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Embedding Propagators in a
Concurrent Constraint Language

Tobias Müller

Jörg Würtz

Abstract

Solving large and hard discrete combinatorial problems often requires the
design of new constraints. Current constraint systems focus on either high-
level modeling or efficient implementation technology. While each approach
lacks the advantages of the other one, this paper describes the combination
of them in the high-level concurrent constraint language Oz. We describe an
interface to Oz providing abstractions to program new efficient constraints
in C++, preserving the benefits of Oz for problem modeling.

While constraints and the Oz runtime system are linked through the
interface, and adequate interface abstractions are supplied to implement ad-
vanced algorithmic techniques. In particular, it provides the means to reflect
the validity of a constraint and to control and inspect the state of a con-
straint. This allows the user to solve demanding combinatorial problems,
such as hard scheduling problems.

It is desirable to execute concurrent constraint programs in parallel to
profit from multiprocessor architectures. We discuss how the proposed inter-
face can be adapted to parallel execution, avoiding the recoding of constraint
implementations for sequential solvers.

1 Introduction

Recently several approaches and systems have been suggested to solve dis-
crete combinatorial problems with finite-domain constraints (e.g., [11, 39, 7,
4, 12, 17]). To solve large and hard combinatorial problems, it is often nec-
essary to program new customized constraints and search strategies. Several
approaches have been suggested in the literature.

A constraint logic programming (CLP) language like ECLiPSe(see [12]) is
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well suited to modeling constraint problems on a high level. It provides cer-
tain primitives like attributed variables to design new constraints. But many
techniques to solve hard problems require destructive low-level operations,
which are difficult to program efficiently in this setting.

The indexical approach (see [39, 7]) allows the user to program some new
constraints. But it has no support to apply more sophisticated algorithmic
techniques to implement new constraints (see also Section 8 and [28]) as, for
example, required for global scheduling constraints employing edge-finding
(refer to [2, 1]).

On the other hand, combinatorial problems can be tackled in a language
like C++ together with a dedicated library for constraint solving (see for
example, Ilog [17]). Although many programming abstractions are provided
through C++ classes, it is hard for a C++ library to provide an adequate level
of abstraction to program the constraint model intended to solve the actual
problem.

Each approach lacks the advantages of the others. In this paper we de-
scribe the combination of these approaches by interfacing the high-level lan-
guage Oz (see [34]) with an interface to program new constraints efficiently
in C++. This results in the joined benefits of the combined approaches.

Oz is a concurrent constraint programming (CCP) language (see [29]),
which comes with an extensive predefined constraint library. By the concepts
of a constraint store and entailment, new constraints can be programmed in
the language itself. Furthermore, Oz provides a means to program new search
strategies (refer to [30, 31]). The inherent concurrency of the language makes
it a good candidate for a parallel implementation (see [26]). Hence, this paper
goes beyond a previous version [24] by proposing in Section 7 an extension
of the interface to take advantage of multiprocessor platforms.

Typically, the first step to solving a difficult problem is a prototypical
implementation. In the case of Oz, rapid prototyping is supported by the
features of a high-level language. If the implementation does not show the ex-
pected performance, it is desirable to identify the performance-critical parts
of the program that are not covered by predefined library constraints. (Oz
provides a profiler for that purpose that is compatible with the proposed
interface.) Then these parts should be recasted in a very efficient imple-
mentation. To this aim, an interface is provided that supports adequate
abstractions to implement new constraints in C++ and ensures, by employing
C++’s concept of an abstract base class, that all required definitions are pro-
vided. Thus, the application programmer can benefit from both a high-level
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language and an efficient C++ implementation.
A constraint is realized by a propagator. A propagator’s implementation

is done through an interface. The interface itself is called the constraint prop-
agator interface (CPI) of Oz. Propagators and the Oz runtime system are
linked together only by the interface abstractions. The programmer is freed
from tedious tasks like suspending or resuming propagators. Furthermore,
the CPI provides abstractions to hide (respectively, handle) specific features
of Oz like computation spaces and equality constraints. That helps the pro-
grammer to concentrate on propagation techniques rather than on (in this
context) irrelevant issues. The extension of the CPI to a parallel execution
model follows this high-level approach and hides from the user, for example,
the necessary functionality to deal with certain locking schemes.

The interface design can also be used for Prolog-based implementations
providing for coroutining. Moreover, it can be extended by further constraint
systems, as already done for finite set constraints (see [22]) or to support the
implementation of new constraint systems from scratch (see [15]).

We emphasise that to prove the practicability of our approach, Oz’s whole
finite-domain constraint library is implemented using the CPI. The resulting
constraint solver shows performance competitive to state-of-the-art finite-
domain systems. It shows also competitive expressiveness and employs non-
trivial algorithms for scheduling applications (refer to [42]).

The following section introduces the computation model of Oz followed by
the introduction of the CPI abstractions. Section 4 explains the implementa-
tion of a propagator. The advanced expressiveness of the CPI in conjunction
with a case study is discussed in Sections 5 and 6. Section 7 analyzes the
extension of the CPI to exploit parallelism provided by multiprocessor hard-
ware. The paper closes with related work, a performance evaluation, and a
conclusion.

2 Computation with constraints in Oz

As a particular instance of a CCP language, we consider Oz (see [34, 32, 33]).
Further, the paper focuses on finite-domain constraints over nonnegative in-
tegers (see [39, 41, 32, 43, 33] for details).

