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Abstract

To solve large and hard discrete combinatorial problems dfien necessary to
design new constraints. Current systems either focus ohigtelevel modeling
aspect or on very efficient implementation technology. Wleich approach lacks
the advantages of the other one, this paper describes theiration of both ap-
proaches in the concurrent constraint language Oz. Thranghterface to program
new finite domain constraints efficiently in-Cthe benefits of a high-level language
to model a problem and of an efficient implementation teabgyffor user-defined
constraints are inherited.

Constraints and the Oz runtime system are linked togetHgrbgrihe interface
abstractions. The interface supplies adequate abstadiioimplement advanced
algorithmic techniques. It provides, for example, also nset@ reflect the validity
of a constraint and to control and inspect the state of theahohplementation of a
constraint. This allows to solve demanding combinatoniabfems, as for instance
hard scheduling problems.

The described interface is not limited to concurrent camstrlanguages or a
particular constraint system.

1 Introduction

Over the last years several approaches and systems werestedjgo solve dis-
crete combinatorial problems with finite domain constsaidt, 19, 3, 2, 5, 8]. To
solve large and hard combinatorial problems it is often se&gy to program new
customized constraints and search strategies. Severalcamhgs were suggested in
literature.

A constraint logic programming (CLP) language I&EL'PS [5] is well-suited
to model constraint problems on a high-level. It providedaie primitives like
attributed variables to design new constraints. But maaolrigues to solve hard
problems require destructive low-level operations, whach difficult to program
efficiently in this setting.

The indexical approach [19, 3] allows the user to programesoew constraints.
But it has no support to apply more sophisticated algoritti®chniques to imple-
ment new constraints (see also Section 8 and [13]).
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On the other hand, combinatorial problems can be tackledlamguage like
C+ together with a dedicated library for constraint solvingge.g.I1L0oG [8]). Al-
though, many programming abstractions are provided thr@iigclasses, itis hard
for a C+ library to provide an adequate level of abstraction to paogthe constraint
model intended to solve the actual problem.

Each approach lacks the advantages of the others. In ther pap describe
the combination of the advantages of these approachesdsfgicing the high-level
language Oz [17] with an interface to program new consiadfftciently in C+. Oz
is a concurrent constraint programming (CCP) language WiM¢h comes with a
rich predefined constraint library. By the concepts of a trairg store and entail-
ment, new constraints can be programmed in the languade Esgthermore, Oz
provides means to program new search strategies [16].

Typically, the first step to solve a demanding problem cassisa prototypical
implementation. In case of using Oz, rapid prototyping igmuted by the features
of a high-level language. After identifying the performaraitical parts of the
program which are not covered by predefined library comgsathese parts should
be re-casted in a very efficient implementation. To this ainméerface is provided
which supports adequate abstractions to implement newraants in C+. Thus, the
application programmer can benefit from both a high-levedleage and an efficient
C+ implementation.

The actual implementation of a constraint through the fateris called a prop-
agator. The interface itself is called the Constraint Pgapar Interface (€1) of
Oz. Propagators and the Oz runtime system are linked tagetthe by the inter-
face abstractions. The programmer is freed from tediouss tilee suspending or
resuming propagators. Furthermore, tha @rovides abstractions to hidesp.han-
dle specific features of Oz like computation spaces and iyguainstraints. That
helps the programmer to concentrate on propagation teebsicpther than on (in
this context) irrelevant issues.

The implementation of advanced propagators is supportéolles’s. The va-
lidity of arbitrary constraints can be reflected into a O4lued variable (also called
reification) efficiently by a general and easy-to-use meisianThe state of a prop-
agator can be controlled and inspected by the programmermexXaonple, it is pos-
sible to extend the set of variables an already running aiea is constraining.
Running propagators can spawn further propagators togstem constraint prop-
agation. Furthermore, it is possible to keep a history of patation steps in the
propagator’s state. This can be used to avoid redundant tetigm.

The interface design can also be used for Prolog-basedrimepitations provid-
ing for coroutining. Moreover, it can be extended by furtbenstraint systems, as
already done at the DFKI for set interval constraints.

We emphasise that to prove the practicability of our apgrdaz’s whole fi-
nite domain constraint library is implemented using thei.CThe resulting con-
straint solver shows competitive performance to statthefart finite domain sys-
tems. It shows also competitive expressiveness and emp@ysrivial algorithms
for scheduling applications [20].

