propagator’s state. For exam-
ple, to update a reference of the predefined typeOZ_Term the provided function
OZ_updateHeapTerm() has to be applied to it.

4 An Example

This section explains the constraint propagator interfaceof Oz by implementing the
propagator for the constraintx � y.

The implementation of thex � y propagator requires the definition of a new
class inheriting fromOZ_Propagator .

class LessEq : public OZ_Propagator {
private:

OZ_Term x_ref, y_ref;
public:

LessEq(OZ_Term x, OZ_Term y) : x_ref(x), y_ref(y) {}

virtual OZ_Return propagate(void);
};

The propagator stores in its state references to its parameters (herex_ref and
y_ref). A value of the predefined typeOZ_Term refers to a parameter in the
constraint store. The constructor of the classLessEq initialises the state and is
used in the definition of the header function imposing the propagator (see at the end
of this section).

The propagation method. When the emulator switches a propagator’s state to
running the methodpropagate() of the propagator is executed (see Figure 2).
This method implements the propagation algorithm of the propagator.

1 OZ_Return LessEq::propagate(void) {
2 OZ_FDIntVar x(x_ref), y(y_ref);
3 OZ_FiniteDomain * x_dom=x.getDom(), * y_dom=y.getDom();
4 if (!x_dom->lowerUB(y_dom->getMaxElem())) goto failure;
5 if (!y_dom->raiseLB(x_dom->getMinElem())) goto failure;
6 if (x_dom->getMaxElem() <= y_dom->getMinElem()) {
7 x.leave(); y.leave(); return ENTAILED;
8 }
9 x.leave(); y.leave(); return SLEEP;
10 failure:
11 x.fail(); y.fail(); return FAILED;
12 }

Figure 2: Methodpropagate() for the constraintx � y
To obtain access to the propagator’s parameters the instances x and y of class
OZ_FDIntVar are created. The functionOZ_FDIntVar::getDom() returns
a pointer to the representation of the domain constraint of the parameter (through its
representation as an instance ofOZ_FDIntVar). Therefore,x_dom andy_dom
refer to the finite domain constraint representations of therespective parameters(3).1

The propagation algorithm forx � y is straightforward. The upper bound ofx’s domain is constrained to be less than or equal to the upper bound ofy’s domain
(4) and the lower bound ofy’s domain is constrained to be greater than or equal to the
lower bound ofx’s domain(5). The methodlowerUB(i) makes the upper bound of
the domain less than or equal toi (4) and the method executionraiseLB(i) makes
the lower bound of the domain greater than or equal toi (5). Both functions return the
size of the resulting domain. The methodgetMinElem() resp.getMaxElem()
returns the smallestresp.largest value of the domain(4,5). In case an empty domain
is produced the execution branches to labelfailure .

The propagator cannot further amplify the store if the upperbound ofx’s do-
main is less than or equal to the lower bound ofy’s domain (6–8), i.e., x � y is
entailed by the store. The returned valueENTAILED signals the emulator that the
propagator can be discarded. Otherwise, returningSLEEPkeeps the propagator
suspending on its parameters. The methodOZ_FDIntVar::leave() indicates
for the emulator which suspending propagators should be resumed because of the
occurred propagation.

The methodOZ_FDIntVar::fail() has to be called to do some cleanups
if the propagator is left because of a detected empty domain.The returned value
FAILED signals the emulator that the current computation space is inconsistent.1Note that in the sequel numbers in parentheses refer to program lines in Figure 2.

Imposing the propagator. The header function to impose thex � y propagator
defines an instance of the classOZ_Expect . The following macro applications
apply the test methodOZ_Expect::expectIntVarBounds() to the1st and2nd parameter which causes the propagator to be imposed not before the parameters
are constrained to finite domains. Additionally, it is determined that narrowing the
bounds of domains will resume the propagator. A new instanceof the propagator
is created by calling the constructor with the1st and2nd parameter. The applica-
tion of methodimpose() makes the propagator suspending on its parameters and
introduces the propagator to the emulator.

OZ_C_proc_begin(lesseq, 2) {
OZ_Expect pe;
OZ_EXPECT(pe, 0, expectIntVarBounds);
OZ_EXPECT(pe, 1, expectIntVarBounds);
return pe.impose(new LessEq(OZ_args[0], OZ_args[1]));

} OZ_C_proc_end

5 Additional Expressiveness of theCPI

This section explains the extended expressiveness of the CPI which is desired to
implement advanced propagators for demanding applications. All the discussed
extensions are supported by adequate CPI-abstractions which fit smoothly in the
setting presented before (see [12] for details).