A distinction is made between basic and nonbasic constraints. For the
purpose of this paper, a basic constraint takes the form x = n, x = y, or
x ∈ D, where x and y are variables, n is an integer, and D is a finite domain.
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A constraint x ∈ D is called a domain constraint. We say a variable x is
determined if the store entails a constraint x = n. Basic constraints reside
in the constraint store C. Efficient algorithms to decide satisfiability and
entailment are provided for basic constraints.

For more expressive constraints, like x + y = z, deciding satisfiability is
not efficiently computationally feasible. Such nonbasic constraints are re-
alized as propagators. A propagator is a computational agent that tries to
narrow the domains of variables by adding appropriate basic constraints to
the store. The term constraint propagation refers to advancing the constraint
store in this way. A propagator imposing the constraint P advances the store
C to the store C ∧ B if C ∧ P entails B and B adds new and consistent
information to C. The variables a propagator is narrowing are called its
parameters.

The implementation of a propagator defines the amount of constraint
propagation, that is, its operational semantics. Often a complete propagator
that imposes the strongest basic constraint entailed by C∧P is computation-
ally too expensive. Thus, weaker propagation is usually employed. For some
application areas, domain-specific techniques can be exploited that lead to
very good results (see also Section 9). A propagator ceases to exist either if
P is entailed by C or if C ∧ P is unsatisfiable.

As an example for constraint propagation, assume we have a store con-
taining x, y, z ∈ {1, . . . , 10}. The propagator for x + y < z narrows the
domains to x, y ∈ {1, . . . , 8} and z ∈ {3, . . . , 10} (since the other values
cannot satisfy the constraint). Adding the constraint z = 5 causes the prop-
agator to strengthen the store to x, y ∈ {1, . . . , 3} and z = 5. Imposing x = 3
lets the propagator narrow the domain of y to 1.

A computation space hosts a constraint store and a set of propagators.
We first treat the case where only one computation space is given. The
particularities of a hierarchy of computation spaces are described in the last
paragraph of Section 3.7.

3 Extending Oz with propagators

The computational model sketched in Section 2 is realized by the Oz runtime
system, which is implemented by an abstract machine (see [21]), called the
emulator. In this section we explain the interface between the emulator and
propagators. We introduce the provided CPI abstractions as consequence
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of the interaction between the emulator and propagators. In the following
we also speak of propagators if we mean the actual implementation of the
computational agents.

3.1 Overview

A propagator exists in different execution states, which are controlled by the
emulator. Further, the emulator allocates resources like computation time
and heap memory to a propagator. The emulator regards a propagator as an
entity that requires resources (respectively, services). That allows separation
of the emulator from the implementation of the propagators.

In turn, a propagator synchronises on the constraint store and may am-
plify it with basic constraints. The emulator resumes a propagator when the
store has been amplified in a way for which the propagator is waiting. For
example, many propagators are only resumed when the domain bounds of
their parameters are narrowed. On resumption a propagator reads for its pa-
rameters the basic constraints that are contained in the store. In the course
of constraint propagation it writes basic constraints to the store.

The CPI is a C++ interface and, consequently, provides abstractions as
C++ classes. A propagator is implemented by an instance of a C++ class that
stores, in its state, references to the propagator’s parameters. Operationally,
resuming a propagator means running its propagation method. Note that in
the following, C++ identifiers that start with “OZ_” refer to CPI abstractions.

3.2 Handling a propagator

As mentioned above, the emulator regards a propagator as an opaque entity.
Hence, the emulator needs a uniform way to refer to all instances of propaga-
tors. Further, the CPI must ensure that a programmer provides the minimal
propagator functionality required by the emulator. The compiler should re-
ject code that is incomplete in that sense. Technically, both requirements
are realized in the interface by defining the class OZ_Propagator as an
abstract base class , which is the ancestor class of all propagator classes. An
abstract base class provides only the declaration (i.e., only the type signa-
ture) but not the definition for its virtual methods, which are indicated by
“=0” after the argument list. Virtual methods allow for dynamic binding of
methods. This enables the emulator to control any concrete instance of a
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propagator only by having a pointer of type (OZ_Propagator*) to it and
thus completely separates propagators from the emulator.

enum OZ_Return {OZ_ENTAILED, OZ_FAILED, OZ_SLEEP};

class OZ_Propagator {
public:

virtual OZ_Return propagate(void) = 0;
virtual void updateHeapRefs(OZ_Boolean) = 0;
...

};

3.3 Imposing a propagator

Attaching a propagator instance to its parameters and introducing a reference
to this instance to the emulator is called propagator imposition. This is done
by a header function. Such a function is connected via the Oz foreign function
C interface (see [20]) to an Oz procedure. A header function has to provide
the following services.

1. A propagator is imposed as soon as its parameters are sufficiently con-
strained. For example, if a parameter that is expected to be an integer
is not yet determined, the propagator should not be imposed yet. On
the other hand, type errors should be detected by the header (e.g., a
parameter is an atom instead of an integer).

2. It is determined on imposition what events cause a propagator to be
resumed. A propagator can be resumed if a parameter is determined,
the bounds of the parameter’s domain are narrowed, the size of the
domain is decreased, or a parameter is involved in a unification.