Plan of the paper. The following section introduces the computation model af O
followed by the introduction of the @ abstractions. Section 4 explains the imple-
mentation of a propagator. The advanced expressivenebg @Pt in conjunction
with a case-study is discussed in Section 5 and 6. The spézdfiares of Oz are
considered in the following Section 7. The paper closes reitted work, a perfor-



mance evaluation, and a conclusion.

2 Computation with Constraints in Oz

As a particular instance of a CCP language we consider Oz18,711]. Further,
the paper focuses dimite domain constraintsver non-negative integers (for short
finite domain constraints, see [16] for details).

In Oz a distinction is made between those constraints whiglhasic and those
which are not. For the purpose of this papehasic constrainttakes the form
x=n,x =y, orx € D, wherex andy are variablesp is an integer and is a
finite domain. A constraint € D is called adomain constraintWe say a variable
z is determinedf the store entails a constraimt= n. The basic constraints reside
in theconstraint storeC. Efficient algorithms to decide satisfiability and entaitrhe
are provided for basic constraints.

For more expressive constraints, liket y = z, deciding their satisfiability is
not computationally tractable. Such non-basic conssaané not held in the con-
straint store but are realized ppagators A propagator is a computational agent
which tries to narrow down the domains of variables by addipgropriate basic
constraints to the store. The temonstraint propagatiorrefers to advancing the
constraint store in this way. A propagator imposing the traing P advances the
storeC to the storeC A B, if C A P entails B and B adds new and consistent
information toC'. The variables a propagator is narrowing are calledatameters

The implementation of a propagator defines the amount ofti@nspropaga-
tion, i.e, its operational semantics. Often a complete propagatachnimposes
the strongest basic constraint entailedy. P is computationally too expensive.
Thus, weaker propagation is usually employed. For somecapioin areas domain-
specific techniques can be exploited which lead to very geedlts (see also Sec-
tion 9). A propagator may also cease to exist. If it ceasesis, @itherP is entailed
by C, or C' A P is unsatisfiable.

As an example for constraint propagation, assume a stotainom =, y, z €
{1,...,10}. The propagator far+y < z narrows the domainsta y € {1,...,8}
andz € {3,...,10} (since the other values cannot satisfy the constraint).irgnd
the constraint = 5 causes the propagator to strengthen the storeitee {1, ..., 3}
andz = 5. Imposingx = 3 lets the propagator narrow the domainydb 1.

A computation spachosts a constraint store and a set of propagators. We first
treat the case where only one computation space is givenpditieularities of a
hierarchy of computation spaces is described in Section 7.

3 Extending Oz with Propagators

The computational model sketched in Section 2 is realizethbyOz runtime sys-
tem, which is implemented by an abstract machine [10], dathe emulator In

the current section we explain the interface between thdatariand propagators.
We introduce the provided i@ abstractions as consequence of the interaction be-
tween the emulator and propagators. Note that in the fatigwie also speak of
propagators if we mean the actual implementation of the coatipnal agents.

Overview. A propagator exists in different execution states whichcargrolled by
the emulator. Further, the emulator provides a propagaithr resources like com-



putation time and heap memory. To separate the emulatoanichplementation
of propagators, from the emulator’s point of view a propag& an opaque entity
that requires resourcessp.services.

In turn, a propagator synchronises on the constraint stadenzay amplify it
with basic constraints. The emulatesumes propagator, when the store has been
amplified in a way the propagator is waiting for. For exampi&ny propagators
will only be resumed when the domain bounds of its parametersiarrowed. On
resumption a propagataseadsfor its parameters the basic constraints which are
contained in the store. In the course of constraint propagadtt writes basic con-
straints to the store.

The Criis a C+interface and consequently, provides abstractions-ad&3ses.

A propagator is implemented by an instance of+adlass which stores in its state
references to the propagator's parameters. Operatipmaklyming a propagator
means running its propagation method. Note that in thevatig C+ identifiers
which start with ‘OZ_" refer to CP1 abstractions.