Taking variable equality into account. Oz provides equality between variables,
i.e.x = y, as basic constraint. The CPI deals with equality in two ways:

1. The CPI provides abstractions to check which parameters of a propagator are
equal (see Section 6 for details). This can be applied to detect an incon-
sistency before variables are determined, as for thealldiff -constraint, which
imposes the constraint thatn variables must be pairwise different.

2. Different instances ofOZ_FDIntVar associated with parameters which are
equal refer to the same basic constraint. Therefore, updates to such a basic
constraint are already visible via all other parameters while propagating and
before leaving the propagator and telling the constraints to the store.

To avoid superficial equality treatment a propagator can check if an equality con-
straint was imposed on its parameters since the propagator’s last run.

Exploiting statefulness. Because search in Oz is based on a copying-scheme, not
only changes to variables are saved, but also complete computation spaces includ-
ing propagators. That allows the modification of a propagator’s state destructively
since if an inconsistency occurs, the propagator can be fully recovered. This fea-
ture can be used to detect what parameter has been changed since the most recent
execution of the propagation method by storing a profile (seeSection 3) of the pa-
rameters before the propagation method is left. This allowsthe implementation of
consistency algorithms like AC-5 [18]. Further, it can be used to store intermediate
propagation results in the state which are expensive to recompute on each execution
of the propagation method.

Replacingresp.imposing propagators while propagating.In the course of prop-
agation a propagator may detect that it can replace itself bya more efficient one.

For example, supposex = y is added to a store of a computation space where the
constraintx+ y = z belongs to. It is more efficient to replacex+ y = z by 2x = z
rather than to take care of equality every time propagation is done forx+ y = z.

In scheduling applications a propagator for a specialized scheduling constraint
may deduce in the course of propagation orderings betweens tasks. To maintain
these task orderings propagators for constraints likeStartT1 + DurationT1 <StartT2 can be imposed by the scheduling propagator with the side-effect that the
scheduling propagator need not to care for these orderings anymore.

Encapsulated propagation. Typically, propagators tell the result of constraint
propagation to the store. An instance of the classOZ_FDIntVar allows there-
fore to update the basic finite domain constraint of its associated parameter, such
that the changes will become visible to the store. But, for example, propagators
for reified (resp.meta) constraints [6] reflect only the validity of a constraint via a
0/1-variable to the store. The result of propagation is encapsulated in the prop-
agator (i.e. not visible to the store) and only used to decide the validityof the
constraint (for instance by comparing the basic constraints in the store with the
result of propagation). The CPI supports encapsulated propagation by the method
OZ_FDIntVar::readEncap() , so that reified constraints can be straightfor-
wardly implemented in conjunction with propagator replacement.

Attaching a propagator with a stream. The CPI abstractionOZ_Stream allows
to attach a propagator with a stream such that the propagatoris able to read and write
the stream. That enables communication between a propagator and other program
parts independent from finite domain constraint propagation. This feature allows
branching strategies to be guided by propagators. The propagator may suggest to
an Oz procedure an ordering for tasks to be scheduled by usingthe shared stream.
The Oz procedure may take the branching suggestion into account and may com-
municate back via the stream the actual branching decision to the propagator. The
propagator in turn can use this information for the next ordering suggestion. Fur-
thermore, it is possible to add extra parameters after a propagator is imposed to
allow for propagators with dynamically increasing arity.

The discussed features have been applied to solve hard scheduling problems com-
petive to the state-of-the-art [20]. The CPI enables the implementation of so-called
global constraints. It is further possible to suspend the imposition of a propagator
until the store contains certain required basic constraint, which is desired to imple-
ment,e.g., an autonomous solver encapsulated in a propagator. The CPI allows the
implementor of a propagator to determine the degree of propagation, e.g.domain
consistency for a certain constraint.

6 A Case-study

This section outlines the implementation of a more advancedpropagator using some
of the previously discussed extensions. The example used isthe constraintnXi=1 aixi + c � 0 (1)

Along this example, it is shown how the state of a propagator is used to avoid
redundant computation, how constraints of arbitrary aritycan be handled, and how
equality between variables can be used.