3. A reference to the newly created propagator instance has to be passed
to the emulator.

The class OZ_Expect is provided for that purpose. It supplies a set of
methods to test parameters to be sufficiently constrained. Further, they store
the event (this is passed as extra argument to the test method) on which the
propagator has to be resumed. Insufficiently constrained parameters cause
the header function to be suspended such that it is resumed as soon as the
parameters concerned are further constrained.
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imposition running

failed

entailed

sleeping

runnable

(1)

(2)

OZ_SLEEP
OZ_FAILED

OZ_ENTAILED

Figure 1: Execution states of a propagator

After creating a new instance of the propagator by invoking its construc-
tor, a reference of type (OZ_Propagator*) is passed to impose() of class
OZ_Expect to introduce the propagator to the emulator. As a side effect,
impose() attaches suspensions to the appropriate suspension lists of the
variable parameters. These parameters were previously stored in the state of
the propagator by the test methods. The propagator is now suspending on
its parameters and can be resumed if the parameters are further constrained.
In fact, a variable can have several suspension lists such that the contained
propagators are resumed on different events.

3.4 Scheduling a propagator by the emulator

In order to schedule propagators, the emulator maintains for each propaga-
tor an execution state that can take one of the following values: running,
runnable, sleeping, entailed, and failed. The emulator’s scheduler
switches a propagator between the execution states as shown in Figure 1.

When a propagator is imposed, its execution state is immediately set
running and the scheduler allocates a time slice for its first execution. Af-
ter every execution, when the constraint propagation was performed by the
appropriate propagation method, the emulator evaluates the propagator’s
return value.

The value OZ_FAILED is returned if the propagator (according to its
operational semantics) detects its inconsistency with the store. The emula-
tor sets the propagator’s execution state to failed and the computation is
aborted. The propagator is ignored by the emulator until it is eventually
disposed of by the next garbage collection. An immediate disposal is not
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desirable, since there may be multiple references to a propagator.
The return value OZ_ENTAILED indicates that the propagator detects

that the constraint it implements is entailed by the constraint store, that
is, the propagator cannot further amplify the constraint store. The emulator
sets the propagator’s execution state to entailed. It happens the same as for
a failed propagator: It is ignored until it is disposed of by garbage collection.

The propagator returns OZ_SLEEP if it can detect neither inconsistency
nor entailment. Its execution state is set to sleeping.

A propagator is resumed if at least one of its variable parameters is in-
volved in unification or its domain is further narrowed. The emulator scans
the suspension lists of the concerned variables and either deletes entries
where the propagator’s execution state is failed (respectively, entailed)
or switches the execution state of the suspending propagator to runnable.
This is indicated by transition (1) in Figure 1. Now, the scheduler takes care
of the propagator and schedules it later. (The transition (2) from runnable

to running is subject to the scheduler’s policy and is not discussed here.) In
fact, when the scheduler switches a propagator to runnable, the propagator’s
method propagate() is executed.

3.5 Reading and writing constraints by a propagator

A propagator stores in its state references to its parameters. Constraint
propagation in the implementation consists basically of the following stages:
reading basic constraints of its parameters, writing further basic constraints
to the store, and resuming propagators suspending on these parameters. An
instance of the class OZ_FDIntVar provides access to a parameter’s rep-
resentation in the constraint store. On construction it obtains access to a
parameter’s suspension lists and the parameter’s finite domain representation
of class OZ_FiniteDomain. Further, it stores a profile of the finite-domain
representation. A profile consists of the current domain size and the current
width, that is, the difference between the largest and smallest element of the
domain. Such a profile is used by the method OZ_FDIntVar::leave() to
decide whether propagators suspending on this parameter have to be resumed
or not. Instances of the class OZ_FiniteDomain provide methods to access
and update the representation of the domain constraint of a parameter.
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3.6 Memory management

A propagator P derived from OZ_Propagator has to define a method
P::updateHeapRefs(), since OZ_Propagator declares this method as
a pure virtual method. This method is called by the emulator’s garbage col-
lection routine and has to ensure that all references to the emulator’s heap
are updated that are reachable from the propagator’s state. For example, to
update a reference of the predefined type OZ_Term, the provided function
OZ_updateHeapTerm() must be applied to it.

3.7 Handling hierarchical computation spaces

Concurrent constraint programming requires entailment checking rather than
satisfiability testing as in the case of constraint logic programming (CLP).
Oz employs computation spaces to check entailment by testing if the basic
constraints of one computation space are subsumed by those of another.
(Remember that a computation space consists of a constraint store and a
set of propagators attached to it.) Through the course of computation a
hierarchy of computation spaces (forming a tree) may arise, where constraints
of a superordinated space (i.e., closer to the tree’s root) are visible in all its
subordinated spaces (i.e., more remote from the tree’s root) but not the other
way around. Thus, if a global variable (i.e., a variable that is declared in a
superordinated space) is further constrained in a subordinated space S, the
changes must be memorized such that they can be undone when S is left.
If a local variable (i.e., a variable that is declared in the current space) is
further constrained by a propagator, nothing needs to be memorized. The
CPI handles these issues transparently to the CPI user. For example, if
a variable is constrained by a propagator, the CPI causes the emulator to
resume only those propagators that suspend in the current or subordinated
spaces.