Handling a propagator. As mentioned above, the emulator regards a propagator as
an opague entity. Hence, the emulator needs a uniform wagfdoto all instances

of propagators. Further, theePCmust ensure that a programmer provides the min-
imal propagator functionality required by the emulatoreTompiler should reject
code which is incomplete in that sense. Technically, botjuirements are real-
ized in the interface by defining the cla®Z Propagator asabstract base class
which is the ancestor class of all propagator classes. Anaadvdase class provides
only the declarationi ., only the type signature) but not the definition for its vattu
methods which are indicated by0” after the argument list. Virtual methods allow
for dynamic binding of methods. This enables the emulata@otdrol any concrete
instance of a propagator only by having a pointer of @& _Propagator*) to

it and thus, separates completely propagators from theatamul

enum OZ_Return {ENTAILED, FAILED, SLEEP};

cl ass OZ_Propagator {

public:
virtual OZ_Return propagate( void) = 0O;
virtual voi d updateHeapRefs(OZ_Boolean) = 0;

h

Imposing a propagator. Attaching a propagator instance to its parameters and
introducing a reference to this instance to the emulatoalie@propagator impo-
sition. This is done by a so-callddeader function Such a function is connected
via the Oz standard C interface [9] to an Oz procedure. A hefanhetion has to
provide the following services.

1. A propagator isimposed as soon as its parametes#ffeiently constrained
For example, if a parameter which is expected to be an intisgeot yet
determined, the propagator should not be imposed yet. Oopttie hand,
type errors should be detected by the headay, (a parameter is an atom
instead of an integer).

2. ltis determined on imposition what events cause a prapagabe resumed.
A propagator can be resumed if a parameter is determinedydtieds of
the parameter’s domain are narrowed, the size of the dormahrunk, or a



parameter is involved in a unification.

3. A reference to the newly created propagator instancedhbs passed to the
emulator.

The classOZ_Expect is provided for that purpose. It supplies a set of methods
to test parameters to be sufficiently constrained. Furthey, store the event (this
is passed as extra argument to the test method) on which tipagator has to
be resumed. Insufficiently constrained parameters caeskehder function to be
suspended such that it is resumed as soon as the parameteesnea are further
constrained.

After creating a new instance of the propagator by invokimsgconstructor,
a reference of typ€OZ_Propagator*) is passed to the methdthpose()
of OZ_Expect to introduce the propagator to the emulator. As a side-gffec
impose() attachesuspensionso the appropriatsuspension listef the variable
parameters. These parameters were previously stored stetecof the propagator
by the test methods. The propagator is rwgpendingn its parameters and can
be resumed if the parameters are further constrained. tndaariable can have
several suspension lists such that the contained propagatresumed on different
events.

Scheduling a propagator by the emulator. In order to schedule propagators, the
emulator maintains for each propagator an execution statghvean take one of the
following values:running ,runnable ,sleeping ,entailed ,andfailed
The emulator’'s scheduler switches a propagator betweeexbeution states as
shown in Figure 1.

When a propagator is imposed, its execution state is imrtedgisetrunning
and the scheduler allocates a time slice for its first exenutiAfter every execu-
tion, when the constraint propagation was performed bypipeagpriate propagation
method, the emulator evaluates the propagator’s retutreval

ENTAILED
FAILED

Figure 1: Execution states of a propagator

The valueFAILED is returned if the propagator (according to its operaticsel
mantics) detects its inconsistency with the store. The atoukets the propagator’s
execution state téailed  and the computation is aborted. The propagator will be
ignored by the emulator until it is eventually disposed by itlext garbage collec-
tion. An immediate disposal is not desirable since there bgamultiple references
to a propagator.



The return valueENTAILED indicates that the propagator detects that the con-
straint it implements is entailed by the constraint staee, the propagator cannot
further amplify the constraint store. The emulator setspitopagator’s execution
state toentailed . It happens the same as for a failed propagator: it will be ig-
nored until it is disposed by garbage collection.

If the propagator can neither detect inconsistency norilergat, it returns
SLEEP. Its execution state is set sheeping

A propagator is resumed if at least one of its variable pataraevas involved in
unification or its domain was further narrowed. The emulat@ns the suspension
lists of the concerned variables and either deletes entriese the propagator’s
execution state ifailed resp.entailed  or switches the execution state of the
suspending propagatortonnable . Thisis indicated by transition (1) in Figure 1.
Now, the scheduler takes care of the propagator and willdadbét later on (the
transition (2) fromrunnable torunning is subject to the scheduler’s policy and
will be not discussed here). In fact, when the schedulercheg a propagator to
runnable the propagator's methqatopagate()  is executed.