Propagation rules. We assume for the presented formulas that for a given real
numbern, bnc (dne) denotes the largest (smallest) integer which is equal or smaller
(larger) thann. Further, the current lowerresp.upper bound of the domain of a
variablex is denoted byx resp.x. Resolving the inequation (1) forakxk yields.akxk � � nXi=1;i6=k aixi � c
The upper bound of the right hand side of this in-equation is

upk = � nXi=1;i6=k;ai>0 aixi � nXi=1;i6=k;ai<0 aixi � c
For everyk, the variablexk is narrowed as follows until a fixed point is reached.xk � �upkak � ; if ak > 0 and xk � �upkak � ; if ak < 0
This propagator ceases to exist if the following in-equation holds:nXi=1;ai>0 aixi + nXi=1;ai<0 aixi + c � 0
Handling vectors. The CPI provides adequate abstractions to convert data struc-
tures of Oz (like lists) into C++ data structures. In Oz, a list, a tuple, or a record is
denoted as avector. To enable propagators with arbitrary arity, vectors are allowed
as parameters too. The propagator for inequality (1) has three parameters,i.e., the
first parameter contains the coefficients, the second one thevariables and the third
one the constant.

The vectors of coefficients and finite domain variables are converted to C++ ar-
rays of integers and elements of typeOZ_Term, respectively. The class for the
propagator implementing inequality constraints stores arrays for the coefficientsai
and the variablesxi, the constantc and the current size of the arrays.

class GenLessEqProp : public OZ_Propagator {
int arr_sz, c, * a;
OZ_Term * x;

public: ...
};

The header will check whether the arrays have the same size and whether the param-
eters have the correct type. For this aim, the classOZ_Expect can be customized
to handle more complex data structures (like arrays or matrices).

Exploiting variable equality. The CPI provides the function

int * OZ_findEqualVars(int size, OZ_Term * v)

to detect equal variables, in anOZ_Term array. It expectsv to be an array of size
size . Assume the application

int * pa = OZ_findEqualVars(arr_sz, x);

wherepa is called the position array. The arrayx is scanned with ascending index
starting from0 to determine the values ofpa . If x[i] denotes a variable and this

variable occurs the first time, the value ofpa[i] is i . In case the variable occurs
not the first time,pa[i] contains the index of the first occurrence. Ifx[i] denotes
an integer,pa[i] contains�1.

As an example consider the constraint2a+3b� 4c� 5d+4e+8 � 0 where at
runtime the constraintc = e ^ d = 2 is imposed. The result of checking for equal
variables is as follows.

i : 0 1 2 3 4
x[i] : a b c d e

pa[i] : 0 1 2 -1 2

The state of the propagator can now be updated to represent the equivalent constraint2a+3b�2 � 0. Thus, this simplification avoids tedious handling of equalvariables
in the propagation algorithm and it improves memory consumption and runtime
behaviour.

7 Dealing with a Hierarchy of Computation Spaces

The main difference between constraint logic programming (CLP) and concurrent
constraint programming (CCP) is the replacement of satisfiability detection by en-
tailment checking. In Oz, computation spaces are used to implement entailment
checking (recall that for this paper a computation space consists of a constraint
store and a set of propagators attached to it). Furthermore,computation spaces are
employed to implement different search strategies in Oz (see [16] for details). Thus
a hierarchy of computation spaces may arise. Because constraint stores contain only
basic constraints, entailment between stores can be decided efficiently. On the other
hand, propagators should be taken into account, too. To thisaim a propagator should
cease to exist as soon as it can detect that the constraint it is imposing is entailed (but
at last if all its parameters are determined). That all propagators in a computation
space have ceased to exist is a necessary condition that a space,i.e., its store and the
constraints the propagators are imposing, is entailed.

While the implementors of the CPI have to take care of the handling of computa-
tion spaces, their existence and the resulting extra effortarecompletely transparent
for the user of the CPI. This is due to the supplied functionality by appropriate
methods which hide these issues from the programmer.

The fact that Oz computation may lead to a hierarchy of computation spaces has
to be taken into consideration. In case aglobal variable(i.e., a variable which is de-
clared in a super-ordinated space) is further constrained in a subordinated space, the
changes must be memorized. This is because the local information must not be vis-
ible in super-ordinated spaces and must be undone when the subordinated space is
left. Second, the emulator can resume only those propagators which suspend in the
current or in subordinated spaces. This is because constraints of a super-ordinated
space are visible in all its subordinated spaces but not the other way around (note
that this does not hold for propagators).