4 An example

This section exemplifies the constraint propagator interface by implement-
ing a propagator for the constraint x ≤ y. Its implementation requires the
definition of a new class inheriting from OZ_Propagator.

class LessEq : public OZ_Propagator {
private:
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1 OZ_Return LessEq::propagate(void) {
2 OZ_FDIntVar x(x_ref), y(y_ref);
3 OZ_FiniteDomain * x_dom=x.getDom(), * y_dom=y.getDom();
4 if (!x_dom->lowerUB(y_dom->getMaxElem())) goto failure;
5 if (!y_dom->raiseLB(x_dom->getMinElem())) goto failure;
6 if (x_dom->getMaxElem() <= y_dom->getMinElem()) {
7 x.leave(); y.leave(); return OZ_ENTAILED;
8 }
9 x.leave(); y.leave(); return OZ_SLEEP;
10 failure:
11 x.fail(); y.fail(); return OZ_FAILED;
12 }

Figure 2: Method propagate() for the constraint x ≤ y

OZ_Term x_ref, y_ref;
public:

LessEq(OZ_Term x, OZ_Term y) : x_ref(x), y_ref(y) {}
virtual OZ_Return propagate(void);

};

The propagator stores, in its state, references to its parameters (here x_ref
and y_ref). A value of the predefined type OZ_Term refers to a parame-
ter in the constraint store. The constructor of the class LessEq initialises
the state and is used in the definition of the header function imposing the
propagator (see at the end of this section).

4.1 The propagation method

When the emulator switches a propagator’s state to running, the method
propagate() of the propagator is executed (see Figure 2). This method
implements the propagation algorithm of the propagator.

To obtain access to the propagator’s parameters, the instances x and y of
class OZ_FDIntVar are created. The function OZ_FDIntVar::getDom()
returns a pointer to the representation of the domain constraint of the param-
eter (through its representation as an instance of OZ_FDIntVar). Therefore,
x_dom and y_dom refer to the finite-domain constraint representations of
the respective parameters (line 3 of Figure 2).

The propagation algorithm for x ≤ y is straightforward. The upper bound
of x’s domain is constrained to be less than or equal to the upper bound of
y’s domain (line 4) and the lower bound of y’s domain is constrained to be
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greater than or equal to the lower bound of x’s domain (line 5). The method
lowerUB(i) makes the upper bound of the domain less than or equal to
i (line 4), and the method execution raiseLB(i) makes the lower bound
of the domain greater than or equal to i (line 5). Both functions return
the size of the resulting domain. The method getMinElem() (respectively,
getMaxElem()) returns the smallest (respectively, largest) value of the
domain (lines 4, 5). In the case when an empty domain is produced, the
execution branches to label failure.

The propagator cannot further amplify the store if the upper bound of
x’s domain is less than or equal to the lower bound of y’s domain (lines 6–8),
that is, x ≤ y is entailed by the store. The returned value OZ_ENTAILED
signals the emulator that the propagator can be discarded. Otherwise, re-
turning OZ_SLEEP keeps the propagator suspending on its parameters. The
method OZ_FDIntVar::leave() indicates for the emulator which sus-
pending propagators should be resumed because of the occurred propagation.

The method OZ_FDIntVar::fail() has to be called to perform some
cleanups if the propagator is left because of a detected empty domain. The
returned value OZ_FAILED signals the emulator that the current computa-
tion space is inconsistent.

4.2 Imposing the propagator

The header function to impose the x ≤ y propagator defines an instance
of the class OZ_Expect. The following macro applications apply the test
method OZ_Expect::expectIntVarBounds() to the first and second
parameters, which cause the propagator to be imposed not before the pa-
rameters are constrained to finite domains. Additionally, it is determined
that narrowing the bounds of domains resumes the propagator. A new in-
stance of the propagator is created by calling the constructor with the first
and second parameters. The application of method impose() keeps the
propagator suspending on its parameters and introduces the propagator to
the emulator.

OZ_C_proc_begin(lesseq, 2) {
OZ_Expect pe;
OZ_EXPECT(pe, 0, expectIntVarBounds);
OZ_EXPECT(pe, 1, expectIntVarBounds);
return pe.impose(new LessEq(OZ_args[0], OZ_args[1]));

} OZ_C_proc_end
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5 Additional expressiveness of the CPI

This section explains the extended expressiveness of the CPI, which is desired
to implement advanced propagators for demanding applications. All the
discussed extensions are supported by adequate CPI abstractions that fit
smoothly in the setting presented before (see [23] for details).

5.1 Taking variable equality into account

Oz provides equality between variables, that is, x = y, as a basic constraint.
The CPI deals with equality in two ways:

1. The CPI provides abstractions to check which parameters of a prop-
agator are equal (see Section 6 for details). This can be applied to
detecting an inconsistency before variables are determined, as for the
alldiff-constraint, which imposes the constraint that n variables must
be pairwise different.

2. Different instances of OZ_FDIntVar associated with parameters that
are equal refer to the same basic constraint. Therefore, updates to such
a basic constraint are already visible via all other parameters during the
propagation and such before the propagator is left and the constraints
are written to the store.

To avoid superficial equality treatment, a propagator can check if an equality
constraint was imposed on its parameters since the propagator’s last run.