Reading and writing constraints by a propagator. A propagator stores in its state
references to its parameters. Constraint propagatioreiimplementation consists
basically of the following stages: reading basic constsagf its parameters, writ-
ing further basic constraints to the store and resumingggajors suspending on
these parameters. An instance of the cl@g FDIntVar provides access to a
parameter’s representation in the constraint store. Ostagrtion it obtains access
to a parameter’s suspension lists and the parameter’s €iaitein representation
of classOZ_FiniteDomain . Further, it stores a profile of the finite domain rep-
resentation. A profile consists of the current domain siz the difference be-
tween the current largest and smallest element of the donfairch a profile is
used by the metho®Z_FDIntVar::leave() to decide whether propagators
suspending on this parameter have to be resumed or not.n¢estaf the class
OZ_FiniteDomain  provide methods to access the representation of the domain
constraint of a parameter.

Memory management. A propagator clas® derived fromOZ_Propagator
has to define a method::updateHeapRefs() sinceOZ_Propagator de-
clares this method as a pure virtual method. This methodllisdchy the emula-
tor's garbage collection routine and has to ensure thatfdrences to the emula-
tor's heap are updated which are reachable from the propdgjatate. For exam-
ple, to update a reference of the predefined t@ae Term the provided function
OZ _updateHeapTerm() has to be applied to it.

4 An Example

This section explains the constraint propagator interédd®z by implementing the

propagator for the constraint< y. . o
The implementation of the < y propagator requires the definition of a new
class inheriting fronOZ_Propagator

cl ass LessEq : public OZ_Propagator {
private:
OZ_Term x_ref, y_ref;
public:
LesseEq(OZ_Term x, OZ_Term vy) : x_ref(x), y_ref(y) {}



vi rtual OZ_Return propagate( voi d);
I3
The propagator stores in its state references to its paeasnéterex_ref and
y_ref ). A value of the predefined typ@Z_Term refers to a parameter in the
constraint store. The constructor of the clagssEq initialises the state and is
used in the definition of the header function imposing thepagator (see at the end
of this section).

The propagation method When the emulator switches a propagator’s state to
running the methogropagate()  of the propagator is executed (see Figure 2).
This method implements the propagation algorithm of th@pagator.

1 OZ_Return LessEq::propagate( voi d) {

2 OZ_FDIntVar x(x_ref), y(y_ref);

3 OZ_FiniteDomain * x_dom=x.getbom(), * y_dom=y.getDom();

4 i f ('x_dom->lowerUB(y_dom->getMaxElem())) got o failure;
5 i f (ly_dom->raiseLB(x_dom->getMinElem())) got o failure;
6 i f (x_dom->getMaxElem() <= y_dom->getMinElem()) {

7 x.leave(); y.leave(); return ENTAILED,;

8

9 x.leave(); y.leave(); return SLEEP;

10 failure:

11 x.fail(); y.fail(); return FAILED;

12 }

Figure 2: Methodpropagate()  for the constraint: < y

To obtain access to the propagator's parameters the iestanandy of class
OZ_FDIntVar are created. The functioBZ_FDIntVar::getDom() returns
a pointer to the representation of the domain constrairit@parameter (through its
representation as an instance@f_FDIntVar ). Thereforex dom andy_dom
refer to the finite domain constraint representations ofélspective parametees!

The propagation algorithm far < y is straightforward. The upper bound of
x’s domain is constrained to be less than or equal to the upperdofy’s domain
@ and the lower bound gf's domain is constrained to be greater than or equal to the
lower bound of:’s domain®. The methodowerUB(i)  makes the upper bound of
the domain less than or equalit® and the method executioaiseLB(i) makes
the lower bound of the domain greater than or equial®o Both functions return the
size of the resulting domain. The methgetMinElem()  resp.getMaxElem()
returns the smallesesp.largest value of the domair®. In case an empty domain
is produced the execution branches to ldbéure

The propagator cannot further amplify the store if the ugmmind ofx’s do-
main is less than or equal to the lower boundyf domain®-8), i.e, + < y is
entailed by the store. The returned valiS TAILED signals the emulator that the
propagator can be discarded. Otherwise, returi8h&EP keeps the propagator
suspending on its parameters. The metad FDIntVar::leave() indicates
for the emulator which suspending propagators should hexred because of the
occurred propagation.

The methodOZ_FDlIntVar::fail() has to be called to do some cleanups
if the propagator is left because of a detected empty doniHie returned value
FAILED signals the emulator that the current computation space@sistent.