If a local variable (i.e., a variable which is declared in the current space) is
further constrained, the old domain need not be memorized. If a global variable
is further constrained, it is bound to a fresh local variable. The old domain of the
global variable is memorized (trailed) and the new domain isattached to the local
variable. Furthermore, the suspension entries of a global variable which contain sus-
pensions in the current or subordinated spaces are taken over. Propagators provide

this functionality by the methodleave() automatically, freeing the user from this
task. Note that this technique avoids the usual time stamping where one ensures that
a variable is trailed only once (seee.g.[2]).

8 Related Work

This section compares different constraint programming systems qualitatively rather
than quantitatively with Oz (see Section 9 for benchmarks).

Comparison with ILOG SOLVER. ILOG SOLVER [8] is a commercial C++ library
that allows to solve combinatorial problems in a constraintprogramming style in
C++. ILOG SOLVER permits the user to add new constraints. Therefore, methods
for the following tasks have to be implemented: posting the constraint, perform-
ing the constraint’s propagation and detecting an inconsistency. In contrast to CPI

propagators, an inconsistency is signalled to the solver bya separate method rather
than by a return value. There is no way to inform the solver that a constraint is
entailed which disallows early discard of the constraint. The implementation of rei-
fied (resp.meta) constraints requires to determine an “opposite” constraint which
is automatically imposed if the 0/1-variable is constrained to 0. The CPI provides
for that purpose its propagator replacement features (see Section 5). Further, con-
straints in ILOG SOLVER can employ so-called demons to propagate selectively,
i.e., every variable is assigned a separate propagation method.This trades speeding
up execution against increasing memory consumption. The CPI supports this tech-
nique too by modelling a demon by a separate propagator. Bothsystems support the
implementation of global constraints effectively.

Comparison with ECLiPSe and CHIP. ECLiPSe is a Prolog-based language with
a variety of extensions, particularly it features a finite domain constraint solver.
ECLiPSe features attributed variables and coroutining and is extended by primitives
to manipulate finite domain variables which allows to implement constraints, even
global ones, inECLiPSe itself. The programmer has to take care of the suspen-
sion handling and propagator resumption himself. In contrast, the CPI abstraction
OZ_FDIntVar fulfills this task in a self-acting way.

CHIP [4] is the forerunner ofECLiPSe and provides a set of powerful built-in
constraints. Nevertheless, the constraints are hard-wired and the user has to define
new constraints in CHIP itself.

Comparison with indexicals. The so-called indexical approach [19] allows the
user to define new constraints by constructing them with indexicals. Indexicals are
terms “x in r” wherer defines howx is constrained and on what event an indexical
is resumed. The indexicals which realize a single constraint exist independently of
each other,i.e., the constraint is not available first-class (see also [13]). Thus, al-
gorithmic techniques employing global reasoning on all arguments of the constraint
cannot be incorporated in this setting.

AKL(FD) [2] implements indexicals in a concurrent constraint setting where
local computation spaces are employed in so-called deep guards. Hence, there are
similarities in the handling of variables and suspensions of different computation
spaces. The integration of constraints is not as tight as in Oz. In AKL(FD) a sin-
gle constraint cannot be used simultaneously to amplify thestore and be used for
entailment checking as is possible for propagators.

9 Performance Evaluation

To evaluate the performance of the CPI we ran two sets of benchmarks with Oz 2.0.3
and set the results in relation to ILOG SOLVER 3.2 resp.ILOG SCHEDULER 2.2 [7].
We have chosen ILOG to compare with because they use also C++ as implementation
language. Note that also the scheduling propagators for benchmarking the job-shop
problems are implemented using the CPI.

The performance of Oz for small-size applications, like n-queens, is rather aver-
age due to the constant extra cost imposed by the very expressive first-class search
facilities of Oz [15].

Propagation performance.The first set of benchmarks measures the performance
of the CPI without search. Inconsistent constraints are imposed suchthat it requires
a lot of propagation to detect the inconsistency. The time istaken until the inconsis-
tency is detected. To keep the impact of propagation algorithms minimal we used
the straightforward constraintsx < y, 2x = y, andx+ y = z, which do not require
sophisticated propagation techniques and reason only on the bounds of domains.