5.2 Exploiting statefulness

Oz saves complete computation spaces during a search, including changes
to variables and propagators. That allows destructive modifications to a
propagator’s state, since if an inconsistency occurs, the propagator can be
fully recovered. This feature can be used to detect what parameter has
been changed since the most recent execution of the propagation method,
by storing a profile (see Section 3) of the parameters before the propagation
method is left. This allows the implementation of consistency algorithms like
AC-5 (see [38]). Further, it can be used to store intermediate propagation
results in the state that are expensive to recompute on each execution of the
propagation method.
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5.3 Replacing or imposing propagators while propa-

gating

In the course of propagation, a propagator may detect that it can replace
itself by a more efficient one. For example, suppose x = y is added to a store
of a computation space where the constraint x + y = z belongs. It is more
efficient to replace x + y = z by 2x = z than to take care of equality every
time propagation is done for x + y = z.

In scheduling applications, a propagator for a specialized scheduling con-
straint may deduce orderings between tasks in the course of propagation.
To maintain these task orderings, propagators for constraints like StartT1

+
DurationT1

< StartT2
can be imposed by the scheduling propagator with the

side effect that the scheduling propagator need not care for these orderings
anymore.

5.4 Encapsulated propagation

Typically, propagators write the result of constraint propagation to the store.
An instance of the class OZ_FDIntVar allows the user, therefore, to update
the basic finite-domain constraint of its associated parameter, such that the
changes become visible to the store. But, for example, propagators for rei-
fied (respectively, meta-) constraints (see [14]) reflect only the validity of a
constraint via a 0/1-variable to the store and not the actual result of prop-
agation. Hence, the result of propagation is encapsulated in the propagator
(i.e., not visible to the store) and only used to decide the validity of the con-
straint (for instance, by comparing the basic constraints in the store with the
result of propagation). The CPI supports encapsulated propagation by the
method OZ_FDIntVar::readEncap(), so that reified constraints can be
straightforwardly implemented in conjunction with propagator replacement.

5.5 Attaching a propagator with a stream

The abstraction OZ_Stream of the CPI allows the user to attach a prop-
agator with a stream such that the propagator is able to read and write
the stream. That enables communication between a propagator and other
program parts independent from finite-domain constraint propagation. This
feature allows branching strategies to be guided by propagators. The propa-
gator may suggest to an Oz procedure an ordering for tasks to be scheduled
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by using the shared stream. The Oz procedure may take the branching sug-
gestion into account and may communicate the actual branching decision,
back via the stream, to the propagator. The propagator in turn can use this
information for the next ordering suggestion. Furthermore, it is possible to
add extra parameters after a propagator is imposed to allow for propagators
with dynamically increasing arity.

The discussed features have been applied to solve hard scheduling prob-
lems competitive to the state of the art (see [42, 43]). The CPI enables
the implementation of so-called global constraints. It is further possible to
suspend the imposition of a propagator until the store contains a certain
required basic constraint, which is desired to implement, for example, an
autonomous solver encapsulated in a propagator. The CPI allows the imple-
mentor of a propagator to determine the degree of propagation, for example,
domain consistency for a certain constraint.

6 A case study

This section outlines the implementation of a more advanced propagator
using some of the previously discussed extensions. The example used is the
constraint

n
∑

i=1

aixi + c ≤ 0. (1)

Along this example, it is shown how the state of a propagator is used to avoid
redundant computation, how constraints of arbitrary arity can be handled,
and how equality between variables can be used.

6.1 Propagation rules

We assume for the presented formulas that for a given real number n, ⌊n⌋
(⌈n⌉) denotes the largest (smallest) integer that is equal to or smaller (larger)
than n. Further, the current lower (respectively, upper) bound of the domain
of a variable x is denoted by x (respectively, x). Resolving the inequation
(1) for akxk yields

akxk ≤ −
n

∑

i=1,i6=k

aixi − c.
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The upper bound of the right hand side of this inequation is

upk = −
n

∑

i=1,i6=k,ai>0

aixi −
n

∑

i=1,i6=k,ai<0

aixi − c.

For every k, the variable xk is narrowed as follows until a fixed point is
reached:

xk ≤
⌊

upk

ak

⌋

if ak > 0 and xk ≥
⌈

upk

ak

⌉

if ak < 0.

This propagator ceases to exist if the following inequation holds:

n
∑

i=1,ai>0

aixi +
n

∑

i=1,ai<0

aixi + c ≤ 0.

6.2 Handling vectors

The CPI provides adequate abstractions to convert data structures of Oz (like
lists) into C++ data structures. In Oz, a list, a tuple, or a record is denoted as
a vector. To allow for propagators with an arbitrary number of parameters,
parameters can be structured by vectors. The inequality propagator (1) has
three parameters, that is, the first parameter contains the coefficients, the
second one the variables, and the third one the constant.

The vectors of coefficients and finite-domain variables are converted to
C++ arrays of integers and elements, respectively, of type OZ_Term. The
class for the propagator implementing inequality constraints stores arrays
for the coefficients ai and the variables xi, the constant c and the current size
of the arrays.

class GenLessEqProp : public OZ_Propagator {
int arr_sz, c, * a;
OZ_Term * x;

public: ...
};

The header checks whether the arrays have the same size and whether the
parameters have the correct type. For this aim, the class OZ_Expect can be
customized to handle more complex data structures (like arrays or matrices).
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6.3 Exploiting variable equality

The CPI provides the function

int * OZ_findEqualVars(int size, OZ_Term * v)

to detect equal variables, in an OZ_Term array. It expects v to be an array
of size size. Assume the application

int * pa = OZ_findEqualVars (arr_sz, x );

where pa is called the position array. The array x is scanned with ascending
index starting from 0 to determine the values of pa. If x[i] denotes a
variable and this variable occurs the first time, the value of pa[i] is i. If
the variable occurs but not the first time, pa[i] contains the index of the
first occurrence. If x[i] denotes an integer, pa[i] contains −1.