'Note that in the sequel numbers in parentheses refer togmoltines in Figure 2.



Imposing the propagator. The header function to impose the< y propagator
defines an instance of the cla®Z_Expect . The following macro applications
apply the test metho®Z_Expect::expectintVarBounds() to the1%! and
274 parameter which causes the propagator to be imposed noelibéoparameters
are constrained to finite domains. Additionally, it is detered that narrowing the
bounds of domains will resume the propagator. A new instaficke propagator
is created by calling the constructor with th& and2"? parameter. The applica-
tion of methodmpose() makes the propagator suspending on its parameters and
introduces the propagator to the emulator.
OZ_C_proc_begin(lesseq, 2) {
OZ_Expect pe;
OZ_EXPECT(pe, 0, expectintVarBounds);
OZ_EXPECT(pe, 1, expectintVarBounds);
return pe.impose( new LessEq(OZ_args[0], OZ_args[1]));
} OzZ_C_proc_end

5 Additional Expressiveness of theCpi

This section explains the extended expressiveness of thevhich is desired to

implement advanced propagators for demanding applicatioN! the discussed

extensions are supported by adequate-&bstractions which fit smoothly in the
setting presented before (see [12] for details).

Taking variable equality into account. Oz provides equality between variables,
i.e.x = y, as basic constraint. TherCdeals with equality in two ways:

1. The 1 provides abstractions to check which parameters of a petpagre
equal (see Section 6 for details). This can be applied toctiet® incon-
sistency before variables are determined, as formtl#ff-constraint, which
imposes the constraint thatvariables must be pairwise different.

2. Different instances dbZ_FDIntVar associated with parameters which are
equal refer to the same basic constraint. Therefore, updatsuch a basic
constraint are already visible via all other parameterdeyhiopagating and
before leaving the propagator and telling the constramthké store.

To avoid superficial equality treatment a propagator carmlclifean equality con-
straint was imposed on its parameters since the propagéast’run.

Exploiting statefulness. Because search in Oz is based on a copying-scheme, not
only changes to variables are saved, but also complete datigruspaces includ-

ing propagators. That allows the modification of a propagmsiate destructively
since if an inconsistency occurs, the propagator can bg fetlovered. This fea-
ture can be used to detect what parameter has been changedt@mmost recent
execution of the propagation method by storing a profile &estion 3) of the pa-
rameters before the propagation method is left. This alkh@smplementation of
consistency algorithms like AC-5 [18]. Further, it can bedifo store intermediate
propagation results in the state which are expensive tapuate on each execution

of the propagation method.

Replacingresp.imposing propagators while propagating.In the course of prop-
agation a propagator may detect that it can replace itse#f more efficient one.



For example, suppose = y is added to a store of a computation space where the
constraintr + y = z belongs to. It is more efficient to replaget- y = z by 2z = =
rather than to take care of equality every time propagasatone forx + y = =.

In scheduling applications a propagator for a specializd@duling constraint
may deduce in the course of propagation orderings betweesfis.t To maintain
these task orderings propagators for constraints $fikert, + Durationy, <
Startt, can be imposed by the scheduling propagator with the sigetahat the
scheduling propagator need not to care for these ordermgaare.

Encapsulated propagation. Typically, propagators tell the result of constraint
propagation to the store. An instance of the cl@g FDIntvVar allows there-
fore to update the basic finite domain constraint of its dased parameter, such
that the changes will become visible to the store. But, fanesle, propagators
for reified fesp.meta) constraints [6] reflect only the validity of a consitaiia a
0/1-variable to the store. The result of propagation is psgkated in the prop-
agator {.e. not visible to the store) and only used to decide the validitythe
constraint (for instance by comparing the basic conssaimtthe store with the
result of propagation). The K&l supports encapsulated propagation by the method
OZ_FDintVvar::readEncap() , SO that reified constraints can be straightfor-
wardly implemented in conjunction with propagator repraeet.

Attaching a propagator with a stream. The CpI abstractionrOZ_Stream allows
to attach a propagator with a stream such that the propaigatble to read and write
the stream. That enables communication between a propagadmther program
parts independent from finite domain constraint propagatithis feature allows
branching strategies to be guided by propagators. The gadpamay suggest to
an Oz procedure an ordering for tasks to be scheduled by tisinghared stream.
The Oz procedure may take the branching suggestion intauatemd may com-
municate back via the stream the actual branching decisitimet propagator. The
propagator in turn can use this information for the next ongesuggestion. Fur-
thermore, it is possible to add extra parameters after aggadpr is imposed to
allow for propagators with dynamically increasing arity.