Inconsistent constraint ILOG SOLVER 3.2 Oz 2.0.3 ILOG / Oz
(sec) (sec)x; y 2 f0; : : : ; 1 000 000g^ 26.71 24.35 1.09u; v 2 f0; : : : ; 2 000 000g^2x = u ^ 2y = v ^ u = v + 1x; y 2 f0; : : : ; 10 000 000g^ 28.09 29.65 0.95x < y ^ y < x

Benchmarks ran on a Ultra Sparc 1, 170MHz, SunOs 5.5.

Table 1: Propagation performance

The results in Table 9 show that the propagation mechanism ofthe CPI is com-
petitive with that of ILOG SOLVER. Comparing the quality of the propagation algo-
rithms used for the supplied library constraints of ILOG SOLVER resp.Oz is beyond
the scope of this paper.

Benchmarking job-shop problems.The following benchmarks compare Oz 2.0.3
with ILOG SCHEDULER 2.2 for classical 10x10 job-shop scheduling benchmarks
for the proof of optimality [1]. In both systems we used the best strategy available
in the corresponding libraries.2

In Table 2, the entryFails denotes the number of failure nodes in the search
tree needed for proving optimality. The entryCPU denotes the run time needed
for proving optimality. The last two columns compare the runtimes between ILOG

SCHEDULER and Oz.
To be able to solve job-shop problems we implemented specialglobal con-

straints,e.g.edge-finding, and obtained results similar to ILOG SCHEDULER. The
deviation between the results is due to the different propagation algorithms and2In Oz, the capacity constraint was modeled byFD.schedule.serialized and the
branching strategy byFD.schedule.taskIntervalsDistP . In ILOG, we used for the
capacity constraint the provided edge-finding (with parameter 2 for the strongest pruning)
and for the branching strategyIlcSelResMinLocalSlack to select the resource and
IlcSelFirstRCMinStartMax to select the task to schedule first.

branching strategies.3
Oz ILOG ILOG/Oz

Problem Fails CPU Fails CPU Fails CPU
MT10 1 795 29.08 5 853 69.7 3.26 2.40
ABZ5 1 431 24.62 2 548 23.4 1.78 0.95
ABZ6 148 2.15 207 2.3 1.40 1.07
La19 1 066 18.43 3 786 35.1 3.56 1.90
La20 881 14.40 10 384 72.2 11.79 5.01
ORB1 7 533 124.93 3 925 42.9 0.52 0.34
ORB2 425 7.42 16 922 183.0 39.82 24.66
ORB3 22 590 345.28 16 845 211.3 0.75 0.61
ORB4 1 034 16.00 17 677 207.6 17.10 12.98
ORB5 871 14.84 3 031 27.2 3.48 1.83

Benchmarks ran on a Ultra Sparc 1, 170MHz, SunOs 5.5.

Table 2: Classical 10x10 job-shop problems

10 Conclusion

We have presented the interface CPI which extends the CCP language Oz by the
possibility to implement efficient constraint propagatorsin C++. The interface ab-
stractions are high-level enough to hide away low-level issues, like propagator re-
sumption, from the programmer. The expressiveness of the CPI and the provided
extensions (as discussed in Section 5) allow to easily implement, for example, com-
plex global and reified constraints which make the interfacesuitable to tackle large
and hard combinatorial problems. Further, the yielded interface performance is
competitive with state-of-the-art constraint programming systems. The interface
design can also be applied to Prolog-based implementationsproviding for coroutin-
ing. The CPI is also general enough to be extended by further constraint systems,
as already proved for set interval constraints.

Acknowledgements. The authors would like to thank Martin Müller, Peter Van
Roy, Christian Schulte, and the anonymous referees for their invaluable comments
on earlier versions of this paper.

The research reported in this paper has been supported by theBMBF (FKZ-
ITW-9105 and FTZ-ITW-9106), and the Esprit Working Group CCL-II (EP 22457).

References
[1] D. Applegate and W. Cook. A computational study of the job-shop scheduling problem.Oper-

ations Research Society of America, Journal on Computing, 3(2):149–156, 1991.