As an example, consider the constraint 2a + 3b − 4c − 5d + 4e + 8 ≤ 0
where at runtime the constraint c = e ∧ d = 2 is imposed. The result of
checking for equal variables is as follows.

i: 0 1 2 3 4
x[i]: a b c d e

pa[i]: 0 1 2 -1 2

The state of the propagator can now be updated to represent the equivalent
constraint 2a + 3b − 2 ≤ 0. Thus, this simplification avoids tedious handling
of equal variables in the propagation algorithm, and it improves memory
consumption and runtime behaviour.

7 Extending the CPI for a parallel emulator

Since propagators are concurrent computational entities, they are well suited
to be executed in parallel. In this way, the efficiency of a propagator-based
constraint solver using the CPI can be improved by parallelising the CPI.

Two reasons make Oz an ideal platform for a parallel constraint solver.
First, on multiprocessor platforms, concurrent computation—which is mod-
eled in Oz by threads—can be executed by parallel workers, as described
by Popov in [26]. Second, Oz provides programming constructs that allow
implementation of parallel search engines, that is, search engines that exploit
different branches of a search tree in parallel (see [31] for the implementation
of search engines in Oz).
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This section describes an adaptation of the CPI to the parallel emulator
(see [26]) and the changes necessary to run propagators under the parallel
CPI.

A propagator is connected to the constraint store by its parameters. As
described in Section 3, constraint propagation works by reading basic con-
straints of parameters, writing further basic constraints to the store, and
resuming propagators suspending on these parameters. In the presence of
parallel workers, we have to prevent the interference of operations on the
data structures of the constraint store to avoid that data structures are cor-
rupted (respectively, become inconsistent). Hence, exclusive access to the
parameters of propagators has to be ensured by locking parameters. Read-
ing and writing constraints are very frequent operations, so that the lock-
ing/unlocking overhead becomes very expensive. Another possibility is to
snapshot the parameters, propagate locally on the snapshots, and eventually
merge the snapshots with the store. Although this scheme avoids frequent
locking, making snapshots and merging them (which requires locking, too)
imposes extra an cost for copying domains. Therefore, we took the design
decision to lock all parameters of a propagator before first accessing them.
In this way, the propagator gains exclusive access to its parameters and can
propagate without any efficiency penalties. This has the additional advan-
tage that the changes to the nonparallel CPI are minimal.

7.1 Locking parameters

Locking parameters by a propagator is done by spin-locks (see [8]), which
make a locked parameter inaccessible to other propagators. An advantage of
spin-locks is that the way information in the constraint store is accessed need
not be changed. Locking cyclic dependent objects has to be done with care
to avoid creating a deadlock. For example, suppose we have two propagators
P1 and P2 both sharing as parameters the variables A and B. Assume,
further, P1 locks A and P2 locks B. Then they have run into a deadlock,
since now P1 is waiting for B to be unlocked and P2 is waiting for A. A
solution is to impose a total order on all variables in the constraint store and
to lock parameters according to this order. Assume for our example A < B.
Now, if P1 has successfully locked A, then P2 cannot lock B anymore (since
A < B), and P1 can proceed by locking B.
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7.2 Optimisations

Running multiple propagators in parallel in a single space allows only for
limited speed-ups, since only propagators not sharing any variables as pa-
rameters can run in parallel (due to parameter locking). To overcome this
deficiency we propose two optimisations.

1. As soon as a propagator notices that one of its parameters is locked,
it stops and signals the emulator that it wants to be reexecuted at a
later point in time. This allows the worker executing this propagator
to pick another propagator and does not go idle by waiting for a lock.
Therefore, we introduce a new return value OZ_SCHEDULED. The ap-
propriately adapted execution state graph is shown in Figure 3. It
shows an extra transition from execution state running to runnable

for the new return value.

2. Only one propagator at a time is executed per computation space (see
Section 2). That avoids the problems caused by locking shared parame-
ters. This can easily be achieved by modifying the emulator’s scheduler.
This scheduling strategy is only beneficial if a search explores the nodes
of a search tree in parallel. Oz allows the user to implement parallel
search engines. The first experimental result of the proposed scheduling
strategy is given in Section 9.

imposition running

failed

entailed

sleeping

runnable

OZ_SCHEDULED
(1)

(2)

OZ_SLEEP
OZ_FAILED

OZ_ENTAILED

Figure 3: Execution states of a propagator in the parallel CPI
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7.3 Adapting propagators to the parallel CPI

The implementation of propagators has only to be syntactically modified to
allow the CPI to properly lock and unlock the propagator’s parameters. The
following modifications are necessary:

OZ_Return SomePropagator::run(void) {
...
if (lockParameters())

return OZ_SCHEDULED;
// original propagation code
unlockParameters();
...