The discussed features have been applied to solve harduticigegroblems com-
petive to the state-of-the-art [20]. TheeCenables the implementation of so-called
global constraints. It is further possible to suspend thgosition of a propagator
until the store contains certain required basic constraihich is desired to imple-
ment,e.g, an autonomous solver encapsulated in a propagator. Fhalldws the
implementor of a propagator to determine the degree of g, e.g.domain
consistency for a certain constraint.

6 A Case-study

This section outlines the implementation of a more advapcegagator using some
of the previously discussed extensions. The example usbd onstraint

Z a;z; +¢ <0 (1)
=1
Along this example, it is shown how the state of a propagatarsied to avoid

redundant computation, how constraints of arbitrary aréty be handled, and how
equality between variables can be used.



Propagation rules. We assume for the presented formulas that for a given real
numbern, [n] ([n]) denotes the largest (smallest) integer which is equal atlem
(larger) thamn. Further, the current loweaesp.upper bound of the domain of a
variablez is denoted by resp.z. Resolving the inequation (1) fa,z yields.

n
arrr < — Z a;x; — c
i=1,i#k

The upper bound of the right hand side of this in-equation is

n n

i=1,i#k,a; >0 1=1,i#k,a; <0

For everyk, the variabler; is narrowed as follows until a fixed point is reached.

xkg{u—ka,ifak>O and ka’ru—F)]c-‘7ifak<0
ag ag

This propagator ceases to exist if the following in-equatiolds:

n

Z a;T; + i az;, +c <0

i=1,a;>0 i=1,a;<0

Handling vectors. The CrPI provides adequate abstractions to convert data struc-
tures of Oz (like lists) into € data structures. In Oz, a list, a tuple, or a record is
denoted as gector To enable propagators with arbitrary arity, vectors aleadd

as parameters too. The propagator for inequality (1) ha&etharameters.e., the

first parameter contains the coefficients, the second oneatiiegbles and the third
one the constant.

The vectors of coefficients and finite domain variables areexed to G- ar-
rays of integers and elements of ty@& Term, respectively. The class for the
propagator implementing inequality constraints storeayarfor the coefficients;
and the variables;, the constant and the current size of the arrays.

cl ass GenLessEgProp : public OZ_Propagator {
int arr_sz, c, * a;
OZ_Term * x;
public: ..
I3
The header will check whether the arrays have the same siastather the param-
eters have the correct type. For this aim, the c@gs Expect can be customized
to handle more complex data structures (like arrays or oes)i

Exploiting variable equality. The Cri provides the function

i nt * OZ_ findEqualVars( i nt size, OZ_Term * v)
to detect equal variables, in @Z_Term array. It expecty to be an array of size
size . Assume the application

int * pa = OZ_findEqualVars(arr_sz, x);
wherepa is called the position array. The arrayis scanned with ascending index
starting from0 to determine the values pf. If x[i] denotes a variable and this



variable occurs the first time, the valuepd[i] isi . In case the variable occurs
not the firsttimepa[i]  contains the index of the first occurrencex[ii denotes
an integerpali] contains—1.

As an example consider the constralntt- 36 — 4c — 5d + 4e + 8 < 0 where at
runtime the constraint = e A d = 2 is imposed. The result of checking for equal
variables is as follows.

i:[0]1]2]3]4
X[l :l{albfc|d]e
pafifl :[0[1[2]-1]2

The state of the propagator can now be updated to represesqtiivalent constraint
2a+3b—2 < 0. Thus, this simplification avoids tedious handling of equaalables
in the propagation algorithm and it improves memory congionpand runtime
behaviour.

7 Dealing with a Hierarchy of Computation Spaces

The main difference between constraint logic programmi{@gR) and concurrent
constraint programming (CCP) is the replacement of satiifiadetection by en-
tailment checking. In Oz, computation spaces are used tteimgnt entailment
checking (recall that for this paper a computation spacesistsiof a constraint
store and a set of propagators attached to it). Furtherrooreputation spaces are
employed to implement different search strategies in Oz [(5@] for details). Thus
a hierarchy of computation spaces may arise. Because aimnisiores contain only
basic constraints, entailment between stores can be deeffigiently. On the other
hand, propagators should be taken into account, too. Taithis propagator should
cease to exist as soon as it can detect that the constraiimiposing is entailed (but
at last if all its parameters are determined). That all pgepars in a computation
space have ceased to exist is a necessary condition thategispaits store and the
constraints the propagators are imposing, is entailed.