[2] B. Carlson, M. Carlsson, and S. Janson. The implementation of AKL(FD). In Proceedings of
the International Symposium on Logic Programming, pages 227–241, 1995.3A more thorough comparison (also with the Claire system) canbe found through

http://www.ps.uni-sb.de/˜wuertz/Benchmarks/schedulingBenchs.html

[3] P. Codognet and D. Diaz. Compiling constraints inclp(FD) . Journal of Logic Programming,
27(3):185–226, 1996.

[4] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Berthier. The constraint
logic programming language CHIP. InProceedings of the International Conference on Fifth
Generation Computer Systems FGCS-88, pages 693–702, Tokyo, Japan, December 1988.

[5] ECRC. ECLiPSe, User Manual Version 3.5.2, December 1996.

[6] M. Henz and J. Würtz. Using Oz for college timetabling. In E.K. Burke and P. Ross, editors,
Practice and Theory of Automated Timetabling, First International Conference, Selected Papers,
Edinburgh 1995, volume 1153 ofLecture Notes in Computer Science, pages 162–178. Springer-
Verlag, 1996.

[7] I LOG, URL: http://www.ilog.com . ILOG SCHEDULER2.2, User Manual, 1996, 1996.

[8] I LOG, URL: http://www.ilog.com . ILOG SOLVER 3.2, User Manual, 1996, 1996.

[9] M. Mehl, T. Müller, K. Popov, R. Scheidhauer, and C. Schulte. DFKI Oz user’s manual. DFKI
Oz documentation series, Deutsches Forschungszentrum für Künstliche Intelligenz GmbH,
Stuhlsatzenhausweg 3, 66123 Saarbrücken, Germany, 1997.

[10] M. Mehl, R. Scheidhauer, and C. Schulte. An abstract machine for Oz. InProgramming Lan-
guages, Implementations, Logics and Programs, Seventh International Symposium, PLILP’95,
Lecture Notes in Computer Science, pages 151–168, Utrecht,The Netherlands, 20–22 Septem-
ber 1995. Springer Verlag.

[11] T. Müller and J. Würtz. A survey on finite domain programming in Oz. InNotes on the DFKI-
Workshop: Constraint-Based Problem Solving, To appear as Technical report D-96-02, Kaiser-
slautern, Germany, 1996.

[12] T. Müller and J. Würtz. The constraint propagator interface of DFKI Oz. DFKI Oz docu-
mentation series, Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, Stuhlsatzen-
hausweg 3, 66123 Saarbrücken, Germany, 1997.

[13] J.-F. Puget and M. Leconte. Beyond the glass box: constraints as objects. InProceedings of the
International Symposium on Logic Programming, pages 513–527, 1995.

[14] V. A. Saraswat.Concurrent Constraint Programming Languages. PhD thesis, School of Comp.
Sc., Carnegie-Mellon University, Pittsburgh, CA, 1989.

[15] C. Schulte. Programming constraint inference engines. In Proceedings of the International
Conference on Principles and Practice of Constraint Programming, number 1330 in Lecture
Notes in Computer Science, pages 520–534. Springer-Verlag, 1997.

[16] C. Schulte, G. Smolka, and J. Würtz. Encapsulated search and constraint programming in Oz.
In A.H. Borning, editor,Principles and Practice of Constraint Programming, volume 874 of
Lecture Notes in Computer Science, pages 134–150, Orcas Island, Washington, USA, 1994.
Springer-Verlag.

[17] G. Smolka. The Oz programming model. In Jan van Leeuwen,editor,Computer Science Today,
Lecture Notes in Computer Science, vol. 1000, pages 324–343. Springer-Verlag, Berlin, 1995.

[18] P. Van Hentenryck, Y. Deville, and C.M. Teng. A generic arc-consistency algorithm and its
specializations.Artificial Intelligence, 57:291–321, 1992.

[19] P. Van Hentenryck, V. Saraswat, and Y. Deville. Constraint processing in cc(FD). Technical
report, Brown University, 1991. Unpublished.

[20] J. Würtz. Oz Scheduler: A workbench for scheduling problems. In M.G. Radle, editor,Eighth
International Conference on Tools with Artificial Intelligence, pages 149–156, Toulouse, France,
1996. IEEE, IEEE Computer Society Press.

Remark. A copy of the DFKI Oz 2.0 implementation featuring the CPI can be obtained
from http://www.ps.uni-sb.de/oz2/ .