}

The method OZ_Propagator::lockParameters() tries to lock all
parameters read in and causes the propagator to return OZ_SCHEDULED
if it finds already locked parameters. After the propagation algorithm has
finished, the parameters are unlocked and suspension lists of appropriate pa-
rameters are scanned. This is done by the method unlockParameters()
of class OZ_Propagator. The rest of the propagator code remains un-
touched. Thus, the necessary changes to adapt propagators to the parallel
CPI can be neglected.

8 Related work

This section compares different constraint programming systems qualita-
tively rather than quantitatively with Oz (see Section 9 for benchmarks).
First, we consider sequential systems and proceed by discussing parallel sys-
tems.

8.1 Sequential constraint solvers

8.1.1 Comparison with Ilog Solver

Ilog Solver [17] is a commercial C++ library that allows for solution of com-
binatorial problems in a constraint programming style in C++. Ilog Solver
permits the user to add new constraints. Therefore, methods for the follow-
ing tasks have to be implemented: posting the constraint, performing the
constraint’s propagation, and detecting an inconsistency. In contrast to CPI
propagators, an inconsistency is signalled to the solver by a separate method
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rather than by a return value. There is no way to inform the solver that
a constraint is entailed that disallows early discard of the constraint. The
implementation of reified (respectively, meta-) constraints requires the de-
termination of an “opposite” constraint, which is automatically imposed if
the 0/1-variable is constrained to 0. The CPI provides, for that purpose, its
propagator replacement features (see Section 5). Further, constraints in Ilog
Solver can employ so-called demons to propagate selectively; that is, every
variable is assigned a separate propagation method. This trades speeding up
execution for increasing memory consumption. The CPI supports this tech-
nique, too, by modeling a demon by a separate propagator. Both systems
support the implementation of global constraints effectively.

8.1.2 Comparison with ECLiPSe and CHIP

ECLiPSe is a Prolog-based language with a variety of extensions, in particu-
lar, a finite-domain constraint solver. ECLiPSe features attributed variables
(see [15]) and coroutining and is extended by primitives to manipulate finite-
domain variables, which allows implementation of constraints, even global
ones, in ECLiPSe itself. The programmer has to take care of the suspen-
sion handling and propagator resumption. In contrast, the CPI abstraction
OZ_FDIntVar fulfills this task in a self-acting way.

CHIP (refer to [11]) is the forerunner of ECLiPSe and provides a set of
powerful built-in constraints. Nevertheless, the constraints are hard-wired
and the user has to define new constraints in CHIP itself.

8.1.3 Comparison with indexicals

The so-called indexical approach (see [39]) allows the user to define new con-
straints by constructing them with indexicals. Indexicals are terms “x in r”
where r defines how x is constrained and on what event an indexical is re-
sumed. The indexicals that realize a single constraint exist independently of
each other, that is, the constraint is not available first-class (see also [28]).
Thus, algorithmic techniques employing global reasoning on all arguments of
the constraint cannot be incorporated in this setting.

The first implementation of an indexical-based finite-domain solver was
in clp(FD)(see [10]). The language is Prolog-based and it compiles to C
code. It provides for a couple of symbolic constraints (e.g., element) as well
as boolean constraints. Due to an indexical-based solver, it does not support
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global constraints.
AKL(FD) [4] implements indexicals in a concurrent constraint setting

where local computation spaces are employed in so-called deep guards. Hence,
there are similarities in the handling of variables and suspensions of different
computation spaces. The integration of constraints is not as tight as in Oz.
In AKL(FD) a single constraint cannot be used simultaneously to amplify
the store and check entailment, as is possible for propagators.

8.1.4 SICStus Prolog

The finite-domain system of SICStus Prolog (see [18]) is based on the index-
ical implementation described in [3] using attributed variables (refer to [15]).
A Prolog-based interface permits global constraints to be added. Further,
the system provides for arithmetic, symbolic, and reified constraints, which
are supported by library constraints implemented in C. In contrast to Oz, a
finite domain allows the user also to represent negative integers.

8.2 Parallel constraint solvers

There has been a lot of work on parallelizing Prolog (for an overview see [9]).
We first mention such Prolog-based systems and then proceed to systems
based on the concurrent constraint (CC) paradigm.

8.2.1 Solvers based on Prolog-like languages

In [37] van Hentenryck reports on the results of or-parallelizing CHIP by ex-
tending the parallel logic programming system PEPSys (developed at ECRC)
appropriately. To execute a Prolog program or-parallel means to explore
choices in parallel. Separating the (basic) constraints in different choices is
achieved by an optimized copying scheme.

There exists, for the above-mentioned ECLiPSe, an extension for parallel
execution that inherits its parallelism from ElipSys (see [40, 27]) and its
constraint-handling capabilities from CHIP (see above). ElipSys is an or-
parallel system and implements and-parallelism by or-parallelism (as parallel
ECLiPSe does also).
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8.2.2 Solvers based on CC paradigm

A parallel implementation of Andorra-I was used as base for a finite-domain
constraint solver in [13]. The implementation uses some specific features of
Andorra-I (e.g., so-called updateable variables) as well as the normal variable-
locking mechanism. Only one variable is locked at a time to avoid complica-
tions due to locking an entire set of variables at once (compare to Section 7).

The system GDCC was implemented on top of KL1, a committed-choice
language developed at ICOT (see [35, 36]). The system allows the user to
plug in constraint solvers via a so-called stream interface, which handles
the synchronization between the parallel-running constraint solvers and the
inference machine. There are three constraint solvers available: algebraic,
boolean, and linear, all using parallel propagation algorithms.