While the implementors of the®l have to take care of the handling of computa-
tion spaces, their existence and the resulting extra edfetompletely transparent
for the user of the €1. This is due to the supplied functionality by appropriate
methods which hide these issues from the programmer.

The fact that Oz computation may lead to a hierarchy of coatfmrt spaces has
to be taken into consideration. In casglabal variable(i.e., a variable which is de-
clared in a super-ordinated space) is further constramedsubordinated space, the
changes must be memorized. This is because the local infiomraust not be vis-
ible in super-ordinated spaces and must be undone when libedsnated space is
left. Second, the emulator can resume only those propagattich suspend in the
current or in subordinated spaces. This is because carntsti@ia super-ordinated
space are visible in all its subordinated spaces but nottther vay around (note
that this does not hold for propagators).

If a local variable (i.e., a variable which is declared in the current space) is
further constrained, the old domain need not be memorized.global variable
is further constrained, it is bound to a fresh local varialdlée old domain of the
global variable is memorized (trailed) and the new domaiattached to the local
variable. Furthermore, the suspension entries of a glabaiMe which contain sus-
pensions in the current or subordinated spaces are takenRrapagators provide



this functionality by the methokkave() automatically, freeing the user from this
task. Note that this technique avoids the usual time stagnpirere one ensures that
a variable is trailed only once (seeg.[2]).

8 Related Work

This section compares different constraint programmirsgesys qualitatively rather
than quantitatively with Oz (see Section 9 for benchmarks).

Comparison with ILOG SOLVER. ILOG SOLVER [8] is a commercial € library

that allows to solve combinatorial problems in a constramatgramming style in
C+. ILOG SOLVER permits the user to add new constraints. Therefore, methods
for the following tasks have to be implemented: posting tbestraint, perform-
ing the constraint’'s propagation and detecting an inctersity. In contrast to
propagators, an inconsistency is signalled to the solver gparate method rather
than by a return value. There is no way to inform the solvet ghaonstraint is
entailed which disallows early discard of the constrairite Tmplementation of rei-
fied (resp.meta) constraints requires to determine an “opposite” tcaims which

is automatically imposed if the 0/1-variable is constrdite 0. The @I provides

for that purpose its propagator replacement features (se#o8 5). Further, con-
straints in LOG SOLVER can employ so-called demons to propagate selectively,
i.e.,, every variable is assigned a separate propagation metihigltrades speeding
up execution against increasing memory consumption. Thes@pports this tech-
nique too by modelling a demon by a separate propagator. §stems support the
implementation of global constraints effectively.

Comparison with ECL'PS and CHIP. ECL'PS is a Prolog-based language with
a variety of extensions, particularly it features a finitean@in constraint solver.
ECL'PS features attributed variables and coroutining and is e@rby primitives
to manipulate finite domain variables which allows to impégrinconstraints, even
global ones, iINECL'PS itself. The programmer has to take care of the suspen-
sion handling and propagator resumption himself. In cettitae @1 abstraction
OZ_FDIntvar fulfills this task in a self-acting way.

CHIP [4] is the forerunner oECL!PS and provides a set of powerful built-in
constraints. Nevertheless, the constraints are harddvaeingl the user has to define
new constraints in CHIP itself.

Comparison with indexicals. The so-called indexical approach [19] allows the
user to define new constraints by constructing them withxiicads. Indexicals are
terms “ in r” wherer defines howr is constrained and on what event an indexical
is resumed. The indexicals which realize a single condteadist independently of
each otherj.e., the constraint is not available first-class (see also [1BRus, al-
gorithmic techniques employing global reasoning on alliargnts of the constraint
cannot be incorporated in this setting.

AKL(FD) [2] implements indexicals in a concurrent consttasetting where
local computation spaces are employed in so-called deaplgublence, there are
similarities in the handling of variables and suspensidndifterent computation
spaces. The integration of constraints is not as tight aszinl® AKL(FD) a sin-
gle constraint cannot be used simultaneously to amplifystbee and be used for
entailment checking as is possible for propagators.



9 Performance Evaluation

To evaluate the performance of thei@ve ran two sets of benchmarks with Oz 2.0.3
and set the results in relation todG SOLVER 3.2resp.ILOG SCHEDULER 2.2 [7].
We have chosern.bG to compare with because they use alsodS implementation
language. Note that also the scheduling propagators fahnearking the job-shop
problems are implemented using theiC

The performance of Oz for small-size applications, likeueens, is rather aver-
age due to the constant extra cost imposed by the very exmdist-class search
facilities of Oz [15].

Propagation performance. The first set of benchmarks measures the performance
of the Gp1 without search. Inconsistent constraints are imposed thatlit requires

a lot of propagation to detect the inconsistency. The timtakisn until the inconsis-
tency is detected. To keep the impact of propagation algugtminimal we used
the straightforward constrainis< y, 2 = y, andx + y = z, which do not require
sophisticated propagation technigues and reason onlyedodiinds of domains.

Inconsistent constraint ILOG SOLVER 3.2 | Oz 2.0.3|| ILoGg/ Oz
(sec) (sec)
z,y € {0,...,1000 000}A 26.71 24.35 1.09

u,v € {0,...,2 000 000}A

2 =uN2y=vAu=v+1
x,y € {0,...,10 000 000} A 28.09 29.65 0.95
r<yANy<zz
Benchmarks ran on a Ultra Sparc 1, 170MHz, SunOs 5.5.

Table 1: Propagation performance

The results in Table 9 show that the propagation mechanigired®r! is com-
petitive with that of LoG SoLvER. Comparing the quality of the propagation algo-
rithms used for the supplied library constraints 0b& SOLVER resp.Oz is beyond
the scope of this paper.

Benchmarking job-shop problems.The following benchmarks compare Oz 2.0.3
with ILOG SCHEDULER 2.2 for classical 10x10 job-shop scheduling benchmarks
for the proof of optimality [1]. In both systems we used thstl&rategy available

in the corresponding libraries.

In Table 2, the entryFails denotes the number of failure nodes in the search
tree needed for proving optimality. The en@PU denotes the run time needed
for proving optimality. The last two columns compare the tinmes betweenuoG
SCHEDULER and Oz.

To be able to solve job-shop problems we implemented spgtidlal con-
straints,e.g.edge-finding, and obtained results similar to SCHEDULER. The
deviation between the results is due to the different prapag algorithms and

%In Oz, the capacity constraint was modeled Bip.schedule.serialized and the
branching strategy byrD.schedule.taskintervalsDistP . In ILOG, we used for the
capacity constraint the provided edge-finding (with patmme2 for the strongest pruning)
and for the branching strategyicSelResMinLocalSlack to select the resource and
licSelFirstRCMinStartMax to select the task to schedule first.



branching strategies.

Oz ILoG ILoG/Oz

Problem| Fails| CPU| Fails| CPU| Fails| CPU
MT10 1795 29.08| 5853| 69.7| 3.26| 2.40
ABZ5 1431 24.62| 2548| 23.4| 1.78| 0.95

ABZ6 148 2.15 207 23| 1.40| 1.07
Lal9 1066| 18.43|| 3786| 351 3.56| 1.90
La20 881| 1440 10384| 72.2| 11.79| 5.01
ORB1 7533| 124.93| 3925| 429 0.52| 0.34
ORB2 425 7.42| 16 922| 183.0| 39.82| 24.66

ORB3 || 22590| 345.28| 16 845| 211.3|| 0.75| 0.61

ORB4 1034| 16.00| 17677| 207.6|| 17.10| 12.98

ORB5 871| 14.84| 3031| 27.2| 3.48| 1.83
Benchmarks ran on a Ultra Sparc 1, 170MHz, SunOs 5.5.

Table 2: Classical 10x10 job-shop problems

10 Conclusion

We have presented the interface@iQvhich extends the CCP language Oz by the
possibility to implement efficient constraint propagator<++. The interface ab-
stractions are high-level enough to hide away low-levaléss like propagator re-
sumption, from the programmer. The expressiveness of thead the provided
extensions (as discussed in Section 5) allow to easily imei#, for example, com-
plex global and reified constraints which make the interfageable to tackle large
and hard combinatorial problems. Further, the yieldedriate performance is
competitive with state-of-the-art constraint programgnsystems. The interface
design can also be applied to Prolog-based implementapiaviding for coroutin-
ing. The @1 is also general enough to be extended by further constrggterss,
as already proved for set interval constraints.
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