9 Performance evaluation

To evaluate the performance of the CPI we ran two sets of benchmarks with
Oz 2.0.3 and set the results in relation to Ilog Solver 3.2, Ilog Scheduler
2.2, SICStus Prolog 3#6, and ECLiPSe 3.7.1 (refer to [17, 16, 5, 18, 12]).
We chose Ilog for comparison because it also uses C++ as an implementation
language. The finite-domain solver of SICStus Prolog and ECLiPSe are em-
bedded in Prolog systems and represent the state-of-the-art of Prolog-based
implementations.

Note that the scheduling propagators for benchmarking the job-shop
problems are implemented using the CPI.

9.1 Propagation performance

The first set of benchmarks measures the performance of the CPI without
search. Two inconsistent constraints are imposed that require a lot of prop-
agation to detect the inconsistency.

inconsistent constraint (A): x, y ∈ {0, . . . , 1 000 000}∧
u, v ∈ {0, . . . , 2 000 000}∧
2x = u ∧ 2y = v ∧ u = v + 1

inconsistent constraint (B): x, y ∈ {0, . . . , 10 000 000}∧
x < y ∧ y < x
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Inconsistency Oz Ilog SICStus ECLiPSe Ilog SICStus ECLiPSe

constraint Oz Oz Oz

(A) 24.4 26.7 35.5 198.0 1.1 1.5 8.1
(B) 29.7 28.1 28.6 136.5 0.95 0.97 4.6

Table 1: Propagation performance (ran on an Ultra Sparc 1, 170MHz, SunOs
5.5; times are in seconds)

The time is taken until the inconsistency is measured. To keep the impact
of propagation algorithms minimal, we use the straightforward constraints
x < y, 2x = y, and x+y = z, which do not require sophisticated propagation
techniques and reason only on the bounds of domains.

The results in Table 1 show that the propagation mechanism of the CPI
is competitive to the commercial Ilog Solver library. The propagation per-
formance of SICStus Prolog is comparable with Oz, but ECLiPSe performs
significantly worse.

9.2 Benchmarking job-shop problems

The following benchmarks compare Oz 2.0.3 with Ilog Scheduler 2.2 for classic
10×10 job-shop scheduling benchmarks for the proof of optimality (see [1]).
In both systems we used the best strategy available in the corresponding
libraries.1

In Table 2, the entry Fails denotes the number of failure nodes in the
search tree needed for proving optimality. The entry CPU denotes the run-
time needed for proving optimality. The last two columns compare the run-
times between Ilog Scheduler and Oz.

To be able to solve job-shop problems we implemented special global
constraints, for example, edge-finding, and obtained results similar to Ilog
Scheduler. The deviation between the results is due to the different propaga-
tion algorithms (we use a variant of [19] whereas in Ilog Scheduler a variant
of [25] is used) and branching strategies. The main difference between the

1In Oz, the capacity constraint was modeled by FD.schedule.serialized and
the branching strategy by FD.schedule.taskIntervalsDistP. In Ilog, we used for
the capacity constraint the provided edge-finding (with parameter 2 for the strongest
pruning) and for the branching strategy IlcSelResMinLocalSlack to select the resource
and IlcSelFirstRCMinStartMax to select the task to schedule first.
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Oz Ilog Ilog/Oz
Problem Fails CPU Fails CPU Fails CPU

MT10 1 799 28.7 5 853 69.7 3.25 2.43
ABZ5 1 431 23.8 2 548 23.4 1.78 0.98
ABZ6 148 2.3 207 2.3 1.40 1.00
La19 1 066 17.7 3 786 35.1 3.55 1.93
La20 881 13.9 10 384 72.2 11.79 5.19

ORB1 7 528 120.9 3 925 42.9 0.52 0.35
ORB2 425 7.2 16 922 183.0 39.82 25.42
ORB3 22 579 339.4 16 845 211.3 0.75 0.62
ORB4 1 034 15.7 17 677 207.6 17.10 13.22
ORB5 869 14.4 3 031 27.2 3.49 1.89

Table 2: Classic 10×10 job-shop problems (ran on an Ultra Sparc 1, 170MHz,
SunOs 5.5)

systems results from our use of a very effective branching strategy described
in [6], which additionally provides strong propagation through the use of
so-called task intervals (see [43] for a more thorough discussion).

10 Conclusion

We have presented the interface CPI, which extends the CCP language Oz
with the possibility to implement efficient constraint propagators in C++.
The interface abstractions are high-level enough to hide away low-level issues,
like propagator resumption, from the programmer. The expressiveness of the
CPI and the provided extensions (as discussed in Section 5) allow the user
to easily implement, for example, complex global and reified constraints,
which make the interface suitable to tackle large and hard combinatorial
problems. Further, the yielded interface performance is competitive with
state-of-the-art constraint programming systems. The interface design can
also be applied to Prolog-based implementations providing for coroutining.
The CPI is general enough to be extended by further constraint systems, as
already proved for set interval constraints (see [22]).

We showed that the presented CPI can be easily parallelized with minimal
effort. The most promising approach is to execute a single propagator per
computation space to avoid costs otherwise imposed by parameter sharing.
A first experimental implementation suggests that adequate speed-ups due
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to exploiting parallelism are feasible.
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